package java.lang; import java.util.AbstractSet; import java.util.Arrays; import java.util.Iterator; import java.util.NoSuchElementException; import java.util.Set; /** * Linear-probe hash table. *

* Modeled by the {@link java.util.IdentityHashMap}, but using overriddable * {@link #equals(Object, Object) equals} / {@link #hashCode(Object) hashCode} * to compare/locate elements. The API of this class is similar * in function and form to {@link java.util.Map}, but doesn't use separate keys * and values. In this API an element is a key and a value at the same time. * An element is always non-null, so the return values are unambiguous. *

* Because this is a linear-probe hash table and there are no * {@link java.util.Map.Entry} objects involved, the underlying * data structure is very simple and memory efficient. * It is just a sparse array of elements with length that * is always a power of two and larger than 3 * {@link #size()} / 2. * * @param Type of elements contained in the HashArray. */ class HashArray { /** * The minimum capacity, used if a lower value is implicitly specified. * The value 2 corresponds to an expected maximum size of 1, * given a load factor of 2/3. MUST be a power of two. */ private static final int MINIMUM_CAPACITY = 2; /** * The maximum capacity. *

* In fact, the HashArray can hold no more than MAXIMUM_CAPACITY-1 elements * because it has to have at least one slot == null * in order to avoid infinite loops in get() and put(). */ private static final int MAXIMUM_CAPACITY = 1 << 30; /** * The table, re-sized as necessary. * Length MUST always be a power of two. */ private Object[] table; /** * The number of elements contained in this HashArray. */ private int size; /** * Constructor with {@code expectedSize} pre-allocates the * {@link #table}. * * @param expectedMaxSize expected number of elements new HashArray * will hold. */ public HashArray(int expectedMaxSize) { if (expectedMaxSize < 0) throw new IllegalArgumentException("expectedMaxSize is negative: " + expectedMaxSize); table = new Object[capacity(expectedMaxSize)]; } /** * Returns the appropriate capacity for the given expected maximum size. * Returns the smallest power of two between MINIMUM_CAPACITY and * MAXIMUM_CAPACITY, inclusive, that is greater than (3 * * expectedMaxSize)/2, if such a number exists. Otherwise returns * MAXIMUM_CAPACITY. */ private static int capacity(int expectedMaxSize) { // assert expectedMaxSize >= 0; return (expectedMaxSize > MAXIMUM_CAPACITY / 3) ? MAXIMUM_CAPACITY : (expectedMaxSize <= 2 * MINIMUM_CAPACITY / 3) ? MINIMUM_CAPACITY : Integer.highestOneBit(expectedMaxSize + (expectedMaxSize << 1)); } /** * Returns a hash code value for an element of this HashArray or a * lookup object. *

* By default it returns: *

     *     obj.{@link Object#hashCode() hashCode()}
     * 
* But can be overridden in subclasses. * * @param obj an element of this HashArray or a lookup object * @return a hash code value for an element or lookup object. * @see #equals(Object, Object) */ protected int hashCode(Object obj) { return obj.hashCode(); } /** * Indicates whether an element of this HashArray is "equal to" * a lookup object or another element. *

* By default it returns: *

     *     element.{@link Object#equals(Object) equals(obj)}
     * 
* But can be overridden in subclasses. * * @param element an element of this HashArray * @param obj a lookup object or another element * @return {@code true} if an element is the same * as a lookup object or another element; * {@code false} otherwise. * @see #hashCode(Object) */ protected boolean equals(T element, Object obj) { return element.equals(obj); } /** * Returns index for Object x. */ private int hash(Object x, int length) { int h = hashCode(x); return (h ^ (h >>> 16)) & (length - 1); } /** * Circularly traverses table of size length (which is a power of 2). */ private static int nextKeyIndex(int i, int length) { return (i + 1) & (length - 1); } /** * @return Number of elements contained in this HashArray. */ public int size() { return size; } /** * @param lookupObj a non-null lookup object * @return The element which is equal to specified {@code lookupObj} * if it exists in this HashArray or null if it doesn't. * (There can be at most one such element.) * @throws NullPointerException if {@code lookupObj} is null */ @SuppressWarnings("unchecked") public T get(Object lookupObj) { if (lookupObj == null) throw new NullPointerException(); final Object[] tab = table; int i = hash(lookupObj, tab.length); while (true) { T element = (T) tab[i]; if (element == null) { return null; } if (equals(element, lookupObj)) { return element; } i = nextKeyIndex(i, tab.length); } } /** * @param lookupObj a non-null lookup object * @return {@code true} if an element which is equal to specified * {@code lookupObj} exists in this HashArray or * {@code false} if it doesn't. * @throws NullPointerException if {@code lookupObj} is null */ public boolean contains(Object lookupObj) { return get(lookupObj) != null; } /** * Adds {@code newElement} if an element equal to it is not present in * this HashArray and returns null, or returns the existing element and * replaces it with {@code newElement} if such element is present. * * @param newElement new element to put into this HashArray * @return previous element if there was one or null if there was none */ public T put(T newElement) { return put(newElement, true); } /** * Adds {@code newElement} if an element equal to it is not present in * this HashArray and returns null, or returns the existing element and * doesn't modify HashArray if such element is present. * * @param newElement new element to put into this HashArray * @return previous element if there was one or null if there was none */ public T putIfAbsent(T newElement) { return put(newElement, false); } private T put(T newElement, boolean replace) { if (newElement == null) throw new NullPointerException(); retryAfterResize: for (; ; ) { final Object[] tab = table; int i = hash(newElement, tab.length); for ( T element; (element = (T) tab[i]) != null; i = nextKeyIndex(i, tab.length) ) { if (equals(element, newElement)) { if (replace) { tab[i] = newElement; } return element; } } final int s = size + 1; // Use optimized form of 3 * s / 2. // Next capacity is 2 * current capacity. if (s + (s >> 1) > tab.length && resize(tab.length << 1)) continue retryAfterResize; tab[i] = newElement; size = s; return null; } } /** * Resizes the table if necessary to hold given capacity. */ private boolean resize(int newLength) { Object[] oldTable = table; int oldLength = oldTable.length; if (oldLength == MAXIMUM_CAPACITY) { // can't expand any further if (size == MAXIMUM_CAPACITY - 1) throw new IllegalStateException("Capacity exhausted."); return false; } if (oldLength >= newLength) return false; Object[] newTable = new Object[newLength]; for (int j = 0; j < oldLength; j++) { Object element = oldTable[j]; if (element != null) { oldTable[j] = null; int i = hash(element, newLength); while (newTable[i] != null) i = nextKeyIndex(i, newLength); newTable[i] = element; } } table = newTable; return true; } /** * Removes the element equal to {@code lookupObj} and * returns it if present or returns null if not present. * * @param lookupObj a non-null lookup object * @return the removed element if there was one or null if * there was none * @throws NullPointerException if {@code lookupObj} is null */ public T remove(Object lookupObj) { if (lookupObj == null) throw new NullPointerException(); Object[] tab = table; int i = hash(lookupObj, tab.length); while (true) { T element = (T) tab[i]; if (element == null) { return null; } if (equals(element, lookupObj)) { size--; tab[i] = null; closeDeletion(tab, i); return element; } i = nextKeyIndex(i, tab.length); } } /** * Rehash all possibly-colliding elements following a * deletion. This preserves the linear-probe * collision properties required by get, putIfAbsent, remove. * * @param d the index of a newly empty deleted slot */ private void closeDeletion(Object[] tab, int d) { // Adapted from Knuth Section 6.4 Algorithm R // Look for elements to swap into newly vacated slot // starting at index immediately following deletion, // and continuing until a null slot is seen, indicating // the end of a run of possibly-colliding elements. Object element; for ( int i = nextKeyIndex(d, tab.length); (element = tab[i]) != null; i = nextKeyIndex(i, tab.length) ) { // The following test triggers if the element at slot i (which // hashes to be at slot r) should take the spot vacated by d. // If so, we swap it in, and then continue with d now at the // newly vacated i. This process will terminate when we hit // the null slot at the end of this run. // The test is messy because we are using a circular table. int r = hash(element, tab.length); if ((i < r && (r <= d || d <= i)) || (r <= d && d <= i)) { tab[d] = element; tab[i] = null; d = i; } } } /** * Removes all of the elements from this HashArray. */ public void clear() { Arrays.fill(table, null); size = 0; } /** * Returns a {@link Set} view of the elements contained in this HashArray. * The set is backed by the HashArray, so changes to the HashArray are * reflected in the set, and vice-versa. If the HashArray is modified * while an iteration over the set is in progress (except through * the iterator's own remove operation), the results of * the iteration are undefined. The set supports element removal, * which removes the corresponding element from the HashArray, via the * Iterator.remove, Set.remove, * removeAll, retainAll, and clear * operations. It supports the add and addAll * operations. * * @return a set view of the elements contained in this HashArray */ public Set elementSet() { return new AbstractSet() { @Override public int size() { return HashArray.this.size(); } @Override public boolean isEmpty() { return HashArray.this.size() == 0; } @Override public boolean contains(Object o) { return (o != null) && HashArray.this.contains(o); } @Override public Iterator iterator() { return new Iterator() { private int i = 0; private int p = -1; private final Object[] tab = HashArray.this.table; @Override public boolean hasNext() { while (i < tab.length && tab[i] == null) i++; return i < tab.length && tab[i] != null; } @SuppressWarnings("unchecked") @Override public T next() { if (!hasNext()) throw new NoSuchElementException(); return (T) tab[p = i++]; } @Override public void remove() { if (p < 0) throw new IllegalStateException(); tab[p] = null; HashArray.this.closeDeletion(tab, p); p = -1; } }; } @Override public boolean add(T t) { return HashArray.this.put(t) == null; } @Override public boolean remove(Object o) { return (o != null) && (HashArray.this.remove(o) != null); } @Override public void clear() { HashArray.this.clear(); } }; } }