1 /*
   2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_psOldGen.cpp.incl"
  27 
  28 inline const char* PSOldGen::select_name() {
  29   return UseParallelOldGC ? "ParOldGen" : "PSOldGen";
  30 }
  31 
  32 PSOldGen::PSOldGen(ReservedSpace rs, size_t alignment,
  33                    size_t initial_size, size_t min_size, size_t max_size,
  34                    const char* perf_data_name, int level):
  35   _name(select_name()), _init_gen_size(initial_size), _min_gen_size(min_size),
  36   _max_gen_size(max_size)
  37 {
  38   initialize(rs, alignment, perf_data_name, level);
  39 }
  40 
  41 PSOldGen::PSOldGen(size_t initial_size,
  42                    size_t min_size, size_t max_size,
  43                    const char* perf_data_name, int level):
  44   _name(select_name()), _init_gen_size(initial_size), _min_gen_size(min_size),
  45   _max_gen_size(max_size)
  46 {}
  47 
  48 void PSOldGen::initialize(ReservedSpace rs, size_t alignment,
  49                           const char* perf_data_name, int level) {
  50   initialize_virtual_space(rs, alignment);
  51   initialize_work(perf_data_name, level);
  52   // The old gen can grow to gen_size_limit().  _reserve reflects only
  53   // the current maximum that can be committed.
  54   assert(_reserved.byte_size() <= gen_size_limit(), "Consistency check");
  55 }
  56 
  57 void PSOldGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {
  58 
  59   _virtual_space = new PSVirtualSpace(rs, alignment);
  60   if (!_virtual_space->expand_by(_init_gen_size)) {
  61     vm_exit_during_initialization("Could not reserve enough space for "
  62                                   "object heap");
  63   }
  64 }
  65 
  66 void PSOldGen::initialize_work(const char* perf_data_name, int level) {
  67   //
  68   // Basic memory initialization
  69   //
  70 
  71   MemRegion limit_reserved((HeapWord*)virtual_space()->low_boundary(),
  72     heap_word_size(_max_gen_size));
  73   assert(limit_reserved.byte_size() == _max_gen_size,
  74     "word vs bytes confusion");
  75   //
  76   // Object start stuff
  77   //
  78 
  79   start_array()->initialize(limit_reserved);
  80 
  81   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
  82                         (HeapWord*)virtual_space()->high_boundary());
  83 
  84   //
  85   // Card table stuff
  86   //
  87 
  88   MemRegion cmr((HeapWord*)virtual_space()->low(),
  89                 (HeapWord*)virtual_space()->high());
  90   if (ZapUnusedHeapArea) {
  91     // Mangle newly committed space immediately rather than
  92     // waiting for the initialization of the space even though
  93     // mangling is related to spaces.  Doing it here eliminates
  94     // the need to carry along information that a complete mangling
  95     // (bottom to end) needs to be done.
  96     SpaceMangler::mangle_region(cmr);
  97   }
  98 
  99   Universe::heap()->barrier_set()->resize_covered_region(cmr);
 100 
 101   CardTableModRefBS* _ct = (CardTableModRefBS*)Universe::heap()->barrier_set();
 102   assert (_ct->kind() == BarrierSet::CardTableModRef, "Sanity");
 103 
 104   // Verify that the start and end of this generation is the start of a card.
 105   // If this wasn't true, a single card could span more than one generation,
 106   // which would cause problems when we commit/uncommit memory, and when we
 107   // clear and dirty cards.
 108   guarantee(_ct->is_card_aligned(_reserved.start()), "generation must be card aligned");
 109   if (_reserved.end() != Universe::heap()->reserved_region().end()) {
 110     // Don't check at the very end of the heap as we'll assert that we're probing off
 111     // the end if we try.
 112     guarantee(_ct->is_card_aligned(_reserved.end()), "generation must be card aligned");
 113   }
 114 
 115   //
 116   // ObjectSpace stuff
 117   //
 118 
 119   _object_space = new MutableSpace(virtual_space()->alignment());
 120 
 121   if (_object_space == NULL)
 122     vm_exit_during_initialization("Could not allocate an old gen space");
 123 
 124   object_space()->initialize(cmr,
 125                              SpaceDecorator::Clear,
 126                              SpaceDecorator::Mangle);
 127 
 128   _object_mark_sweep = new PSMarkSweepDecorator(_object_space, start_array(), MarkSweepDeadRatio);
 129 
 130   if (_object_mark_sweep == NULL)
 131     vm_exit_during_initialization("Could not complete allocation of old generation");
 132 
 133   // Update the start_array
 134   start_array()->set_covered_region(cmr);
 135 
 136   // Generation Counters, generation 'level', 1 subspace
 137   _gen_counters = new PSGenerationCounters(perf_data_name, level, 1,
 138                                            virtual_space());
 139   _space_counters = new SpaceCounters(perf_data_name, 0,
 140                                       virtual_space()->reserved_size(),
 141                                       _object_space, _gen_counters);
 142 }
 143 
 144 // Assume that the generation has been allocated if its
 145 // reserved size is not 0.
 146 bool  PSOldGen::is_allocated() {
 147   return virtual_space()->reserved_size() != 0;
 148 }
 149 
 150 void PSOldGen::precompact() {
 151   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 152   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 153 
 154   // Reset start array first.
 155   start_array()->reset();
 156 
 157   object_mark_sweep()->precompact();
 158 
 159   // Now compact the young gen
 160   heap->young_gen()->precompact();
 161 }
 162 
 163 void PSOldGen::adjust_pointers() {
 164   object_mark_sweep()->adjust_pointers();
 165 }
 166 
 167 void PSOldGen::compact() {
 168   object_mark_sweep()->compact(ZapUnusedHeapArea);
 169 }
 170 
 171 void PSOldGen::move_and_update(ParCompactionManager* cm) {
 172   PSParallelCompact::move_and_update(cm, PSParallelCompact::old_space_id);
 173 }
 174 
 175 size_t PSOldGen::contiguous_available() const {
 176   return object_space()->free_in_bytes() + virtual_space()->uncommitted_size();
 177 }
 178 
 179 // Allocation. We report all successful allocations to the size policy
 180 // Note that the perm gen does not use this method, and should not!
 181 HeapWord* PSOldGen::allocate(size_t word_size, bool is_tlab) {
 182   assert_locked_or_safepoint(Heap_lock);
 183   HeapWord* res = allocate_noexpand(word_size, is_tlab);
 184 
 185   if (res == NULL) {
 186     res = expand_and_allocate(word_size, is_tlab);
 187   }
 188 
 189   // Allocations in the old generation need to be reported
 190   if (res != NULL) {
 191     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 192     heap->size_policy()->tenured_allocation(word_size);
 193   }
 194 
 195   return res;
 196 }
 197 
 198 HeapWord* PSOldGen::expand_and_allocate(size_t word_size, bool is_tlab) {
 199   assert(!is_tlab, "TLAB's are not supported in PSOldGen");
 200   expand(word_size*HeapWordSize);
 201   if (GCExpandToAllocateDelayMillis > 0) {
 202     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
 203   }
 204   return allocate_noexpand(word_size, is_tlab);
 205 }
 206 
 207 HeapWord* PSOldGen::expand_and_cas_allocate(size_t word_size) {
 208   expand(word_size*HeapWordSize);
 209   if (GCExpandToAllocateDelayMillis > 0) {
 210     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
 211   }
 212   return cas_allocate_noexpand(word_size);
 213 }
 214 
 215 void PSOldGen::expand(size_t bytes) {
 216   if (bytes == 0) {
 217     return;
 218   }
 219   MutexLocker x(ExpandHeap_lock);
 220   const size_t alignment = virtual_space()->alignment();
 221   size_t aligned_bytes  = align_size_up(bytes, alignment);
 222   size_t aligned_expand_bytes = align_size_up(MinHeapDeltaBytes, alignment);
 223   if (aligned_bytes == 0){
 224     // The alignment caused the number of bytes to wrap.  An expand_by(0) will
 225     // return true with the implication that and expansion was done when it
 226     // was not.  A call to expand implies a best effort to expand by "bytes"
 227     // but not a guarantee.  Align down to give a best effort.  This is likely
 228     // the most that the generation can expand since it has some capacity to
 229     // start with.
 230     aligned_bytes = align_size_down(bytes, alignment);
 231   }
 232 
 233   bool success = false;
 234   if (aligned_expand_bytes > aligned_bytes) {
 235     success = expand_by(aligned_expand_bytes);
 236   }
 237   if (!success) {
 238     success = expand_by(aligned_bytes);
 239   }
 240   if (!success) {
 241     success = expand_to_reserved();
 242   }
 243 
 244   if (PrintGC && Verbose) {
 245     if (success && GC_locker::is_active()) {
 246       gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
 247     }
 248   }
 249 }
 250 
 251 bool PSOldGen::expand_by(size_t bytes) {
 252   assert_lock_strong(ExpandHeap_lock);
 253   assert_locked_or_safepoint(Heap_lock);
 254   if (bytes == 0) {
 255     return true;  // That's what virtual_space()->expand_by(0) would return
 256   }
 257   bool result = virtual_space()->expand_by(bytes);
 258   if (result) {
 259     if (ZapUnusedHeapArea) {
 260       // We need to mangle the newly expanded area. The memregion spans
 261       // end -> new_end, we assume that top -> end is already mangled.
 262       // Do the mangling before post_resize() is called because
 263       // the space is available for allocation after post_resize();
 264       HeapWord* const virtual_space_high = (HeapWord*) virtual_space()->high();
 265       assert(object_space()->end() < virtual_space_high,
 266         "Should be true before post_resize()");
 267       MemRegion mangle_region(object_space()->end(), virtual_space_high);
 268       // Note that the object space has not yet been updated to
 269       // coincede with the new underlying virtual space.
 270       SpaceMangler::mangle_region(mangle_region);
 271     }
 272     post_resize();
 273     if (UsePerfData) {
 274       _space_counters->update_capacity();
 275       _gen_counters->update_all();
 276     }
 277   }
 278 
 279   if (result && Verbose && PrintGC) {
 280     size_t new_mem_size = virtual_space()->committed_size();
 281     size_t old_mem_size = new_mem_size - bytes;
 282     gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by "
 283                                        SIZE_FORMAT "K to "
 284                                        SIZE_FORMAT "K",
 285                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
 286   }
 287 
 288   return result;
 289 }
 290 
 291 bool PSOldGen::expand_to_reserved() {
 292   assert_lock_strong(ExpandHeap_lock);
 293   assert_locked_or_safepoint(Heap_lock);
 294 
 295   bool result = true;
 296   const size_t remaining_bytes = virtual_space()->uncommitted_size();
 297   if (remaining_bytes > 0) {
 298     result = expand_by(remaining_bytes);
 299     DEBUG_ONLY(if (!result) warning("grow to reserve failed"));
 300   }
 301   return result;
 302 }
 303 
 304 void PSOldGen::shrink(size_t bytes) {
 305   assert_lock_strong(ExpandHeap_lock);
 306   assert_locked_or_safepoint(Heap_lock);
 307 
 308   size_t size = align_size_down(bytes, virtual_space()->alignment());
 309   if (size > 0) {
 310     assert_lock_strong(ExpandHeap_lock);
 311     virtual_space()->shrink_by(bytes);
 312     post_resize();
 313 
 314     if (Verbose && PrintGC) {
 315       size_t new_mem_size = virtual_space()->committed_size();
 316       size_t old_mem_size = new_mem_size + bytes;
 317       gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by "
 318                                          SIZE_FORMAT "K to "
 319                                          SIZE_FORMAT "K",
 320                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
 321     }
 322   }
 323 }
 324 
 325 void PSOldGen::resize(size_t desired_free_space) {
 326   const size_t alignment = virtual_space()->alignment();
 327   const size_t size_before = virtual_space()->committed_size();
 328   size_t new_size = used_in_bytes() + desired_free_space;
 329   if (new_size < used_in_bytes()) {
 330     // Overflowed the addition.
 331     new_size = gen_size_limit();
 332   }
 333   // Adjust according to our min and max
 334   new_size = MAX2(MIN2(new_size, gen_size_limit()), min_gen_size());
 335 
 336   assert(gen_size_limit() >= reserved().byte_size(), "max new size problem?");
 337   new_size = align_size_up(new_size, alignment);
 338 
 339   const size_t current_size = capacity_in_bytes();
 340 
 341   if (PrintAdaptiveSizePolicy && Verbose) {
 342     gclog_or_tty->print_cr("AdaptiveSizePolicy::old generation size: "
 343       "desired free: " SIZE_FORMAT " used: " SIZE_FORMAT
 344       " new size: " SIZE_FORMAT " current size " SIZE_FORMAT
 345       " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
 346       desired_free_space, used_in_bytes(), new_size, current_size,
 347       gen_size_limit(), min_gen_size());
 348   }
 349 
 350   if (new_size == current_size) {
 351     // No change requested
 352     return;
 353   }
 354   if (new_size > current_size) {
 355     size_t change_bytes = new_size - current_size;
 356     expand(change_bytes);
 357   } else {
 358     size_t change_bytes = current_size - new_size;
 359     // shrink doesn't grab this lock, expand does. Is that right?
 360     MutexLocker x(ExpandHeap_lock);
 361     shrink(change_bytes);
 362   }
 363 
 364   if (PrintAdaptiveSizePolicy) {
 365     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 366     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 367     gclog_or_tty->print_cr("AdaptiveSizePolicy::old generation size: "
 368                   "collection: %d "
 369                   "(" SIZE_FORMAT ") -> (" SIZE_FORMAT ") ",
 370                   heap->total_collections(),
 371                   size_before, virtual_space()->committed_size());
 372   }
 373 }
 374 
 375 // NOTE! We need to be careful about resizing. During a GC, multiple
 376 // allocators may be active during heap expansion. If we allow the
 377 // heap resizing to become visible before we have correctly resized
 378 // all heap related data structures, we may cause program failures.
 379 void PSOldGen::post_resize() {
 380   // First construct a memregion representing the new size
 381   MemRegion new_memregion((HeapWord*)virtual_space()->low(),
 382     (HeapWord*)virtual_space()->high());
 383   size_t new_word_size = new_memregion.word_size();
 384 
 385   start_array()->set_covered_region(new_memregion);
 386   Universe::heap()->barrier_set()->resize_covered_region(new_memregion);
 387 
 388   // ALWAYS do this last!!
 389   object_space()->initialize(new_memregion,
 390                              SpaceDecorator::DontClear,
 391                              SpaceDecorator::DontMangle);
 392 
 393   assert(new_word_size == heap_word_size(object_space()->capacity_in_bytes()),
 394     "Sanity");
 395 }
 396 
 397 size_t PSOldGen::gen_size_limit() {
 398   return _max_gen_size;
 399 }
 400 
 401 void PSOldGen::reset_after_change() {
 402   ShouldNotReachHere();
 403   return;
 404 }
 405 
 406 size_t PSOldGen::available_for_expansion() {
 407   ShouldNotReachHere();
 408   return 0;
 409 }
 410 
 411 size_t PSOldGen::available_for_contraction() {
 412   ShouldNotReachHere();
 413   return 0;
 414 }
 415 
 416 void PSOldGen::print() const { print_on(tty);}
 417 void PSOldGen::print_on(outputStream* st) const {
 418   st->print(" %-15s", name());
 419   if (PrintGCDetails && Verbose) {
 420     st->print(" total " SIZE_FORMAT ", used " SIZE_FORMAT,
 421                 capacity_in_bytes(), used_in_bytes());
 422   } else {
 423     st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
 424                 capacity_in_bytes()/K, used_in_bytes()/K);
 425   }
 426   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 427                 virtual_space()->low_boundary(),
 428                 virtual_space()->high(),
 429                 virtual_space()->high_boundary());
 430 
 431   st->print("  object"); object_space()->print_on(st);
 432 }
 433 
 434 void PSOldGen::print_used_change(size_t prev_used) const {
 435   gclog_or_tty->print(" [%s:", name());
 436   gclog_or_tty->print(" "  SIZE_FORMAT "K"
 437                       "->" SIZE_FORMAT "K"
 438                       "("  SIZE_FORMAT "K)",
 439                       prev_used / K, used_in_bytes() / K,
 440                       capacity_in_bytes() / K);
 441   gclog_or_tty->print("]");
 442 }
 443 
 444 void PSOldGen::update_counters() {
 445   if (UsePerfData) {
 446     _space_counters->update_all();
 447     _gen_counters->update_all();
 448   }
 449 }
 450 
 451 #ifndef PRODUCT
 452 
 453 void PSOldGen::space_invariants() {
 454   assert(object_space()->end() == (HeapWord*) virtual_space()->high(),
 455     "Space invariant");
 456   assert(object_space()->bottom() == (HeapWord*) virtual_space()->low(),
 457     "Space invariant");
 458   assert(virtual_space()->low_boundary() <= virtual_space()->low(),
 459     "Space invariant");
 460   assert(virtual_space()->high_boundary() >= virtual_space()->high(),
 461     "Space invariant");
 462   assert(virtual_space()->low_boundary() == (char*) _reserved.start(),
 463     "Space invariant");
 464   assert(virtual_space()->high_boundary() == (char*) _reserved.end(),
 465     "Space invariant");
 466   assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
 467     "Space invariant");
 468 }
 469 #endif
 470 
 471 void PSOldGen::verify(bool allow_dirty) {
 472   object_space()->verify(allow_dirty);
 473 }
 474 class VerifyObjectStartArrayClosure : public ObjectClosure {
 475   PSOldGen* _gen;
 476   ObjectStartArray* _start_array;
 477 
 478  public:
 479   VerifyObjectStartArrayClosure(PSOldGen* gen, ObjectStartArray* start_array) :
 480     _gen(gen), _start_array(start_array) { }
 481 
 482   virtual void do_object(oop obj) {
 483     HeapWord* test_addr = (HeapWord*)obj + 1;
 484     guarantee(_start_array->object_start(test_addr) == (HeapWord*)obj, "ObjectStartArray cannot find start of object");
 485     guarantee(_start_array->is_block_allocated((HeapWord*)obj), "ObjectStartArray missing block allocation");
 486   }
 487 };
 488 
 489 void PSOldGen::verify_object_start_array() {
 490   VerifyObjectStartArrayClosure check( this, &_start_array );
 491   object_iterate(&check);
 492 }
 493 
 494 #ifndef PRODUCT
 495 void PSOldGen::record_spaces_top() {
 496   assert(ZapUnusedHeapArea, "Not mangling unused space");
 497   object_space()->set_top_for_allocations();
 498 }
 499 #endif