1 /*
   2  * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "gc/shared/collectorCounters.hpp"
  34 #include "gc/shared/gcId.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "gc/shared/gcTrace.hpp"
  37 #include "gc/shared/gcTraceTime.inline.hpp"
  38 #include "gc/shared/genCollectedHeap.hpp"
  39 #include "gc/shared/genOopClosures.inline.hpp"
  40 #include "gc/shared/generationSpec.hpp"
  41 #include "gc/shared/space.hpp"
  42 #include "gc/shared/strongRootsScope.hpp"
  43 #include "gc/shared/vmGCOperations.hpp"
  44 #include "gc/shared/workgroup.hpp"
  45 #include "memory/filemap.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/fprofiler.hpp"
  50 #include "runtime/handles.hpp"
  51 #include "runtime/handles.inline.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/vmThread.hpp"
  54 #include "services/management.hpp"
  55 #include "services/memoryService.hpp"
  56 #include "utilities/debug.hpp"
  57 #include "utilities/formatBuffer.hpp"
  58 #include "utilities/macros.hpp"
  59 #include "utilities/stack.inline.hpp"
  60 #include "utilities/vmError.hpp"
  61 
  62 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  63   CollectedHeap(),
  64   _rem_set(NULL),
  65   _gen_policy(policy),
  66   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  67   _full_collections_completed(0)
  68 {
  69   assert(policy != NULL, "Sanity check");
  70 }
  71 
  72 jint GenCollectedHeap::initialize() {
  73   CollectedHeap::pre_initialize();
  74 
  75   // While there are no constraints in the GC code that HeapWordSize
  76   // be any particular value, there are multiple other areas in the
  77   // system which believe this to be true (e.g. oop->object_size in some
  78   // cases incorrectly returns the size in wordSize units rather than
  79   // HeapWordSize).
  80   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  81 
  82   // Allocate space for the heap.
  83 
  84   char* heap_address;
  85   ReservedSpace heap_rs;
  86 
  87   size_t heap_alignment = collector_policy()->heap_alignment();
  88 
  89   heap_address = allocate(heap_alignment, &heap_rs);
  90 
  91   if (!heap_rs.is_reserved()) {
  92     vm_shutdown_during_initialization(
  93       "Could not reserve enough space for object heap");
  94     return JNI_ENOMEM;
  95   }
  96 
  97   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
  98 
  99   _rem_set = collector_policy()->create_rem_set(reserved_region());
 100   set_barrier_set(rem_set()->bs());
 101 
 102   ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
 103   _young_gen = gen_policy()->young_gen_spec()->init(young_rs, rem_set());
 104   heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
 105 
 106   ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
 107   _old_gen = gen_policy()->old_gen_spec()->init(old_rs, rem_set());
 108   clear_incremental_collection_failed();
 109 
 110   return JNI_OK;
 111 }
 112 
 113 char* GenCollectedHeap::allocate(size_t alignment,
 114                                  ReservedSpace* heap_rs){
 115   // Now figure out the total size.
 116   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 117   assert(alignment % pageSize == 0, "Must be");
 118 
 119   GenerationSpec* young_spec = gen_policy()->young_gen_spec();
 120   GenerationSpec* old_spec = gen_policy()->old_gen_spec();
 121 
 122   // Check for overflow.
 123   size_t total_reserved = young_spec->max_size() + old_spec->max_size();
 124   if (total_reserved < young_spec->max_size()) {
 125     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 126                                   "the maximum representable size");
 127   }
 128   assert(total_reserved % alignment == 0,
 129          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 130          SIZE_FORMAT, total_reserved, alignment);
 131 
 132   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 133 
 134   os::trace_page_sizes("Heap",
 135                        collector_policy()->min_heap_byte_size(),
 136                        total_reserved,
 137                        alignment,
 138                        heap_rs->base(),
 139                        heap_rs->size());
 140 
 141   return heap_rs->base();
 142 }
 143 
 144 void GenCollectedHeap::post_initialize() {
 145   ref_processing_init();
 146   check_gen_kinds();
 147   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 148 
 149   _gen_policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 150                                       _old_gen->capacity(),
 151                                       def_new_gen->from()->capacity());
 152   _gen_policy->initialize_gc_policy_counters();
 153 }
 154 
 155 void GenCollectedHeap::check_gen_kinds() {
 156   assert(young_gen()->kind() == Generation::DefNew,
 157          "Wrong youngest generation type");
 158   assert(old_gen()->kind() == Generation::MarkSweepCompact,
 159          "Wrong generation kind");
 160 }
 161 
 162 void GenCollectedHeap::ref_processing_init() {
 163   _young_gen->ref_processor_init();
 164   _old_gen->ref_processor_init();
 165 }
 166 
 167 size_t GenCollectedHeap::capacity() const {
 168   return _young_gen->capacity() + _old_gen->capacity();
 169 }
 170 
 171 size_t GenCollectedHeap::used() const {
 172   return _young_gen->used() + _old_gen->used();
 173 }
 174 
 175 void GenCollectedHeap::save_used_regions() {
 176   _old_gen->save_used_region();
 177   _young_gen->save_used_region();
 178 }
 179 
 180 size_t GenCollectedHeap::max_capacity() const {
 181   return _young_gen->max_capacity() + _old_gen->max_capacity();
 182 }
 183 
 184 // Update the _full_collections_completed counter
 185 // at the end of a stop-world full GC.
 186 unsigned int GenCollectedHeap::update_full_collections_completed() {
 187   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 188   assert(_full_collections_completed <= _total_full_collections,
 189          "Can't complete more collections than were started");
 190   _full_collections_completed = _total_full_collections;
 191   ml.notify_all();
 192   return _full_collections_completed;
 193 }
 194 
 195 // Update the _full_collections_completed counter, as appropriate,
 196 // at the end of a concurrent GC cycle. Note the conditional update
 197 // below to allow this method to be called by a concurrent collector
 198 // without synchronizing in any manner with the VM thread (which
 199 // may already have initiated a STW full collection "concurrently").
 200 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 201   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 202   assert((_full_collections_completed <= _total_full_collections) &&
 203          (count <= _total_full_collections),
 204          "Can't complete more collections than were started");
 205   if (count > _full_collections_completed) {
 206     _full_collections_completed = count;
 207     ml.notify_all();
 208   }
 209   return _full_collections_completed;
 210 }
 211 
 212 
 213 #ifndef PRODUCT
 214 // Override of memory state checking method in CollectedHeap:
 215 // Some collectors (CMS for example) can't have badHeapWordVal written
 216 // in the first two words of an object. (For instance , in the case of
 217 // CMS these words hold state used to synchronize between certain
 218 // (concurrent) GC steps and direct allocating mutators.)
 219 // The skip_header_HeapWords() method below, allows us to skip
 220 // over the requisite number of HeapWord's. Note that (for
 221 // generational collectors) this means that those many words are
 222 // skipped in each object, irrespective of the generation in which
 223 // that object lives. The resultant loss of precision seems to be
 224 // harmless and the pain of avoiding that imprecision appears somewhat
 225 // higher than we are prepared to pay for such rudimentary debugging
 226 // support.
 227 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 228                                                          size_t size) {
 229   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 230     // We are asked to check a size in HeapWords,
 231     // but the memory is mangled in juint words.
 232     juint* start = (juint*) (addr + skip_header_HeapWords());
 233     juint* end   = (juint*) (addr + size);
 234     for (juint* slot = start; slot < end; slot += 1) {
 235       assert(*slot == badHeapWordVal,
 236              "Found non badHeapWordValue in pre-allocation check");
 237     }
 238   }
 239 }
 240 #endif
 241 
 242 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 243                                                bool is_tlab,
 244                                                bool first_only) {
 245   HeapWord* res = NULL;
 246 
 247   if (_young_gen->should_allocate(size, is_tlab)) {
 248     res = _young_gen->allocate(size, is_tlab);
 249     if (res != NULL || first_only) {
 250       return res;
 251     }
 252   }
 253 
 254   if (_old_gen->should_allocate(size, is_tlab)) {
 255     res = _old_gen->allocate(size, is_tlab);
 256   }
 257 
 258   return res;
 259 }
 260 
 261 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 262                                          bool* gc_overhead_limit_was_exceeded) {
 263   return gen_policy()->mem_allocate_work(size,
 264                                          false /* is_tlab */,
 265                                          gc_overhead_limit_was_exceeded);
 266 }
 267 
 268 bool GenCollectedHeap::must_clear_all_soft_refs() {
 269   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 270          _gc_cause == GCCause::_wb_full_gc;
 271 }
 272 
 273 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 274                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 275                                           bool restore_marks_for_biased_locking) {
 276   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 277   GCTraceTime(Trace, gc, phases) t1(title);
 278   TraceCollectorStats tcs(gen->counters());
 279   TraceMemoryManagerStats tmms(gen->kind(),gc_cause());
 280 
 281   gen->stat_record()->invocations++;
 282   gen->stat_record()->accumulated_time.start();
 283 
 284   // Must be done anew before each collection because
 285   // a previous collection will do mangling and will
 286   // change top of some spaces.
 287   record_gen_tops_before_GC();
 288 
 289   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 290 
 291   if (run_verification && VerifyBeforeGC) {
 292     HandleMark hm;  // Discard invalid handles created during verification
 293     Universe::verify("Before GC");
 294   }
 295   COMPILER2_PRESENT(DerivedPointerTable::clear());
 296 
 297   if (restore_marks_for_biased_locking) {
 298     // We perform this mark word preservation work lazily
 299     // because it's only at this point that we know whether we
 300     // absolutely have to do it; we want to avoid doing it for
 301     // scavenge-only collections where it's unnecessary
 302     BiasedLocking::preserve_marks();
 303   }
 304 
 305   // Do collection work
 306   {
 307     // Note on ref discovery: For what appear to be historical reasons,
 308     // GCH enables and disabled (by enqueing) refs discovery.
 309     // In the future this should be moved into the generation's
 310     // collect method so that ref discovery and enqueueing concerns
 311     // are local to a generation. The collect method could return
 312     // an appropriate indication in the case that notification on
 313     // the ref lock was needed. This will make the treatment of
 314     // weak refs more uniform (and indeed remove such concerns
 315     // from GCH). XXX
 316 
 317     HandleMark hm;  // Discard invalid handles created during gc
 318     save_marks();   // save marks for all gens
 319     // We want to discover references, but not process them yet.
 320     // This mode is disabled in process_discovered_references if the
 321     // generation does some collection work, or in
 322     // enqueue_discovered_references if the generation returns
 323     // without doing any work.
 324     ReferenceProcessor* rp = gen->ref_processor();
 325     // If the discovery of ("weak") refs in this generation is
 326     // atomic wrt other collectors in this configuration, we
 327     // are guaranteed to have empty discovered ref lists.
 328     if (rp->discovery_is_atomic()) {
 329       rp->enable_discovery();
 330       rp->setup_policy(clear_soft_refs);
 331     } else {
 332       // collect() below will enable discovery as appropriate
 333     }
 334     gen->collect(full, clear_soft_refs, size, is_tlab);
 335     if (!rp->enqueuing_is_done()) {
 336       rp->enqueue_discovered_references();
 337     } else {
 338       rp->set_enqueuing_is_done(false);
 339     }
 340     rp->verify_no_references_recorded();
 341   }
 342 
 343   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 344 
 345   gen->stat_record()->accumulated_time.stop();
 346 
 347   update_gc_stats(gen, full);
 348 
 349   if (run_verification && VerifyAfterGC) {
 350     HandleMark hm;  // Discard invalid handles created during verification
 351     Universe::verify("After GC");
 352   }
 353 }
 354 
 355 void GenCollectedHeap::do_collection(bool           full,
 356                                      bool           clear_all_soft_refs,
 357                                      size_t         size,
 358                                      bool           is_tlab,
 359                                      GenerationType max_generation) {
 360   ResourceMark rm;
 361   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 362 
 363   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 364   assert(my_thread->is_VM_thread() ||
 365          my_thread->is_ConcurrentGC_thread(),
 366          "incorrect thread type capability");
 367   assert(Heap_lock->is_locked(),
 368          "the requesting thread should have the Heap_lock");
 369   guarantee(!is_gc_active(), "collection is not reentrant");
 370 
 371   if (GCLocker::check_active_before_gc()) {
 372     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 373   }
 374 
 375   GCIdMarkAndRestore gc_id_mark;
 376 
 377   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 378                           collector_policy()->should_clear_all_soft_refs();
 379 
 380   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 381 
 382   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 383 
 384   print_heap_before_gc();
 385 
 386   {
 387     FlagSetting fl(_is_gc_active, true);
 388 
 389     bool complete = full && (max_generation == OldGen);
 390     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 391     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 392 
 393     FormatBuffer<> gc_string("%s", "Pause ");
 394     if (do_young_collection) {
 395       gc_string.append("Young");
 396     } else {
 397       gc_string.append("Full");
 398     }
 399 
 400     GCTraceCPUTime tcpu;
 401     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 402 
 403     gc_prologue(complete);
 404     increment_total_collections(complete);
 405 
 406     size_t young_prev_used = _young_gen->used();
 407     size_t old_prev_used = _old_gen->used();
 408 
 409     bool run_verification = total_collections() >= VerifyGCStartAt;
 410 
 411     bool prepared_for_verification = false;
 412     bool collected_old = false;
 413 
 414     if (do_young_collection) {
 415       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 416         prepare_for_verify();
 417         prepared_for_verification = true;
 418       }
 419 
 420       collect_generation(_young_gen,
 421                          full,
 422                          size,
 423                          is_tlab,
 424                          run_verification && VerifyGCLevel <= 0,
 425                          do_clear_all_soft_refs,
 426                          false);
 427 
 428       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 429           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 430         // Allocation request was met by young GC.
 431         size = 0;
 432       }
 433     }
 434 
 435     bool must_restore_marks_for_biased_locking = false;
 436 
 437     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 438       if (!complete) {
 439         // The full_collections increment was missed above.
 440         increment_total_full_collections();
 441       }
 442 
 443       if (!prepared_for_verification && run_verification &&
 444           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 445         prepare_for_verify();
 446       }
 447 
 448       if (do_young_collection) {
 449         // We did a young GC. Need a new GC id for the old GC.
 450         GCIdMarkAndRestore gc_id_mark;
 451         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 452         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 453       } else {
 454         // No young GC done. Use the same GC id as was set up earlier in this method.
 455         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 456       }
 457 
 458       must_restore_marks_for_biased_locking = true;
 459       collected_old = true;
 460     }
 461 
 462     // Update "complete" boolean wrt what actually transpired --
 463     // for instance, a promotion failure could have led to
 464     // a whole heap collection.
 465     complete = complete || collected_old;
 466 
 467     print_heap_change(young_prev_used, old_prev_used);
 468     MetaspaceAux::print_metaspace_change(metadata_prev_used);
 469 
 470     // Adjust generation sizes.
 471     if (collected_old) {
 472       _old_gen->compute_new_size();
 473     }
 474     _young_gen->compute_new_size();
 475 
 476     if (complete) {
 477       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 478       ClassLoaderDataGraph::purge();
 479       MetaspaceAux::verify_metrics();
 480       // Resize the metaspace capacity after full collections
 481       MetaspaceGC::compute_new_size();
 482       update_full_collections_completed();
 483     }
 484 
 485     // Track memory usage and detect low memory after GC finishes
 486     MemoryService::track_memory_usage();
 487 
 488     gc_epilogue(complete);
 489 
 490     if (must_restore_marks_for_biased_locking) {
 491       BiasedLocking::restore_marks();
 492     }
 493   }
 494 
 495   print_heap_after_gc();
 496 
 497 #ifdef TRACESPINNING
 498   ParallelTaskTerminator::print_termination_counts();
 499 #endif
 500 }
 501 
 502 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 503   return gen_policy()->satisfy_failed_allocation(size, is_tlab);
 504 }
 505 
 506 #ifdef ASSERT
 507 class AssertNonScavengableClosure: public OopClosure {
 508 public:
 509   virtual void do_oop(oop* p) {
 510     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 511       "Referent should not be scavengable.");  }
 512   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 513 };
 514 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 515 #endif
 516 
 517 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 518                                      ScanningOption so,
 519                                      OopClosure* strong_roots,
 520                                      OopClosure* weak_roots,
 521                                      CLDClosure* strong_cld_closure,
 522                                      CLDClosure* weak_cld_closure,
 523                                      CodeBlobToOopClosure* code_roots) {
 524   // General roots.
 525   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 526   assert(code_roots != NULL, "code root closure should always be set");
 527   // _n_termination for _process_strong_tasks should be set up stream
 528   // in a method not running in a GC worker.  Otherwise the GC worker
 529   // could be trying to change the termination condition while the task
 530   // is executing in another GC worker.
 531 
 532   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 533     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 534   }
 535 
 536   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 537   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 538 
 539   bool is_par = scope->n_threads() > 1;
 540   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 541 
 542   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 543     Universe::oops_do(strong_roots);
 544   }
 545   // Global (strong) JNI handles
 546   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 547     JNIHandles::oops_do(strong_roots);
 548   }
 549 
 550   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 551     ObjectSynchronizer::oops_do(strong_roots);
 552   }
 553   if (!_process_strong_tasks->is_task_claimed(GCH_PS_FlatProfiler_oops_do)) {
 554     FlatProfiler::oops_do(strong_roots);
 555   }
 556   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 557     Management::oops_do(strong_roots);
 558   }
 559   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 560     JvmtiExport::oops_do(strong_roots);
 561   }
 562   if (UseAOT && !_process_strong_tasks->is_task_claimed(GCH_PS_aot_oops_do)) {
 563     AOTLoader::oops_do(strong_roots);
 564   }
 565 
 566   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 567     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 568   }
 569 
 570   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 571     if (so & SO_ScavengeCodeCache) {
 572       assert(code_roots != NULL, "must supply closure for code cache");
 573 
 574       // We only visit parts of the CodeCache when scavenging.
 575       CodeCache::scavenge_root_nmethods_do(code_roots);
 576     }
 577     if (so & SO_AllCodeCache) {
 578       assert(code_roots != NULL, "must supply closure for code cache");
 579 
 580       // CMSCollector uses this to do intermediate-strength collections.
 581       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 582       CodeCache::blobs_do(code_roots);
 583     }
 584     // Verify that the code cache contents are not subject to
 585     // movement by a scavenging collection.
 586     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 587     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 588   }
 589 }
 590 
 591 void GenCollectedHeap::process_string_table_roots(StrongRootsScope* scope,
 592                                                   OopClosure* root_closure) {
 593   assert(root_closure != NULL, "Must be set");
 594   // All threads execute the following. A specific chunk of buckets
 595   // from the StringTable are the individual tasks.
 596   if (scope->n_threads() > 1) {
 597     StringTable::possibly_parallel_oops_do(root_closure);
 598   } else {
 599     StringTable::oops_do(root_closure);
 600   }
 601 }
 602 
 603 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 604                                            OopsInGenClosure* root_closure,
 605                                            OopsInGenClosure* old_gen_closure,
 606                                            CLDClosure* cld_closure) {
 607   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 608 
 609   process_roots(scope, SO_ScavengeCodeCache, root_closure, root_closure,
 610                 cld_closure, cld_closure, &mark_code_closure);
 611   process_string_table_roots(scope, root_closure);
 612 
 613   if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 614     root_closure->reset_generation();
 615   }
 616 
 617   // When collection is parallel, all threads get to cooperate to do
 618   // old generation scanning.
 619   old_gen_closure->set_generation(_old_gen);
 620   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 621   old_gen_closure->reset_generation();
 622 
 623   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 624 }
 625 
 626 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 627                                           bool is_adjust_phase,
 628                                           ScanningOption so,
 629                                           bool only_strong_roots,
 630                                           OopsInGenClosure* root_closure,
 631                                           CLDClosure* cld_closure) {
 632   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 633   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : root_closure;
 634   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 635 
 636   process_roots(scope, so, root_closure, weak_roots, cld_closure, weak_cld_closure, &mark_code_closure);
 637   if (is_adjust_phase) {
 638     // We never treat the string table as roots during marking
 639     // for the full gc, so we only need to process it during
 640     // the adjust phase.
 641     process_string_table_roots(scope, root_closure);
 642   }
 643 
 644   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 645 }
 646 
 647 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 648   JNIHandles::weak_oops_do(root_closure);
 649   _young_gen->ref_processor()->weak_oops_do(root_closure);
 650   _old_gen->ref_processor()->weak_oops_do(root_closure);
 651 }
 652 
 653 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 654 void GenCollectedHeap::                                                 \
 655 oop_since_save_marks_iterate(GenerationType gen,                        \
 656                              OopClosureType* cur,                       \
 657                              OopClosureType* older) {                   \
 658   if (gen == YoungGen) {                              \
 659     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 660     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 661   } else {                                                              \
 662     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 663   }                                                                     \
 664 }
 665 
 666 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 667 
 668 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 669 
 670 bool GenCollectedHeap::no_allocs_since_save_marks() {
 671   return _young_gen->no_allocs_since_save_marks() &&
 672          _old_gen->no_allocs_since_save_marks();
 673 }
 674 
 675 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 676   return _young_gen->supports_inline_contig_alloc();
 677 }
 678 
 679 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 680   return _young_gen->top_addr();
 681 }
 682 
 683 HeapWord** GenCollectedHeap::end_addr() const {
 684   return _young_gen->end_addr();
 685 }
 686 
 687 // public collection interfaces
 688 
 689 void GenCollectedHeap::collect(GCCause::Cause cause) {
 690   if (cause == GCCause::_wb_young_gc) {
 691     // Young collection for the WhiteBox API.
 692     collect(cause, YoungGen);
 693   } else {
 694 #ifdef ASSERT
 695   if (cause == GCCause::_scavenge_alot) {
 696     // Young collection only.
 697     collect(cause, YoungGen);
 698   } else {
 699     // Stop-the-world full collection.
 700     collect(cause, OldGen);
 701   }
 702 #else
 703     // Stop-the-world full collection.
 704     collect(cause, OldGen);
 705 #endif
 706   }
 707 }
 708 
 709 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 710   // The caller doesn't have the Heap_lock
 711   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 712   MutexLocker ml(Heap_lock);
 713   collect_locked(cause, max_generation);
 714 }
 715 
 716 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 717   // The caller has the Heap_lock
 718   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 719   collect_locked(cause, OldGen);
 720 }
 721 
 722 // this is the private collection interface
 723 // The Heap_lock is expected to be held on entry.
 724 
 725 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 726   // Read the GC count while holding the Heap_lock
 727   unsigned int gc_count_before      = total_collections();
 728   unsigned int full_gc_count_before = total_full_collections();
 729   {
 730     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 731     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 732                          cause, max_generation);
 733     VMThread::execute(&op);
 734   }
 735 }
 736 
 737 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 738    do_full_collection(clear_all_soft_refs, OldGen);
 739 }
 740 
 741 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 742                                           GenerationType last_generation) {
 743   GenerationType local_last_generation;
 744   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 745       gc_cause() == GCCause::_gc_locker) {
 746     local_last_generation = YoungGen;
 747   } else {
 748     local_last_generation = last_generation;
 749   }
 750 
 751   do_collection(true,                   // full
 752                 clear_all_soft_refs,    // clear_all_soft_refs
 753                 0,                      // size
 754                 false,                  // is_tlab
 755                 local_last_generation); // last_generation
 756   // Hack XXX FIX ME !!!
 757   // A scavenge may not have been attempted, or may have
 758   // been attempted and failed, because the old gen was too full
 759   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
 760       incremental_collection_will_fail(false /* don't consult_young */)) {
 761     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 762     // This time allow the old gen to be collected as well
 763     do_collection(true,                // full
 764                   clear_all_soft_refs, // clear_all_soft_refs
 765                   0,                   // size
 766                   false,               // is_tlab
 767                   OldGen);             // last_generation
 768   }
 769 }
 770 
 771 bool GenCollectedHeap::is_in_young(oop p) {
 772   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 773   assert(result == _young_gen->is_in_reserved(p),
 774          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
 775   return result;
 776 }
 777 
 778 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 779 bool GenCollectedHeap::is_in(const void* p) const {
 780   return _young_gen->is_in(p) || _old_gen->is_in(p);
 781 }
 782 
 783 #ifdef ASSERT
 784 // Don't implement this by using is_in_young().  This method is used
 785 // in some cases to check that is_in_young() is correct.
 786 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 787   assert(is_in_reserved(p) || p == NULL,
 788     "Does not work if address is non-null and outside of the heap");
 789   return p < _young_gen->reserved().end() && p != NULL;
 790 }
 791 #endif
 792 
 793 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
 794   NoHeaderExtendedOopClosure no_header_cl(cl);
 795   oop_iterate(&no_header_cl);
 796 }
 797 
 798 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 799   _young_gen->oop_iterate(cl);
 800   _old_gen->oop_iterate(cl);
 801 }
 802 
 803 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 804   _young_gen->object_iterate(cl);
 805   _old_gen->object_iterate(cl);
 806 }
 807 
 808 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 809   _young_gen->safe_object_iterate(cl);
 810   _old_gen->safe_object_iterate(cl);
 811 }
 812 
 813 Space* GenCollectedHeap::space_containing(const void* addr) const {
 814   Space* res = _young_gen->space_containing(addr);
 815   if (res != NULL) {
 816     return res;
 817   }
 818   res = _old_gen->space_containing(addr);
 819   assert(res != NULL, "Could not find containing space");
 820   return res;
 821 }
 822 
 823 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 824   assert(is_in_reserved(addr), "block_start of address outside of heap");
 825   if (_young_gen->is_in_reserved(addr)) {
 826     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 827     return _young_gen->block_start(addr);
 828   }
 829 
 830   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 831   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 832   return _old_gen->block_start(addr);
 833 }
 834 
 835 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 836   assert(is_in_reserved(addr), "block_size of address outside of heap");
 837   if (_young_gen->is_in_reserved(addr)) {
 838     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 839     return _young_gen->block_size(addr);
 840   }
 841 
 842   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 843   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 844   return _old_gen->block_size(addr);
 845 }
 846 
 847 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 848   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 849   assert(block_start(addr) == addr, "addr must be a block start");
 850   if (_young_gen->is_in_reserved(addr)) {
 851     return _young_gen->block_is_obj(addr);
 852   }
 853 
 854   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 855   return _old_gen->block_is_obj(addr);
 856 }
 857 
 858 bool GenCollectedHeap::supports_tlab_allocation() const {
 859   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 860   return _young_gen->supports_tlab_allocation();
 861 }
 862 
 863 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 864   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 865   if (_young_gen->supports_tlab_allocation()) {
 866     return _young_gen->tlab_capacity();
 867   }
 868   return 0;
 869 }
 870 
 871 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 872   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 873   if (_young_gen->supports_tlab_allocation()) {
 874     return _young_gen->tlab_used();
 875   }
 876   return 0;
 877 }
 878 
 879 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 880   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 881   if (_young_gen->supports_tlab_allocation()) {
 882     return _young_gen->unsafe_max_tlab_alloc();
 883   }
 884   return 0;
 885 }
 886 
 887 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 888   bool gc_overhead_limit_was_exceeded;
 889   return gen_policy()->mem_allocate_work(size /* size */,
 890                                          true /* is_tlab */,
 891                                          &gc_overhead_limit_was_exceeded);
 892 }
 893 
 894 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 895 // from the list headed by "*prev_ptr".
 896 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 897   bool first = true;
 898   size_t min_size = 0;   // "first" makes this conceptually infinite.
 899   ScratchBlock **smallest_ptr, *smallest;
 900   ScratchBlock  *cur = *prev_ptr;
 901   while (cur) {
 902     assert(*prev_ptr == cur, "just checking");
 903     if (first || cur->num_words < min_size) {
 904       smallest_ptr = prev_ptr;
 905       smallest     = cur;
 906       min_size     = smallest->num_words;
 907       first        = false;
 908     }
 909     prev_ptr = &cur->next;
 910     cur     =  cur->next;
 911   }
 912   smallest      = *smallest_ptr;
 913   *smallest_ptr = smallest->next;
 914   return smallest;
 915 }
 916 
 917 // Sort the scratch block list headed by res into decreasing size order,
 918 // and set "res" to the result.
 919 static void sort_scratch_list(ScratchBlock*& list) {
 920   ScratchBlock* sorted = NULL;
 921   ScratchBlock* unsorted = list;
 922   while (unsorted) {
 923     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
 924     smallest->next  = sorted;
 925     sorted          = smallest;
 926   }
 927   list = sorted;
 928 }
 929 
 930 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
 931                                                size_t max_alloc_words) {
 932   ScratchBlock* res = NULL;
 933   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
 934   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
 935   sort_scratch_list(res);
 936   return res;
 937 }
 938 
 939 void GenCollectedHeap::release_scratch() {
 940   _young_gen->reset_scratch();
 941   _old_gen->reset_scratch();
 942 }
 943 
 944 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
 945   void do_generation(Generation* gen) {
 946     gen->prepare_for_verify();
 947   }
 948 };
 949 
 950 void GenCollectedHeap::prepare_for_verify() {
 951   ensure_parsability(false);        // no need to retire TLABs
 952   GenPrepareForVerifyClosure blk;
 953   generation_iterate(&blk, false);
 954 }
 955 
 956 void GenCollectedHeap::generation_iterate(GenClosure* cl,
 957                                           bool old_to_young) {
 958   if (old_to_young) {
 959     cl->do_generation(_old_gen);
 960     cl->do_generation(_young_gen);
 961   } else {
 962     cl->do_generation(_young_gen);
 963     cl->do_generation(_old_gen);
 964   }
 965 }
 966 
 967 bool GenCollectedHeap::is_maximal_no_gc() const {
 968   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
 969 }
 970 
 971 void GenCollectedHeap::save_marks() {
 972   _young_gen->save_marks();
 973   _old_gen->save_marks();
 974 }
 975 
 976 GenCollectedHeap* GenCollectedHeap::heap() {
 977   CollectedHeap* heap = Universe::heap();
 978   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
 979   assert(heap->kind() == CollectedHeap::GenCollectedHeap ||
 980          heap->kind() == CollectedHeap::CMSHeap, "Not a GenCollectedHeap");
 981   return (GenCollectedHeap*) heap;
 982 }
 983 
 984 void GenCollectedHeap::prepare_for_compaction() {
 985   // Start by compacting into same gen.
 986   CompactPoint cp(_old_gen);
 987   _old_gen->prepare_for_compaction(&cp);
 988   _young_gen->prepare_for_compaction(&cp);
 989 }
 990 
 991 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
 992   log_debug(gc, verify)("%s", _old_gen->name());
 993   _old_gen->verify();
 994 
 995   log_debug(gc, verify)("%s", _old_gen->name());
 996   _young_gen->verify();
 997 
 998   log_debug(gc, verify)("RemSet");
 999   rem_set()->verify();
1000 }
1001 
1002 void GenCollectedHeap::print_on(outputStream* st) const {
1003   _young_gen->print_on(st);
1004   _old_gen->print_on(st);
1005   MetaspaceAux::print_on(st);
1006 }
1007 
1008 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1009 }
1010 
1011 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1012 }
1013 
1014 void GenCollectedHeap::print_tracing_info() const {
1015   if (TraceYoungGenTime) {
1016     _young_gen->print_summary_info();
1017   }
1018   if (TraceOldGenTime) {
1019     _old_gen->print_summary_info();
1020   }
1021 }
1022 
1023 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1024   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1025                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1026   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1027                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1028 }
1029 
1030 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1031  private:
1032   bool _full;
1033  public:
1034   void do_generation(Generation* gen) {
1035     gen->gc_prologue(_full);
1036   }
1037   GenGCPrologueClosure(bool full) : _full(full) {};
1038 };
1039 
1040 void GenCollectedHeap::gc_prologue(bool full) {
1041   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1042 
1043   // Fill TLAB's and such
1044   CollectedHeap::accumulate_statistics_all_tlabs();
1045   ensure_parsability(true);   // retire TLABs
1046 
1047   // Walk generations
1048   GenGCPrologueClosure blk(full);
1049   generation_iterate(&blk, false);  // not old-to-young.
1050 };
1051 
1052 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1053  private:
1054   bool _full;
1055  public:
1056   void do_generation(Generation* gen) {
1057     gen->gc_epilogue(_full);
1058   }
1059   GenGCEpilogueClosure(bool full) : _full(full) {};
1060 };
1061 
1062 void GenCollectedHeap::gc_epilogue(bool full) {
1063 #if defined(COMPILER2) || INCLUDE_JVMCI
1064   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1065   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1066   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1067 #endif /* COMPILER2 || INCLUDE_JVMCI */
1068 
1069   resize_all_tlabs();
1070 
1071   GenGCEpilogueClosure blk(full);
1072   generation_iterate(&blk, false);  // not old-to-young.
1073 
1074   if (!CleanChunkPoolAsync) {
1075     Chunk::clean_chunk_pool();
1076   }
1077 
1078   MetaspaceCounters::update_performance_counters();
1079   CompressedClassSpaceCounters::update_performance_counters();
1080 };
1081 
1082 #ifndef PRODUCT
1083 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1084  private:
1085  public:
1086   void do_generation(Generation* gen) {
1087     gen->record_spaces_top();
1088   }
1089 };
1090 
1091 void GenCollectedHeap::record_gen_tops_before_GC() {
1092   if (ZapUnusedHeapArea) {
1093     GenGCSaveTopsBeforeGCClosure blk;
1094     generation_iterate(&blk, false);  // not old-to-young.
1095   }
1096 }
1097 #endif  // not PRODUCT
1098 
1099 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1100  public:
1101   void do_generation(Generation* gen) {
1102     gen->ensure_parsability();
1103   }
1104 };
1105 
1106 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1107   CollectedHeap::ensure_parsability(retire_tlabs);
1108   GenEnsureParsabilityClosure ep_cl;
1109   generation_iterate(&ep_cl, false);
1110 }
1111 
1112 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1113                                               oop obj,
1114                                               size_t obj_size) {
1115   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1116   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1117   HeapWord* result = NULL;
1118 
1119   result = old_gen->expand_and_allocate(obj_size, false);
1120 
1121   if (result != NULL) {
1122     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1123   }
1124   return oop(result);
1125 }
1126 
1127 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1128   jlong _time;   // in ms
1129   jlong _now;    // in ms
1130 
1131  public:
1132   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1133 
1134   jlong time() { return _time; }
1135 
1136   void do_generation(Generation* gen) {
1137     _time = MIN2(_time, gen->time_of_last_gc(_now));
1138   }
1139 };
1140 
1141 jlong GenCollectedHeap::millis_since_last_gc() {
1142   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1143   // provided the underlying platform provides such a time source
1144   // (and it is bug free). So we still have to guard against getting
1145   // back a time later than 'now'.
1146   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1147   GenTimeOfLastGCClosure tolgc_cl(now);
1148   // iterate over generations getting the oldest
1149   // time that a generation was collected
1150   generation_iterate(&tolgc_cl, false);
1151 
1152   jlong retVal = now - tolgc_cl.time();
1153   if (retVal < 0) {
1154     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1155        ". returning zero instead.", retVal);
1156     return 0;
1157   }
1158   return retVal;
1159 }