1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "assembler_x86.inline.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "runtime/java.hpp"
  29 #include "runtime/stubCodeGenerator.hpp"
  30 #include "vm_version_x86.hpp"
  31 #ifdef TARGET_OS_FAMILY_linux
  32 # include "os_linux.inline.hpp"
  33 #endif
  34 #ifdef TARGET_OS_FAMILY_solaris
  35 # include "os_solaris.inline.hpp"
  36 #endif
  37 #ifdef TARGET_OS_FAMILY_windows
  38 # include "os_windows.inline.hpp"
  39 #endif
  40 #ifdef TARGET_OS_FAMILY_bsd
  41 # include "os_bsd.inline.hpp"
  42 #endif
  43 
  44 
  45 int VM_Version::_cpu;
  46 int VM_Version::_model;
  47 int VM_Version::_stepping;
  48 int VM_Version::_cpuFeatures;
  49 const char*           VM_Version::_features_str = "";
  50 VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
  51 
  52 static BufferBlob* stub_blob;
  53 static const int stub_size = 550;
  54 
  55 extern "C" {
  56   typedef void (*getPsrInfo_stub_t)(void*);
  57 }
  58 static getPsrInfo_stub_t getPsrInfo_stub = NULL;
  59 
  60 
  61 class VM_Version_StubGenerator: public StubCodeGenerator {
  62  public:
  63 
  64   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
  65 
  66   address generate_getPsrInfo() {
  67     // Flags to test CPU type.
  68     const uint32_t HS_EFL_AC           = 0x40000;
  69     const uint32_t HS_EFL_ID           = 0x200000;
  70     // Values for when we don't have a CPUID instruction.
  71     const int      CPU_FAMILY_SHIFT = 8;
  72     const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
  73     const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
  74 
  75     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
  76     Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, done;
  77 
  78     StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
  79 #   define __ _masm->
  80 
  81     address start = __ pc();
  82 
  83     //
  84     // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
  85     //
  86     // LP64: rcx and rdx are first and second argument registers on windows
  87 
  88     __ push(rbp);
  89 #ifdef _LP64
  90     __ mov(rbp, c_rarg0); // cpuid_info address
  91 #else
  92     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
  93 #endif
  94     __ push(rbx);
  95     __ push(rsi);
  96     __ pushf();          // preserve rbx, and flags
  97     __ pop(rax);
  98     __ push(rax);
  99     __ mov(rcx, rax);
 100     //
 101     // if we are unable to change the AC flag, we have a 386
 102     //
 103     __ xorl(rax, HS_EFL_AC);
 104     __ push(rax);
 105     __ popf();
 106     __ pushf();
 107     __ pop(rax);
 108     __ cmpptr(rax, rcx);
 109     __ jccb(Assembler::notEqual, detect_486);
 110 
 111     __ movl(rax, CPU_FAMILY_386);
 112     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 113     __ jmp(done);
 114 
 115     //
 116     // If we are unable to change the ID flag, we have a 486 which does
 117     // not support the "cpuid" instruction.
 118     //
 119     __ bind(detect_486);
 120     __ mov(rax, rcx);
 121     __ xorl(rax, HS_EFL_ID);
 122     __ push(rax);
 123     __ popf();
 124     __ pushf();
 125     __ pop(rax);
 126     __ cmpptr(rcx, rax);
 127     __ jccb(Assembler::notEqual, detect_586);
 128 
 129     __ bind(cpu486);
 130     __ movl(rax, CPU_FAMILY_486);
 131     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 132     __ jmp(done);
 133 
 134     //
 135     // At this point, we have a chip which supports the "cpuid" instruction
 136     //
 137     __ bind(detect_586);
 138     __ xorl(rax, rax);
 139     __ cpuid();
 140     __ orl(rax, rax);
 141     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
 142                                         // value of at least 1, we give up and
 143                                         // assume a 486
 144     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
 145     __ movl(Address(rsi, 0), rax);
 146     __ movl(Address(rsi, 4), rbx);
 147     __ movl(Address(rsi, 8), rcx);
 148     __ movl(Address(rsi,12), rdx);
 149 
 150     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
 151     __ jccb(Assembler::belowEqual, std_cpuid4);
 152 
 153     //
 154     // cpuid(0xB) Processor Topology
 155     //
 156     __ movl(rax, 0xb);
 157     __ xorl(rcx, rcx);   // Threads level
 158     __ cpuid();
 159 
 160     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
 161     __ movl(Address(rsi, 0), rax);
 162     __ movl(Address(rsi, 4), rbx);
 163     __ movl(Address(rsi, 8), rcx);
 164     __ movl(Address(rsi,12), rdx);
 165 
 166     __ movl(rax, 0xb);
 167     __ movl(rcx, 1);     // Cores level
 168     __ cpuid();
 169     __ push(rax);
 170     __ andl(rax, 0x1f);  // Determine if valid topology level
 171     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 172     __ andl(rax, 0xffff);
 173     __ pop(rax);
 174     __ jccb(Assembler::equal, std_cpuid4);
 175 
 176     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
 177     __ movl(Address(rsi, 0), rax);
 178     __ movl(Address(rsi, 4), rbx);
 179     __ movl(Address(rsi, 8), rcx);
 180     __ movl(Address(rsi,12), rdx);
 181 
 182     __ movl(rax, 0xb);
 183     __ movl(rcx, 2);     // Packages level
 184     __ cpuid();
 185     __ push(rax);
 186     __ andl(rax, 0x1f);  // Determine if valid topology level
 187     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 188     __ andl(rax, 0xffff);
 189     __ pop(rax);
 190     __ jccb(Assembler::equal, std_cpuid4);
 191 
 192     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
 193     __ movl(Address(rsi, 0), rax);
 194     __ movl(Address(rsi, 4), rbx);
 195     __ movl(Address(rsi, 8), rcx);
 196     __ movl(Address(rsi,12), rdx);
 197 
 198     //
 199     // cpuid(0x4) Deterministic cache params
 200     //
 201     __ bind(std_cpuid4);
 202     __ movl(rax, 4);
 203     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
 204     __ jccb(Assembler::greater, std_cpuid1);
 205 
 206     __ xorl(rcx, rcx);   // L1 cache
 207     __ cpuid();
 208     __ push(rax);
 209     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
 210     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
 211     __ pop(rax);
 212     __ jccb(Assembler::equal, std_cpuid1);
 213 
 214     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
 215     __ movl(Address(rsi, 0), rax);
 216     __ movl(Address(rsi, 4), rbx);
 217     __ movl(Address(rsi, 8), rcx);
 218     __ movl(Address(rsi,12), rdx);
 219 
 220     //
 221     // Standard cpuid(0x1)
 222     //
 223     __ bind(std_cpuid1);
 224     __ movl(rax, 1);
 225     __ cpuid();
 226     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 227     __ movl(Address(rsi, 0), rax);
 228     __ movl(Address(rsi, 4), rbx);
 229     __ movl(Address(rsi, 8), rcx);
 230     __ movl(Address(rsi,12), rdx);
 231 
 232     //
 233     // Check if OS has enabled XGETBV instruction to access XCR0
 234     // (OSXSAVE feature flag) and CPU supports AVX
 235     //
 236     __ andl(rcx, 0x18000000);
 237     __ cmpl(rcx, 0x18000000);
 238     __ jccb(Assembler::notEqual, sef_cpuid);
 239 
 240     //
 241     // XCR0, XFEATURE_ENABLED_MASK register
 242     //
 243     __ xorl(rcx, rcx);   // zero for XCR0 register
 244     __ xgetbv();
 245     __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
 246     __ movl(Address(rsi, 0), rax);
 247     __ movl(Address(rsi, 4), rdx);
 248 
 249     //
 250     // cpuid(0x7) Structured Extended Features
 251     //
 252     __ bind(sef_cpuid);
 253     __ movl(rax, 7);
 254     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
 255     __ jccb(Assembler::greater, ext_cpuid);
 256 
 257     __ xorl(rcx, rcx);
 258     __ cpuid();
 259     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 260     __ movl(Address(rsi, 0), rax);
 261     __ movl(Address(rsi, 4), rbx);
 262 
 263     //
 264     // Extended cpuid(0x80000000)
 265     //
 266     __ bind(ext_cpuid);
 267     __ movl(rax, 0x80000000);
 268     __ cpuid();
 269     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
 270     __ jcc(Assembler::belowEqual, done);
 271     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
 272     __ jccb(Assembler::belowEqual, ext_cpuid1);
 273     __ cmpl(rax, 0x80000006);     // Is cpuid(0x80000007) supported?
 274     __ jccb(Assembler::belowEqual, ext_cpuid5);
 275     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
 276     __ jccb(Assembler::belowEqual, ext_cpuid7);
 277     //
 278     // Extended cpuid(0x80000008)
 279     //
 280     __ movl(rax, 0x80000008);
 281     __ cpuid();
 282     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
 283     __ movl(Address(rsi, 0), rax);
 284     __ movl(Address(rsi, 4), rbx);
 285     __ movl(Address(rsi, 8), rcx);
 286     __ movl(Address(rsi,12), rdx);
 287 
 288     //
 289     // Extended cpuid(0x80000007)
 290     //
 291     __ bind(ext_cpuid7);
 292     __ movl(rax, 0x80000007);
 293     __ cpuid();
 294     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
 295     __ movl(Address(rsi, 0), rax);
 296     __ movl(Address(rsi, 4), rbx);
 297     __ movl(Address(rsi, 8), rcx);
 298     __ movl(Address(rsi,12), rdx);
 299 
 300     //
 301     // Extended cpuid(0x80000005)
 302     //
 303     __ bind(ext_cpuid5);
 304     __ movl(rax, 0x80000005);
 305     __ cpuid();
 306     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
 307     __ movl(Address(rsi, 0), rax);
 308     __ movl(Address(rsi, 4), rbx);
 309     __ movl(Address(rsi, 8), rcx);
 310     __ movl(Address(rsi,12), rdx);
 311 
 312     //
 313     // Extended cpuid(0x80000001)
 314     //
 315     __ bind(ext_cpuid1);
 316     __ movl(rax, 0x80000001);
 317     __ cpuid();
 318     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
 319     __ movl(Address(rsi, 0), rax);
 320     __ movl(Address(rsi, 4), rbx);
 321     __ movl(Address(rsi, 8), rcx);
 322     __ movl(Address(rsi,12), rdx);
 323 
 324     //
 325     // return
 326     //
 327     __ bind(done);
 328     __ popf();
 329     __ pop(rsi);
 330     __ pop(rbx);
 331     __ pop(rbp);
 332     __ ret(0);
 333 
 334 #   undef __
 335 
 336     return start;
 337   };
 338 };
 339 
 340 
 341 void VM_Version::get_processor_features() {
 342 
 343   _cpu = 4; // 486 by default
 344   _model = 0;
 345   _stepping = 0;
 346   _cpuFeatures = 0;
 347   _logical_processors_per_package = 1;
 348 
 349   if (!Use486InstrsOnly) {
 350     // Get raw processor info
 351     getPsrInfo_stub(&_cpuid_info);
 352     assert_is_initialized();
 353     _cpu = extended_cpu_family();
 354     _model = extended_cpu_model();
 355     _stepping = cpu_stepping();
 356 
 357     if (cpu_family() > 4) { // it supports CPUID
 358       _cpuFeatures = feature_flags();
 359       // Logical processors are only available on P4s and above,
 360       // and only if hyperthreading is available.
 361       _logical_processors_per_package = logical_processor_count();
 362     }
 363   }
 364 
 365   _supports_cx8 = supports_cmpxchg8();
 366 
 367 #ifdef _LP64
 368   // OS should support SSE for x64 and hardware should support at least SSE2.
 369   if (!VM_Version::supports_sse2()) {
 370     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
 371   }
 372   // in 64 bit the use of SSE2 is the minimum
 373   if (UseSSE < 2) UseSSE = 2;
 374 #endif
 375 
 376 #ifdef AMD64
 377   // flush_icache_stub have to be generated first.
 378   // That is why Icache line size is hard coded in ICache class,
 379   // see icache_x86.hpp. It is also the reason why we can't use
 380   // clflush instruction in 32-bit VM since it could be running
 381   // on CPU which does not support it.
 382   //
 383   // The only thing we can do is to verify that flushed
 384   // ICache::line_size has correct value.
 385   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
 386   // clflush_size is size in quadwords (8 bytes).
 387   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
 388 #endif
 389 
 390   // If the OS doesn't support SSE, we can't use this feature even if the HW does
 391   if (!os::supports_sse())
 392     _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
 393 
 394   if (UseSSE < 4) {
 395     _cpuFeatures &= ~CPU_SSE4_1;
 396     _cpuFeatures &= ~CPU_SSE4_2;
 397   }
 398 
 399   if (UseSSE < 3) {
 400     _cpuFeatures &= ~CPU_SSE3;
 401     _cpuFeatures &= ~CPU_SSSE3;
 402     _cpuFeatures &= ~CPU_SSE4A;
 403   }
 404 
 405   if (UseSSE < 2)
 406     _cpuFeatures &= ~CPU_SSE2;
 407 
 408   if (UseSSE < 1)
 409     _cpuFeatures &= ~CPU_SSE;
 410 
 411   if (UseAVX < 2)
 412     _cpuFeatures &= ~CPU_AVX2;
 413 
 414   if (UseAVX < 1)
 415     _cpuFeatures &= ~CPU_AVX;
 416 
 417   if (logical_processors_per_package() == 1) {
 418     // HT processor could be installed on a system which doesn't support HT.
 419     _cpuFeatures &= ~CPU_HT;
 420   }
 421 
 422   char buf[256];
 423   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
 424                cores_per_cpu(), threads_per_core(),
 425                cpu_family(), _model, _stepping,
 426                (supports_cmov() ? ", cmov" : ""),
 427                (supports_cmpxchg8() ? ", cx8" : ""),
 428                (supports_fxsr() ? ", fxsr" : ""),
 429                (supports_mmx()  ? ", mmx"  : ""),
 430                (supports_sse()  ? ", sse"  : ""),
 431                (supports_sse2() ? ", sse2" : ""),
 432                (supports_sse3() ? ", sse3" : ""),
 433                (supports_ssse3()? ", ssse3": ""),
 434                (supports_sse4_1() ? ", sse4.1" : ""),
 435                (supports_sse4_2() ? ", sse4.2" : ""),
 436                (supports_popcnt() ? ", popcnt" : ""),
 437                (supports_avx()    ? ", avx" : ""),
 438                (supports_avx2()   ? ", avx2" : ""),
 439                (supports_mmx_ext() ? ", mmxext" : ""),
 440                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
 441                (supports_lzcnt()   ? ", lzcnt": ""),
 442                (supports_sse4a()   ? ", sse4a": ""),
 443                (supports_ht() ? ", ht": ""),
 444                (supports_tsc() ? ", tsc": ""),
 445                (supports_tscinv_bit() ? ", tscinvbit": ""),
 446                (supports_tscinv() ? ", tscinv": ""));
 447   _features_str = strdup(buf);
 448 
 449   // UseSSE is set to the smaller of what hardware supports and what
 450   // the command line requires.  I.e., you cannot set UseSSE to 2 on
 451   // older Pentiums which do not support it.
 452   if (UseSSE > 4) UseSSE=4;
 453   if (UseSSE < 0) UseSSE=0;
 454   if (!supports_sse4_1()) // Drop to 3 if no SSE4 support
 455     UseSSE = MIN2((intx)3,UseSSE);
 456   if (!supports_sse3()) // Drop to 2 if no SSE3 support
 457     UseSSE = MIN2((intx)2,UseSSE);
 458   if (!supports_sse2()) // Drop to 1 if no SSE2 support
 459     UseSSE = MIN2((intx)1,UseSSE);
 460   if (!supports_sse ()) // Drop to 0 if no SSE  support
 461     UseSSE = 0;
 462 
 463   if (UseAVX > 2) UseAVX=2;
 464   if (UseAVX < 0) UseAVX=0;
 465   if (!supports_avx2()) // Drop to 1 if no AVX2 support
 466     UseAVX = MIN2((intx)1,UseAVX);
 467   if (!supports_avx ()) // Drop to 0 if no AVX  support
 468     UseAVX = 0;
 469 
 470   // On new cpus instructions which update whole XMM register should be used
 471   // to prevent partial register stall due to dependencies on high half.
 472   //
 473   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
 474   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
 475   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
 476   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
 477 
 478   if( is_amd() ) { // AMD cpus specific settings
 479     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
 480       // Use it on new AMD cpus starting from Opteron.
 481       UseAddressNop = true;
 482     }
 483     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
 484       // Use it on new AMD cpus starting from Opteron.
 485       UseNewLongLShift = true;
 486     }
 487     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
 488       if( supports_sse4a() ) {
 489         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
 490       } else {
 491         UseXmmLoadAndClearUpper = false;
 492       }
 493     }
 494     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
 495       if( supports_sse4a() ) {
 496         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
 497       } else {
 498         UseXmmRegToRegMoveAll = false;
 499       }
 500     }
 501     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
 502       if( supports_sse4a() ) {
 503         UseXmmI2F = true;
 504       } else {
 505         UseXmmI2F = false;
 506       }
 507     }
 508     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
 509       if( supports_sse4a() ) {
 510         UseXmmI2D = true;
 511       } else {
 512         UseXmmI2D = false;
 513       }
 514     }
 515     if( FLAG_IS_DEFAULT(UseSSE42Intrinsics) ) {
 516       if( supports_sse4_2() && UseSSE >= 4 ) {
 517         UseSSE42Intrinsics = true;
 518       }
 519     }
 520 
 521     // Use count leading zeros count instruction if available.
 522     if (supports_lzcnt()) {
 523       if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
 524         UseCountLeadingZerosInstruction = true;
 525       }
 526     }
 527 
 528     // some defaults for AMD family 15h
 529     if ( cpu_family() == 0x15 ) {
 530       // On family 15h processors default is no sw prefetch
 531       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
 532         AllocatePrefetchStyle = 0;
 533       }
 534       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
 535       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
 536         AllocatePrefetchInstr = 3;
 537       }
 538       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
 539       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
 540         UseXMMForArrayCopy = true;
 541       }
 542       if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
 543         UseUnalignedLoadStores = true;
 544       }
 545     }
 546 
 547   }
 548 
 549   if( is_intel() ) { // Intel cpus specific settings
 550     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
 551       UseStoreImmI16 = false; // don't use it on Intel cpus
 552     }
 553     if( cpu_family() == 6 || cpu_family() == 15 ) {
 554       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
 555         // Use it on all Intel cpus starting from PentiumPro
 556         UseAddressNop = true;
 557       }
 558     }
 559     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
 560       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
 561     }
 562     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
 563       if( supports_sse3() ) {
 564         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
 565       } else {
 566         UseXmmRegToRegMoveAll = false;
 567       }
 568     }
 569     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
 570 #ifdef COMPILER2
 571       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
 572         // For new Intel cpus do the next optimization:
 573         // don't align the beginning of a loop if there are enough instructions
 574         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
 575         // in current fetch line (OptoLoopAlignment) or the padding
 576         // is big (> MaxLoopPad).
 577         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
 578         // generated NOP instructions. 11 is the largest size of one
 579         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
 580         MaxLoopPad = 11;
 581       }
 582 #endif // COMPILER2
 583       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
 584         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
 585       }
 586       if( supports_sse4_2() && supports_ht() ) { // Newest Intel cpus
 587         if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
 588           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
 589         }
 590       }
 591       if( supports_sse4_2() && UseSSE >= 4 ) {
 592         if( FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
 593           UseSSE42Intrinsics = true;
 594         }
 595       }
 596     }
 597   }
 598 
 599   // Use population count instruction if available.
 600   if (supports_popcnt()) {
 601     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
 602       UsePopCountInstruction = true;
 603     }
 604   } else if (UsePopCountInstruction) {
 605     warning("POPCNT instruction is not available on this CPU");
 606     FLAG_SET_DEFAULT(UsePopCountInstruction, false);
 607   }
 608 
 609 #ifdef COMPILER2
 610   if (UseFPUForSpilling) {
 611     if (UseSSE < 2) {
 612       // Only supported with SSE2+
 613       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
 614     }
 615   }
 616 #endif
 617 
 618   assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
 619   assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
 620 
 621   // set valid Prefetch instruction
 622   if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
 623   if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
 624   if( ReadPrefetchInstr == 3 && !supports_3dnow_prefetch() ) ReadPrefetchInstr = 0;
 625   if( !supports_sse() && supports_3dnow_prefetch() ) ReadPrefetchInstr = 3;
 626 
 627   if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
 628   if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
 629   if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
 630   if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
 631 
 632   // Allocation prefetch settings
 633   intx cache_line_size = prefetch_data_size();
 634   if( cache_line_size > AllocatePrefetchStepSize )
 635     AllocatePrefetchStepSize = cache_line_size;
 636 
 637   assert(AllocatePrefetchLines > 0, "invalid value");
 638   if( AllocatePrefetchLines < 1 )     // set valid value in product VM
 639     AllocatePrefetchLines = 3;
 640   assert(AllocateInstancePrefetchLines > 0, "invalid value");
 641   if( AllocateInstancePrefetchLines < 1 ) // set valid value in product VM
 642     AllocateInstancePrefetchLines = 1;
 643 
 644   AllocatePrefetchDistance = allocate_prefetch_distance();
 645   AllocatePrefetchStyle    = allocate_prefetch_style();
 646 
 647   if( is_intel() && cpu_family() == 6 && supports_sse3() ) {
 648     if( AllocatePrefetchStyle == 2 ) { // watermark prefetching on Core
 649 #ifdef _LP64
 650       AllocatePrefetchDistance = 384;
 651 #else
 652       AllocatePrefetchDistance = 320;
 653 #endif
 654     }
 655     if( supports_sse4_2() && supports_ht() ) { // Nehalem based cpus
 656       AllocatePrefetchDistance = 192;
 657       AllocatePrefetchLines = 4;
 658 #ifdef COMPILER2
 659       if (AggressiveOpts && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
 660         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
 661       }
 662 #endif
 663     }
 664   }
 665   assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
 666 
 667 #ifdef _LP64
 668   // Prefetch settings
 669   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
 670   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
 671   PrefetchFieldsAhead         = prefetch_fields_ahead();
 672 #endif
 673 
 674 #ifndef PRODUCT
 675   if (PrintMiscellaneous && Verbose) {
 676     tty->print_cr("Logical CPUs per core: %u",
 677                   logical_processors_per_package());
 678     tty->print("UseSSE=%d",UseSSE);
 679     if (UseAVX > 0) {
 680       tty->print("  UseAVX=%d",UseAVX);
 681     }
 682     tty->cr();
 683     tty->print("Allocation");
 684     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
 685       tty->print_cr(": no prefetching");
 686     } else {
 687       tty->print(" prefetching: ");
 688       if (UseSSE == 0 && supports_3dnow_prefetch()) {
 689         tty->print("PREFETCHW");
 690       } else if (UseSSE >= 1) {
 691         if (AllocatePrefetchInstr == 0) {
 692           tty->print("PREFETCHNTA");
 693         } else if (AllocatePrefetchInstr == 1) {
 694           tty->print("PREFETCHT0");
 695         } else if (AllocatePrefetchInstr == 2) {
 696           tty->print("PREFETCHT2");
 697         } else if (AllocatePrefetchInstr == 3) {
 698           tty->print("PREFETCHW");
 699         }
 700       }
 701       if (AllocatePrefetchLines > 1) {
 702         tty->print_cr(" at distance %d, %d lines of %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
 703       } else {
 704         tty->print_cr(" at distance %d, one line of %d bytes", AllocatePrefetchDistance, AllocatePrefetchStepSize);
 705       }
 706     }
 707 
 708     if (PrefetchCopyIntervalInBytes > 0) {
 709       tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
 710     }
 711     if (PrefetchScanIntervalInBytes > 0) {
 712       tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
 713     }
 714     if (PrefetchFieldsAhead > 0) {
 715       tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
 716     }
 717   }
 718 #endif // !PRODUCT
 719 }
 720 
 721 void VM_Version::initialize() {
 722   ResourceMark rm;
 723   // Making this stub must be FIRST use of assembler
 724 
 725   stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
 726   if (stub_blob == NULL) {
 727     vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
 728   }
 729   CodeBuffer c(stub_blob);
 730   VM_Version_StubGenerator g(&c);
 731   getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
 732                                    g.generate_getPsrInfo());
 733 
 734   get_processor_features();
 735 }