1 /*
  2  * Copyright (c) 2014, 2020, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "gc/g1/g1Allocator.inline.hpp"
 27 #include "gc/g1/g1CollectedHeap.inline.hpp"
 28 #include "gc/g1/g1CollectionSet.hpp"
 29 #include "gc/g1/g1OopClosures.inline.hpp"
 30 #include "gc/g1/g1ParScanThreadState.inline.hpp"
 31 #include "gc/g1/g1RootClosures.hpp"
 32 #include "gc/g1/g1StringDedup.hpp"
 33 #include "gc/g1/g1Trace.hpp"
 34 #include "gc/shared/taskqueue.inline.hpp"
 35 #include "memory/allocation.inline.hpp"
 36 #include "oops/access.inline.hpp"
 37 #include "oops/oop.inline.hpp"
 38 #include "runtime/prefetch.inline.hpp"
 39 
 40 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h,
 41                                            G1RedirtyCardsQueueSet* rdcqs,
 42                                            uint worker_id,
 43                                            size_t young_cset_length,
 44                                            size_t optional_cset_length)
 45   : _g1h(g1h),
 46     _task_queue(g1h->task_queue(worker_id)),
 47     _rdcq(rdcqs),
 48     _ct(g1h->card_table()),
 49     _closures(NULL),
 50     _plab_allocator(NULL),
 51     _age_table(false),
 52     _tenuring_threshold(g1h->policy()->tenuring_threshold()),
 53     _scanner(g1h, this),
 54     _worker_id(worker_id),
 55     _last_enqueued_card(SIZE_MAX),
 56     _stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1),
 57     _stack_trim_lower_threshold(GCDrainStackTargetSize),
 58     _trim_ticks(),
 59     _surviving_young_words_base(NULL),
 60     _surviving_young_words(NULL),
 61     _surviving_words_length(young_cset_length + 1),
 62     _old_gen_is_full(false),
 63     _num_optional_regions(optional_cset_length),
 64     _numa(g1h->numa()),
 65     _obj_alloc_stat(NULL)
 66 {
 67   // We allocate number of young gen regions in the collection set plus one
 68   // entries, since entry 0 keeps track of surviving bytes for non-young regions.
 69   // We also add a few elements at the beginning and at the end in
 70   // an attempt to eliminate cache contention
 71   const size_t padding_elem_num = (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t));
 72   size_t array_length = padding_elem_num + _surviving_words_length + padding_elem_num;
 73 
 74   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
 75   _surviving_young_words = _surviving_young_words_base + padding_elem_num;
 76   memset(_surviving_young_words, 0, _surviving_words_length * sizeof(size_t));
 77 
 78   _plab_allocator = new G1PLABAllocator(_g1h->allocator());
 79 
 80   // The dest for Young is used when the objects are aged enough to
 81   // need to be moved to the next space.
 82   _dest[G1HeapRegionAttr::Young] = G1HeapRegionAttr::Old;
 83   _dest[G1HeapRegionAttr::Old]   = G1HeapRegionAttr::Old;
 84 
 85   _closures = G1EvacuationRootClosures::create_root_closures(this, _g1h);
 86 
 87   _oops_into_optional_regions = new G1OopStarChunkedList[_num_optional_regions];
 88 
 89   initialize_numa_stats();
 90 }
 91 
 92 size_t G1ParScanThreadState::flush(size_t* surviving_young_words) {
 93   _rdcq.flush();
 94   flush_numa_stats();
 95   // Update allocation statistics.
 96   _plab_allocator->flush_and_retire_stats();
 97   _g1h->policy()->record_age_table(&_age_table);
 98 
 99   size_t sum = 0;
100   for (uint i = 0; i < _surviving_words_length; i++) {
101     surviving_young_words[i] += _surviving_young_words[i];
102     sum += _surviving_young_words[i];
103   }
104   return sum;
105 }
106 
107 G1ParScanThreadState::~G1ParScanThreadState() {
108   delete _plab_allocator;
109   delete _closures;
110   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
111   delete[] _oops_into_optional_regions;
112   FREE_C_HEAP_ARRAY(size_t, _obj_alloc_stat);
113 }
114 
115 size_t G1ParScanThreadState::lab_waste_words() const {
116   return _plab_allocator->waste();
117 }
118 
119 size_t G1ParScanThreadState::lab_undo_waste_words() const {
120   return _plab_allocator->undo_waste();
121 }
122 
123 #ifdef ASSERT
124 void G1ParScanThreadState::verify_task(narrowOop* task) const {
125   assert(task != NULL, "invariant");
126   assert(UseCompressedOops, "sanity");
127   oop p = RawAccess<>::oop_load(task);
128   assert(_g1h->is_in_g1_reserved(p),
129          "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p));
130 }
131 
132 void G1ParScanThreadState::verify_task(oop* task) const {
133   assert(task != NULL, "invariant");
134   oop p = RawAccess<>::oop_load(task);
135   assert(_g1h->is_in_g1_reserved(p),
136          "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p));
137 }
138 
139 void G1ParScanThreadState::verify_task(PartialArrayScanTask task) const {
140   // Must be in the collection set--it's already been copied.
141   oop p = task.to_source_array();
142   assert(_g1h->is_in_cset(p), "p=" PTR_FORMAT, p2i(p));
143 }
144 
145 void G1ParScanThreadState::verify_task(ScannerTask task) const {
146   if (task.is_narrow_oop_ptr()) {
147     verify_task(task.to_narrow_oop_ptr());
148   } else if (task.is_oop_ptr()) {
149     verify_task(task.to_oop_ptr());
150   } else if (task.is_partial_array_task()) {
151     verify_task(task.to_partial_array_task());
152   } else {
153     ShouldNotReachHere();
154   }
155 }
156 #endif // ASSERT
157 
158 void G1ParScanThreadState::trim_queue() {
159   do {
160     // Fully drain the queue.
161     trim_queue_to_threshold(0);
162   } while (!_task_queue->is_empty());
163 }
164 
165 HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest,
166                                                       size_t word_sz,
167                                                       bool previous_plab_refill_failed,
168                                                       uint node_index) {
169 
170   assert(dest->is_in_cset_or_humongous(), "Unexpected dest: %s region attr", dest->get_type_str());
171 
172   // Right now we only have two types of regions (young / old) so
173   // let's keep the logic here simple. We can generalize it when necessary.
174   if (dest->is_young()) {
175     bool plab_refill_in_old_failed = false;
176     HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old,
177                                                         word_sz,
178                                                         &plab_refill_in_old_failed,
179                                                         node_index);
180     // Make sure that we won't attempt to copy any other objects out
181     // of a survivor region (given that apparently we cannot allocate
182     // any new ones) to avoid coming into this slow path again and again.
183     // Only consider failed PLAB refill here: failed inline allocations are
184     // typically large, so not indicative of remaining space.
185     if (previous_plab_refill_failed) {
186       _tenuring_threshold = 0;
187     }
188 
189     if (obj_ptr != NULL) {
190       dest->set_old();
191     } else {
192       // We just failed to allocate in old gen. The same idea as explained above
193       // for making survivor gen unavailable for allocation applies for old gen.
194       _old_gen_is_full = plab_refill_in_old_failed;
195     }
196     return obj_ptr;
197   } else {
198     _old_gen_is_full = previous_plab_refill_failed;
199     assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str());
200     // no other space to try.
201     return NULL;
202   }
203 }
204 
205 G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markWord const m, uint& age) {
206   if (region_attr.is_young()) {
207     age = !m.has_displaced_mark_helper() ? m.age()
208                                          : m.displaced_mark_helper().age();
209     if (age < _tenuring_threshold) {
210       return region_attr;
211     }
212   }
213   return dest(region_attr);
214 }
215 
216 void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr,
217                                                   oop const old, size_t word_sz, uint age,
218                                                   HeapWord * const obj_ptr, uint node_index) const {
219   PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index);
220   if (alloc_buf->contains(obj_ptr)) {
221     _g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz * HeapWordSize, age,
222                                                              dest_attr.type() == G1HeapRegionAttr::Old,
223                                                              alloc_buf->word_sz() * HeapWordSize);
224   } else {
225     _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age,
226                                                               dest_attr.type() == G1HeapRegionAttr::Old);
227   }
228 }
229 
230 oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr const region_attr,
231                                                  oop const old,
232                                                  markWord const old_mark) {
233   const size_t word_sz = old->size();
234 
235   uint age = 0;
236   G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age);
237   // The second clause is to prevent premature evacuation failure in case there
238   // is still space in survivor, but old gen is full.
239   if (_old_gen_is_full && dest_attr.is_old()) {
240     return handle_evacuation_failure_par(old, old_mark);
241   }
242   HeapRegion* const from_region = _g1h->heap_region_containing(old);
243   uint node_index = from_region->node_index();
244 
245   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index);
246 
247   // PLAB allocations should succeed most of the time, so we'll
248   // normally check against NULL once and that's it.
249   if (obj_ptr == NULL) {
250     bool plab_refill_failed = false;
251     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_attr, word_sz, &plab_refill_failed, node_index);
252     if (obj_ptr == NULL) {
253       assert(region_attr.is_in_cset(), "Unexpected region attr type: %s", region_attr.get_type_str());
254       obj_ptr = allocate_in_next_plab(&dest_attr, word_sz, plab_refill_failed, node_index);
255       if (obj_ptr == NULL) {
256         // This will either forward-to-self, or detect that someone else has
257         // installed a forwarding pointer.
258         return handle_evacuation_failure_par(old, old_mark);
259       }
260     }
261     update_numa_stats(node_index);
262 
263     if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
264       // The events are checked individually as part of the actual commit
265       report_promotion_event(dest_attr, old, word_sz, age, obj_ptr, node_index);
266     }
267   }
268 
269   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
270   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
271 
272 #ifndef PRODUCT
273   // Should this evacuation fail?
274   if (_g1h->evacuation_should_fail()) {
275     // Doing this after all the allocation attempts also tests the
276     // undo_allocation() method too.
277     _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
278     return handle_evacuation_failure_par(old, old_mark);
279   }
280 #endif // !PRODUCT
281 
282   // We're going to allocate linearly, so might as well prefetch ahead.
283   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
284 
285   const oop obj = oop(obj_ptr);
286   const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed);
287   if (forward_ptr == NULL) {
288     Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz);
289 
290     const uint young_index = from_region->young_index_in_cset();
291 
292     assert((from_region->is_young() && young_index >  0) ||
293            (!from_region->is_young() && young_index == 0), "invariant" );
294 
295     if (dest_attr.is_young()) {
296       if (age < markWord::max_age) {
297         age++;
298       }
299       if (old_mark.has_displaced_mark_helper()) {
300         // In this case, we have to install the mark word first,
301         // otherwise obj looks to be forwarded (the old mark word,
302         // which contains the forward pointer, was copied)
303         obj->set_mark_raw(old_mark);
304         markWord new_mark = old_mark.displaced_mark_helper().set_age(age);
305         old_mark.set_displaced_mark_helper(new_mark);
306       } else {
307         obj->set_mark_raw(old_mark.set_age(age));
308       }
309       _age_table.add(age, word_sz);
310     } else {
311       obj->set_mark_raw(old_mark);
312     }
313 
314     if (G1StringDedup::is_enabled()) {
315       const bool is_from_young = region_attr.is_young();
316       const bool is_to_young = dest_attr.is_young();
317       assert(is_from_young == from_region->is_young(),
318              "sanity");
319       assert(is_to_young == _g1h->heap_region_containing(obj)->is_young(),
320              "sanity");
321       G1StringDedup::enqueue_from_evacuation(is_from_young,
322                                              is_to_young,
323                                              _worker_id,
324                                              obj);
325     }
326 
327     _surviving_young_words[young_index] += word_sz;
328 
329     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
330       // We keep track of the next start index in the length field of
331       // the to-space object. The actual length can be found in the
332       // length field of the from-space object.
333       arrayOop(obj)->set_length(0);
334       do_partial_array(PartialArrayScanTask(old));
335     } else {
336       G1ScanInYoungSetter x(&_scanner, dest_attr.is_young());
337       obj->oop_iterate_backwards(&_scanner);
338     }
339     return obj;
340   } else {
341     _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
342     return forward_ptr;
343   }
344 }
345 
346 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
347   assert(worker_id < _n_workers, "out of bounds access");
348   if (_states[worker_id] == NULL) {
349     _states[worker_id] =
350       new G1ParScanThreadState(_g1h, _rdcqs, worker_id, _young_cset_length, _optional_cset_length);
351   }
352   return _states[worker_id];
353 }
354 
355 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
356   assert(_flushed, "thread local state from the per thread states should have been flushed");
357   return _surviving_young_words_total;
358 }
359 
360 void G1ParScanThreadStateSet::flush() {
361   assert(!_flushed, "thread local state from the per thread states should be flushed once");
362 
363   for (uint worker_id = 0; worker_id < _n_workers; ++worker_id) {
364     G1ParScanThreadState* pss = _states[worker_id];
365 
366     if (pss == NULL) {
367       continue;
368     }
369 
370     G1GCPhaseTimes* p = _g1h->phase_times();
371 
372     // Need to get the following two before the call to G1ParThreadScanState::flush()
373     // because it resets the PLAB allocator where we get this info from.
374     size_t lab_waste_bytes = pss->lab_waste_words() * HeapWordSize;
375     size_t lab_undo_waste_bytes = pss->lab_undo_waste_words() * HeapWordSize;
376     size_t copied_bytes = pss->flush(_surviving_young_words_total) * HeapWordSize;
377 
378     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, copied_bytes, G1GCPhaseTimes::MergePSSCopiedBytes);
379     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_waste_bytes, G1GCPhaseTimes::MergePSSLABWasteBytes);
380     p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_undo_waste_bytes, G1GCPhaseTimes::MergePSSLABUndoWasteBytes);
381 
382     delete pss;
383     _states[worker_id] = NULL;
384   }
385   _flushed = true;
386 }
387 
388 void G1ParScanThreadStateSet::record_unused_optional_region(HeapRegion* hr) {
389   for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
390     G1ParScanThreadState* pss = _states[worker_index];
391 
392     if (pss == NULL) {
393       continue;
394     }
395 
396     size_t used_memory = pss->oops_into_optional_region(hr)->used_memory();
397     _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory);
398   }
399 }
400 
401 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m) {
402   assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
403 
404   oop forward_ptr = old->forward_to_atomic(old, m, memory_order_relaxed);
405   if (forward_ptr == NULL) {
406     // Forward-to-self succeeded. We are the "owner" of the object.
407     HeapRegion* r = _g1h->heap_region_containing(old);
408 
409     if (!r->evacuation_failed()) {
410       r->set_evacuation_failed(true);
411      _g1h->hr_printer()->evac_failure(r);
412     }
413 
414     _g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
415 
416     G1ScanInYoungSetter x(&_scanner, r->is_young());
417     old->oop_iterate_backwards(&_scanner);
418 
419     return old;
420   } else {
421     // Forward-to-self failed. Either someone else managed to allocate
422     // space for this object (old != forward_ptr) or they beat us in
423     // self-forwarding it (old == forward_ptr).
424     assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
425            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
426            "should not be in the CSet",
427            p2i(old), p2i(forward_ptr));
428     return forward_ptr;
429   }
430 }
431 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h,
432                                                  G1RedirtyCardsQueueSet* rdcqs,
433                                                  uint n_workers,
434                                                  size_t young_cset_length,
435                                                  size_t optional_cset_length) :
436     _g1h(g1h),
437     _rdcqs(rdcqs),
438     _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC)),
439     _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, young_cset_length + 1, mtGC)),
440     _young_cset_length(young_cset_length),
441     _optional_cset_length(optional_cset_length),
442     _n_workers(n_workers),
443     _flushed(false) {
444   for (uint i = 0; i < n_workers; ++i) {
445     _states[i] = NULL;
446   }
447   memset(_surviving_young_words_total, 0, (young_cset_length + 1) * sizeof(size_t));
448 }
449 
450 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() {
451   assert(_flushed, "thread local state from the per thread states should have been flushed");
452   FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states);
453   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total);
454 }