1 /*
  2  * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_GC_SHARED_CARDTABLE_HPP
 26 #define SHARE_GC_SHARED_CARDTABLE_HPP
 27 
 28 #include "memory/allocation.hpp"
 29 #include "memory/memRegion.hpp"
 30 #include "oops/oopsHierarchy.hpp"
 31 #include "utilities/align.hpp"
 32 
 33 class CardTable: public CHeapObj<mtGC> {
 34   friend class VMStructs;
 35 public:
 36   typedef uint8_t CardValue;
 37 
 38   // All code generators assume that the size of a card table entry is one byte.
 39   // They need to be updated to reflect any change to this.
 40   // This code can typically be found by searching for the byte_map_base() method.
 41   STATIC_ASSERT(sizeof(CardValue) == 1);
 42 
 43 protected:
 44   // The declaration order of these const fields is important; see the
 45   // constructor before changing.
 46   const bool      _scanned_concurrently;
 47   const MemRegion _whole_heap;       // the region covered by the card table
 48   size_t          _guard_index;      // index of very last element in the card
 49                                      // table; it is set to a guard value
 50                                      // (last_card) and should never be modified
 51   size_t          _last_valid_index; // index of the last valid element
 52   const size_t    _page_size;        // page size used when mapping _byte_map
 53   size_t          _byte_map_size;    // in bytes
 54   CardValue*      _byte_map;         // the card marking array
 55   CardValue*      _byte_map_base;
 56 
 57   int _cur_covered_regions;
 58 
 59   // The covered regions should be in address order.
 60   MemRegion* _covered;
 61   // The committed regions correspond one-to-one to the covered regions.
 62   // They represent the card-table memory that has been committed to service
 63   // the corresponding covered region.  It may be that committed region for
 64   // one covered region corresponds to a larger region because of page-size
 65   // roundings.  Thus, a committed region for one covered region may
 66   // actually extend onto the card-table space for the next covered region.
 67   MemRegion* _committed;
 68 
 69   // The last card is a guard card, and we commit the page for it so
 70   // we can use the card for verification purposes. We make sure we never
 71   // uncommit the MemRegion for that page.
 72   MemRegion _guard_region;
 73 
 74   inline size_t compute_byte_map_size();
 75 
 76   // Finds and return the index of the region, if any, to which the given
 77   // region would be contiguous.  If none exists, assign a new region and
 78   // returns its index.  Requires that no more than the maximum number of
 79   // covered regions defined in the constructor are ever in use.
 80   int find_covering_region_by_base(HeapWord* base);
 81 
 82   // Same as above, but finds the region containing the given address
 83   // instead of starting at a given base address.
 84   int find_covering_region_containing(HeapWord* addr);
 85 
 86   // Returns the leftmost end of a committed region corresponding to a
 87   // covered region before covered region "ind", or else "NULL" if "ind" is
 88   // the first covered region.
 89   HeapWord* largest_prev_committed_end(int ind) const;
 90 
 91   // Returns the part of the region mr that doesn't intersect with
 92   // any committed region other than self.  Used to prevent uncommitting
 93   // regions that are also committed by other regions.  Also protects
 94   // against uncommitting the guard region.
 95   MemRegion committed_unique_to_self(int self, MemRegion mr) const;
 96 
 97   // Some barrier sets create tables whose elements correspond to parts of
 98   // the heap; the CardTableBarrierSet is an example.  Such barrier sets will
 99   // normally reserve space for such tables, and commit parts of the table
100   // "covering" parts of the heap that are committed. At most one covered
101   // region per generation is needed.
102   static const int _max_covered_regions = 2;
103 
104   enum CardValues {
105     clean_card                  = (CardValue)-1,
106 
107     dirty_card                  =  0,
108     precleaned_card             =  1,
109     last_card                   =  2,
110     CT_MR_BS_last_reserved      =  4
111   };
112 
113   // a word's worth (row) of clean card values
114   static const intptr_t clean_card_row = (intptr_t)(-1);
115 
116 public:
117   CardTable(MemRegion whole_heap, bool conc_scan);
118   virtual ~CardTable();
119   virtual void initialize();
120 
121   // The kinds of precision a CardTable may offer.
122   enum PrecisionStyle {
123     Precise,
124     ObjHeadPreciseArray
125   };
126 
127   // Tells what style of precision this card table offers.
128   PrecisionStyle precision() {
129     return ObjHeadPreciseArray; // Only one supported for now.
130   }
131 
132   // *** Barrier set functions.
133 
134   // Initialization utilities; covered_words is the size of the covered region
135   // in, um, words.
136   inline size_t cards_required(size_t covered_words) {
137     // Add one for a guard card, used to detect errors.
138     const size_t words = align_up(covered_words, card_size_in_words);
139     return words / card_size_in_words + 1;
140   }
141 
142   // Dirty the bytes corresponding to "mr" (not all of which must be
143   // covered.)
144   void dirty_MemRegion(MemRegion mr);
145 
146   // Clear (to clean_card) the bytes entirely contained within "mr" (not
147   // all of which must be covered.)
148   void clear_MemRegion(MemRegion mr);
149 
150   // Return true if "p" is at the start of a card.
151   bool is_card_aligned(HeapWord* p) {
152     CardValue* pcard = byte_for(p);
153     return (addr_for(pcard) == p);
154   }
155 
156   // Mapping from address to card marking array entry
157   CardValue* byte_for(const void* p) const {
158     assert(_whole_heap.contains(p),
159            "Attempt to access p = " PTR_FORMAT " out of bounds of "
160            " card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",
161            p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end()));
162     CardValue* result = &_byte_map_base[uintptr_t(p) >> card_shift];
163     assert(result >= _byte_map && result < _byte_map + _byte_map_size,
164            "out of bounds accessor for card marking array");
165     return result;
166   }
167 
168   // The card table byte one after the card marking array
169   // entry for argument address. Typically used for higher bounds
170   // for loops iterating through the card table.
171   CardValue* byte_after(const void* p) const {
172     return byte_for(p) + 1;
173   }
174 
175   virtual void invalidate(MemRegion mr);
176   void clear(MemRegion mr);
177   void dirty(MemRegion mr);
178 
179   // Provide read-only access to the card table array.
180   const CardValue* byte_for_const(const void* p) const {
181     return byte_for(p);
182   }
183   const CardValue* byte_after_const(const void* p) const {
184     return byte_after(p);
185   }
186 
187   // Mapping from card marking array entry to address of first word
188   HeapWord* addr_for(const CardValue* p) const {
189     assert(p >= _byte_map && p < _byte_map + _byte_map_size,
190            "out of bounds access to card marking array. p: " PTR_FORMAT
191            " _byte_map: " PTR_FORMAT " _byte_map + _byte_map_size: " PTR_FORMAT,
192            p2i(p), p2i(_byte_map), p2i(_byte_map + _byte_map_size));
193     size_t delta = pointer_delta(p, _byte_map_base, sizeof(CardValue));
194     HeapWord* result = (HeapWord*) (delta << card_shift);
195     assert(_whole_heap.contains(result),
196            "Returning result = " PTR_FORMAT " out of bounds of "
197            " card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",
198            p2i(result), p2i(_whole_heap.start()), p2i(_whole_heap.end()));
199     return result;
200   }
201 
202   // Mapping from address to card marking array index.
203   size_t index_for(void* p) {
204     assert(_whole_heap.contains(p),
205            "Attempt to access p = " PTR_FORMAT " out of bounds of "
206            " card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",
207            p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end()));
208     return byte_for(p) - _byte_map;
209   }
210 
211   CardValue* byte_for_index(const size_t card_index) const {
212     return _byte_map + card_index;
213   }
214 
215   // Resize one of the regions covered by the remembered set.
216   virtual void resize_covered_region(MemRegion new_region);
217 
218   // *** Card-table-RemSet-specific things.
219 
220   static uintx ct_max_alignment_constraint();
221 
222   // Apply closure "cl" to the dirty cards containing some part of
223   // MemRegion "mr".
224   void dirty_card_iterate(MemRegion mr, MemRegionClosure* cl);
225 
226   // Return the MemRegion corresponding to the first maximal run
227   // of dirty cards lying completely within MemRegion mr.
228   // If reset is "true", then sets those card table entries to the given
229   // value.
230   MemRegion dirty_card_range_after_reset(MemRegion mr, bool reset,
231                                          int reset_val);
232 
233   // Constants
234   enum SomePublicConstants {
235     card_shift                  = 9,
236     card_size                   = 1 << card_shift,
237     card_size_in_words          = card_size / sizeof(HeapWord)
238   };
239 
240   static CardValue clean_card_val()          { return clean_card; }
241   static CardValue dirty_card_val()          { return dirty_card; }
242   static CardValue precleaned_card_val()     { return precleaned_card; }
243   static intptr_t clean_card_row_val()   { return clean_card_row; }
244 
245   // Card marking array base (adjusted for heap low boundary)
246   // This would be the 0th element of _byte_map, if the heap started at 0x0.
247   // But since the heap starts at some higher address, this points to somewhere
248   // before the beginning of the actual _byte_map.
249   CardValue* byte_map_base() const { return _byte_map_base; }
250   bool scanned_concurrently() const { return _scanned_concurrently; }
251   size_t byte_map_top_offset() const { return uintptr_t(_whole_heap.end()); }
252   size_t byte_map_bottom_offset() const { return uintptr_t(_whole_heap.start()); }
253 
254   virtual bool is_in_young(oop obj) const = 0;
255 
256   // Print a description of the memory for the card table
257   virtual void print_on(outputStream* st) const;
258 
259   void verify();
260   void verify_guard();
261 
262   // val_equals -> it will check that all cards covered by mr equal val
263   // !val_equals -> it will check that all cards covered by mr do not equal val
264   void verify_region(MemRegion mr, CardValue val, bool val_equals) PRODUCT_RETURN;
265   void verify_not_dirty_region(MemRegion mr) PRODUCT_RETURN;
266   void verify_dirty_region(MemRegion mr) PRODUCT_RETURN;
267 };
268 
269 #endif // SHARE_GC_SHARED_CARDTABLE_HPP