1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.util.function.Consumer;
  29 import java.util.function.Predicate;
  30 import java.util.function.UnaryOperator;
  31 import jdk.internal.access.SharedSecrets;
  32 import jdk.internal.util.ArraysSupport;
  33 
  34 /**
  35  * Resizable-array implementation of the {@code List} interface.  Implements
  36  * all optional list operations, and permits all elements, including
  37  * {@code null}.  In addition to implementing the {@code List} interface,
  38  * this class provides methods to manipulate the size of the array that is
  39  * used internally to store the list.  (This class is roughly equivalent to
  40  * {@code Vector}, except that it is unsynchronized.)
  41  *
  42  * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
  43  * {@code iterator}, and {@code listIterator} operations run in constant
  44  * time.  The {@code add} operation runs in <i>amortized constant time</i>,
  45  * that is, adding n elements requires O(n) time.  All of the other operations
  46  * run in linear time (roughly speaking).  The constant factor is low compared
  47  * to that for the {@code LinkedList} implementation.
  48  *
  49  * <p>Each {@code ArrayList} instance has a <i>capacity</i>.  The capacity is
  50  * the size of the array used to store the elements in the list.  It is always
  51  * at least as large as the list size.  As elements are added to an ArrayList,
  52  * its capacity grows automatically.  The details of the growth policy are not
  53  * specified beyond the fact that adding an element has constant amortized
  54  * time cost.
  55  *
  56  * <p>An application can increase the capacity of an {@code ArrayList} instance
  57  * before adding a large number of elements using the {@code ensureCapacity}
  58  * operation.  This may reduce the amount of incremental reallocation.
  59  *
  60  * <p><strong>Note that this implementation is not synchronized.</strong>
  61  * If multiple threads access an {@code ArrayList} instance concurrently,
  62  * and at least one of the threads modifies the list structurally, it
  63  * <i>must</i> be synchronized externally.  (A structural modification is
  64  * any operation that adds or deletes one or more elements, or explicitly
  65  * resizes the backing array; merely setting the value of an element is not
  66  * a structural modification.)  This is typically accomplished by
  67  * synchronizing on some object that naturally encapsulates the list.
  68  *
  69  * If no such object exists, the list should be "wrapped" using the
  70  * {@link Collections#synchronizedList Collections.synchronizedList}
  71  * method.  This is best done at creation time, to prevent accidental
  72  * unsynchronized access to the list:<pre>
  73  *   List list = Collections.synchronizedList(new ArrayList(...));</pre>
  74  *
  75  * <p id="fail-fast">
  76  * The iterators returned by this class's {@link #iterator() iterator} and
  77  * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
  78  * if the list is structurally modified at any time after the iterator is
  79  * created, in any way except through the iterator's own
  80  * {@link ListIterator#remove() remove} or
  81  * {@link ListIterator#add(Object) add} methods, the iterator will throw a
  82  * {@link ConcurrentModificationException}.  Thus, in the face of
  83  * concurrent modification, the iterator fails quickly and cleanly, rather
  84  * than risking arbitrary, non-deterministic behavior at an undetermined
  85  * time in the future.
  86  *
  87  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
  88  * as it is, generally speaking, impossible to make any hard guarantees in the
  89  * presence of unsynchronized concurrent modification.  Fail-fast iterators
  90  * throw {@code ConcurrentModificationException} on a best-effort basis.
  91  * Therefore, it would be wrong to write a program that depended on this
  92  * exception for its correctness:  <i>the fail-fast behavior of iterators
  93  * should be used only to detect bugs.</i>
  94  *
  95  * <p>This class is a member of the
  96  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
  97  * Java Collections Framework</a>.
  98  *
  99  * @param <E> the type of elements in this list
 100  *
 101  * @author  Josh Bloch
 102  * @author  Neal Gafter
 103  * @see     Collection
 104  * @see     List
 105  * @see     LinkedList
 106  * @see     Vector
 107  * @since   1.2
 108  */
 109 public class ArrayList<E> extends AbstractList<E>
 110         implements List<E>, RandomAccess, Cloneable, java.io.Serializable
 111 {
 112     @java.io.Serial
 113     private static final long serialVersionUID = 8683452581122892189L;
 114 
 115     /**
 116      * Default initial capacity.
 117      */
 118     private static final int DEFAULT_CAPACITY = 10;
 119 
 120     /**
 121      * Shared empty array instance used for empty instances.
 122      */
 123     private static final Object[] EMPTY_ELEMENTDATA = {};
 124 
 125     /**
 126      * Shared empty array instance used for default sized empty instances. We
 127      * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
 128      * first element is added.
 129      */
 130     private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
 131 
 132     /**
 133      * The array buffer into which the elements of the ArrayList are stored.
 134      * The capacity of the ArrayList is the length of this array buffer. Any
 135      * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
 136      * will be expanded to DEFAULT_CAPACITY when the first element is added.
 137      */
 138     transient Object[] elementData; // non-private to simplify nested class access
 139 
 140     /**
 141      * The size of the ArrayList (the number of elements it contains).
 142      *
 143      * @serial
 144      */
 145     private int size;
 146 
 147     /**
 148      * Constructs an empty list with the specified initial capacity.
 149      *
 150      * @param  initialCapacity  the initial capacity of the list
 151      * @throws IllegalArgumentException if the specified initial capacity
 152      *         is negative
 153      */
 154     public ArrayList(int initialCapacity) {
 155         if (initialCapacity > 0) {
 156             this.elementData = new Object[initialCapacity];
 157         } else if (initialCapacity == 0) {
 158             this.elementData = EMPTY_ELEMENTDATA;
 159         } else {
 160             throw new IllegalArgumentException("Illegal Capacity: "+
 161                                                initialCapacity);
 162         }
 163     }
 164 
 165     /**
 166      * Constructs an empty list with an initial capacity of ten.
 167      */
 168     public ArrayList() {
 169         this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
 170     }
 171 
 172     /**
 173      * Constructs a list containing the elements of the specified
 174      * collection, in the order they are returned by the collection's
 175      * iterator.
 176      *
 177      * @param c the collection whose elements are to be placed into this list
 178      * @throws NullPointerException if the specified collection is null
 179      */
 180     public ArrayList(Collection<? extends E> c) {
 181         elementData = c.toArray();
 182         if ((size = elementData.length) != 0) {
 183             // defend against c.toArray (incorrectly) not returning Object[]
 184             // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
 185             if (elementData.getClass() != Object[].class)
 186                 elementData = Arrays.copyOf(elementData, size, Object[].class);
 187         } else {
 188             // replace with empty array.
 189             this.elementData = EMPTY_ELEMENTDATA;
 190         }
 191     }
 192 
 193     /**
 194      * Trims the capacity of this {@code ArrayList} instance to be the
 195      * list's current size.  An application can use this operation to minimize
 196      * the storage of an {@code ArrayList} instance.
 197      */
 198     public void trimToSize() {
 199         modCount++;
 200         if (size < elementData.length) {
 201             elementData = (size == 0)
 202               ? EMPTY_ELEMENTDATA
 203               : Arrays.copyOf(elementData, size);
 204         }
 205     }
 206 
 207     /**
 208      * Increases the capacity of this {@code ArrayList} instance, if
 209      * necessary, to ensure that it can hold at least the number of elements
 210      * specified by the minimum capacity argument.
 211      *
 212      * @param minCapacity the desired minimum capacity
 213      */
 214     public void ensureCapacity(int minCapacity) {
 215         if (minCapacity > elementData.length
 216             && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
 217                  && minCapacity <= DEFAULT_CAPACITY)) {
 218             modCount++;
 219             grow(minCapacity);
 220         }
 221     }
 222 
 223     /**
 224      * Increases the capacity to ensure that it can hold at least the
 225      * number of elements specified by the minimum capacity argument.
 226      *
 227      * @param minCapacity the desired minimum capacity
 228      * @throws OutOfMemoryError if minCapacity is less than zero
 229      */
 230     private Object[] grow(int minCapacity) {
 231         int oldCapacity = elementData.length;
 232         if (oldCapacity > 0 || elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
 233             int newCapacity = ArraysSupport.newLength(oldCapacity,
 234                     minCapacity - oldCapacity, /* minimum growth */
 235                     oldCapacity >> 1           /* preferred growth */);
 236             return elementData = Arrays.copyOf(elementData, newCapacity);
 237         } else {
 238             if (DEFAULT_CAPACITY > minCapacity) {
 239                 return elementData = new Object[DEFAULT_CAPACITY];
 240             }
 241             return elementData = new Object[minCapacity];
 242          }
 243     }
 244 
 245     private Object[] grow() {
 246         return grow(size + 1);
 247     }
 248 
 249     /**
 250      * Returns the number of elements in this list.
 251      *
 252      * @return the number of elements in this list
 253      */
 254     public int size() {
 255         return size;
 256     }
 257 
 258     /**
 259      * Returns {@code true} if this list contains no elements.
 260      *
 261      * @return {@code true} if this list contains no elements
 262      */
 263     public boolean isEmpty() {
 264         return size == 0;
 265     }
 266 
 267     /**
 268      * Returns {@code true} if this list contains the specified element.
 269      * More formally, returns {@code true} if and only if this list contains
 270      * at least one element {@code e} such that
 271      * {@code Objects.equals(o, e)}.
 272      *
 273      * @param o element whose presence in this list is to be tested
 274      * @return {@code true} if this list contains the specified element
 275      */
 276     public boolean contains(Object o) {
 277         return indexOf(o) >= 0;
 278     }
 279 
 280     /**
 281      * Returns the index of the first occurrence of the specified element
 282      * in this list, or -1 if this list does not contain the element.
 283      * More formally, returns the lowest index {@code i} such that
 284      * {@code Objects.equals(o, get(i))},
 285      * or -1 if there is no such index.
 286      */
 287     public int indexOf(Object o) {
 288         return indexOfRange(o, 0, size);
 289     }
 290 
 291     int indexOfRange(Object o, int start, int end) {
 292         Object[] es = elementData;
 293         if (o == null) {
 294             for (int i = start; i < end; i++) {
 295                 if (es[i] == null) {
 296                     return i;
 297                 }
 298             }
 299         } else {
 300             for (int i = start; i < end; i++) {
 301                 if (o.equals(es[i])) {
 302                     return i;
 303                 }
 304             }
 305         }
 306         return -1;
 307     }
 308 
 309     /**
 310      * Returns the index of the last occurrence of the specified element
 311      * in this list, or -1 if this list does not contain the element.
 312      * More formally, returns the highest index {@code i} such that
 313      * {@code Objects.equals(o, get(i))},
 314      * or -1 if there is no such index.
 315      */
 316     public int lastIndexOf(Object o) {
 317         return lastIndexOfRange(o, 0, size);
 318     }
 319 
 320     int lastIndexOfRange(Object o, int start, int end) {
 321         Object[] es = elementData;
 322         if (o == null) {
 323             for (int i = end - 1; i >= start; i--) {
 324                 if (es[i] == null) {
 325                     return i;
 326                 }
 327             }
 328         } else {
 329             for (int i = end - 1; i >= start; i--) {
 330                 if (o.equals(es[i])) {
 331                     return i;
 332                 }
 333             }
 334         }
 335         return -1;
 336     }
 337 
 338     /**
 339      * Returns a shallow copy of this {@code ArrayList} instance.  (The
 340      * elements themselves are not copied.)
 341      *
 342      * @return a clone of this {@code ArrayList} instance
 343      */
 344     public Object clone() {
 345         try {
 346             ArrayList<?> v = (ArrayList<?>) super.clone();
 347             v.elementData = Arrays.copyOf(elementData, size);
 348             v.modCount = 0;
 349             return v;
 350         } catch (CloneNotSupportedException e) {
 351             // this shouldn't happen, since we are Cloneable
 352             throw new InternalError(e);
 353         }
 354     }
 355 
 356     /**
 357      * Returns an array containing all of the elements in this list
 358      * in proper sequence (from first to last element).
 359      *
 360      * <p>The returned array will be "safe" in that no references to it are
 361      * maintained by this list.  (In other words, this method must allocate
 362      * a new array).  The caller is thus free to modify the returned array.
 363      *
 364      * <p>This method acts as bridge between array-based and collection-based
 365      * APIs.
 366      *
 367      * @return an array containing all of the elements in this list in
 368      *         proper sequence
 369      */
 370     public Object[] toArray() {
 371         return Arrays.copyOf(elementData, size);
 372     }
 373 
 374     /**
 375      * Returns an array containing all of the elements in this list in proper
 376      * sequence (from first to last element); the runtime type of the returned
 377      * array is that of the specified array.  If the list fits in the
 378      * specified array, it is returned therein.  Otherwise, a new array is
 379      * allocated with the runtime type of the specified array and the size of
 380      * this list.
 381      *
 382      * <p>If the list fits in the specified array with room to spare
 383      * (i.e., the array has more elements than the list), the element in
 384      * the array immediately following the end of the collection is set to
 385      * {@code null}.  (This is useful in determining the length of the
 386      * list <i>only</i> if the caller knows that the list does not contain
 387      * any null elements.)
 388      *
 389      * @param a the array into which the elements of the list are to
 390      *          be stored, if it is big enough; otherwise, a new array of the
 391      *          same runtime type is allocated for this purpose.
 392      * @return an array containing the elements of the list
 393      * @throws ArrayStoreException if the runtime type of the specified array
 394      *         is not a supertype of the runtime type of every element in
 395      *         this list
 396      * @throws NullPointerException if the specified array is null
 397      */
 398     @SuppressWarnings("unchecked")
 399     public <T> T[] toArray(T[] a) {
 400         if (a.length < size)
 401             // Make a new array of a's runtime type, but my contents:
 402             return (T[]) Arrays.copyOf(elementData, size, a.getClass());
 403         System.arraycopy(elementData, 0, a, 0, size);
 404         if (a.length > size)
 405             a[size] = null;
 406         return a;
 407     }
 408 
 409     // Positional Access Operations
 410 
 411     @SuppressWarnings("unchecked")
 412     E elementData(int index) {
 413         return (E) elementData[index];
 414     }
 415 
 416     @SuppressWarnings("unchecked")
 417     static <E> E elementAt(Object[] es, int index) {
 418         return (E) es[index];
 419     }
 420 
 421     /**
 422      * Returns the element at the specified position in this list.
 423      *
 424      * @param  index index of the element to return
 425      * @return the element at the specified position in this list
 426      * @throws IndexOutOfBoundsException {@inheritDoc}
 427      */
 428     public E get(int index) {
 429         Objects.checkIndex(index, size);
 430         return elementData(index);
 431     }
 432 
 433     /**
 434      * Replaces the element at the specified position in this list with
 435      * the specified element.
 436      *
 437      * @param index index of the element to replace
 438      * @param element element to be stored at the specified position
 439      * @return the element previously at the specified position
 440      * @throws IndexOutOfBoundsException {@inheritDoc}
 441      */
 442     public E set(int index, E element) {
 443         Objects.checkIndex(index, size);
 444         E oldValue = elementData(index);
 445         elementData[index] = element;
 446         return oldValue;
 447     }
 448 
 449     /**
 450      * This helper method split out from add(E) to keep method
 451      * bytecode size under 35 (the -XX:MaxInlineSize default value),
 452      * which helps when add(E) is called in a C1-compiled loop.
 453      */
 454     private void add(E e, Object[] elementData, int s) {
 455         if (s == elementData.length)
 456             elementData = grow();
 457         elementData[s] = e;
 458         size = s + 1;
 459     }
 460 
 461     /**
 462      * Appends the specified element to the end of this list.
 463      *
 464      * @param e element to be appended to this list
 465      * @return {@code true} (as specified by {@link Collection#add})
 466      */
 467     public boolean add(E e) {
 468         modCount++;
 469         add(e, elementData, size);
 470         return true;
 471     }
 472 
 473     /**
 474      * Inserts the specified element at the specified position in this
 475      * list. Shifts the element currently at that position (if any) and
 476      * any subsequent elements to the right (adds one to their indices).
 477      *
 478      * @param index index at which the specified element is to be inserted
 479      * @param element element to be inserted
 480      * @throws IndexOutOfBoundsException {@inheritDoc}
 481      */
 482     public void add(int index, E element) {
 483         rangeCheckForAdd(index);
 484         modCount++;
 485         final int s;
 486         Object[] elementData;
 487         if ((s = size) == (elementData = this.elementData).length)
 488             elementData = grow();
 489         System.arraycopy(elementData, index,
 490                          elementData, index + 1,
 491                          s - index);
 492         elementData[index] = element;
 493         size = s + 1;
 494     }
 495 
 496     /**
 497      * Removes the element at the specified position in this list.
 498      * Shifts any subsequent elements to the left (subtracts one from their
 499      * indices).
 500      *
 501      * @param index the index of the element to be removed
 502      * @return the element that was removed from the list
 503      * @throws IndexOutOfBoundsException {@inheritDoc}
 504      */
 505     public E remove(int index) {
 506         Objects.checkIndex(index, size);
 507         final Object[] es = elementData;
 508 
 509         @SuppressWarnings("unchecked") E oldValue = (E) es[index];
 510         fastRemove(es, index);
 511 
 512         return oldValue;
 513     }
 514 
 515     /**
 516      * {@inheritDoc}
 517      */
 518     public boolean equals(Object o) {
 519         if (o == this) {
 520             return true;
 521         }
 522 
 523         if (!(o instanceof List)) {
 524             return false;
 525         }
 526 
 527         final int expectedModCount = modCount;
 528         // ArrayList can be subclassed and given arbitrary behavior, but we can
 529         // still deal with the common case where o is ArrayList precisely
 530         boolean equal = (o.getClass() == ArrayList.class)
 531             ? equalsArrayList((ArrayList<?>) o)
 532             : equalsRange((List<?>) o, 0, size);
 533 
 534         checkForComodification(expectedModCount);
 535         return equal;
 536     }
 537 
 538     boolean equalsRange(List<?> other, int from, int to) {
 539         final Object[] es = elementData;
 540         if (to > es.length) {
 541             throw new ConcurrentModificationException();
 542         }
 543         var oit = other.iterator();
 544         for (; from < to; from++) {
 545             if (!oit.hasNext() || !Objects.equals(es[from], oit.next())) {
 546                 return false;
 547             }
 548         }
 549         return !oit.hasNext();
 550     }
 551 
 552     private boolean equalsArrayList(ArrayList<?> other) {
 553         final int otherModCount = other.modCount;
 554         final int s = size;
 555         boolean equal;
 556         if (equal = (s == other.size)) {
 557             final Object[] otherEs = other.elementData;
 558             final Object[] es = elementData;
 559             if (s > es.length || s > otherEs.length) {
 560                 throw new ConcurrentModificationException();
 561             }
 562             for (int i = 0; i < s; i++) {
 563                 if (!Objects.equals(es[i], otherEs[i])) {
 564                     equal = false;
 565                     break;
 566                 }
 567             }
 568         }
 569         other.checkForComodification(otherModCount);
 570         return equal;
 571     }
 572 
 573     private void checkForComodification(final int expectedModCount) {
 574         if (modCount != expectedModCount) {
 575             throw new ConcurrentModificationException();
 576         }
 577     }
 578 
 579     /**
 580      * {@inheritDoc}
 581      */
 582     public int hashCode() {
 583         int expectedModCount = modCount;
 584         int hash = hashCodeRange(0, size);
 585         checkForComodification(expectedModCount);
 586         return hash;
 587     }
 588 
 589     int hashCodeRange(int from, int to) {
 590         final Object[] es = elementData;
 591         if (to > es.length) {
 592             throw new ConcurrentModificationException();
 593         }
 594         int hashCode = 1;
 595         for (int i = from; i < to; i++) {
 596             Object e = es[i];
 597             hashCode = 31 * hashCode + (e == null ? 0 : e.hashCode());
 598         }
 599         return hashCode;
 600     }
 601 
 602     /**
 603      * Removes the first occurrence of the specified element from this list,
 604      * if it is present.  If the list does not contain the element, it is
 605      * unchanged.  More formally, removes the element with the lowest index
 606      * {@code i} such that
 607      * {@code Objects.equals(o, get(i))}
 608      * (if such an element exists).  Returns {@code true} if this list
 609      * contained the specified element (or equivalently, if this list
 610      * changed as a result of the call).
 611      *
 612      * @param o element to be removed from this list, if present
 613      * @return {@code true} if this list contained the specified element
 614      */
 615     public boolean remove(Object o) {
 616         final Object[] es = elementData;
 617         final int size = this.size;
 618         int i = 0;
 619         found: {
 620             if (o == null) {
 621                 for (; i < size; i++)
 622                     if (es[i] == null)
 623                         break found;
 624             } else {
 625                 for (; i < size; i++)
 626                     if (o.equals(es[i]))
 627                         break found;
 628             }
 629             return false;
 630         }
 631         fastRemove(es, i);
 632         return true;
 633     }
 634 
 635     /**
 636      * Private remove method that skips bounds checking and does not
 637      * return the value removed.
 638      */
 639     private void fastRemove(Object[] es, int i) {
 640         modCount++;
 641         final int newSize;
 642         if ((newSize = size - 1) > i)
 643             System.arraycopy(es, i + 1, es, i, newSize - i);
 644         es[size = newSize] = null;
 645     }
 646 
 647     /**
 648      * Removes all of the elements from this list.  The list will
 649      * be empty after this call returns.
 650      */
 651     public void clear() {
 652         modCount++;
 653         final Object[] es = elementData;
 654         for (int to = size, i = size = 0; i < to; i++)
 655             es[i] = null;
 656     }
 657 
 658     /**
 659      * Appends all of the elements in the specified collection to the end of
 660      * this list, in the order that they are returned by the
 661      * specified collection's Iterator.  The behavior of this operation is
 662      * undefined if the specified collection is modified while the operation
 663      * is in progress.  (This implies that the behavior of this call is
 664      * undefined if the specified collection is this list, and this
 665      * list is nonempty.)
 666      *
 667      * @param c collection containing elements to be added to this list
 668      * @return {@code true} if this list changed as a result of the call
 669      * @throws NullPointerException if the specified collection is null
 670      */
 671     public boolean addAll(Collection<? extends E> c) {
 672         Object[] a = c.toArray();
 673         modCount++;
 674         int numNew = a.length;
 675         if (numNew == 0)
 676             return false;
 677         Object[] elementData;
 678         final int s;
 679         if (numNew > (elementData = this.elementData).length - (s = size))
 680             elementData = grow(s + numNew);
 681         System.arraycopy(a, 0, elementData, s, numNew);
 682         size = s + numNew;
 683         return true;
 684     }
 685 
 686     /**
 687      * Inserts all of the elements in the specified collection into this
 688      * list, starting at the specified position.  Shifts the element
 689      * currently at that position (if any) and any subsequent elements to
 690      * the right (increases their indices).  The new elements will appear
 691      * in the list in the order that they are returned by the
 692      * specified collection's iterator.
 693      *
 694      * @param index index at which to insert the first element from the
 695      *              specified collection
 696      * @param c collection containing elements to be added to this list
 697      * @return {@code true} if this list changed as a result of the call
 698      * @throws IndexOutOfBoundsException {@inheritDoc}
 699      * @throws NullPointerException if the specified collection is null
 700      */
 701     public boolean addAll(int index, Collection<? extends E> c) {
 702         rangeCheckForAdd(index);
 703 
 704         Object[] a = c.toArray();
 705         modCount++;
 706         int numNew = a.length;
 707         if (numNew == 0)
 708             return false;
 709         Object[] elementData;
 710         final int s;
 711         if (numNew > (elementData = this.elementData).length - (s = size))
 712             elementData = grow(s + numNew);
 713 
 714         int numMoved = s - index;
 715         if (numMoved > 0)
 716             System.arraycopy(elementData, index,
 717                              elementData, index + numNew,
 718                              numMoved);
 719         System.arraycopy(a, 0, elementData, index, numNew);
 720         size = s + numNew;
 721         return true;
 722     }
 723 
 724     /**
 725      * Removes from this list all of the elements whose index is between
 726      * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
 727      * Shifts any succeeding elements to the left (reduces their index).
 728      * This call shortens the list by {@code (toIndex - fromIndex)} elements.
 729      * (If {@code toIndex==fromIndex}, this operation has no effect.)
 730      *
 731      * @throws IndexOutOfBoundsException if {@code fromIndex} or
 732      *         {@code toIndex} is out of range
 733      *         ({@code fromIndex < 0 ||
 734      *          toIndex > size() ||
 735      *          toIndex < fromIndex})
 736      */
 737     protected void removeRange(int fromIndex, int toIndex) {
 738         if (fromIndex > toIndex) {
 739             throw new IndexOutOfBoundsException(
 740                     outOfBoundsMsg(fromIndex, toIndex));
 741         }
 742         modCount++;
 743         shiftTailOverGap(elementData, fromIndex, toIndex);
 744     }
 745 
 746     /** Erases the gap from lo to hi, by sliding down following elements. */
 747     private void shiftTailOverGap(Object[] es, int lo, int hi) {
 748         System.arraycopy(es, hi, es, lo, size - hi);
 749         for (int to = size, i = (size -= hi - lo); i < to; i++)
 750             es[i] = null;
 751     }
 752 
 753     /**
 754      * A version of rangeCheck used by add and addAll.
 755      */
 756     private void rangeCheckForAdd(int index) {
 757         if (index > size || index < 0)
 758             throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
 759     }
 760 
 761     /**
 762      * Constructs an IndexOutOfBoundsException detail message.
 763      * Of the many possible refactorings of the error handling code,
 764      * this "outlining" performs best with both server and client VMs.
 765      */
 766     private String outOfBoundsMsg(int index) {
 767         return "Index: "+index+", Size: "+size;
 768     }
 769 
 770     /**
 771      * A version used in checking (fromIndex > toIndex) condition
 772      */
 773     private static String outOfBoundsMsg(int fromIndex, int toIndex) {
 774         return "From Index: " + fromIndex + " > To Index: " + toIndex;
 775     }
 776 
 777     /**
 778      * Removes from this list all of its elements that are contained in the
 779      * specified collection.
 780      *
 781      * @param c collection containing elements to be removed from this list
 782      * @return {@code true} if this list changed as a result of the call
 783      * @throws ClassCastException if the class of an element of this list
 784      *         is incompatible with the specified collection
 785      * (<a href="Collection.html#optional-restrictions">optional</a>)
 786      * @throws NullPointerException if this list contains a null element and the
 787      *         specified collection does not permit null elements
 788      * (<a href="Collection.html#optional-restrictions">optional</a>),
 789      *         or if the specified collection is null
 790      * @see Collection#contains(Object)
 791      */
 792     public boolean removeAll(Collection<?> c) {
 793         return batchRemove(c, false, 0, size);
 794     }
 795 
 796     /**
 797      * Retains only the elements in this list that are contained in the
 798      * specified collection.  In other words, removes from this list all
 799      * of its elements that are not contained in the specified collection.
 800      *
 801      * @param c collection containing elements to be retained in this list
 802      * @return {@code true} if this list changed as a result of the call
 803      * @throws ClassCastException if the class of an element of this list
 804      *         is incompatible with the specified collection
 805      * (<a href="Collection.html#optional-restrictions">optional</a>)
 806      * @throws NullPointerException if this list contains a null element and the
 807      *         specified collection does not permit null elements
 808      * (<a href="Collection.html#optional-restrictions">optional</a>),
 809      *         or if the specified collection is null
 810      * @see Collection#contains(Object)
 811      */
 812     public boolean retainAll(Collection<?> c) {
 813         return batchRemove(c, true, 0, size);
 814     }
 815 
 816     boolean batchRemove(Collection<?> c, boolean complement,
 817                         final int from, final int end) {
 818         Objects.requireNonNull(c);
 819         final Object[] es = elementData;
 820         int r;
 821         // Optimize for initial run of survivors
 822         for (r = from;; r++) {
 823             if (r == end)
 824                 return false;
 825             if (c.contains(es[r]) != complement)
 826                 break;
 827         }
 828         int w = r++;
 829         try {
 830             for (Object e; r < end; r++)
 831                 if (c.contains(e = es[r]) == complement)
 832                     es[w++] = e;
 833         } catch (Throwable ex) {
 834             // Preserve behavioral compatibility with AbstractCollection,
 835             // even if c.contains() throws.
 836             System.arraycopy(es, r, es, w, end - r);
 837             w += end - r;
 838             throw ex;
 839         } finally {
 840             modCount += end - w;
 841             shiftTailOverGap(es, w, end);
 842         }
 843         return true;
 844     }
 845 
 846     /**
 847      * Saves the state of the {@code ArrayList} instance to a stream
 848      * (that is, serializes it).
 849      *
 850      * @param s the stream
 851      * @throws java.io.IOException if an I/O error occurs
 852      * @serialData The length of the array backing the {@code ArrayList}
 853      *             instance is emitted (int), followed by all of its elements
 854      *             (each an {@code Object}) in the proper order.
 855      */
 856     @java.io.Serial
 857     private void writeObject(java.io.ObjectOutputStream s)
 858         throws java.io.IOException {
 859         // Write out element count, and any hidden stuff
 860         int expectedModCount = modCount;
 861         s.defaultWriteObject();
 862 
 863         // Write out size as capacity for behavioral compatibility with clone()
 864         s.writeInt(size);
 865 
 866         // Write out all elements in the proper order.
 867         for (int i=0; i<size; i++) {
 868             s.writeObject(elementData[i]);
 869         }
 870 
 871         if (modCount != expectedModCount) {
 872             throw new ConcurrentModificationException();
 873         }
 874     }
 875 
 876     /**
 877      * Reconstitutes the {@code ArrayList} instance from a stream (that is,
 878      * deserializes it).
 879      * @param s the stream
 880      * @throws ClassNotFoundException if the class of a serialized object
 881      *         could not be found
 882      * @throws java.io.IOException if an I/O error occurs
 883      */
 884     @java.io.Serial
 885     private void readObject(java.io.ObjectInputStream s)
 886         throws java.io.IOException, ClassNotFoundException {
 887 
 888         // Read in size, and any hidden stuff
 889         s.defaultReadObject();
 890 
 891         // Read in capacity
 892         s.readInt(); // ignored
 893 
 894         if (size > 0) {
 895             // like clone(), allocate array based upon size not capacity
 896             SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
 897             Object[] elements = new Object[size];
 898 
 899             // Read in all elements in the proper order.
 900             for (int i = 0; i < size; i++) {
 901                 elements[i] = s.readObject();
 902             }
 903 
 904             elementData = elements;
 905         } else if (size == 0) {
 906             elementData = EMPTY_ELEMENTDATA;
 907         } else {
 908             throw new java.io.InvalidObjectException("Invalid size: " + size);
 909         }
 910     }
 911 
 912     /**
 913      * Returns a list iterator over the elements in this list (in proper
 914      * sequence), starting at the specified position in the list.
 915      * The specified index indicates the first element that would be
 916      * returned by an initial call to {@link ListIterator#next next}.
 917      * An initial call to {@link ListIterator#previous previous} would
 918      * return the element with the specified index minus one.
 919      *
 920      * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
 921      *
 922      * @throws IndexOutOfBoundsException {@inheritDoc}
 923      */
 924     public ListIterator<E> listIterator(int index) {
 925         rangeCheckForAdd(index);
 926         return new ListItr(index);
 927     }
 928 
 929     /**
 930      * Returns a list iterator over the elements in this list (in proper
 931      * sequence).
 932      *
 933      * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
 934      *
 935      * @see #listIterator(int)
 936      */
 937     public ListIterator<E> listIterator() {
 938         return new ListItr(0);
 939     }
 940 
 941     /**
 942      * Returns an iterator over the elements in this list in proper sequence.
 943      *
 944      * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
 945      *
 946      * @return an iterator over the elements in this list in proper sequence
 947      */
 948     public Iterator<E> iterator() {
 949         return new Itr();
 950     }
 951 
 952     /**
 953      * An optimized version of AbstractList.Itr
 954      */
 955     private class Itr implements Iterator<E> {
 956         int cursor;       // index of next element to return
 957         int lastRet = -1; // index of last element returned; -1 if no such
 958         int expectedModCount = modCount;
 959 
 960         // prevent creating a synthetic constructor
 961         Itr() {}
 962 
 963         public boolean hasNext() {
 964             return cursor != size;
 965         }
 966 
 967         @SuppressWarnings("unchecked")
 968         public E next() {
 969             checkForComodification();
 970             int i = cursor;
 971             if (i >= size)
 972                 throw new NoSuchElementException();
 973             Object[] elementData = ArrayList.this.elementData;
 974             if (i >= elementData.length)
 975                 throw new ConcurrentModificationException();
 976             cursor = i + 1;
 977             return (E) elementData[lastRet = i];
 978         }
 979 
 980         public void remove() {
 981             if (lastRet < 0)
 982                 throw new IllegalStateException();
 983             checkForComodification();
 984 
 985             try {
 986                 ArrayList.this.remove(lastRet);
 987                 cursor = lastRet;
 988                 lastRet = -1;
 989                 expectedModCount = modCount;
 990             } catch (IndexOutOfBoundsException ex) {
 991                 throw new ConcurrentModificationException();
 992             }
 993         }
 994 
 995         @Override
 996         public void forEachRemaining(Consumer<? super E> action) {
 997             Objects.requireNonNull(action);
 998             final int size = ArrayList.this.size;
 999             int i = cursor;
1000             if (i < size) {
1001                 final Object[] es = elementData;
1002                 if (i >= es.length)
1003                     throw new ConcurrentModificationException();
1004                 for (; i < size && modCount == expectedModCount; i++)
1005                     action.accept(elementAt(es, i));
1006                 // update once at end to reduce heap write traffic
1007                 cursor = i;
1008                 lastRet = i - 1;
1009                 checkForComodification();
1010             }
1011         }
1012 
1013         final void checkForComodification() {
1014             if (modCount != expectedModCount)
1015                 throw new ConcurrentModificationException();
1016         }
1017     }
1018 
1019     /**
1020      * An optimized version of AbstractList.ListItr
1021      */
1022     private class ListItr extends Itr implements ListIterator<E> {
1023         ListItr(int index) {
1024             super();
1025             cursor = index;
1026         }
1027 
1028         public boolean hasPrevious() {
1029             return cursor != 0;
1030         }
1031 
1032         public int nextIndex() {
1033             return cursor;
1034         }
1035 
1036         public int previousIndex() {
1037             return cursor - 1;
1038         }
1039 
1040         @SuppressWarnings("unchecked")
1041         public E previous() {
1042             checkForComodification();
1043             int i = cursor - 1;
1044             if (i < 0)
1045                 throw new NoSuchElementException();
1046             Object[] elementData = ArrayList.this.elementData;
1047             if (i >= elementData.length)
1048                 throw new ConcurrentModificationException();
1049             cursor = i;
1050             return (E) elementData[lastRet = i];
1051         }
1052 
1053         public void set(E e) {
1054             if (lastRet < 0)
1055                 throw new IllegalStateException();
1056             checkForComodification();
1057 
1058             try {
1059                 ArrayList.this.set(lastRet, e);
1060             } catch (IndexOutOfBoundsException ex) {
1061                 throw new ConcurrentModificationException();
1062             }
1063         }
1064 
1065         public void add(E e) {
1066             checkForComodification();
1067 
1068             try {
1069                 int i = cursor;
1070                 ArrayList.this.add(i, e);
1071                 cursor = i + 1;
1072                 lastRet = -1;
1073                 expectedModCount = modCount;
1074             } catch (IndexOutOfBoundsException ex) {
1075                 throw new ConcurrentModificationException();
1076             }
1077         }
1078     }
1079 
1080     /**
1081      * Returns a view of the portion of this list between the specified
1082      * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.  (If
1083      * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1084      * empty.)  The returned list is backed by this list, so non-structural
1085      * changes in the returned list are reflected in this list, and vice-versa.
1086      * The returned list supports all of the optional list operations.
1087      *
1088      * <p>This method eliminates the need for explicit range operations (of
1089      * the sort that commonly exist for arrays).  Any operation that expects
1090      * a list can be used as a range operation by passing a subList view
1091      * instead of a whole list.  For example, the following idiom
1092      * removes a range of elements from a list:
1093      * <pre>
1094      *      list.subList(from, to).clear();
1095      * </pre>
1096      * Similar idioms may be constructed for {@link #indexOf(Object)} and
1097      * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1098      * {@link Collections} class can be applied to a subList.
1099      *
1100      * <p>The semantics of the list returned by this method become undefined if
1101      * the backing list (i.e., this list) is <i>structurally modified</i> in
1102      * any way other than via the returned list.  (Structural modifications are
1103      * those that change the size of this list, or otherwise perturb it in such
1104      * a fashion that iterations in progress may yield incorrect results.)
1105      *
1106      * @throws IndexOutOfBoundsException {@inheritDoc}
1107      * @throws IllegalArgumentException {@inheritDoc}
1108      */
1109     public List<E> subList(int fromIndex, int toIndex) {
1110         subListRangeCheck(fromIndex, toIndex, size);
1111         return new SubList<>(this, fromIndex, toIndex);
1112     }
1113 
1114     private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1115         private final ArrayList<E> root;
1116         private final SubList<E> parent;
1117         private final int offset;
1118         private int size;
1119 
1120         /**
1121          * Constructs a sublist of an arbitrary ArrayList.
1122          */
1123         public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1124             this.root = root;
1125             this.parent = null;
1126             this.offset = fromIndex;
1127             this.size = toIndex - fromIndex;
1128             this.modCount = root.modCount;
1129         }
1130 
1131         /**
1132          * Constructs a sublist of another SubList.
1133          */
1134         private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1135             this.root = parent.root;
1136             this.parent = parent;
1137             this.offset = parent.offset + fromIndex;
1138             this.size = toIndex - fromIndex;
1139             this.modCount = parent.modCount;
1140         }
1141 
1142         public E set(int index, E element) {
1143             Objects.checkIndex(index, size);
1144             checkForComodification();
1145             E oldValue = root.elementData(offset + index);
1146             root.elementData[offset + index] = element;
1147             return oldValue;
1148         }
1149 
1150         public E get(int index) {
1151             Objects.checkIndex(index, size);
1152             checkForComodification();
1153             return root.elementData(offset + index);
1154         }
1155 
1156         public int size() {
1157             checkForComodification();
1158             return size;
1159         }
1160 
1161         public void add(int index, E element) {
1162             rangeCheckForAdd(index);
1163             checkForComodification();
1164             root.add(offset + index, element);
1165             updateSizeAndModCount(1);
1166         }
1167 
1168         public E remove(int index) {
1169             Objects.checkIndex(index, size);
1170             checkForComodification();
1171             E result = root.remove(offset + index);
1172             updateSizeAndModCount(-1);
1173             return result;
1174         }
1175 
1176         protected void removeRange(int fromIndex, int toIndex) {
1177             checkForComodification();
1178             root.removeRange(offset + fromIndex, offset + toIndex);
1179             updateSizeAndModCount(fromIndex - toIndex);
1180         }
1181 
1182         public boolean addAll(Collection<? extends E> c) {
1183             return addAll(this.size, c);
1184         }
1185 
1186         public boolean addAll(int index, Collection<? extends E> c) {
1187             rangeCheckForAdd(index);
1188             int cSize = c.size();
1189             if (cSize==0)
1190                 return false;
1191             checkForComodification();
1192             root.addAll(offset + index, c);
1193             updateSizeAndModCount(cSize);
1194             return true;
1195         }
1196 
1197         public void replaceAll(UnaryOperator<E> operator) {
1198             root.replaceAllRange(operator, offset, offset + size);
1199         }
1200 
1201         public boolean removeAll(Collection<?> c) {
1202             return batchRemove(c, false);
1203         }
1204 
1205         public boolean retainAll(Collection<?> c) {
1206             return batchRemove(c, true);
1207         }
1208 
1209         private boolean batchRemove(Collection<?> c, boolean complement) {
1210             checkForComodification();
1211             int oldSize = root.size;
1212             boolean modified =
1213                 root.batchRemove(c, complement, offset, offset + size);
1214             if (modified)
1215                 updateSizeAndModCount(root.size - oldSize);
1216             return modified;
1217         }
1218 
1219         public boolean removeIf(Predicate<? super E> filter) {
1220             checkForComodification();
1221             int oldSize = root.size;
1222             boolean modified = root.removeIf(filter, offset, offset + size);
1223             if (modified)
1224                 updateSizeAndModCount(root.size - oldSize);
1225             return modified;
1226         }
1227 
1228         public Object[] toArray() {
1229             checkForComodification();
1230             return Arrays.copyOfRange(root.elementData, offset, offset + size);
1231         }
1232 
1233         @SuppressWarnings("unchecked")
1234         public <T> T[] toArray(T[] a) {
1235             checkForComodification();
1236             if (a.length < size)
1237                 return (T[]) Arrays.copyOfRange(
1238                         root.elementData, offset, offset + size, a.getClass());
1239             System.arraycopy(root.elementData, offset, a, 0, size);
1240             if (a.length > size)
1241                 a[size] = null;
1242             return a;
1243         }
1244 
1245         public boolean equals(Object o) {
1246             if (o == this) {
1247                 return true;
1248             }
1249 
1250             if (!(o instanceof List)) {
1251                 return false;
1252             }
1253 
1254             boolean equal = root.equalsRange((List<?>)o, offset, offset + size);
1255             checkForComodification();
1256             return equal;
1257         }
1258 
1259         public int hashCode() {
1260             int hash = root.hashCodeRange(offset, offset + size);
1261             checkForComodification();
1262             return hash;
1263         }
1264 
1265         public int indexOf(Object o) {
1266             int index = root.indexOfRange(o, offset, offset + size);
1267             checkForComodification();
1268             return index >= 0 ? index - offset : -1;
1269         }
1270 
1271         public int lastIndexOf(Object o) {
1272             int index = root.lastIndexOfRange(o, offset, offset + size);
1273             checkForComodification();
1274             return index >= 0 ? index - offset : -1;
1275         }
1276 
1277         public boolean contains(Object o) {
1278             return indexOf(o) >= 0;
1279         }
1280 
1281         public Iterator<E> iterator() {
1282             return listIterator();
1283         }
1284 
1285         public ListIterator<E> listIterator(int index) {
1286             checkForComodification();
1287             rangeCheckForAdd(index);
1288 
1289             return new ListIterator<E>() {
1290                 int cursor = index;
1291                 int lastRet = -1;
1292                 int expectedModCount = SubList.this.modCount;
1293 
1294                 public boolean hasNext() {
1295                     return cursor != SubList.this.size;
1296                 }
1297 
1298                 @SuppressWarnings("unchecked")
1299                 public E next() {
1300                     checkForComodification();
1301                     int i = cursor;
1302                     if (i >= SubList.this.size)
1303                         throw new NoSuchElementException();
1304                     Object[] elementData = root.elementData;
1305                     if (offset + i >= elementData.length)
1306                         throw new ConcurrentModificationException();
1307                     cursor = i + 1;
1308                     return (E) elementData[offset + (lastRet = i)];
1309                 }
1310 
1311                 public boolean hasPrevious() {
1312                     return cursor != 0;
1313                 }
1314 
1315                 @SuppressWarnings("unchecked")
1316                 public E previous() {
1317                     checkForComodification();
1318                     int i = cursor - 1;
1319                     if (i < 0)
1320                         throw new NoSuchElementException();
1321                     Object[] elementData = root.elementData;
1322                     if (offset + i >= elementData.length)
1323                         throw new ConcurrentModificationException();
1324                     cursor = i;
1325                     return (E) elementData[offset + (lastRet = i)];
1326                 }
1327 
1328                 public void forEachRemaining(Consumer<? super E> action) {
1329                     Objects.requireNonNull(action);
1330                     final int size = SubList.this.size;
1331                     int i = cursor;
1332                     if (i < size) {
1333                         final Object[] es = root.elementData;
1334                         if (offset + i >= es.length)
1335                             throw new ConcurrentModificationException();
1336                         for (; i < size && root.modCount == expectedModCount; i++)
1337                             action.accept(elementAt(es, offset + i));
1338                         // update once at end to reduce heap write traffic
1339                         cursor = i;
1340                         lastRet = i - 1;
1341                         checkForComodification();
1342                     }
1343                 }
1344 
1345                 public int nextIndex() {
1346                     return cursor;
1347                 }
1348 
1349                 public int previousIndex() {
1350                     return cursor - 1;
1351                 }
1352 
1353                 public void remove() {
1354                     if (lastRet < 0)
1355                         throw new IllegalStateException();
1356                     checkForComodification();
1357 
1358                     try {
1359                         SubList.this.remove(lastRet);
1360                         cursor = lastRet;
1361                         lastRet = -1;
1362                         expectedModCount = SubList.this.modCount;
1363                     } catch (IndexOutOfBoundsException ex) {
1364                         throw new ConcurrentModificationException();
1365                     }
1366                 }
1367 
1368                 public void set(E e) {
1369                     if (lastRet < 0)
1370                         throw new IllegalStateException();
1371                     checkForComodification();
1372 
1373                     try {
1374                         root.set(offset + lastRet, e);
1375                     } catch (IndexOutOfBoundsException ex) {
1376                         throw new ConcurrentModificationException();
1377                     }
1378                 }
1379 
1380                 public void add(E e) {
1381                     checkForComodification();
1382 
1383                     try {
1384                         int i = cursor;
1385                         SubList.this.add(i, e);
1386                         cursor = i + 1;
1387                         lastRet = -1;
1388                         expectedModCount = SubList.this.modCount;
1389                     } catch (IndexOutOfBoundsException ex) {
1390                         throw new ConcurrentModificationException();
1391                     }
1392                 }
1393 
1394                 final void checkForComodification() {
1395                     if (root.modCount != expectedModCount)
1396                         throw new ConcurrentModificationException();
1397                 }
1398             };
1399         }
1400 
1401         public List<E> subList(int fromIndex, int toIndex) {
1402             subListRangeCheck(fromIndex, toIndex, size);
1403             return new SubList<>(this, fromIndex, toIndex);
1404         }
1405 
1406         private void rangeCheckForAdd(int index) {
1407             if (index < 0 || index > this.size)
1408                 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1409         }
1410 
1411         private String outOfBoundsMsg(int index) {
1412             return "Index: "+index+", Size: "+this.size;
1413         }
1414 
1415         private void checkForComodification() {
1416             if (root.modCount != modCount)
1417                 throw new ConcurrentModificationException();
1418         }
1419 
1420         private void updateSizeAndModCount(int sizeChange) {
1421             SubList<E> slist = this;
1422             do {
1423                 slist.size += sizeChange;
1424                 slist.modCount = root.modCount;
1425                 slist = slist.parent;
1426             } while (slist != null);
1427         }
1428 
1429         public Spliterator<E> spliterator() {
1430             checkForComodification();
1431 
1432             // ArrayListSpliterator not used here due to late-binding
1433             return new Spliterator<E>() {
1434                 private int index = offset; // current index, modified on advance/split
1435                 private int fence = -1; // -1 until used; then one past last index
1436                 private int expectedModCount; // initialized when fence set
1437 
1438                 private int getFence() { // initialize fence to size on first use
1439                     int hi; // (a specialized variant appears in method forEach)
1440                     if ((hi = fence) < 0) {
1441                         expectedModCount = modCount;
1442                         hi = fence = offset + size;
1443                     }
1444                     return hi;
1445                 }
1446 
1447                 public ArrayList<E>.ArrayListSpliterator trySplit() {
1448                     int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1449                     // ArrayListSpliterator can be used here as the source is already bound
1450                     return (lo >= mid) ? null : // divide range in half unless too small
1451                         root.new ArrayListSpliterator(lo, index = mid, expectedModCount);
1452                 }
1453 
1454                 public boolean tryAdvance(Consumer<? super E> action) {
1455                     Objects.requireNonNull(action);
1456                     int hi = getFence(), i = index;
1457                     if (i < hi) {
1458                         index = i + 1;
1459                         @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1460                         action.accept(e);
1461                         if (root.modCount != expectedModCount)
1462                             throw new ConcurrentModificationException();
1463                         return true;
1464                     }
1465                     return false;
1466                 }
1467 
1468                 public void forEachRemaining(Consumer<? super E> action) {
1469                     Objects.requireNonNull(action);
1470                     int i, hi, mc; // hoist accesses and checks from loop
1471                     ArrayList<E> lst = root;
1472                     Object[] a;
1473                     if ((a = lst.elementData) != null) {
1474                         if ((hi = fence) < 0) {
1475                             mc = modCount;
1476                             hi = offset + size;
1477                         }
1478                         else
1479                             mc = expectedModCount;
1480                         if ((i = index) >= 0 && (index = hi) <= a.length) {
1481                             for (; i < hi; ++i) {
1482                                 @SuppressWarnings("unchecked") E e = (E) a[i];
1483                                 action.accept(e);
1484                             }
1485                             if (lst.modCount == mc)
1486                                 return;
1487                         }
1488                     }
1489                     throw new ConcurrentModificationException();
1490                 }
1491 
1492                 public long estimateSize() {
1493                     return getFence() - index;
1494                 }
1495 
1496                 public int characteristics() {
1497                     return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1498                 }
1499             };
1500         }
1501     }
1502 
1503     /**
1504      * @throws NullPointerException {@inheritDoc}
1505      */
1506     @Override
1507     public void forEach(Consumer<? super E> action) {
1508         Objects.requireNonNull(action);
1509         final int expectedModCount = modCount;
1510         final Object[] es = elementData;
1511         final int size = this.size;
1512         for (int i = 0; modCount == expectedModCount && i < size; i++)
1513             action.accept(elementAt(es, i));
1514         if (modCount != expectedModCount)
1515             throw new ConcurrentModificationException();
1516     }
1517 
1518     /**
1519      * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1520      * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1521      * list.
1522      *
1523      * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1524      * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1525      * Overriding implementations should document the reporting of additional
1526      * characteristic values.
1527      *
1528      * @return a {@code Spliterator} over the elements in this list
1529      * @since 1.8
1530      */
1531     @Override
1532     public Spliterator<E> spliterator() {
1533         return new ArrayListSpliterator(0, -1, 0);
1534     }
1535 
1536     /** Index-based split-by-two, lazily initialized Spliterator */
1537     final class ArrayListSpliterator implements Spliterator<E> {
1538 
1539         /*
1540          * If ArrayLists were immutable, or structurally immutable (no
1541          * adds, removes, etc), we could implement their spliterators
1542          * with Arrays.spliterator. Instead we detect as much
1543          * interference during traversal as practical without
1544          * sacrificing much performance. We rely primarily on
1545          * modCounts. These are not guaranteed to detect concurrency
1546          * violations, and are sometimes overly conservative about
1547          * within-thread interference, but detect enough problems to
1548          * be worthwhile in practice. To carry this out, we (1) lazily
1549          * initialize fence and expectedModCount until the latest
1550          * point that we need to commit to the state we are checking
1551          * against; thus improving precision.  (This doesn't apply to
1552          * SubLists, that create spliterators with current non-lazy
1553          * values).  (2) We perform only a single
1554          * ConcurrentModificationException check at the end of forEach
1555          * (the most performance-sensitive method). When using forEach
1556          * (as opposed to iterators), we can normally only detect
1557          * interference after actions, not before. Further
1558          * CME-triggering checks apply to all other possible
1559          * violations of assumptions for example null or too-small
1560          * elementData array given its size(), that could only have
1561          * occurred due to interference.  This allows the inner loop
1562          * of forEach to run without any further checks, and
1563          * simplifies lambda-resolution. While this does entail a
1564          * number of checks, note that in the common case of
1565          * list.stream().forEach(a), no checks or other computation
1566          * occur anywhere other than inside forEach itself.  The other
1567          * less-often-used methods cannot take advantage of most of
1568          * these streamlinings.
1569          */
1570 
1571         private int index; // current index, modified on advance/split
1572         private int fence; // -1 until used; then one past last index
1573         private int expectedModCount; // initialized when fence set
1574 
1575         /** Creates new spliterator covering the given range. */
1576         ArrayListSpliterator(int origin, int fence, int expectedModCount) {
1577             this.index = origin;
1578             this.fence = fence;
1579             this.expectedModCount = expectedModCount;
1580         }
1581 
1582         private int getFence() { // initialize fence to size on first use
1583             int hi; // (a specialized variant appears in method forEach)
1584             if ((hi = fence) < 0) {
1585                 expectedModCount = modCount;
1586                 hi = fence = size;
1587             }
1588             return hi;
1589         }
1590 
1591         public ArrayListSpliterator trySplit() {
1592             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1593             return (lo >= mid) ? null : // divide range in half unless too small
1594                 new ArrayListSpliterator(lo, index = mid, expectedModCount);
1595         }
1596 
1597         public boolean tryAdvance(Consumer<? super E> action) {
1598             if (action == null)
1599                 throw new NullPointerException();
1600             int hi = getFence(), i = index;
1601             if (i < hi) {
1602                 index = i + 1;
1603                 @SuppressWarnings("unchecked") E e = (E)elementData[i];
1604                 action.accept(e);
1605                 if (modCount != expectedModCount)
1606                     throw new ConcurrentModificationException();
1607                 return true;
1608             }
1609             return false;
1610         }
1611 
1612         public void forEachRemaining(Consumer<? super E> action) {
1613             int i, hi, mc; // hoist accesses and checks from loop
1614             Object[] a;
1615             if (action == null)
1616                 throw new NullPointerException();
1617             if ((a = elementData) != null) {
1618                 if ((hi = fence) < 0) {
1619                     mc = modCount;
1620                     hi = size;
1621                 }
1622                 else
1623                     mc = expectedModCount;
1624                 if ((i = index) >= 0 && (index = hi) <= a.length) {
1625                     for (; i < hi; ++i) {
1626                         @SuppressWarnings("unchecked") E e = (E) a[i];
1627                         action.accept(e);
1628                     }
1629                     if (modCount == mc)
1630                         return;
1631                 }
1632             }
1633             throw new ConcurrentModificationException();
1634         }
1635 
1636         public long estimateSize() {
1637             return getFence() - index;
1638         }
1639 
1640         public int characteristics() {
1641             return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1642         }
1643     }
1644 
1645     // A tiny bit set implementation
1646 
1647     private static long[] nBits(int n) {
1648         return new long[((n - 1) >> 6) + 1];
1649     }
1650     private static void setBit(long[] bits, int i) {
1651         bits[i >> 6] |= 1L << i;
1652     }
1653     private static boolean isClear(long[] bits, int i) {
1654         return (bits[i >> 6] & (1L << i)) == 0;
1655     }
1656 
1657     /**
1658      * @throws NullPointerException {@inheritDoc}
1659      */
1660     @Override
1661     public boolean removeIf(Predicate<? super E> filter) {
1662         return removeIf(filter, 0, size);
1663     }
1664 
1665     /**
1666      * Removes all elements satisfying the given predicate, from index
1667      * i (inclusive) to index end (exclusive).
1668      */
1669     boolean removeIf(Predicate<? super E> filter, int i, final int end) {
1670         Objects.requireNonNull(filter);
1671         int expectedModCount = modCount;
1672         final Object[] es = elementData;
1673         // Optimize for initial run of survivors
1674         for (; i < end && !filter.test(elementAt(es, i)); i++)
1675             ;
1676         // Tolerate predicates that reentrantly access the collection for
1677         // read (but writers still get CME), so traverse once to find
1678         // elements to delete, a second pass to physically expunge.
1679         if (i < end) {
1680             final int beg = i;
1681             final long[] deathRow = nBits(end - beg);
1682             deathRow[0] = 1L;   // set bit 0
1683             for (i = beg + 1; i < end; i++)
1684                 if (filter.test(elementAt(es, i)))
1685                     setBit(deathRow, i - beg);
1686             if (modCount != expectedModCount)
1687                 throw new ConcurrentModificationException();
1688             modCount++;
1689             int w = beg;
1690             for (i = beg; i < end; i++)
1691                 if (isClear(deathRow, i - beg))
1692                     es[w++] = es[i];
1693             shiftTailOverGap(es, w, end);
1694             return true;
1695         } else {
1696             if (modCount != expectedModCount)
1697                 throw new ConcurrentModificationException();
1698             return false;
1699         }
1700     }
1701 
1702     @Override
1703     public void replaceAll(UnaryOperator<E> operator) {
1704         replaceAllRange(operator, 0, size);
1705         // TODO(8203662): remove increment of modCount from ...
1706         modCount++;
1707     }
1708 
1709     private void replaceAllRange(UnaryOperator<E> operator, int i, int end) {
1710         Objects.requireNonNull(operator);
1711         final int expectedModCount = modCount;
1712         final Object[] es = elementData;
1713         for (; modCount == expectedModCount && i < end; i++)
1714             es[i] = operator.apply(elementAt(es, i));
1715         if (modCount != expectedModCount)
1716             throw new ConcurrentModificationException();
1717     }
1718 
1719     @Override
1720     @SuppressWarnings("unchecked")
1721     public void sort(Comparator<? super E> c) {
1722         final int expectedModCount = modCount;
1723         Arrays.sort((E[]) elementData, 0, size, c);
1724         if (modCount != expectedModCount)
1725             throw new ConcurrentModificationException();
1726         modCount++;
1727     }
1728 
1729     void checkInvariants() {
1730         // assert size >= 0;
1731         // assert size == elementData.length || elementData[size] == null;
1732     }
1733 }