1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/dirtyCardQueue.hpp"
  27 #include "gc/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc/g1/heapRegionRemSet.hpp"
  29 #include "gc/shared/workgroup.hpp"
  30 #include "runtime/atomic.inline.hpp"
  31 #include "runtime/mutexLocker.hpp"
  32 #include "runtime/safepoint.hpp"
  33 #include "runtime/thread.inline.hpp"
  34 
  35 DirtyCardQueue::DirtyCardQueue(DirtyCardQueueSet* qset, bool permanent) :
  36   // Dirty card queues are always active, so we create them with their
  37   // active field set to true.
  38   PtrQueue(qset, permanent, true /* active */)
  39 { }
  40 
  41 DirtyCardQueue::~DirtyCardQueue() {
  42   if (!is_permanent()) {
  43     flush();
  44   }
  45 }
  46 
  47 bool DirtyCardQueue::apply_closure(CardTableEntryClosure* cl,
  48                                    bool consume,
  49                                    uint worker_i) {
  50   bool res = true;
  51   if (_buf != NULL) {
  52     res = apply_closure_to_buffer(cl, _buf, _index, _sz,
  53                                   consume,
  54                                   worker_i);
  55     if (res && consume) {
  56       _index = _sz;
  57     }
  58   }
  59   return res;
  60 }
  61 
  62 bool DirtyCardQueue::apply_closure_to_buffer(CardTableEntryClosure* cl,
  63                                              void** buf,
  64                                              size_t index, size_t sz,
  65                                              bool consume,
  66                                              uint worker_i) {
  67   if (cl == NULL) return true;
  68   size_t limit = byte_index_to_index(sz);
  69   for (size_t i = byte_index_to_index(index); i < limit; ++i) {
  70     jbyte* card_ptr = static_cast<jbyte*>(buf[i]);
  71     if (card_ptr != NULL) {
  72       // Set the entry to null, so we don't do it again (via the test
  73       // above) if we reconsider this buffer.
  74       if (consume) {
  75         buf[i] = NULL;
  76       }
  77       if (!cl->do_card_ptr(card_ptr, worker_i)) {
  78         return false;
  79       }
  80     }
  81   }
  82   return true;
  83 }
  84 
  85 DirtyCardQueueSet::DirtyCardQueueSet(bool notify_when_complete) :
  86   PtrQueueSet(notify_when_complete),
  87   _mut_process_closure(NULL),
  88   _shared_dirty_card_queue(this, true /* permanent */),
  89   _free_ids(NULL),
  90   _processed_buffers_mut(0), _processed_buffers_rs_thread(0)
  91 {
  92   _all_active = true;
  93 }
  94 
  95 // Determines how many mutator threads can process the buffers in parallel.
  96 uint DirtyCardQueueSet::num_par_ids() {
  97   return (uint)os::processor_count();
  98 }
  99 
 100 void DirtyCardQueueSet::initialize(CardTableEntryClosure* cl,
 101                                    Monitor* cbl_mon,
 102                                    Mutex* fl_lock,
 103                                    int process_completed_threshold,
 104                                    int max_completed_queue,
 105                                    Mutex* lock,
 106                                    DirtyCardQueueSet* fl_owner) {
 107   _mut_process_closure = cl;
 108   PtrQueueSet::initialize(cbl_mon,
 109                           fl_lock,
 110                           process_completed_threshold,
 111                           max_completed_queue,
 112                           fl_owner);
 113   set_buffer_size(G1UpdateBufferSize);
 114   _shared_dirty_card_queue.set_lock(lock);
 115   _free_ids = new FreeIdSet((int) num_par_ids(), _cbl_mon);
 116 }
 117 
 118 void DirtyCardQueueSet::handle_zero_index_for_thread(JavaThread* t) {
 119   t->dirty_card_queue().handle_zero_index();
 120 }
 121 
 122 bool DirtyCardQueueSet::mut_process_buffer(void** buf) {
 123 
 124   // Used to determine if we had already claimed a par_id
 125   // before entering this method.
 126   bool already_claimed = false;
 127 
 128   // We grab the current JavaThread.
 129   JavaThread* thread = JavaThread::current();
 130 
 131   // We get the the number of any par_id that this thread
 132   // might have already claimed.
 133   uint worker_i = thread->get_claimed_par_id();
 134 
 135   // If worker_i is not UINT_MAX then the thread has already claimed
 136   // a par_id. We make note of it using the already_claimed value
 137   if (worker_i != UINT_MAX) {
 138     already_claimed = true;
 139   } else {
 140 
 141     // Otherwise we need to claim a par id
 142     worker_i = _free_ids->claim_par_id();
 143 
 144     // And store the par_id value in the thread
 145     thread->set_claimed_par_id(worker_i);
 146   }
 147 
 148   bool b = false;
 149   if (worker_i != UINT_MAX) {
 150     b = DirtyCardQueue::apply_closure_to_buffer(_mut_process_closure, buf, 0,
 151                                                 _sz, true, worker_i);
 152     if (b) Atomic::inc(&_processed_buffers_mut);
 153 
 154     // If we had not claimed an id before entering the method
 155     // then we must release the id.
 156     if (!already_claimed) {
 157 
 158       // we release the id
 159       _free_ids->release_par_id(worker_i);
 160 
 161       // and set the claimed_id in the thread to UINT_MAX
 162       thread->set_claimed_par_id(UINT_MAX);
 163     }
 164   }
 165   return b;
 166 }
 167 
 168 
 169 BufferNode* DirtyCardQueueSet::get_completed_buffer(int stop_at) {
 170   BufferNode* nd = NULL;
 171   MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
 172 
 173   if ((int)_n_completed_buffers <= stop_at) {
 174     _process_completed = false;
 175     return NULL;
 176   }
 177 
 178   if (_completed_buffers_head != NULL) {
 179     nd = _completed_buffers_head;
 180     _completed_buffers_head = nd->next();
 181     if (_completed_buffers_head == NULL)
 182       _completed_buffers_tail = NULL;
 183     _n_completed_buffers--;
 184     assert(_n_completed_buffers >= 0, "Invariant");
 185   }
 186   DEBUG_ONLY(assert_completed_buffer_list_len_correct_locked());
 187   return nd;
 188 }
 189 
 190 bool DirtyCardQueueSet::apply_closure_to_completed_buffer_helper(CardTableEntryClosure* cl,
 191                                                                  uint worker_i,
 192                                                                  BufferNode* nd) {
 193   if (nd != NULL) {
 194     void **buf = BufferNode::make_buffer_from_node(nd);
 195     size_t index = nd->index();
 196     bool b =
 197       DirtyCardQueue::apply_closure_to_buffer(cl, buf,
 198                                               index, _sz,
 199                                               true, worker_i);
 200     if (b) {
 201       deallocate_buffer(buf);
 202       return true;  // In normal case, go on to next buffer.
 203     } else {
 204       enqueue_complete_buffer(buf, index);
 205       return false;
 206     }
 207   } else {
 208     return false;
 209   }
 210 }
 211 
 212 bool DirtyCardQueueSet::apply_closure_to_completed_buffer(CardTableEntryClosure* cl,
 213                                                           uint worker_i,
 214                                                           int stop_at,
 215                                                           bool during_pause) {
 216   assert(!during_pause || stop_at == 0, "Should not leave any completed buffers during a pause");
 217   BufferNode* nd = get_completed_buffer(stop_at);
 218   bool res = apply_closure_to_completed_buffer_helper(cl, worker_i, nd);
 219   if (res) Atomic::inc(&_processed_buffers_rs_thread);
 220   return res;
 221 }
 222 
 223 void DirtyCardQueueSet::apply_closure_to_all_completed_buffers(CardTableEntryClosure* cl) {
 224   BufferNode* nd = _completed_buffers_head;
 225   while (nd != NULL) {
 226     bool b =
 227       DirtyCardQueue::apply_closure_to_buffer(cl,
 228                                               BufferNode::make_buffer_from_node(nd),
 229                                               0, _sz, false);
 230     guarantee(b, "Should not stop early.");
 231     nd = nd->next();
 232   }
 233 }
 234 
 235 void DirtyCardQueueSet::par_apply_closure_to_all_completed_buffers(CardTableEntryClosure* cl) {
 236   BufferNode* nd = _cur_par_buffer_node;
 237   while (nd != NULL) {
 238     BufferNode* next = (BufferNode*)nd->next();
 239     BufferNode* actual = (BufferNode*)Atomic::cmpxchg_ptr((void*)next, (volatile void*)&_cur_par_buffer_node, (void*)nd);
 240     if (actual == nd) {
 241       bool b =
 242         DirtyCardQueue::apply_closure_to_buffer(cl,
 243                                                 BufferNode::make_buffer_from_node(actual),
 244                                                 0, _sz, false);
 245       guarantee(b, "Should not stop early.");
 246       nd = next;
 247     } else {
 248       nd = actual;
 249     }
 250   }
 251 }
 252 
 253 // Deallocates any completed log buffers
 254 void DirtyCardQueueSet::clear() {
 255   BufferNode* buffers_to_delete = NULL;
 256   {
 257     MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
 258     while (_completed_buffers_head != NULL) {
 259       BufferNode* nd = _completed_buffers_head;
 260       _completed_buffers_head = nd->next();
 261       nd->set_next(buffers_to_delete);
 262       buffers_to_delete = nd;
 263     }
 264     _n_completed_buffers = 0;
 265     _completed_buffers_tail = NULL;
 266     DEBUG_ONLY(assert_completed_buffer_list_len_correct_locked());
 267   }
 268   while (buffers_to_delete != NULL) {
 269     BufferNode* nd = buffers_to_delete;
 270     buffers_to_delete = nd->next();
 271     deallocate_buffer(BufferNode::make_buffer_from_node(nd));
 272   }
 273 
 274 }
 275 
 276 void DirtyCardQueueSet::abandon_logs() {
 277   assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
 278   clear();
 279   // Since abandon is done only at safepoints, we can safely manipulate
 280   // these queues.
 281   for (JavaThread* t = Threads::first(); t; t = t->next()) {
 282     t->dirty_card_queue().reset();
 283   }
 284   shared_dirty_card_queue()->reset();
 285 }
 286 
 287 
 288 void DirtyCardQueueSet::concatenate_logs() {
 289   // Iterate over all the threads, if we find a partial log add it to
 290   // the global list of logs.  Temporarily turn off the limit on the number
 291   // of outstanding buffers.
 292   int save_max_completed_queue = _max_completed_queue;
 293   _max_completed_queue = max_jint;
 294   assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
 295   for (JavaThread* t = Threads::first(); t; t = t->next()) {
 296     DirtyCardQueue& dcq = t->dirty_card_queue();
 297     if (dcq.size() != 0) {
 298       void** buf = dcq.get_buf();
 299       // We must NULL out the unused entries, then enqueue.
 300       size_t limit = dcq.byte_index_to_index(dcq.get_index());
 301       for (size_t i = 0; i < limit; ++i) {
 302         buf[i] = NULL;
 303       }
 304       enqueue_complete_buffer(dcq.get_buf(), dcq.get_index());
 305       dcq.reinitialize();
 306     }
 307   }
 308   if (_shared_dirty_card_queue.size() != 0) {
 309     enqueue_complete_buffer(_shared_dirty_card_queue.get_buf(),
 310                             _shared_dirty_card_queue.get_index());
 311     _shared_dirty_card_queue.reinitialize();
 312   }
 313   // Restore the completed buffer queue limit.
 314   _max_completed_queue = save_max_completed_queue;
 315 }