1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1HeapSizingPolicy.hpp"
  43 #include "gc/g1/g1HeapTransition.hpp"
  44 #include "gc/g1/g1HeapVerifier.hpp"
  45 #include "gc/g1/g1HotCardCache.hpp"
  46 #include "gc/g1/g1MarkSweep.hpp"
  47 #include "gc/g1/g1OopClosures.inline.hpp"
  48 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc/g1/g1Policy.hpp"
  50 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  51 #include "gc/g1/g1RemSet.inline.hpp"
  52 #include "gc/g1/g1RootClosures.hpp"
  53 #include "gc/g1/g1RootProcessor.hpp"
  54 #include "gc/g1/g1StringDedup.hpp"
  55 #include "gc/g1/g1YCTypes.hpp"
  56 #include "gc/g1/heapRegion.inline.hpp"
  57 #include "gc/g1/heapRegionRemSet.hpp"
  58 #include "gc/g1/heapRegionSet.inline.hpp"
  59 #include "gc/g1/suspendibleThreadSet.hpp"
  60 #include "gc/g1/vm_operations_g1.hpp"
  61 #include "gc/shared/gcHeapSummary.hpp"
  62 #include "gc/shared/gcId.hpp"
  63 #include "gc/shared/gcLocker.inline.hpp"
  64 #include "gc/shared/gcTimer.hpp"
  65 #include "gc/shared/gcTrace.hpp"
  66 #include "gc/shared/gcTraceTime.inline.hpp"
  67 #include "gc/shared/generationSpec.hpp"
  68 #include "gc/shared/isGCActiveMark.hpp"
  69 #include "gc/shared/preservedMarks.inline.hpp"
  70 #include "gc/shared/referenceProcessor.inline.hpp"
  71 #include "gc/shared/taskqueue.inline.hpp"
  72 #include "logging/log.hpp"
  73 #include "memory/allocation.hpp"
  74 #include "memory/iterator.hpp"
  75 #include "memory/resourceArea.hpp"
  76 #include "oops/oop.inline.hpp"
  77 #include "runtime/atomic.hpp"
  78 #include "runtime/init.hpp"
  79 #include "runtime/orderAccess.inline.hpp"
  80 #include "runtime/vmThread.hpp"
  81 #include "utilities/globalDefinitions.hpp"
  82 #include "utilities/stack.inline.hpp"
  83 
  84 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  85 
  86 // INVARIANTS/NOTES
  87 //
  88 // All allocation activity covered by the G1CollectedHeap interface is
  89 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  90 // and allocate_new_tlab, which are the "entry" points to the
  91 // allocation code from the rest of the JVM.  (Note that this does not
  92 // apply to TLAB allocation, which is not part of this interface: it
  93 // is done by clients of this interface.)
  94 
  95 // Local to this file.
  96 
  97 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  98   bool _concurrent;
  99 public:
 100   RefineCardTableEntryClosure() : _concurrent(true) { }
 101 
 102   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 103     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, NULL);
 104     // This path is executed by the concurrent refine or mutator threads,
 105     // concurrently, and so we do not care if card_ptr contains references
 106     // that point into the collection set.
 107     assert(!oops_into_cset, "should be");
 108 
 109     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 110       // Caller will actually yield.
 111       return false;
 112     }
 113     // Otherwise, we finished successfully; return true.
 114     return true;
 115   }
 116 
 117   void set_concurrent(bool b) { _concurrent = b; }
 118 };
 119 
 120 
 121 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 122  private:
 123   size_t _num_dirtied;
 124   G1CollectedHeap* _g1h;
 125   G1SATBCardTableLoggingModRefBS* _g1_bs;
 126 
 127   HeapRegion* region_for_card(jbyte* card_ptr) const {
 128     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 129   }
 130 
 131   bool will_become_free(HeapRegion* hr) const {
 132     // A region will be freed by free_collection_set if the region is in the
 133     // collection set and has not had an evacuation failure.
 134     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 135   }
 136 
 137  public:
 138   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 139     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 140 
 141   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 142     HeapRegion* hr = region_for_card(card_ptr);
 143 
 144     // Should only dirty cards in regions that won't be freed.
 145     if (!will_become_free(hr)) {
 146       *card_ptr = CardTableModRefBS::dirty_card_val();
 147       _num_dirtied++;
 148     }
 149 
 150     return true;
 151   }
 152 
 153   size_t num_dirtied()   const { return _num_dirtied; }
 154 };
 155 
 156 
 157 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 158   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 159 }
 160 
 161 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 162   // The from card cache is not the memory that is actually committed. So we cannot
 163   // take advantage of the zero_filled parameter.
 164   reset_from_card_cache(start_idx, num_regions);
 165 }
 166 
 167 // Returns true if the reference points to an object that
 168 // can move in an incremental collection.
 169 bool G1CollectedHeap::is_scavengable(const void* p) {
 170   HeapRegion* hr = heap_region_containing(p);
 171   return !hr->is_pinned();
 172 }
 173 
 174 // Private methods.
 175 
 176 HeapRegion*
 177 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 178   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 179   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 180     if (!_secondary_free_list.is_empty()) {
 181       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 182                                       "secondary_free_list has %u entries",
 183                                       _secondary_free_list.length());
 184       // It looks as if there are free regions available on the
 185       // secondary_free_list. Let's move them to the free_list and try
 186       // again to allocate from it.
 187       append_secondary_free_list();
 188 
 189       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 190              "empty we should have moved at least one entry to the free_list");
 191       HeapRegion* res = _hrm.allocate_free_region(is_old);
 192       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 193                                       "allocated " HR_FORMAT " from secondary_free_list",
 194                                       HR_FORMAT_PARAMS(res));
 195       return res;
 196     }
 197 
 198     // Wait here until we get notified either when (a) there are no
 199     // more free regions coming or (b) some regions have been moved on
 200     // the secondary_free_list.
 201     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 202   }
 203 
 204   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 205                                   "could not allocate from secondary_free_list");
 206   return NULL;
 207 }
 208 
 209 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 210   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 211          "the only time we use this to allocate a humongous region is "
 212          "when we are allocating a single humongous region");
 213 
 214   HeapRegion* res;
 215   if (G1StressConcRegionFreeing) {
 216     if (!_secondary_free_list.is_empty()) {
 217       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 218                                       "forced to look at the secondary_free_list");
 219       res = new_region_try_secondary_free_list(is_old);
 220       if (res != NULL) {
 221         return res;
 222       }
 223     }
 224   }
 225 
 226   res = _hrm.allocate_free_region(is_old);
 227 
 228   if (res == NULL) {
 229     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 230                                     "res == NULL, trying the secondary_free_list");
 231     res = new_region_try_secondary_free_list(is_old);
 232   }
 233   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 234     // Currently, only attempts to allocate GC alloc regions set
 235     // do_expand to true. So, we should only reach here during a
 236     // safepoint. If this assumption changes we might have to
 237     // reconsider the use of _expand_heap_after_alloc_failure.
 238     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 239 
 240     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 241                               word_size * HeapWordSize);
 242 
 243     if (expand(word_size * HeapWordSize)) {
 244       // Given that expand() succeeded in expanding the heap, and we
 245       // always expand the heap by an amount aligned to the heap
 246       // region size, the free list should in theory not be empty.
 247       // In either case allocate_free_region() will check for NULL.
 248       res = _hrm.allocate_free_region(is_old);
 249     } else {
 250       _expand_heap_after_alloc_failure = false;
 251     }
 252   }
 253   return res;
 254 }
 255 
 256 HeapWord*
 257 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 258                                                            uint num_regions,
 259                                                            size_t word_size,
 260                                                            AllocationContext_t context) {
 261   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 262   assert(is_humongous(word_size), "word_size should be humongous");
 263   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 264 
 265   // Index of last region in the series.
 266   uint last = first + num_regions - 1;
 267 
 268   // We need to initialize the region(s) we just discovered. This is
 269   // a bit tricky given that it can happen concurrently with
 270   // refinement threads refining cards on these regions and
 271   // potentially wanting to refine the BOT as they are scanning
 272   // those cards (this can happen shortly after a cleanup; see CR
 273   // 6991377). So we have to set up the region(s) carefully and in
 274   // a specific order.
 275 
 276   // The word size sum of all the regions we will allocate.
 277   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 278   assert(word_size <= word_size_sum, "sanity");
 279 
 280   // This will be the "starts humongous" region.
 281   HeapRegion* first_hr = region_at(first);
 282   // The header of the new object will be placed at the bottom of
 283   // the first region.
 284   HeapWord* new_obj = first_hr->bottom();
 285   // This will be the new top of the new object.
 286   HeapWord* obj_top = new_obj + word_size;
 287 
 288   // First, we need to zero the header of the space that we will be
 289   // allocating. When we update top further down, some refinement
 290   // threads might try to scan the region. By zeroing the header we
 291   // ensure that any thread that will try to scan the region will
 292   // come across the zero klass word and bail out.
 293   //
 294   // NOTE: It would not have been correct to have used
 295   // CollectedHeap::fill_with_object() and make the space look like
 296   // an int array. The thread that is doing the allocation will
 297   // later update the object header to a potentially different array
 298   // type and, for a very short period of time, the klass and length
 299   // fields will be inconsistent. This could cause a refinement
 300   // thread to calculate the object size incorrectly.
 301   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 302 
 303   // Next, pad out the unused tail of the last region with filler
 304   // objects, for improved usage accounting.
 305   // How many words we use for filler objects.
 306   size_t word_fill_size = word_size_sum - word_size;
 307 
 308   // How many words memory we "waste" which cannot hold a filler object.
 309   size_t words_not_fillable = 0;
 310 
 311   if (word_fill_size >= min_fill_size()) {
 312     fill_with_objects(obj_top, word_fill_size);
 313   } else if (word_fill_size > 0) {
 314     // We have space to fill, but we cannot fit an object there.
 315     words_not_fillable = word_fill_size;
 316     word_fill_size = 0;
 317   }
 318 
 319   // We will set up the first region as "starts humongous". This
 320   // will also update the BOT covering all the regions to reflect
 321   // that there is a single object that starts at the bottom of the
 322   // first region.
 323   first_hr->set_starts_humongous(obj_top, word_fill_size);
 324   first_hr->set_allocation_context(context);
 325   // Then, if there are any, we will set up the "continues
 326   // humongous" regions.
 327   HeapRegion* hr = NULL;
 328   for (uint i = first + 1; i <= last; ++i) {
 329     hr = region_at(i);
 330     hr->set_continues_humongous(first_hr);
 331     hr->set_allocation_context(context);
 332   }
 333 
 334   // Up to this point no concurrent thread would have been able to
 335   // do any scanning on any region in this series. All the top
 336   // fields still point to bottom, so the intersection between
 337   // [bottom,top] and [card_start,card_end] will be empty. Before we
 338   // update the top fields, we'll do a storestore to make sure that
 339   // no thread sees the update to top before the zeroing of the
 340   // object header and the BOT initialization.
 341   OrderAccess::storestore();
 342 
 343   // Now, we will update the top fields of the "continues humongous"
 344   // regions except the last one.
 345   for (uint i = first; i < last; ++i) {
 346     hr = region_at(i);
 347     hr->set_top(hr->end());
 348   }
 349 
 350   hr = region_at(last);
 351   // If we cannot fit a filler object, we must set top to the end
 352   // of the humongous object, otherwise we cannot iterate the heap
 353   // and the BOT will not be complete.
 354   hr->set_top(hr->end() - words_not_fillable);
 355 
 356   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 357          "obj_top should be in last region");
 358 
 359   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 360 
 361   assert(words_not_fillable == 0 ||
 362          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 363          "Miscalculation in humongous allocation");
 364 
 365   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 366 
 367   for (uint i = first; i <= last; ++i) {
 368     hr = region_at(i);
 369     _humongous_set.add(hr);
 370     _hr_printer.alloc(hr);
 371   }
 372 
 373   return new_obj;
 374 }
 375 
 376 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 377   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 378   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 379 }
 380 
 381 // If could fit into free regions w/o expansion, try.
 382 // Otherwise, if can expand, do so.
 383 // Otherwise, if using ex regions might help, try with ex given back.
 384 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 385   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 386 
 387   _verifier->verify_region_sets_optional();
 388 
 389   uint first = G1_NO_HRM_INDEX;
 390   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 391 
 392   if (obj_regions == 1) {
 393     // Only one region to allocate, try to use a fast path by directly allocating
 394     // from the free lists. Do not try to expand here, we will potentially do that
 395     // later.
 396     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 397     if (hr != NULL) {
 398       first = hr->hrm_index();
 399     }
 400   } else {
 401     // We can't allocate humongous regions spanning more than one region while
 402     // cleanupComplete() is running, since some of the regions we find to be
 403     // empty might not yet be added to the free list. It is not straightforward
 404     // to know in which list they are on so that we can remove them. We only
 405     // need to do this if we need to allocate more than one region to satisfy the
 406     // current humongous allocation request. If we are only allocating one region
 407     // we use the one-region region allocation code (see above), that already
 408     // potentially waits for regions from the secondary free list.
 409     wait_while_free_regions_coming();
 410     append_secondary_free_list_if_not_empty_with_lock();
 411 
 412     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 413     // are lucky enough to find some.
 414     first = _hrm.find_contiguous_only_empty(obj_regions);
 415     if (first != G1_NO_HRM_INDEX) {
 416       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 417     }
 418   }
 419 
 420   if (first == G1_NO_HRM_INDEX) {
 421     // Policy: We could not find enough regions for the humongous object in the
 422     // free list. Look through the heap to find a mix of free and uncommitted regions.
 423     // If so, try expansion.
 424     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 425     if (first != G1_NO_HRM_INDEX) {
 426       // We found something. Make sure these regions are committed, i.e. expand
 427       // the heap. Alternatively we could do a defragmentation GC.
 428       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 429                                     word_size * HeapWordSize);
 430 
 431       _hrm.expand_at(first, obj_regions, workers());
 432       g1_policy()->record_new_heap_size(num_regions());
 433 
 434 #ifdef ASSERT
 435       for (uint i = first; i < first + obj_regions; ++i) {
 436         HeapRegion* hr = region_at(i);
 437         assert(hr->is_free(), "sanity");
 438         assert(hr->is_empty(), "sanity");
 439         assert(is_on_master_free_list(hr), "sanity");
 440       }
 441 #endif
 442       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 443     } else {
 444       // Policy: Potentially trigger a defragmentation GC.
 445     }
 446   }
 447 
 448   HeapWord* result = NULL;
 449   if (first != G1_NO_HRM_INDEX) {
 450     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 451                                                        word_size, context);
 452     assert(result != NULL, "it should always return a valid result");
 453 
 454     // A successful humongous object allocation changes the used space
 455     // information of the old generation so we need to recalculate the
 456     // sizes and update the jstat counters here.
 457     g1mm()->update_sizes();
 458   }
 459 
 460   _verifier->verify_region_sets_optional();
 461 
 462   return result;
 463 }
 464 
 465 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 466   assert_heap_not_locked_and_not_at_safepoint();
 467   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 468 
 469   uint dummy_gc_count_before;
 470   uint dummy_gclocker_retry_count = 0;
 471   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 472 }
 473 
 474 HeapWord*
 475 G1CollectedHeap::mem_allocate(size_t word_size,
 476                               bool*  gc_overhead_limit_was_exceeded) {
 477   assert_heap_not_locked_and_not_at_safepoint();
 478 
 479   // Loop until the allocation is satisfied, or unsatisfied after GC.
 480   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 481     uint gc_count_before;
 482 
 483     HeapWord* result = NULL;
 484     if (!is_humongous(word_size)) {
 485       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 486     } else {
 487       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 488     }
 489     if (result != NULL) {
 490       return result;
 491     }
 492 
 493     // Create the garbage collection operation...
 494     VM_G1CollectForAllocation op(gc_count_before, word_size);
 495     op.set_allocation_context(AllocationContext::current());
 496 
 497     // ...and get the VM thread to execute it.
 498     VMThread::execute(&op);
 499 
 500     if (op.prologue_succeeded() && op.pause_succeeded()) {
 501       // If the operation was successful we'll return the result even
 502       // if it is NULL. If the allocation attempt failed immediately
 503       // after a Full GC, it's unlikely we'll be able to allocate now.
 504       HeapWord* result = op.result();
 505       if (result != NULL && !is_humongous(word_size)) {
 506         // Allocations that take place on VM operations do not do any
 507         // card dirtying and we have to do it here. We only have to do
 508         // this for non-humongous allocations, though.
 509         dirty_young_block(result, word_size);
 510       }
 511       return result;
 512     } else {
 513       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 514         return NULL;
 515       }
 516       assert(op.result() == NULL,
 517              "the result should be NULL if the VM op did not succeed");
 518     }
 519 
 520     // Give a warning if we seem to be looping forever.
 521     if ((QueuedAllocationWarningCount > 0) &&
 522         (try_count % QueuedAllocationWarningCount == 0)) {
 523       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 524     }
 525   }
 526 
 527   ShouldNotReachHere();
 528   return NULL;
 529 }
 530 
 531 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 532                                                    AllocationContext_t context,
 533                                                    uint* gc_count_before_ret,
 534                                                    uint* gclocker_retry_count_ret) {
 535   // Make sure you read the note in attempt_allocation_humongous().
 536 
 537   assert_heap_not_locked_and_not_at_safepoint();
 538   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 539          "be called for humongous allocation requests");
 540 
 541   // We should only get here after the first-level allocation attempt
 542   // (attempt_allocation()) failed to allocate.
 543 
 544   // We will loop until a) we manage to successfully perform the
 545   // allocation or b) we successfully schedule a collection which
 546   // fails to perform the allocation. b) is the only case when we'll
 547   // return NULL.
 548   HeapWord* result = NULL;
 549   for (int try_count = 1; /* we'll return */; try_count += 1) {
 550     bool should_try_gc;
 551     uint gc_count_before;
 552 
 553     {
 554       MutexLockerEx x(Heap_lock);
 555       result = _allocator->attempt_allocation_locked(word_size, context);
 556       if (result != NULL) {
 557         return result;
 558       }
 559 
 560       if (GCLocker::is_active_and_needs_gc()) {
 561         if (g1_policy()->can_expand_young_list()) {
 562           // No need for an ergo verbose message here,
 563           // can_expand_young_list() does this when it returns true.
 564           result = _allocator->attempt_allocation_force(word_size, context);
 565           if (result != NULL) {
 566             return result;
 567           }
 568         }
 569         should_try_gc = false;
 570       } else {
 571         // The GCLocker may not be active but the GCLocker initiated
 572         // GC may not yet have been performed (GCLocker::needs_gc()
 573         // returns true). In this case we do not try this GC and
 574         // wait until the GCLocker initiated GC is performed, and
 575         // then retry the allocation.
 576         if (GCLocker::needs_gc()) {
 577           should_try_gc = false;
 578         } else {
 579           // Read the GC count while still holding the Heap_lock.
 580           gc_count_before = total_collections();
 581           should_try_gc = true;
 582         }
 583       }
 584     }
 585 
 586     if (should_try_gc) {
 587       bool succeeded;
 588       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 589                                    GCCause::_g1_inc_collection_pause);
 590       if (result != NULL) {
 591         assert(succeeded, "only way to get back a non-NULL result");
 592         return result;
 593       }
 594 
 595       if (succeeded) {
 596         // If we get here we successfully scheduled a collection which
 597         // failed to allocate. No point in trying to allocate
 598         // further. We'll just return NULL.
 599         MutexLockerEx x(Heap_lock);
 600         *gc_count_before_ret = total_collections();
 601         return NULL;
 602       }
 603     } else {
 604       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 605         MutexLockerEx x(Heap_lock);
 606         *gc_count_before_ret = total_collections();
 607         return NULL;
 608       }
 609       // The GCLocker is either active or the GCLocker initiated
 610       // GC has not yet been performed. Stall until it is and
 611       // then retry the allocation.
 612       GCLocker::stall_until_clear();
 613       (*gclocker_retry_count_ret) += 1;
 614     }
 615 
 616     // We can reach here if we were unsuccessful in scheduling a
 617     // collection (because another thread beat us to it) or if we were
 618     // stalled due to the GC locker. In either can we should retry the
 619     // allocation attempt in case another thread successfully
 620     // performed a collection and reclaimed enough space. We do the
 621     // first attempt (without holding the Heap_lock) here and the
 622     // follow-on attempt will be at the start of the next loop
 623     // iteration (after taking the Heap_lock).
 624     result = _allocator->attempt_allocation(word_size, context);
 625     if (result != NULL) {
 626       return result;
 627     }
 628 
 629     // Give a warning if we seem to be looping forever.
 630     if ((QueuedAllocationWarningCount > 0) &&
 631         (try_count % QueuedAllocationWarningCount == 0)) {
 632       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 633                       "retries %d times", try_count);
 634     }
 635   }
 636 
 637   ShouldNotReachHere();
 638   return NULL;
 639 }
 640 
 641 void G1CollectedHeap::begin_archive_alloc_range() {
 642   assert_at_safepoint(true /* should_be_vm_thread */);
 643   if (_archive_allocator == NULL) {
 644     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 645   }
 646 }
 647 
 648 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 649   // Allocations in archive regions cannot be of a size that would be considered
 650   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 651   // may be different at archive-restore time.
 652   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 653 }
 654 
 655 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 656   assert_at_safepoint(true /* should_be_vm_thread */);
 657   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 658   if (is_archive_alloc_too_large(word_size)) {
 659     return NULL;
 660   }
 661   return _archive_allocator->archive_mem_allocate(word_size);
 662 }
 663 
 664 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 665                                               size_t end_alignment_in_bytes) {
 666   assert_at_safepoint(true /* should_be_vm_thread */);
 667   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 668 
 669   // Call complete_archive to do the real work, filling in the MemRegion
 670   // array with the archive regions.
 671   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 672   delete _archive_allocator;
 673   _archive_allocator = NULL;
 674 }
 675 
 676 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 677   assert(ranges != NULL, "MemRegion array NULL");
 678   assert(count != 0, "No MemRegions provided");
 679   MemRegion reserved = _hrm.reserved();
 680   for (size_t i = 0; i < count; i++) {
 681     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 682       return false;
 683     }
 684   }
 685   return true;
 686 }
 687 
 688 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 689   assert(!is_init_completed(), "Expect to be called at JVM init time");
 690   assert(ranges != NULL, "MemRegion array NULL");
 691   assert(count != 0, "No MemRegions provided");
 692   MutexLockerEx x(Heap_lock);
 693 
 694   MemRegion reserved = _hrm.reserved();
 695   HeapWord* prev_last_addr = NULL;
 696   HeapRegion* prev_last_region = NULL;
 697 
 698   // Temporarily disable pretouching of heap pages. This interface is used
 699   // when mmap'ing archived heap data in, so pre-touching is wasted.
 700   FlagSetting fs(AlwaysPreTouch, false);
 701 
 702   // Enable archive object checking used by G1MarkSweep. We have to let it know
 703   // about each archive range, so that objects in those ranges aren't marked.
 704   G1ArchiveAllocator::enable_archive_object_check();
 705 
 706   // For each specified MemRegion range, allocate the corresponding G1
 707   // regions and mark them as archive regions. We expect the ranges in
 708   // ascending starting address order, without overlap.
 709   for (size_t i = 0; i < count; i++) {
 710     MemRegion curr_range = ranges[i];
 711     HeapWord* start_address = curr_range.start();
 712     size_t word_size = curr_range.word_size();
 713     HeapWord* last_address = curr_range.last();
 714     size_t commits = 0;
 715 
 716     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 717               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 718               p2i(start_address), p2i(last_address));
 719     guarantee(start_address > prev_last_addr,
 720               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 721               p2i(start_address), p2i(prev_last_addr));
 722     prev_last_addr = last_address;
 723 
 724     // Check for ranges that start in the same G1 region in which the previous
 725     // range ended, and adjust the start address so we don't try to allocate
 726     // the same region again. If the current range is entirely within that
 727     // region, skip it, just adjusting the recorded top.
 728     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 729     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 730       start_address = start_region->end();
 731       if (start_address > last_address) {
 732         increase_used(word_size * HeapWordSize);
 733         start_region->set_top(last_address + 1);
 734         continue;
 735       }
 736       start_region->set_top(start_address);
 737       curr_range = MemRegion(start_address, last_address + 1);
 738       start_region = _hrm.addr_to_region(start_address);
 739     }
 740 
 741     // Perform the actual region allocation, exiting if it fails.
 742     // Then note how much new space we have allocated.
 743     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 744       return false;
 745     }
 746     increase_used(word_size * HeapWordSize);
 747     if (commits != 0) {
 748       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 749                                 HeapRegion::GrainWords * HeapWordSize * commits);
 750 
 751     }
 752 
 753     // Mark each G1 region touched by the range as archive, add it to the old set,
 754     // and set the allocation context and top.
 755     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 756     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 757     prev_last_region = last_region;
 758 
 759     while (curr_region != NULL) {
 760       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 761              "Region already in use (index %u)", curr_region->hrm_index());
 762       curr_region->set_allocation_context(AllocationContext::system());
 763       curr_region->set_archive();
 764       _hr_printer.alloc(curr_region);
 765       _old_set.add(curr_region);
 766       if (curr_region != last_region) {
 767         curr_region->set_top(curr_region->end());
 768         curr_region = _hrm.next_region_in_heap(curr_region);
 769       } else {
 770         curr_region->set_top(last_address + 1);
 771         curr_region = NULL;
 772       }
 773     }
 774 
 775     // Notify mark-sweep of the archive range.
 776     G1ArchiveAllocator::set_range_archive(curr_range, true);
 777   }
 778   return true;
 779 }
 780 
 781 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 782   assert(!is_init_completed(), "Expect to be called at JVM init time");
 783   assert(ranges != NULL, "MemRegion array NULL");
 784   assert(count != 0, "No MemRegions provided");
 785   MemRegion reserved = _hrm.reserved();
 786   HeapWord *prev_last_addr = NULL;
 787   HeapRegion* prev_last_region = NULL;
 788 
 789   // For each MemRegion, create filler objects, if needed, in the G1 regions
 790   // that contain the address range. The address range actually within the
 791   // MemRegion will not be modified. That is assumed to have been initialized
 792   // elsewhere, probably via an mmap of archived heap data.
 793   MutexLockerEx x(Heap_lock);
 794   for (size_t i = 0; i < count; i++) {
 795     HeapWord* start_address = ranges[i].start();
 796     HeapWord* last_address = ranges[i].last();
 797 
 798     assert(reserved.contains(start_address) && reserved.contains(last_address),
 799            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 800            p2i(start_address), p2i(last_address));
 801     assert(start_address > prev_last_addr,
 802            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 803            p2i(start_address), p2i(prev_last_addr));
 804 
 805     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 806     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 807     HeapWord* bottom_address = start_region->bottom();
 808 
 809     // Check for a range beginning in the same region in which the
 810     // previous one ended.
 811     if (start_region == prev_last_region) {
 812       bottom_address = prev_last_addr + 1;
 813     }
 814 
 815     // Verify that the regions were all marked as archive regions by
 816     // alloc_archive_regions.
 817     HeapRegion* curr_region = start_region;
 818     while (curr_region != NULL) {
 819       guarantee(curr_region->is_archive(),
 820                 "Expected archive region at index %u", curr_region->hrm_index());
 821       if (curr_region != last_region) {
 822         curr_region = _hrm.next_region_in_heap(curr_region);
 823       } else {
 824         curr_region = NULL;
 825       }
 826     }
 827 
 828     prev_last_addr = last_address;
 829     prev_last_region = last_region;
 830 
 831     // Fill the memory below the allocated range with dummy object(s),
 832     // if the region bottom does not match the range start, or if the previous
 833     // range ended within the same G1 region, and there is a gap.
 834     if (start_address != bottom_address) {
 835       size_t fill_size = pointer_delta(start_address, bottom_address);
 836       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 837       increase_used(fill_size * HeapWordSize);
 838     }
 839   }
 840 }
 841 
 842 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 843                                                      uint* gc_count_before_ret,
 844                                                      uint* gclocker_retry_count_ret) {
 845   assert_heap_not_locked_and_not_at_safepoint();
 846   assert(!is_humongous(word_size), "attempt_allocation() should not "
 847          "be called for humongous allocation requests");
 848 
 849   AllocationContext_t context = AllocationContext::current();
 850   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 851 
 852   if (result == NULL) {
 853     result = attempt_allocation_slow(word_size,
 854                                      context,
 855                                      gc_count_before_ret,
 856                                      gclocker_retry_count_ret);
 857   }
 858   assert_heap_not_locked();
 859   if (result != NULL) {
 860     dirty_young_block(result, word_size);
 861   }
 862   return result;
 863 }
 864 
 865 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 866   assert(!is_init_completed(), "Expect to be called at JVM init time");
 867   assert(ranges != NULL, "MemRegion array NULL");
 868   assert(count != 0, "No MemRegions provided");
 869   MemRegion reserved = _hrm.reserved();
 870   HeapWord* prev_last_addr = NULL;
 871   HeapRegion* prev_last_region = NULL;
 872   size_t size_used = 0;
 873   size_t uncommitted_regions = 0;
 874 
 875   // For each Memregion, free the G1 regions that constitute it, and
 876   // notify mark-sweep that the range is no longer to be considered 'archive.'
 877   MutexLockerEx x(Heap_lock);
 878   for (size_t i = 0; i < count; i++) {
 879     HeapWord* start_address = ranges[i].start();
 880     HeapWord* last_address = ranges[i].last();
 881 
 882     assert(reserved.contains(start_address) && reserved.contains(last_address),
 883            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 884            p2i(start_address), p2i(last_address));
 885     assert(start_address > prev_last_addr,
 886            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 887            p2i(start_address), p2i(prev_last_addr));
 888     size_used += ranges[i].byte_size();
 889     prev_last_addr = last_address;
 890 
 891     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 892     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 893 
 894     // Check for ranges that start in the same G1 region in which the previous
 895     // range ended, and adjust the start address so we don't try to free
 896     // the same region again. If the current range is entirely within that
 897     // region, skip it.
 898     if (start_region == prev_last_region) {
 899       start_address = start_region->end();
 900       if (start_address > last_address) {
 901         continue;
 902       }
 903       start_region = _hrm.addr_to_region(start_address);
 904     }
 905     prev_last_region = last_region;
 906 
 907     // After verifying that each region was marked as an archive region by
 908     // alloc_archive_regions, set it free and empty and uncommit it.
 909     HeapRegion* curr_region = start_region;
 910     while (curr_region != NULL) {
 911       guarantee(curr_region->is_archive(),
 912                 "Expected archive region at index %u", curr_region->hrm_index());
 913       uint curr_index = curr_region->hrm_index();
 914       _old_set.remove(curr_region);
 915       curr_region->set_free();
 916       curr_region->set_top(curr_region->bottom());
 917       if (curr_region != last_region) {
 918         curr_region = _hrm.next_region_in_heap(curr_region);
 919       } else {
 920         curr_region = NULL;
 921       }
 922       _hrm.shrink_at(curr_index, 1);
 923       uncommitted_regions++;
 924     }
 925 
 926     // Notify mark-sweep that this is no longer an archive range.
 927     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 928   }
 929 
 930   if (uncommitted_regions != 0) {
 931     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 932                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 933   }
 934   decrease_used(size_used);
 935 }
 936 
 937 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 938                                                         uint* gc_count_before_ret,
 939                                                         uint* gclocker_retry_count_ret) {
 940   // The structure of this method has a lot of similarities to
 941   // attempt_allocation_slow(). The reason these two were not merged
 942   // into a single one is that such a method would require several "if
 943   // allocation is not humongous do this, otherwise do that"
 944   // conditional paths which would obscure its flow. In fact, an early
 945   // version of this code did use a unified method which was harder to
 946   // follow and, as a result, it had subtle bugs that were hard to
 947   // track down. So keeping these two methods separate allows each to
 948   // be more readable. It will be good to keep these two in sync as
 949   // much as possible.
 950 
 951   assert_heap_not_locked_and_not_at_safepoint();
 952   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 953          "should only be called for humongous allocations");
 954 
 955   // Humongous objects can exhaust the heap quickly, so we should check if we
 956   // need to start a marking cycle at each humongous object allocation. We do
 957   // the check before we do the actual allocation. The reason for doing it
 958   // before the allocation is that we avoid having to keep track of the newly
 959   // allocated memory while we do a GC.
 960   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 961                                            word_size)) {
 962     collect(GCCause::_g1_humongous_allocation);
 963   }
 964 
 965   // We will loop until a) we manage to successfully perform the
 966   // allocation or b) we successfully schedule a collection which
 967   // fails to perform the allocation. b) is the only case when we'll
 968   // return NULL.
 969   HeapWord* result = NULL;
 970   for (int try_count = 1; /* we'll return */; try_count += 1) {
 971     bool should_try_gc;
 972     uint gc_count_before;
 973 
 974     {
 975       MutexLockerEx x(Heap_lock);
 976 
 977       // Given that humongous objects are not allocated in young
 978       // regions, we'll first try to do the allocation without doing a
 979       // collection hoping that there's enough space in the heap.
 980       result = humongous_obj_allocate(word_size, AllocationContext::current());
 981       if (result != NULL) {
 982         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 983         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 984         return result;
 985       }
 986 
 987       if (GCLocker::is_active_and_needs_gc()) {
 988         should_try_gc = false;
 989       } else {
 990          // The GCLocker may not be active but the GCLocker initiated
 991         // GC may not yet have been performed (GCLocker::needs_gc()
 992         // returns true). In this case we do not try this GC and
 993         // wait until the GCLocker initiated GC is performed, and
 994         // then retry the allocation.
 995         if (GCLocker::needs_gc()) {
 996           should_try_gc = false;
 997         } else {
 998           // Read the GC count while still holding the Heap_lock.
 999           gc_count_before = total_collections();
1000           should_try_gc = true;
1001         }
1002       }
1003     }
1004 
1005     if (should_try_gc) {
1006       // If we failed to allocate the humongous object, we should try to
1007       // do a collection pause (if we're allowed) in case it reclaims
1008       // enough space for the allocation to succeed after the pause.
1009 
1010       bool succeeded;
1011       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1012                                    GCCause::_g1_humongous_allocation);
1013       if (result != NULL) {
1014         assert(succeeded, "only way to get back a non-NULL result");
1015         return result;
1016       }
1017 
1018       if (succeeded) {
1019         // If we get here we successfully scheduled a collection which
1020         // failed to allocate. No point in trying to allocate
1021         // further. We'll just return NULL.
1022         MutexLockerEx x(Heap_lock);
1023         *gc_count_before_ret = total_collections();
1024         return NULL;
1025       }
1026     } else {
1027       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1028         MutexLockerEx x(Heap_lock);
1029         *gc_count_before_ret = total_collections();
1030         return NULL;
1031       }
1032       // The GCLocker is either active or the GCLocker initiated
1033       // GC has not yet been performed. Stall until it is and
1034       // then retry the allocation.
1035       GCLocker::stall_until_clear();
1036       (*gclocker_retry_count_ret) += 1;
1037     }
1038 
1039     // We can reach here if we were unsuccessful in scheduling a
1040     // collection (because another thread beat us to it) or if we were
1041     // stalled due to the GC locker. In either can we should retry the
1042     // allocation attempt in case another thread successfully
1043     // performed a collection and reclaimed enough space.  Give a
1044     // warning if we seem to be looping forever.
1045 
1046     if ((QueuedAllocationWarningCount > 0) &&
1047         (try_count % QueuedAllocationWarningCount == 0)) {
1048       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1049                       "retries %d times", try_count);
1050     }
1051   }
1052 
1053   ShouldNotReachHere();
1054   return NULL;
1055 }
1056 
1057 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1058                                                            AllocationContext_t context,
1059                                                            bool expect_null_mutator_alloc_region) {
1060   assert_at_safepoint(true /* should_be_vm_thread */);
1061   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1062          "the current alloc region was unexpectedly found to be non-NULL");
1063 
1064   if (!is_humongous(word_size)) {
1065     return _allocator->attempt_allocation_locked(word_size, context);
1066   } else {
1067     HeapWord* result = humongous_obj_allocate(word_size, context);
1068     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1069       collector_state()->set_initiate_conc_mark_if_possible(true);
1070     }
1071     return result;
1072   }
1073 
1074   ShouldNotReachHere();
1075 }
1076 
1077 class PostMCRemSetClearClosure: public HeapRegionClosure {
1078   G1CollectedHeap* _g1h;
1079   ModRefBarrierSet* _mr_bs;
1080 public:
1081   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1082     _g1h(g1h), _mr_bs(mr_bs) {}
1083 
1084   bool doHeapRegion(HeapRegion* r) {
1085     HeapRegionRemSet* hrrs = r->rem_set();
1086 
1087     _g1h->reset_gc_time_stamps(r);
1088 
1089     if (r->is_continues_humongous()) {
1090       // We'll assert that the strong code root list and RSet is empty
1091       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1092       assert(hrrs->occupied() == 0, "RSet should be empty");
1093     } else {
1094       hrrs->clear();
1095     }
1096     // You might think here that we could clear just the cards
1097     // corresponding to the used region.  But no: if we leave a dirty card
1098     // in a region we might allocate into, then it would prevent that card
1099     // from being enqueued, and cause it to be missed.
1100     // Re: the performance cost: we shouldn't be doing full GC anyway!
1101     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1102 
1103     return false;
1104   }
1105 };
1106 
1107 void G1CollectedHeap::clear_rsets_post_compaction() {
1108   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1109   heap_region_iterate(&rs_clear);
1110 }
1111 
1112 class ParRebuildRSTask: public G1ParallelizeByRegionsTask {
1113   class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1114     UpdateRSOopClosure _cl;
1115   public:
1116     RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1117       _cl(g1->g1_rem_set(), worker_i) {}
1118 
1119     bool doHeapRegion(HeapRegion* r) {
1120       if (!r->is_continues_humongous()) {
1121         _cl.set_from(r);
1122         r->oop_iterate(&_cl);
1123       }
1124       return false;
1125     }
1126   };
1127 
1128 public:
1129   ParRebuildRSTask(G1CollectedHeap* g1) :
1130       G1ParallelizeByRegionsTask("ParRebuildRSTask", g1->workers()->active_workers()) {}
1131 
1132   void work(uint worker_id) {
1133     G1CollectedHeap* g1 = G1CollectedHeap::heap();
1134     RebuildRSOutOfRegionClosure rebuild_rs(g1, worker_id);
1135     all_heap_regions_work(&rebuild_rs, worker_id);
1136   }
1137 };
1138 
1139 class PostCompactionPrinterClosure: public HeapRegionClosure {
1140 private:
1141   G1HRPrinter* _hr_printer;
1142 public:
1143   bool doHeapRegion(HeapRegion* hr) {
1144     assert(!hr->is_young(), "not expecting to find young regions");
1145     _hr_printer->post_compaction(hr);
1146     return false;
1147   }
1148 
1149   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1150     : _hr_printer(hr_printer) { }
1151 };
1152 
1153 void G1CollectedHeap::print_hrm_post_compaction() {
1154   if (_hr_printer.is_active()) {
1155     PostCompactionPrinterClosure cl(hr_printer());
1156     heap_region_iterate(&cl);
1157   }
1158 
1159 }
1160 
1161 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1162                                          bool clear_all_soft_refs) {
1163   assert_at_safepoint(true /* should_be_vm_thread */);
1164 
1165   if (GCLocker::check_active_before_gc()) {
1166     return false;
1167   }
1168 
1169   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1170   gc_timer->register_gc_start();
1171 
1172   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1173   GCIdMark gc_id_mark;
1174   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1175 
1176   SvcGCMarker sgcm(SvcGCMarker::FULL);
1177   ResourceMark rm;
1178 
1179   print_heap_before_gc();
1180   print_heap_regions();
1181   trace_heap_before_gc(gc_tracer);
1182 
1183   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1184 
1185   _verifier->verify_region_sets_optional();
1186 
1187   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1188                            collector_policy()->should_clear_all_soft_refs();
1189 
1190   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1191 
1192   {
1193     IsGCActiveMark x;
1194 
1195     // Timing
1196     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1197     GCTraceCPUTime tcpu;
1198 
1199     {
1200       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1201       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1202       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1203 
1204       G1HeapTransition heap_transition(this);
1205       g1_policy()->record_full_collection_start();
1206 
1207       // Note: When we have a more flexible GC logging framework that
1208       // allows us to add optional attributes to a GC log record we
1209       // could consider timing and reporting how long we wait in the
1210       // following two methods.
1211       wait_while_free_regions_coming();
1212       // If we start the compaction before the CM threads finish
1213       // scanning the root regions we might trip them over as we'll
1214       // be moving objects / updating references. So let's wait until
1215       // they are done. By telling them to abort, they should complete
1216       // early.
1217       _cm->root_regions()->abort();
1218       _cm->root_regions()->wait_until_scan_finished();
1219       append_secondary_free_list_if_not_empty_with_lock();
1220 
1221       gc_prologue(true);
1222       increment_total_collections(true /* full gc */);
1223       increment_old_marking_cycles_started();
1224 
1225       assert(used() == recalculate_used(), "Should be equal");
1226 
1227       _verifier->verify_before_gc();
1228 
1229       _verifier->check_bitmaps("Full GC Start");
1230       pre_full_gc_dump(gc_timer);
1231 
1232 #if defined(COMPILER2) || INCLUDE_JVMCI
1233       DerivedPointerTable::clear();
1234 #endif
1235 
1236       // Disable discovery and empty the discovered lists
1237       // for the CM ref processor.
1238       ref_processor_cm()->disable_discovery();
1239       ref_processor_cm()->abandon_partial_discovery();
1240       ref_processor_cm()->verify_no_references_recorded();
1241 
1242       // Abandon current iterations of concurrent marking and concurrent
1243       // refinement, if any are in progress.
1244       concurrent_mark()->abort();
1245 
1246       // Make sure we'll choose a new allocation region afterwards.
1247       _allocator->release_mutator_alloc_region();
1248       _allocator->abandon_gc_alloc_regions();
1249       g1_rem_set()->cleanupHRRS();
1250 
1251       // We may have added regions to the current incremental collection
1252       // set between the last GC or pause and now. We need to clear the
1253       // incremental collection set and then start rebuilding it afresh
1254       // after this full GC.
1255       abandon_collection_set(collection_set());
1256 
1257       tear_down_region_sets(false /* free_list_only */);
1258       collector_state()->set_gcs_are_young(true);
1259 
1260       // See the comments in g1CollectedHeap.hpp and
1261       // G1CollectedHeap::ref_processing_init() about
1262       // how reference processing currently works in G1.
1263 
1264       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1265       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1266 
1267       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1268       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1269 
1270       ref_processor_stw()->enable_discovery();
1271       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1272 
1273       // Do collection work
1274       {
1275         HandleMark hm;  // Discard invalid handles created during gc
1276         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1277       }
1278 
1279       assert(num_free_regions() == 0, "we should not have added any free regions");
1280       rebuild_region_sets(false /* free_list_only */);
1281 
1282       // Enqueue any discovered reference objects that have
1283       // not been removed from the discovered lists.
1284       ref_processor_stw()->enqueue_discovered_references();
1285 
1286 #if defined(COMPILER2) || INCLUDE_JVMCI
1287       DerivedPointerTable::update_pointers();
1288 #endif
1289 
1290       MemoryService::track_memory_usage();
1291 
1292       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1293       ref_processor_stw()->verify_no_references_recorded();
1294 
1295       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1296       ClassLoaderDataGraph::purge();
1297       MetaspaceAux::verify_metrics();
1298 
1299       // Note: since we've just done a full GC, concurrent
1300       // marking is no longer active. Therefore we need not
1301       // re-enable reference discovery for the CM ref processor.
1302       // That will be done at the start of the next marking cycle.
1303       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1304       ref_processor_cm()->verify_no_references_recorded();
1305 
1306       reset_gc_time_stamp();
1307       // Since everything potentially moved, we will clear all remembered
1308       // sets, and clear all cards.  Later we will rebuild remembered
1309       // sets. We will also reset the GC time stamps of the regions.
1310       clear_rsets_post_compaction();
1311       check_gc_time_stamps();
1312 
1313       resize_if_necessary_after_full_collection();
1314 
1315       // We should do this after we potentially resize the heap so
1316       // that all the COMMIT / UNCOMMIT events are generated before
1317       // the compaction events.
1318       print_hrm_post_compaction();
1319 
1320       if (_hot_card_cache->use_cache()) {
1321         _hot_card_cache->reset_card_counts();
1322         _hot_card_cache->reset_hot_cache();
1323       }
1324 
1325       // Rebuild remembered sets of all regions.
1326       uint n_workers =
1327         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1328                                                 workers()->active_workers(),
1329                                                 Threads::number_of_non_daemon_threads());
1330       workers()->update_active_workers(n_workers);
1331       log_info(gc,task)("Using %u workers of %u to rebuild remembered set", n_workers, workers()->total_workers());
1332 
1333       ParRebuildRSTask rebuild_rs_task(this);
1334       workers()->run_task(&rebuild_rs_task);
1335 
1336       // Rebuild the strong code root lists for each region
1337       rebuild_strong_code_roots();
1338 
1339       if (true) { // FIXME
1340         MetaspaceGC::compute_new_size();
1341       }
1342 
1343 #ifdef TRACESPINNING
1344       ParallelTaskTerminator::print_termination_counts();
1345 #endif
1346 
1347       // Discard all rset updates
1348       JavaThread::dirty_card_queue_set().abandon_logs();
1349       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1350 
1351       // At this point there should be no regions in the
1352       // entire heap tagged as young.
1353       assert(check_young_list_empty(), "young list should be empty at this point");
1354 
1355       // Update the number of full collections that have been completed.
1356       increment_old_marking_cycles_completed(false /* concurrent */);
1357 
1358       _hrm.verify_optional();
1359       _verifier->verify_region_sets_optional();
1360 
1361       _verifier->verify_after_gc();
1362 
1363       // Clear the previous marking bitmap, if needed for bitmap verification.
1364       // Note we cannot do this when we clear the next marking bitmap in
1365       // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1366       // objects marked during a full GC against the previous bitmap.
1367       // But we need to clear it before calling check_bitmaps below since
1368       // the full GC has compacted objects and updated TAMS but not updated
1369       // the prev bitmap.
1370       if (G1VerifyBitmaps) {
1371         GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1372         _cm->clear_prev_bitmap(workers());
1373       }
1374       _verifier->check_bitmaps("Full GC End");
1375 
1376       double start = os::elapsedTime();
1377       start_new_collection_set();
1378       g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
1379 
1380       _allocator->init_mutator_alloc_region();
1381 
1382       g1_policy()->record_full_collection_end();
1383 
1384       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1385       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1386       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1387       // before any GC notifications are raised.
1388       g1mm()->update_sizes();
1389 
1390       gc_epilogue(true);
1391 
1392       heap_transition.print();
1393 
1394       print_heap_after_gc();
1395       print_heap_regions();
1396       trace_heap_after_gc(gc_tracer);
1397 
1398       post_full_gc_dump(gc_timer);
1399     }
1400 
1401     gc_timer->register_gc_end();
1402     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1403   }
1404 
1405   return true;
1406 }
1407 
1408 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1409   // Currently, there is no facility in the do_full_collection(bool) API to notify
1410   // the caller that the collection did not succeed (e.g., because it was locked
1411   // out by the GC locker). So, right now, we'll ignore the return value.
1412   bool dummy = do_full_collection(true,                /* explicit_gc */
1413                                   clear_all_soft_refs);
1414 }
1415 
1416 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1417   // Include bytes that will be pre-allocated to support collections, as "used".
1418   const size_t used_after_gc = used();
1419   const size_t capacity_after_gc = capacity();
1420   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1421 
1422   // This is enforced in arguments.cpp.
1423   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1424          "otherwise the code below doesn't make sense");
1425 
1426   // We don't have floating point command-line arguments
1427   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1428   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1429   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1430   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1431 
1432   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1433   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1434 
1435   // We have to be careful here as these two calculations can overflow
1436   // 32-bit size_t's.
1437   double used_after_gc_d = (double) used_after_gc;
1438   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1439   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1440 
1441   // Let's make sure that they are both under the max heap size, which
1442   // by default will make them fit into a size_t.
1443   double desired_capacity_upper_bound = (double) max_heap_size;
1444   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1445                                     desired_capacity_upper_bound);
1446   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1447                                     desired_capacity_upper_bound);
1448 
1449   // We can now safely turn them into size_t's.
1450   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1451   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1452 
1453   // This assert only makes sense here, before we adjust them
1454   // with respect to the min and max heap size.
1455   assert(minimum_desired_capacity <= maximum_desired_capacity,
1456          "minimum_desired_capacity = " SIZE_FORMAT ", "
1457          "maximum_desired_capacity = " SIZE_FORMAT,
1458          minimum_desired_capacity, maximum_desired_capacity);
1459 
1460   // Should not be greater than the heap max size. No need to adjust
1461   // it with respect to the heap min size as it's a lower bound (i.e.,
1462   // we'll try to make the capacity larger than it, not smaller).
1463   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1464   // Should not be less than the heap min size. No need to adjust it
1465   // with respect to the heap max size as it's an upper bound (i.e.,
1466   // we'll try to make the capacity smaller than it, not greater).
1467   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1468 
1469   if (capacity_after_gc < minimum_desired_capacity) {
1470     // Don't expand unless it's significant
1471     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1472 
1473     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1474                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1475                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1476 
1477     expand(expand_bytes, _workers);
1478 
1479     // No expansion, now see if we want to shrink
1480   } else if (capacity_after_gc > maximum_desired_capacity) {
1481     // Capacity too large, compute shrinking size
1482     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1483 
1484     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1485                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1486                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1487 
1488     shrink(shrink_bytes);
1489   }
1490 }
1491 
1492 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1493                                                             AllocationContext_t context,
1494                                                             bool do_gc,
1495                                                             bool clear_all_soft_refs,
1496                                                             bool expect_null_mutator_alloc_region,
1497                                                             bool* gc_succeeded) {
1498   *gc_succeeded = true;
1499   // Let's attempt the allocation first.
1500   HeapWord* result =
1501     attempt_allocation_at_safepoint(word_size,
1502                                     context,
1503                                     expect_null_mutator_alloc_region);
1504   if (result != NULL) {
1505     assert(*gc_succeeded, "sanity");
1506     return result;
1507   }
1508 
1509   // In a G1 heap, we're supposed to keep allocation from failing by
1510   // incremental pauses.  Therefore, at least for now, we'll favor
1511   // expansion over collection.  (This might change in the future if we can
1512   // do something smarter than full collection to satisfy a failed alloc.)
1513   result = expand_and_allocate(word_size, context);
1514   if (result != NULL) {
1515     assert(*gc_succeeded, "sanity");
1516     return result;
1517   }
1518 
1519   if (do_gc) {
1520     // Expansion didn't work, we'll try to do a Full GC.
1521     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1522                                        clear_all_soft_refs);
1523   }
1524 
1525   return NULL;
1526 }
1527 
1528 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1529                                                      AllocationContext_t context,
1530                                                      bool* succeeded) {
1531   assert_at_safepoint(true /* should_be_vm_thread */);
1532 
1533   // Attempts to allocate followed by Full GC.
1534   HeapWord* result =
1535     satisfy_failed_allocation_helper(word_size,
1536                                      context,
1537                                      true,  /* do_gc */
1538                                      false, /* clear_all_soft_refs */
1539                                      false, /* expect_null_mutator_alloc_region */
1540                                      succeeded);
1541 
1542   if (result != NULL || !*succeeded) {
1543     return result;
1544   }
1545 
1546   // Attempts to allocate followed by Full GC that will collect all soft references.
1547   result = satisfy_failed_allocation_helper(word_size,
1548                                             context,
1549                                             true, /* do_gc */
1550                                             true, /* clear_all_soft_refs */
1551                                             true, /* expect_null_mutator_alloc_region */
1552                                             succeeded);
1553 
1554   if (result != NULL || !*succeeded) {
1555     return result;
1556   }
1557 
1558   // Attempts to allocate, no GC
1559   result = satisfy_failed_allocation_helper(word_size,
1560                                             context,
1561                                             false, /* do_gc */
1562                                             false, /* clear_all_soft_refs */
1563                                             true,  /* expect_null_mutator_alloc_region */
1564                                             succeeded);
1565 
1566   if (result != NULL) {
1567     assert(*succeeded, "sanity");
1568     return result;
1569   }
1570 
1571   assert(!collector_policy()->should_clear_all_soft_refs(),
1572          "Flag should have been handled and cleared prior to this point");
1573 
1574   // What else?  We might try synchronous finalization later.  If the total
1575   // space available is large enough for the allocation, then a more
1576   // complete compaction phase than we've tried so far might be
1577   // appropriate.
1578   assert(*succeeded, "sanity");
1579   return NULL;
1580 }
1581 
1582 // Attempting to expand the heap sufficiently
1583 // to support an allocation of the given "word_size".  If
1584 // successful, perform the allocation and return the address of the
1585 // allocated block, or else "NULL".
1586 
1587 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1588   assert_at_safepoint(true /* should_be_vm_thread */);
1589 
1590   _verifier->verify_region_sets_optional();
1591 
1592   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1593   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1594                             word_size * HeapWordSize);
1595 
1596 
1597   if (expand(expand_bytes, _workers)) {
1598     _hrm.verify_optional();
1599     _verifier->verify_region_sets_optional();
1600     return attempt_allocation_at_safepoint(word_size,
1601                                            context,
1602                                            false /* expect_null_mutator_alloc_region */);
1603   }
1604   return NULL;
1605 }
1606 
1607 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1608   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1609   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1610                                        HeapRegion::GrainBytes);
1611 
1612   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount:" SIZE_FORMAT "B expansion amount:" SIZE_FORMAT "B",
1613                             expand_bytes, aligned_expand_bytes);
1614 
1615   if (is_maximal_no_gc()) {
1616     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1617     return false;
1618   }
1619 
1620   double expand_heap_start_time_sec = os::elapsedTime();
1621   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1622   assert(regions_to_expand > 0, "Must expand by at least one region");
1623 
1624   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1625   if (expand_time_ms != NULL) {
1626     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1627   }
1628 
1629   if (expanded_by > 0) {
1630     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1631     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1632     g1_policy()->record_new_heap_size(num_regions());
1633   } else {
1634     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1635 
1636     // The expansion of the virtual storage space was unsuccessful.
1637     // Let's see if it was because we ran out of swap.
1638     if (G1ExitOnExpansionFailure &&
1639         _hrm.available() >= regions_to_expand) {
1640       // We had head room...
1641       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1642     }
1643   }
1644   return regions_to_expand > 0;
1645 }
1646 
1647 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1648   size_t aligned_shrink_bytes =
1649     ReservedSpace::page_align_size_down(shrink_bytes);
1650   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1651                                          HeapRegion::GrainBytes);
1652   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1653 
1654   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1655   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1656 
1657 
1658   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1659                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1660   if (num_regions_removed > 0) {
1661     g1_policy()->record_new_heap_size(num_regions());
1662   } else {
1663     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1664   }
1665 }
1666 
1667 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1668   _verifier->verify_region_sets_optional();
1669 
1670   // We should only reach here at the end of a Full GC which means we
1671   // should not not be holding to any GC alloc regions. The method
1672   // below will make sure of that and do any remaining clean up.
1673   _allocator->abandon_gc_alloc_regions();
1674 
1675   // Instead of tearing down / rebuilding the free lists here, we
1676   // could instead use the remove_all_pending() method on free_list to
1677   // remove only the ones that we need to remove.
1678   tear_down_region_sets(true /* free_list_only */);
1679   shrink_helper(shrink_bytes);
1680   rebuild_region_sets(true /* free_list_only */);
1681 
1682   _hrm.verify_optional();
1683   _verifier->verify_region_sets_optional();
1684 }
1685 
1686 // Public methods.
1687 
1688 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1689   CollectedHeap(),
1690   _collector_policy(collector_policy),
1691   _g1_policy(create_g1_policy()),
1692   _collection_set(this, _g1_policy),
1693   _dirty_card_queue_set(false),
1694   _is_alive_closure_cm(this),
1695   _is_alive_closure_stw(this),
1696   _ref_processor_cm(NULL),
1697   _ref_processor_stw(NULL),
1698   _bot(NULL),
1699   _hot_card_cache(NULL),
1700   _g1_rem_set(NULL),
1701   _cg1r(NULL),
1702   _g1mm(NULL),
1703   _refine_cte_cl(NULL),
1704   _preserved_marks_set(true /* in_c_heap */),
1705   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1706   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1707   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1708   _humongous_reclaim_candidates(),
1709   _has_humongous_reclaim_candidates(false),
1710   _archive_allocator(NULL),
1711   _free_regions_coming(false),
1712   _gc_time_stamp(0),
1713   _summary_bytes_used(0),
1714   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1715   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1716   _expand_heap_after_alloc_failure(true),
1717   _old_marking_cycles_started(0),
1718   _old_marking_cycles_completed(0),
1719   _in_cset_fast_test(),
1720   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1721   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) {
1722 
1723   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1724                           /* are_GC_task_threads */true,
1725                           /* are_ConcurrentGC_threads */false);
1726   _workers->initialize_workers();
1727   _verifier = new G1HeapVerifier(this);
1728 
1729   _allocator = G1Allocator::create_allocator(this);
1730 
1731   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1732 
1733   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1734 
1735   // Override the default _filler_array_max_size so that no humongous filler
1736   // objects are created.
1737   _filler_array_max_size = _humongous_object_threshold_in_words;
1738 
1739   uint n_queues = ParallelGCThreads;
1740   _task_queues = new RefToScanQueueSet(n_queues);
1741 
1742   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1743 
1744   for (uint i = 0; i < n_queues; i++) {
1745     RefToScanQueue* q = new RefToScanQueue();
1746     q->initialize();
1747     _task_queues->register_queue(i, q);
1748     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1749   }
1750 
1751   // Initialize the G1EvacuationFailureALot counters and flags.
1752   NOT_PRODUCT(reset_evacuation_should_fail();)
1753 
1754   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1755 }
1756 
1757 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1758                                                                  size_t size,
1759                                                                  size_t translation_factor) {
1760   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1761   // Allocate a new reserved space, preferring to use large pages.
1762   ReservedSpace rs(size, preferred_page_size);
1763   G1RegionToSpaceMapper* result  =
1764     G1RegionToSpaceMapper::create_mapper(rs,
1765                                          size,
1766                                          rs.alignment(),
1767                                          HeapRegion::GrainBytes,
1768                                          translation_factor,
1769                                          mtGC);
1770 
1771   os::trace_page_sizes_for_requested_size(description,
1772                                           size,
1773                                           preferred_page_size,
1774                                           rs.alignment(),
1775                                           rs.base(),
1776                                           rs.size());
1777 
1778   return result;
1779 }
1780 
1781 jint G1CollectedHeap::initialize() {
1782   CollectedHeap::pre_initialize();
1783   os::enable_vtime();
1784 
1785   // Necessary to satisfy locking discipline assertions.
1786 
1787   MutexLocker x(Heap_lock);
1788 
1789   // While there are no constraints in the GC code that HeapWordSize
1790   // be any particular value, there are multiple other areas in the
1791   // system which believe this to be true (e.g. oop->object_size in some
1792   // cases incorrectly returns the size in wordSize units rather than
1793   // HeapWordSize).
1794   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1795 
1796   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1797   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1798   size_t heap_alignment = collector_policy()->heap_alignment();
1799 
1800   // Ensure that the sizes are properly aligned.
1801   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1802   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1803   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1804 
1805   _refine_cte_cl = new RefineCardTableEntryClosure();
1806 
1807   jint ecode = JNI_OK;
1808   _cg1r = ConcurrentG1Refine::create(_refine_cte_cl, &ecode);
1809   if (_cg1r == NULL) {
1810     return ecode;
1811   }
1812 
1813   // Reserve the maximum.
1814 
1815   // When compressed oops are enabled, the preferred heap base
1816   // is calculated by subtracting the requested size from the
1817   // 32Gb boundary and using the result as the base address for
1818   // heap reservation. If the requested size is not aligned to
1819   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1820   // into the ReservedHeapSpace constructor) then the actual
1821   // base of the reserved heap may end up differing from the
1822   // address that was requested (i.e. the preferred heap base).
1823   // If this happens then we could end up using a non-optimal
1824   // compressed oops mode.
1825 
1826   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1827                                                  heap_alignment);
1828 
1829   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1830 
1831   // Create the barrier set for the entire reserved region.
1832   G1SATBCardTableLoggingModRefBS* bs
1833     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1834   bs->initialize();
1835   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1836   set_barrier_set(bs);
1837 
1838   // Create the hot card cache.
1839   _hot_card_cache = new G1HotCardCache(this);
1840 
1841   // Also create a G1 rem set.
1842   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1843 
1844   // Carve out the G1 part of the heap.
1845   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1846   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1847   G1RegionToSpaceMapper* heap_storage =
1848     G1RegionToSpaceMapper::create_mapper(g1_rs,
1849                                          g1_rs.size(),
1850                                          page_size,
1851                                          HeapRegion::GrainBytes,
1852                                          1,
1853                                          mtJavaHeap);
1854   os::trace_page_sizes("Heap",
1855                        collector_policy()->min_heap_byte_size(),
1856                        max_byte_size,
1857                        page_size,
1858                        heap_rs.base(),
1859                        heap_rs.size());
1860   heap_storage->set_mapping_changed_listener(&_listener);
1861 
1862   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1863   G1RegionToSpaceMapper* bot_storage =
1864     create_aux_memory_mapper("Block Offset Table",
1865                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1866                              G1BlockOffsetTable::heap_map_factor());
1867 
1868   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1869   G1RegionToSpaceMapper* cardtable_storage =
1870     create_aux_memory_mapper("Card Table",
1871                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1872                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1873 
1874   G1RegionToSpaceMapper* card_counts_storage =
1875     create_aux_memory_mapper("Card Counts Table",
1876                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1877                              G1CardCounts::heap_map_factor());
1878 
1879   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1880   G1RegionToSpaceMapper* prev_bitmap_storage =
1881     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1882   G1RegionToSpaceMapper* next_bitmap_storage =
1883     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1884 
1885   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1886   g1_barrier_set()->initialize(cardtable_storage);
1887   // Do later initialization work for concurrent refinement.
1888   _hot_card_cache->initialize(card_counts_storage);
1889 
1890   // 6843694 - ensure that the maximum region index can fit
1891   // in the remembered set structures.
1892   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1893   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1894 
1895   g1_rem_set()->initialize(max_capacity(), max_regions());
1896 
1897   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1898   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1899   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1900             "too many cards per region");
1901 
1902   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1903 
1904   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1905 
1906   {
1907     HeapWord* start = _hrm.reserved().start();
1908     HeapWord* end = _hrm.reserved().end();
1909     size_t granularity = HeapRegion::GrainBytes;
1910 
1911     _in_cset_fast_test.initialize(start, end, granularity);
1912     _humongous_reclaim_candidates.initialize(start, end, granularity);
1913   }
1914 
1915   // Create the G1ConcurrentMark data structure and thread.
1916   // (Must do this late, so that "max_regions" is defined.)
1917   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1918   if (_cm == NULL || !_cm->completed_initialization()) {
1919     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1920     return JNI_ENOMEM;
1921   }
1922   _cmThread = _cm->cmThread();
1923 
1924   // Now expand into the initial heap size.
1925   if (!expand(init_byte_size, _workers)) {
1926     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1927     return JNI_ENOMEM;
1928   }
1929 
1930   // Perform any initialization actions delegated to the policy.
1931   g1_policy()->init(this, &_collection_set);
1932 
1933   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1934                                                SATB_Q_FL_lock,
1935                                                G1SATBProcessCompletedThreshold,
1936                                                Shared_SATB_Q_lock);
1937 
1938   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1939                                                 DirtyCardQ_CBL_mon,
1940                                                 DirtyCardQ_FL_lock,
1941                                                 (int)concurrent_g1_refine()->yellow_zone(),
1942                                                 (int)concurrent_g1_refine()->red_zone(),
1943                                                 Shared_DirtyCardQ_lock,
1944                                                 NULL,  // fl_owner
1945                                                 true); // init_free_ids
1946 
1947   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1948                                     DirtyCardQ_CBL_mon,
1949                                     DirtyCardQ_FL_lock,
1950                                     -1, // never trigger processing
1951                                     -1, // no limit on length
1952                                     Shared_DirtyCardQ_lock,
1953                                     &JavaThread::dirty_card_queue_set());
1954 
1955   // Here we allocate the dummy HeapRegion that is required by the
1956   // G1AllocRegion class.
1957   HeapRegion* dummy_region = _hrm.get_dummy_region();
1958 
1959   // We'll re-use the same region whether the alloc region will
1960   // require BOT updates or not and, if it doesn't, then a non-young
1961   // region will complain that it cannot support allocations without
1962   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1963   dummy_region->set_eden();
1964   // Make sure it's full.
1965   dummy_region->set_top(dummy_region->end());
1966   G1AllocRegion::setup(this, dummy_region);
1967 
1968   _allocator->init_mutator_alloc_region();
1969 
1970   // Do create of the monitoring and management support so that
1971   // values in the heap have been properly initialized.
1972   _g1mm = new G1MonitoringSupport(this);
1973 
1974   G1StringDedup::initialize();
1975 
1976   _preserved_marks_set.init(ParallelGCThreads);
1977 
1978   _collection_set.initialize(max_regions());
1979 
1980   return JNI_OK;
1981 }
1982 
1983 void G1CollectedHeap::stop() {
1984   // Stop all concurrent threads. We do this to make sure these threads
1985   // do not continue to execute and access resources (e.g. logging)
1986   // that are destroyed during shutdown.
1987   _cg1r->stop();
1988   _cmThread->stop();
1989   if (G1StringDedup::is_enabled()) {
1990     G1StringDedup::stop();
1991   }
1992 }
1993 
1994 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1995   return HeapRegion::max_region_size();
1996 }
1997 
1998 void G1CollectedHeap::post_initialize() {
1999   ref_processing_init();
2000 }
2001 
2002 void G1CollectedHeap::ref_processing_init() {
2003   // Reference processing in G1 currently works as follows:
2004   //
2005   // * There are two reference processor instances. One is
2006   //   used to record and process discovered references
2007   //   during concurrent marking; the other is used to
2008   //   record and process references during STW pauses
2009   //   (both full and incremental).
2010   // * Both ref processors need to 'span' the entire heap as
2011   //   the regions in the collection set may be dotted around.
2012   //
2013   // * For the concurrent marking ref processor:
2014   //   * Reference discovery is enabled at initial marking.
2015   //   * Reference discovery is disabled and the discovered
2016   //     references processed etc during remarking.
2017   //   * Reference discovery is MT (see below).
2018   //   * Reference discovery requires a barrier (see below).
2019   //   * Reference processing may or may not be MT
2020   //     (depending on the value of ParallelRefProcEnabled
2021   //     and ParallelGCThreads).
2022   //   * A full GC disables reference discovery by the CM
2023   //     ref processor and abandons any entries on it's
2024   //     discovered lists.
2025   //
2026   // * For the STW processor:
2027   //   * Non MT discovery is enabled at the start of a full GC.
2028   //   * Processing and enqueueing during a full GC is non-MT.
2029   //   * During a full GC, references are processed after marking.
2030   //
2031   //   * Discovery (may or may not be MT) is enabled at the start
2032   //     of an incremental evacuation pause.
2033   //   * References are processed near the end of a STW evacuation pause.
2034   //   * For both types of GC:
2035   //     * Discovery is atomic - i.e. not concurrent.
2036   //     * Reference discovery will not need a barrier.
2037 
2038   MemRegion mr = reserved_region();
2039 
2040   // Concurrent Mark ref processor
2041   _ref_processor_cm =
2042     new ReferenceProcessor(mr,    // span
2043                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2044                                 // mt processing
2045                            ParallelGCThreads,
2046                                 // degree of mt processing
2047                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2048                                 // mt discovery
2049                            MAX2(ParallelGCThreads, ConcGCThreads),
2050                                 // degree of mt discovery
2051                            false,
2052                                 // Reference discovery is not atomic
2053                            &_is_alive_closure_cm);
2054                                 // is alive closure
2055                                 // (for efficiency/performance)
2056 
2057   // STW ref processor
2058   _ref_processor_stw =
2059     new ReferenceProcessor(mr,    // span
2060                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2061                                 // mt processing
2062                            ParallelGCThreads,
2063                                 // degree of mt processing
2064                            (ParallelGCThreads > 1),
2065                                 // mt discovery
2066                            ParallelGCThreads,
2067                                 // degree of mt discovery
2068                            true,
2069                                 // Reference discovery is atomic
2070                            &_is_alive_closure_stw);
2071                                 // is alive closure
2072                                 // (for efficiency/performance)
2073 }
2074 
2075 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2076   return _collector_policy;
2077 }
2078 
2079 size_t G1CollectedHeap::capacity() const {
2080   return _hrm.length() * HeapRegion::GrainBytes;
2081 }
2082 
2083 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2084   hr->reset_gc_time_stamp();
2085 }
2086 
2087 #ifndef PRODUCT
2088 
2089 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2090 private:
2091   unsigned _gc_time_stamp;
2092   bool _failures;
2093 
2094 public:
2095   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2096     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2097 
2098   virtual bool doHeapRegion(HeapRegion* hr) {
2099     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2100     if (_gc_time_stamp != region_gc_time_stamp) {
2101       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2102                             region_gc_time_stamp, _gc_time_stamp);
2103       _failures = true;
2104     }
2105     return false;
2106   }
2107 
2108   bool failures() { return _failures; }
2109 };
2110 
2111 void G1CollectedHeap::check_gc_time_stamps() {
2112   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2113   heap_region_iterate(&cl);
2114   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2115 }
2116 #endif // PRODUCT
2117 
2118 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2119   _hot_card_cache->drain(cl, worker_i);
2120 }
2121 
2122 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2123   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2124   size_t n_completed_buffers = 0;
2125   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2126     n_completed_buffers++;
2127   }
2128   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2129   dcqs.clear_n_completed_buffers();
2130   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2131 }
2132 
2133 // Computes the sum of the storage used by the various regions.
2134 size_t G1CollectedHeap::used() const {
2135   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2136   if (_archive_allocator != NULL) {
2137     result += _archive_allocator->used();
2138   }
2139   return result;
2140 }
2141 
2142 size_t G1CollectedHeap::used_unlocked() const {
2143   return _summary_bytes_used;
2144 }
2145 
2146 class SumUsedClosure: public HeapRegionClosure {
2147   size_t _used;
2148 public:
2149   SumUsedClosure() : _used(0) {}
2150   bool doHeapRegion(HeapRegion* r) {
2151     _used += r->used();
2152     return false;
2153   }
2154   size_t result() { return _used; }
2155 };
2156 
2157 size_t G1CollectedHeap::recalculate_used() const {
2158   double recalculate_used_start = os::elapsedTime();
2159 
2160   SumUsedClosure blk;
2161   heap_region_iterate(&blk);
2162 
2163   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2164   return blk.result();
2165 }
2166 
2167 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2168   switch (cause) {
2169     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2170     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2171     case GCCause::_update_allocation_context_stats_inc: return true;
2172     case GCCause::_wb_conc_mark:                        return true;
2173     default :                                           return false;
2174   }
2175 }
2176 
2177 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2178   switch (cause) {
2179     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2180     case GCCause::_g1_humongous_allocation: return true;
2181     default:                                return is_user_requested_concurrent_full_gc(cause);
2182   }
2183 }
2184 
2185 #ifndef PRODUCT
2186 void G1CollectedHeap::allocate_dummy_regions() {
2187   // Let's fill up most of the region
2188   size_t word_size = HeapRegion::GrainWords - 1024;
2189   // And as a result the region we'll allocate will be humongous.
2190   guarantee(is_humongous(word_size), "sanity");
2191 
2192   // _filler_array_max_size is set to humongous object threshold
2193   // but temporarily change it to use CollectedHeap::fill_with_object().
2194   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2195 
2196   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2197     // Let's use the existing mechanism for the allocation
2198     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2199                                                  AllocationContext::system());
2200     if (dummy_obj != NULL) {
2201       MemRegion mr(dummy_obj, word_size);
2202       CollectedHeap::fill_with_object(mr);
2203     } else {
2204       // If we can't allocate once, we probably cannot allocate
2205       // again. Let's get out of the loop.
2206       break;
2207     }
2208   }
2209 }
2210 #endif // !PRODUCT
2211 
2212 void G1CollectedHeap::increment_old_marking_cycles_started() {
2213   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2214          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2215          "Wrong marking cycle count (started: %d, completed: %d)",
2216          _old_marking_cycles_started, _old_marking_cycles_completed);
2217 
2218   _old_marking_cycles_started++;
2219 }
2220 
2221 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2222   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2223 
2224   // We assume that if concurrent == true, then the caller is a
2225   // concurrent thread that was joined the Suspendible Thread
2226   // Set. If there's ever a cheap way to check this, we should add an
2227   // assert here.
2228 
2229   // Given that this method is called at the end of a Full GC or of a
2230   // concurrent cycle, and those can be nested (i.e., a Full GC can
2231   // interrupt a concurrent cycle), the number of full collections
2232   // completed should be either one (in the case where there was no
2233   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2234   // behind the number of full collections started.
2235 
2236   // This is the case for the inner caller, i.e. a Full GC.
2237   assert(concurrent ||
2238          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2239          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2240          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2241          "is inconsistent with _old_marking_cycles_completed = %u",
2242          _old_marking_cycles_started, _old_marking_cycles_completed);
2243 
2244   // This is the case for the outer caller, i.e. the concurrent cycle.
2245   assert(!concurrent ||
2246          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2247          "for outer caller (concurrent cycle): "
2248          "_old_marking_cycles_started = %u "
2249          "is inconsistent with _old_marking_cycles_completed = %u",
2250          _old_marking_cycles_started, _old_marking_cycles_completed);
2251 
2252   _old_marking_cycles_completed += 1;
2253 
2254   // We need to clear the "in_progress" flag in the CM thread before
2255   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2256   // is set) so that if a waiter requests another System.gc() it doesn't
2257   // incorrectly see that a marking cycle is still in progress.
2258   if (concurrent) {
2259     _cmThread->set_idle();
2260   }
2261 
2262   // This notify_all() will ensure that a thread that called
2263   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2264   // and it's waiting for a full GC to finish will be woken up. It is
2265   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2266   FullGCCount_lock->notify_all();
2267 }
2268 
2269 void G1CollectedHeap::collect(GCCause::Cause cause) {
2270   assert_heap_not_locked();
2271 
2272   uint gc_count_before;
2273   uint old_marking_count_before;
2274   uint full_gc_count_before;
2275   bool retry_gc;
2276 
2277   do {
2278     retry_gc = false;
2279 
2280     {
2281       MutexLocker ml(Heap_lock);
2282 
2283       // Read the GC count while holding the Heap_lock
2284       gc_count_before = total_collections();
2285       full_gc_count_before = total_full_collections();
2286       old_marking_count_before = _old_marking_cycles_started;
2287     }
2288 
2289     if (should_do_concurrent_full_gc(cause)) {
2290       // Schedule an initial-mark evacuation pause that will start a
2291       // concurrent cycle. We're setting word_size to 0 which means that
2292       // we are not requesting a post-GC allocation.
2293       VM_G1IncCollectionPause op(gc_count_before,
2294                                  0,     /* word_size */
2295                                  true,  /* should_initiate_conc_mark */
2296                                  g1_policy()->max_pause_time_ms(),
2297                                  cause);
2298       op.set_allocation_context(AllocationContext::current());
2299 
2300       VMThread::execute(&op);
2301       if (!op.pause_succeeded()) {
2302         if (old_marking_count_before == _old_marking_cycles_started) {
2303           retry_gc = op.should_retry_gc();
2304         } else {
2305           // A Full GC happened while we were trying to schedule the
2306           // initial-mark GC. No point in starting a new cycle given
2307           // that the whole heap was collected anyway.
2308         }
2309 
2310         if (retry_gc) {
2311           if (GCLocker::is_active_and_needs_gc()) {
2312             GCLocker::stall_until_clear();
2313           }
2314         }
2315       }
2316     } else {
2317       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2318           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2319 
2320         // Schedule a standard evacuation pause. We're setting word_size
2321         // to 0 which means that we are not requesting a post-GC allocation.
2322         VM_G1IncCollectionPause op(gc_count_before,
2323                                    0,     /* word_size */
2324                                    false, /* should_initiate_conc_mark */
2325                                    g1_policy()->max_pause_time_ms(),
2326                                    cause);
2327         VMThread::execute(&op);
2328       } else {
2329         // Schedule a Full GC.
2330         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2331         VMThread::execute(&op);
2332       }
2333     }
2334   } while (retry_gc);
2335 }
2336 
2337 bool G1CollectedHeap::is_in(const void* p) const {
2338   if (_hrm.reserved().contains(p)) {
2339     // Given that we know that p is in the reserved space,
2340     // heap_region_containing() should successfully
2341     // return the containing region.
2342     HeapRegion* hr = heap_region_containing(p);
2343     return hr->is_in(p);
2344   } else {
2345     return false;
2346   }
2347 }
2348 
2349 #ifdef ASSERT
2350 bool G1CollectedHeap::is_in_exact(const void* p) const {
2351   bool contains = reserved_region().contains(p);
2352   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2353   if (contains && available) {
2354     return true;
2355   } else {
2356     return false;
2357   }
2358 }
2359 #endif
2360 
2361 // Iteration functions.
2362 
2363 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2364 
2365 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2366   ExtendedOopClosure* _cl;
2367 public:
2368   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2369   bool doHeapRegion(HeapRegion* r) {
2370     if (!r->is_continues_humongous()) {
2371       r->oop_iterate(_cl);
2372     }
2373     return false;
2374   }
2375 };
2376 
2377 // Iterates an ObjectClosure over all objects within a HeapRegion.
2378 
2379 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2380   ObjectClosure* _cl;
2381 public:
2382   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2383   bool doHeapRegion(HeapRegion* r) {
2384     if (!r->is_continues_humongous()) {
2385       r->object_iterate(_cl);
2386     }
2387     return false;
2388   }
2389 };
2390 
2391 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2392   IterateObjectClosureRegionClosure blk(cl);
2393   heap_region_iterate(&blk);
2394 }
2395 
2396 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2397   _hrm.iterate(cl);
2398 }
2399 
2400 void
2401 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2402                                          uint worker_id,
2403                                          HeapRegionClaimer *hrclaimer,
2404                                          bool concurrent) const {
2405   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2406 }
2407 
2408 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2409   _collection_set.iterate(cl);
2410 }
2411 
2412 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2413   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2414 }
2415 
2416 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2417   HeapRegion* result = _hrm.next_region_in_heap(from);
2418   while (result != NULL && result->is_pinned()) {
2419     result = _hrm.next_region_in_heap(result);
2420   }
2421   return result;
2422 }
2423 
2424 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2425   HeapRegion* hr = heap_region_containing(addr);
2426   return hr->block_start(addr);
2427 }
2428 
2429 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2430   HeapRegion* hr = heap_region_containing(addr);
2431   return hr->block_size(addr);
2432 }
2433 
2434 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2435   HeapRegion* hr = heap_region_containing(addr);
2436   return hr->block_is_obj(addr);
2437 }
2438 
2439 bool G1CollectedHeap::supports_tlab_allocation() const {
2440   return true;
2441 }
2442 
2443 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2444   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2445 }
2446 
2447 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2448   return _eden.length() * HeapRegion::GrainBytes;
2449 }
2450 
2451 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2452 // must be equal to the humongous object limit.
2453 size_t G1CollectedHeap::max_tlab_size() const {
2454   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2455 }
2456 
2457 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2458   AllocationContext_t context = AllocationContext::current();
2459   return _allocator->unsafe_max_tlab_alloc(context);
2460 }
2461 
2462 size_t G1CollectedHeap::max_capacity() const {
2463   return _hrm.reserved().byte_size();
2464 }
2465 
2466 jlong G1CollectedHeap::millis_since_last_gc() {
2467   // See the notes in GenCollectedHeap::millis_since_last_gc()
2468   // for more information about the implementation.
2469   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2470     _g1_policy->collection_pause_end_millis();
2471   if (ret_val < 0) {
2472     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2473       ". returning zero instead.", ret_val);
2474     return 0;
2475   }
2476   return ret_val;
2477 }
2478 
2479 void G1CollectedHeap::prepare_for_verify() {
2480   _verifier->prepare_for_verify();
2481 }
2482 
2483 void G1CollectedHeap::verify(VerifyOption vo) {
2484   _verifier->verify(vo);
2485 }
2486 
2487 class PrintRegionClosure: public HeapRegionClosure {
2488   outputStream* _st;
2489 public:
2490   PrintRegionClosure(outputStream* st) : _st(st) {}
2491   bool doHeapRegion(HeapRegion* r) {
2492     r->print_on(_st);
2493     return false;
2494   }
2495 };
2496 
2497 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2498                                        const HeapRegion* hr,
2499                                        const VerifyOption vo) const {
2500   switch (vo) {
2501   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2502   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2503   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2504   default:                            ShouldNotReachHere();
2505   }
2506   return false; // keep some compilers happy
2507 }
2508 
2509 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2510                                        const VerifyOption vo) const {
2511   switch (vo) {
2512   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2513   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2514   case VerifyOption_G1UseMarkWord: {
2515     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2516     return !obj->is_gc_marked() && !hr->is_archive();
2517   }
2518   default:                            ShouldNotReachHere();
2519   }
2520   return false; // keep some compilers happy
2521 }
2522 
2523 void G1CollectedHeap::print_heap_regions() const {
2524   Log(gc, heap, region) log;
2525   if (log.is_trace()) {
2526     ResourceMark rm;
2527     print_regions_on(log.trace_stream());
2528   }
2529 }
2530 
2531 void G1CollectedHeap::print_on(outputStream* st) const {
2532   st->print(" %-20s", "garbage-first heap");
2533   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2534             capacity()/K, used_unlocked()/K);
2535   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2536             p2i(_hrm.reserved().start()),
2537             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2538             p2i(_hrm.reserved().end()));
2539   st->cr();
2540   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2541   uint young_regions = young_regions_count();
2542   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2543             (size_t) young_regions * HeapRegion::GrainBytes / K);
2544   uint survivor_regions = survivor_regions_count();
2545   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2546             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2547   st->cr();
2548   MetaspaceAux::print_on(st);
2549 }
2550 
2551 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2552   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2553                "HS=humongous(starts), HC=humongous(continues), "
2554                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2555                "AC=allocation context, "
2556                "TAMS=top-at-mark-start (previous, next)");
2557   PrintRegionClosure blk(st);
2558   heap_region_iterate(&blk);
2559 }
2560 
2561 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2562   print_on(st);
2563 
2564   // Print the per-region information.
2565   print_regions_on(st);
2566 }
2567 
2568 void G1CollectedHeap::print_on_error(outputStream* st) const {
2569   this->CollectedHeap::print_on_error(st);
2570 
2571   if (_cm != NULL) {
2572     st->cr();
2573     _cm->print_on_error(st);
2574   }
2575 }
2576 
2577 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2578   workers()->print_worker_threads_on(st);
2579   _cmThread->print_on(st);
2580   st->cr();
2581   _cm->print_worker_threads_on(st);
2582   _cg1r->print_worker_threads_on(st); // also prints the sample thread
2583   if (G1StringDedup::is_enabled()) {
2584     G1StringDedup::print_worker_threads_on(st);
2585   }
2586 }
2587 
2588 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2589   workers()->threads_do(tc);
2590   tc->do_thread(_cmThread);
2591   _cm->threads_do(tc);
2592   _cg1r->threads_do(tc); // also iterates over the sample thread
2593   if (G1StringDedup::is_enabled()) {
2594     G1StringDedup::threads_do(tc);
2595   }
2596 }
2597 
2598 void G1CollectedHeap::print_tracing_info() const {
2599   g1_rem_set()->print_summary_info();
2600   concurrent_mark()->print_summary_info();
2601 }
2602 
2603 #ifndef PRODUCT
2604 // Helpful for debugging RSet issues.
2605 
2606 class PrintRSetsClosure : public HeapRegionClosure {
2607 private:
2608   const char* _msg;
2609   size_t _occupied_sum;
2610 
2611 public:
2612   bool doHeapRegion(HeapRegion* r) {
2613     HeapRegionRemSet* hrrs = r->rem_set();
2614     size_t occupied = hrrs->occupied();
2615     _occupied_sum += occupied;
2616 
2617     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2618     if (occupied == 0) {
2619       tty->print_cr("  RSet is empty");
2620     } else {
2621       hrrs->print();
2622     }
2623     tty->print_cr("----------");
2624     return false;
2625   }
2626 
2627   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2628     tty->cr();
2629     tty->print_cr("========================================");
2630     tty->print_cr("%s", msg);
2631     tty->cr();
2632   }
2633 
2634   ~PrintRSetsClosure() {
2635     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2636     tty->print_cr("========================================");
2637     tty->cr();
2638   }
2639 };
2640 
2641 void G1CollectedHeap::print_cset_rsets() {
2642   PrintRSetsClosure cl("Printing CSet RSets");
2643   collection_set_iterate(&cl);
2644 }
2645 
2646 void G1CollectedHeap::print_all_rsets() {
2647   PrintRSetsClosure cl("Printing All RSets");;
2648   heap_region_iterate(&cl);
2649 }
2650 #endif // PRODUCT
2651 
2652 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2653 
2654   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2655   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2656   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2657 
2658   size_t eden_capacity_bytes =
2659     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2660 
2661   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2662   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2663                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2664 }
2665 
2666 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2667   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2668                        stats->unused(), stats->used(), stats->region_end_waste(),
2669                        stats->regions_filled(), stats->direct_allocated(),
2670                        stats->failure_used(), stats->failure_waste());
2671 }
2672 
2673 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2674   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2675   gc_tracer->report_gc_heap_summary(when, heap_summary);
2676 
2677   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2678   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2679 }
2680 
2681 G1CollectedHeap* G1CollectedHeap::heap() {
2682   CollectedHeap* heap = Universe::heap();
2683   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2684   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2685   return (G1CollectedHeap*)heap;
2686 }
2687 
2688 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2689   // always_do_update_barrier = false;
2690   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2691 
2692   double start = os::elapsedTime();
2693   // Fill TLAB's and such
2694   accumulate_statistics_all_tlabs();
2695   ensure_parsability(true);
2696   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2697 
2698   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2699 }
2700 
2701 void G1CollectedHeap::gc_epilogue(bool full) {
2702   // we are at the end of the GC. Total collections has already been increased.
2703   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2704 
2705   // FIXME: what is this about?
2706   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2707   // is set.
2708 #if defined(COMPILER2) || INCLUDE_JVMCI
2709   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2710 #endif
2711   // always_do_update_barrier = true;
2712 
2713   double start = os::elapsedTime();
2714   resize_all_tlabs();
2715   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2716 
2717   allocation_context_stats().update(full);
2718 
2719   // We have just completed a GC. Update the soft reference
2720   // policy with the new heap occupancy
2721   Universe::update_heap_info_at_gc();
2722 }
2723 
2724 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2725                                                uint gc_count_before,
2726                                                bool* succeeded,
2727                                                GCCause::Cause gc_cause) {
2728   assert_heap_not_locked_and_not_at_safepoint();
2729   VM_G1IncCollectionPause op(gc_count_before,
2730                              word_size,
2731                              false, /* should_initiate_conc_mark */
2732                              g1_policy()->max_pause_time_ms(),
2733                              gc_cause);
2734 
2735   op.set_allocation_context(AllocationContext::current());
2736   VMThread::execute(&op);
2737 
2738   HeapWord* result = op.result();
2739   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2740   assert(result == NULL || ret_succeeded,
2741          "the result should be NULL if the VM did not succeed");
2742   *succeeded = ret_succeeded;
2743 
2744   assert_heap_not_locked();
2745   return result;
2746 }
2747 
2748 void
2749 G1CollectedHeap::doConcurrentMark() {
2750   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2751   if (!_cmThread->in_progress()) {
2752     _cmThread->set_started();
2753     CGC_lock->notify();
2754   }
2755 }
2756 
2757 size_t G1CollectedHeap::pending_card_num() {
2758   size_t extra_cards = 0;
2759   JavaThread *curr = Threads::first();
2760   while (curr != NULL) {
2761     DirtyCardQueue& dcq = curr->dirty_card_queue();
2762     extra_cards += dcq.size();
2763     curr = curr->next();
2764   }
2765   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2766   size_t buffer_size = dcqs.buffer_size();
2767   size_t buffer_num = dcqs.completed_buffers_num();
2768 
2769   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
2770   // in bytes - not the number of 'entries'. We need to convert
2771   // into a number of cards.
2772   return (buffer_size * buffer_num + extra_cards) / oopSize;
2773 }
2774 
2775 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2776  private:
2777   size_t _total_humongous;
2778   size_t _candidate_humongous;
2779 
2780   DirtyCardQueue _dcq;
2781 
2782   // We don't nominate objects with many remembered set entries, on
2783   // the assumption that such objects are likely still live.
2784   bool is_remset_small(HeapRegion* region) const {
2785     HeapRegionRemSet* const rset = region->rem_set();
2786     return G1EagerReclaimHumongousObjectsWithStaleRefs
2787       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2788       : rset->is_empty();
2789   }
2790 
2791   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2792     assert(region->is_starts_humongous(), "Must start a humongous object");
2793 
2794     oop obj = oop(region->bottom());
2795 
2796     // Dead objects cannot be eager reclaim candidates. Due to class
2797     // unloading it is unsafe to query their classes so we return early.
2798     if (heap->is_obj_dead(obj, region)) {
2799       return false;
2800     }
2801 
2802     // Candidate selection must satisfy the following constraints
2803     // while concurrent marking is in progress:
2804     //
2805     // * In order to maintain SATB invariants, an object must not be
2806     // reclaimed if it was allocated before the start of marking and
2807     // has not had its references scanned.  Such an object must have
2808     // its references (including type metadata) scanned to ensure no
2809     // live objects are missed by the marking process.  Objects
2810     // allocated after the start of concurrent marking don't need to
2811     // be scanned.
2812     //
2813     // * An object must not be reclaimed if it is on the concurrent
2814     // mark stack.  Objects allocated after the start of concurrent
2815     // marking are never pushed on the mark stack.
2816     //
2817     // Nominating only objects allocated after the start of concurrent
2818     // marking is sufficient to meet both constraints.  This may miss
2819     // some objects that satisfy the constraints, but the marking data
2820     // structures don't support efficiently performing the needed
2821     // additional tests or scrubbing of the mark stack.
2822     //
2823     // However, we presently only nominate is_typeArray() objects.
2824     // A humongous object containing references induces remembered
2825     // set entries on other regions.  In order to reclaim such an
2826     // object, those remembered sets would need to be cleaned up.
2827     //
2828     // We also treat is_typeArray() objects specially, allowing them
2829     // to be reclaimed even if allocated before the start of
2830     // concurrent mark.  For this we rely on mark stack insertion to
2831     // exclude is_typeArray() objects, preventing reclaiming an object
2832     // that is in the mark stack.  We also rely on the metadata for
2833     // such objects to be built-in and so ensured to be kept live.
2834     // Frequent allocation and drop of large binary blobs is an
2835     // important use case for eager reclaim, and this special handling
2836     // may reduce needed headroom.
2837 
2838     return obj->is_typeArray() && is_remset_small(region);
2839   }
2840 
2841  public:
2842   RegisterHumongousWithInCSetFastTestClosure()
2843   : _total_humongous(0),
2844     _candidate_humongous(0),
2845     _dcq(&JavaThread::dirty_card_queue_set()) {
2846   }
2847 
2848   virtual bool doHeapRegion(HeapRegion* r) {
2849     if (!r->is_starts_humongous()) {
2850       return false;
2851     }
2852     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2853 
2854     bool is_candidate = humongous_region_is_candidate(g1h, r);
2855     uint rindex = r->hrm_index();
2856     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2857     if (is_candidate) {
2858       _candidate_humongous++;
2859       g1h->register_humongous_region_with_cset(rindex);
2860       // Is_candidate already filters out humongous object with large remembered sets.
2861       // If we have a humongous object with a few remembered sets, we simply flush these
2862       // remembered set entries into the DCQS. That will result in automatic
2863       // re-evaluation of their remembered set entries during the following evacuation
2864       // phase.
2865       if (!r->rem_set()->is_empty()) {
2866         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2867                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2868         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2869         HeapRegionRemSetIterator hrrs(r->rem_set());
2870         size_t card_index;
2871         while (hrrs.has_next(card_index)) {
2872           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2873           // The remembered set might contain references to already freed
2874           // regions. Filter out such entries to avoid failing card table
2875           // verification.
2876           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2877             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2878               *card_ptr = CardTableModRefBS::dirty_card_val();
2879               _dcq.enqueue(card_ptr);
2880             }
2881           }
2882         }
2883         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2884                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2885                hrrs.n_yielded(), r->rem_set()->occupied());
2886         r->rem_set()->clear_locked();
2887       }
2888       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2889     }
2890     _total_humongous++;
2891 
2892     return false;
2893   }
2894 
2895   size_t total_humongous() const { return _total_humongous; }
2896   size_t candidate_humongous() const { return _candidate_humongous; }
2897 
2898   void flush_rem_set_entries() { _dcq.flush(); }
2899 };
2900 
2901 void G1CollectedHeap::register_humongous_regions_with_cset() {
2902   if (!G1EagerReclaimHumongousObjects) {
2903     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2904     return;
2905   }
2906   double time = os::elapsed_counter();
2907 
2908   // Collect reclaim candidate information and register candidates with cset.
2909   RegisterHumongousWithInCSetFastTestClosure cl;
2910   heap_region_iterate(&cl);
2911 
2912   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2913   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2914                                                                   cl.total_humongous(),
2915                                                                   cl.candidate_humongous());
2916   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2917 
2918   // Finally flush all remembered set entries to re-check into the global DCQS.
2919   cl.flush_rem_set_entries();
2920 }
2921 
2922 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2923   public:
2924     bool doHeapRegion(HeapRegion* hr) {
2925       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2926         hr->verify_rem_set();
2927       }
2928       return false;
2929     }
2930 };
2931 
2932 uint G1CollectedHeap::num_task_queues() const {
2933   return _task_queues->size();
2934 }
2935 
2936 #if TASKQUEUE_STATS
2937 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2938   st->print_raw_cr("GC Task Stats");
2939   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2940   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2941 }
2942 
2943 void G1CollectedHeap::print_taskqueue_stats() const {
2944   if (!log_is_enabled(Trace, gc, task, stats)) {
2945     return;
2946   }
2947   Log(gc, task, stats) log;
2948   ResourceMark rm;
2949   outputStream* st = log.trace_stream();
2950 
2951   print_taskqueue_stats_hdr(st);
2952 
2953   TaskQueueStats totals;
2954   const uint n = num_task_queues();
2955   for (uint i = 0; i < n; ++i) {
2956     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2957     totals += task_queue(i)->stats;
2958   }
2959   st->print_raw("tot "); totals.print(st); st->cr();
2960 
2961   DEBUG_ONLY(totals.verify());
2962 }
2963 
2964 void G1CollectedHeap::reset_taskqueue_stats() {
2965   const uint n = num_task_queues();
2966   for (uint i = 0; i < n; ++i) {
2967     task_queue(i)->stats.reset();
2968   }
2969 }
2970 #endif // TASKQUEUE_STATS
2971 
2972 void G1CollectedHeap::wait_for_root_region_scanning() {
2973   double scan_wait_start = os::elapsedTime();
2974   // We have to wait until the CM threads finish scanning the
2975   // root regions as it's the only way to ensure that all the
2976   // objects on them have been correctly scanned before we start
2977   // moving them during the GC.
2978   bool waited = _cm->root_regions()->wait_until_scan_finished();
2979   double wait_time_ms = 0.0;
2980   if (waited) {
2981     double scan_wait_end = os::elapsedTime();
2982     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2983   }
2984   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2985 }
2986 
2987 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2988 private:
2989   G1HRPrinter* _hr_printer;
2990 public:
2991   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2992 
2993   virtual bool doHeapRegion(HeapRegion* r) {
2994     _hr_printer->cset(r);
2995     return false;
2996   }
2997 };
2998 
2999 void G1CollectedHeap::start_new_collection_set() {
3000   collection_set()->start_incremental_building();
3001 
3002   clear_cset_fast_test();
3003 
3004   guarantee(_eden.length() == 0, "eden should have been cleared");
3005   g1_policy()->transfer_survivors_to_cset(survivor());
3006 }
3007 
3008 bool
3009 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3010   assert_at_safepoint(true /* should_be_vm_thread */);
3011   guarantee(!is_gc_active(), "collection is not reentrant");
3012 
3013   if (GCLocker::check_active_before_gc()) {
3014     return false;
3015   }
3016 
3017   _gc_timer_stw->register_gc_start();
3018 
3019   GCIdMark gc_id_mark;
3020   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3021 
3022   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3023   ResourceMark rm;
3024 
3025   g1_policy()->note_gc_start();
3026 
3027   wait_for_root_region_scanning();
3028 
3029   print_heap_before_gc();
3030   print_heap_regions();
3031   trace_heap_before_gc(_gc_tracer_stw);
3032 
3033   _verifier->verify_region_sets_optional();
3034   _verifier->verify_dirty_young_regions();
3035 
3036   // We should not be doing initial mark unless the conc mark thread is running
3037   if (!_cmThread->should_terminate()) {
3038     // This call will decide whether this pause is an initial-mark
3039     // pause. If it is, during_initial_mark_pause() will return true
3040     // for the duration of this pause.
3041     g1_policy()->decide_on_conc_mark_initiation();
3042   }
3043 
3044   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3045   assert(!collector_state()->during_initial_mark_pause() ||
3046           collector_state()->gcs_are_young(), "sanity");
3047 
3048   // We also do not allow mixed GCs during marking.
3049   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3050 
3051   // Record whether this pause is an initial mark. When the current
3052   // thread has completed its logging output and it's safe to signal
3053   // the CM thread, the flag's value in the policy has been reset.
3054   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3055 
3056   // Inner scope for scope based logging, timers, and stats collection
3057   {
3058     EvacuationInfo evacuation_info;
3059 
3060     if (collector_state()->during_initial_mark_pause()) {
3061       // We are about to start a marking cycle, so we increment the
3062       // full collection counter.
3063       increment_old_marking_cycles_started();
3064       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3065     }
3066 
3067     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3068 
3069     GCTraceCPUTime tcpu;
3070 
3071     FormatBuffer<> gc_string("Pause ");
3072     if (collector_state()->during_initial_mark_pause()) {
3073       gc_string.append("Initial Mark");
3074     } else if (collector_state()->gcs_are_young()) {
3075       gc_string.append("Young");
3076     } else {
3077       gc_string.append("Mixed");
3078     }
3079     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3080 
3081     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3082                                                                   workers()->active_workers(),
3083                                                                   Threads::number_of_non_daemon_threads());
3084     workers()->update_active_workers(active_workers);
3085     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3086 
3087     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3088     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3089 
3090     // If the secondary_free_list is not empty, append it to the
3091     // free_list. No need to wait for the cleanup operation to finish;
3092     // the region allocation code will check the secondary_free_list
3093     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3094     // set, skip this step so that the region allocation code has to
3095     // get entries from the secondary_free_list.
3096     if (!G1StressConcRegionFreeing) {
3097       append_secondary_free_list_if_not_empty_with_lock();
3098     }
3099 
3100     G1HeapTransition heap_transition(this);
3101     size_t heap_used_bytes_before_gc = used();
3102 
3103     // Don't dynamically change the number of GC threads this early.  A value of
3104     // 0 is used to indicate serial work.  When parallel work is done,
3105     // it will be set.
3106 
3107     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3108       IsGCActiveMark x;
3109 
3110       gc_prologue(false);
3111       increment_total_collections(false /* full gc */);
3112       increment_gc_time_stamp();
3113 
3114       if (VerifyRememberedSets) {
3115         log_info(gc, verify)("[Verifying RemSets before GC]");
3116         VerifyRegionRemSetClosure v_cl;
3117         heap_region_iterate(&v_cl);
3118       }
3119 
3120       _verifier->verify_before_gc();
3121 
3122       _verifier->check_bitmaps("GC Start");
3123 
3124 #if defined(COMPILER2) || INCLUDE_JVMCI
3125       DerivedPointerTable::clear();
3126 #endif
3127 
3128       // Please see comment in g1CollectedHeap.hpp and
3129       // G1CollectedHeap::ref_processing_init() to see how
3130       // reference processing currently works in G1.
3131 
3132       // Enable discovery in the STW reference processor
3133       if (g1_policy()->should_process_references()) {
3134         ref_processor_stw()->enable_discovery();
3135       } else {
3136         ref_processor_stw()->disable_discovery();
3137       }
3138 
3139       {
3140         // We want to temporarily turn off discovery by the
3141         // CM ref processor, if necessary, and turn it back on
3142         // on again later if we do. Using a scoped
3143         // NoRefDiscovery object will do this.
3144         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3145 
3146         // Forget the current alloc region (we might even choose it to be part
3147         // of the collection set!).
3148         _allocator->release_mutator_alloc_region();
3149 
3150         // This timing is only used by the ergonomics to handle our pause target.
3151         // It is unclear why this should not include the full pause. We will
3152         // investigate this in CR 7178365.
3153         //
3154         // Preserving the old comment here if that helps the investigation:
3155         //
3156         // The elapsed time induced by the start time below deliberately elides
3157         // the possible verification above.
3158         double sample_start_time_sec = os::elapsedTime();
3159 
3160         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3161 
3162         if (collector_state()->during_initial_mark_pause()) {
3163           concurrent_mark()->checkpointRootsInitialPre();
3164         }
3165 
3166         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3167 
3168         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3169 
3170         // Make sure the remembered sets are up to date. This needs to be
3171         // done before register_humongous_regions_with_cset(), because the
3172         // remembered sets are used there to choose eager reclaim candidates.
3173         // If the remembered sets are not up to date we might miss some
3174         // entries that need to be handled.
3175         g1_rem_set()->cleanupHRRS();
3176 
3177         register_humongous_regions_with_cset();
3178 
3179         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3180 
3181         // We call this after finalize_cset() to
3182         // ensure that the CSet has been finalized.
3183         _cm->verify_no_cset_oops();
3184 
3185         if (_hr_printer.is_active()) {
3186           G1PrintCollectionSetClosure cl(&_hr_printer);
3187           _collection_set.iterate(&cl);
3188         }
3189 
3190         // Initialize the GC alloc regions.
3191         _allocator->init_gc_alloc_regions(evacuation_info);
3192 
3193         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3194         pre_evacuate_collection_set();
3195 
3196         // Actually do the work...
3197         evacuate_collection_set(evacuation_info, &per_thread_states);
3198 
3199         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3200 
3201         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3202         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3203 
3204         eagerly_reclaim_humongous_regions();
3205 
3206         record_obj_copy_mem_stats();
3207         _survivor_evac_stats.adjust_desired_plab_sz();
3208         _old_evac_stats.adjust_desired_plab_sz();
3209 
3210         start_new_collection_set();
3211 
3212         if (evacuation_failed()) {
3213           set_used(recalculate_used());
3214           if (_archive_allocator != NULL) {
3215             _archive_allocator->clear_used();
3216           }
3217           for (uint i = 0; i < ParallelGCThreads; i++) {
3218             if (_evacuation_failed_info_array[i].has_failed()) {
3219               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3220             }
3221           }
3222         } else {
3223           // The "used" of the the collection set have already been subtracted
3224           // when they were freed.  Add in the bytes evacuated.
3225           increase_used(g1_policy()->bytes_copied_during_gc());
3226         }
3227 
3228         if (collector_state()->during_initial_mark_pause()) {
3229           // We have to do this before we notify the CM threads that
3230           // they can start working to make sure that all the
3231           // appropriate initialization is done on the CM object.
3232           concurrent_mark()->checkpointRootsInitialPost();
3233           collector_state()->set_mark_in_progress(true);
3234           // Note that we don't actually trigger the CM thread at
3235           // this point. We do that later when we're sure that
3236           // the current thread has completed its logging output.
3237         }
3238 
3239         allocate_dummy_regions();
3240 
3241         _allocator->init_mutator_alloc_region();
3242 
3243         {
3244           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3245           if (expand_bytes > 0) {
3246             size_t bytes_before = capacity();
3247             // No need for an ergo logging here,
3248             // expansion_amount() does this when it returns a value > 0.
3249             double expand_ms;
3250             if (!expand(expand_bytes, _workers, &expand_ms)) {
3251               // We failed to expand the heap. Cannot do anything about it.
3252             }
3253             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3254           }
3255         }
3256 
3257         // We redo the verification but now wrt to the new CSet which
3258         // has just got initialized after the previous CSet was freed.
3259         _cm->verify_no_cset_oops();
3260 
3261         // This timing is only used by the ergonomics to handle our pause target.
3262         // It is unclear why this should not include the full pause. We will
3263         // investigate this in CR 7178365.
3264         double sample_end_time_sec = os::elapsedTime();
3265         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3266         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3267         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3268 
3269         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3270         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3271 
3272         MemoryService::track_memory_usage();
3273 
3274         // In prepare_for_verify() below we'll need to scan the deferred
3275         // update buffers to bring the RSets up-to-date if
3276         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3277         // the update buffers we'll probably need to scan cards on the
3278         // regions we just allocated to (i.e., the GC alloc
3279         // regions). However, during the last GC we called
3280         // set_saved_mark() on all the GC alloc regions, so card
3281         // scanning might skip the [saved_mark_word()...top()] area of
3282         // those regions (i.e., the area we allocated objects into
3283         // during the last GC). But it shouldn't. Given that
3284         // saved_mark_word() is conditional on whether the GC time stamp
3285         // on the region is current or not, by incrementing the GC time
3286         // stamp here we invalidate all the GC time stamps on all the
3287         // regions and saved_mark_word() will simply return top() for
3288         // all the regions. This is a nicer way of ensuring this rather
3289         // than iterating over the regions and fixing them. In fact, the
3290         // GC time stamp increment here also ensures that
3291         // saved_mark_word() will return top() between pauses, i.e.,
3292         // during concurrent refinement. So we don't need the
3293         // is_gc_active() check to decided which top to use when
3294         // scanning cards (see CR 7039627).
3295         increment_gc_time_stamp();
3296 
3297         if (VerifyRememberedSets) {
3298           log_info(gc, verify)("[Verifying RemSets after GC]");
3299           VerifyRegionRemSetClosure v_cl;
3300           heap_region_iterate(&v_cl);
3301         }
3302 
3303         _verifier->verify_after_gc();
3304         _verifier->check_bitmaps("GC End");
3305 
3306         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3307         ref_processor_stw()->verify_no_references_recorded();
3308 
3309         // CM reference discovery will be re-enabled if necessary.
3310       }
3311 
3312 #ifdef TRACESPINNING
3313       ParallelTaskTerminator::print_termination_counts();
3314 #endif
3315 
3316       gc_epilogue(false);
3317     }
3318 
3319     // Print the remainder of the GC log output.
3320     if (evacuation_failed()) {
3321       log_info(gc)("To-space exhausted");
3322     }
3323 
3324     g1_policy()->print_phases();
3325     heap_transition.print();
3326 
3327     // It is not yet to safe to tell the concurrent mark to
3328     // start as we have some optional output below. We don't want the
3329     // output from the concurrent mark thread interfering with this
3330     // logging output either.
3331 
3332     _hrm.verify_optional();
3333     _verifier->verify_region_sets_optional();
3334 
3335     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3336     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3337 
3338     print_heap_after_gc();
3339     print_heap_regions();
3340     trace_heap_after_gc(_gc_tracer_stw);
3341 
3342     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3343     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3344     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3345     // before any GC notifications are raised.
3346     g1mm()->update_sizes();
3347 
3348     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3349     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3350     _gc_timer_stw->register_gc_end();
3351     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3352   }
3353   // It should now be safe to tell the concurrent mark thread to start
3354   // without its logging output interfering with the logging output
3355   // that came from the pause.
3356 
3357   if (should_start_conc_mark) {
3358     // CAUTION: after the doConcurrentMark() call below,
3359     // the concurrent marking thread(s) could be running
3360     // concurrently with us. Make sure that anything after
3361     // this point does not assume that we are the only GC thread
3362     // running. Note: of course, the actual marking work will
3363     // not start until the safepoint itself is released in
3364     // SuspendibleThreadSet::desynchronize().
3365     doConcurrentMark();
3366   }
3367 
3368   return true;
3369 }
3370 
3371 void G1CollectedHeap::remove_self_forwarding_pointers() {
3372   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3373   workers()->run_task(&rsfp_task);
3374 }
3375 
3376 void G1CollectedHeap::restore_after_evac_failure() {
3377   double remove_self_forwards_start = os::elapsedTime();
3378 
3379   remove_self_forwarding_pointers();
3380   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3381   _preserved_marks_set.restore(&task_executor);
3382 
3383   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3384 }
3385 
3386 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3387   if (!_evacuation_failed) {
3388     _evacuation_failed = true;
3389   }
3390 
3391   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3392   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3393 }
3394 
3395 bool G1ParEvacuateFollowersClosure::offer_termination() {
3396   G1ParScanThreadState* const pss = par_scan_state();
3397   start_term_time();
3398   const bool res = terminator()->offer_termination();
3399   end_term_time();
3400   return res;
3401 }
3402 
3403 void G1ParEvacuateFollowersClosure::do_void() {
3404   G1ParScanThreadState* const pss = par_scan_state();
3405   pss->trim_queue();
3406   do {
3407     pss->steal_and_trim_queue(queues());
3408   } while (!offer_termination());
3409 }
3410 
3411 class G1ParTask : public AbstractGangTask {
3412 protected:
3413   G1CollectedHeap*         _g1h;
3414   G1ParScanThreadStateSet* _pss;
3415   RefToScanQueueSet*       _queues;
3416   G1RootProcessor*         _root_processor;
3417   ParallelTaskTerminator   _terminator;
3418   uint                     _n_workers;
3419 
3420 public:
3421   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3422     : AbstractGangTask("G1 collection"),
3423       _g1h(g1h),
3424       _pss(per_thread_states),
3425       _queues(task_queues),
3426       _root_processor(root_processor),
3427       _terminator(n_workers, _queues),
3428       _n_workers(n_workers)
3429   {}
3430 
3431   void work(uint worker_id) {
3432     if (worker_id >= _n_workers) return;  // no work needed this round
3433 
3434     double start_sec = os::elapsedTime();
3435     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3436 
3437     {
3438       ResourceMark rm;
3439       HandleMark   hm;
3440 
3441       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3442 
3443       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3444       pss->set_ref_processor(rp);
3445 
3446       double start_strong_roots_sec = os::elapsedTime();
3447 
3448       _root_processor->evacuate_roots(pss->closures(), worker_id);
3449 
3450       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
3451 
3452       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3453       // treating the nmethods visited to act as roots for concurrent marking.
3454       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3455       // objects copied by the current evacuation.
3456       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
3457                                                                              pss->closures()->weak_codeblobs(),
3458                                                                              worker_id);
3459 
3460       _pss->add_cards_scanned(worker_id, cards_scanned);
3461 
3462       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3463 
3464       double term_sec = 0.0;
3465       size_t evac_term_attempts = 0;
3466       {
3467         double start = os::elapsedTime();
3468         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3469         evac.do_void();
3470 
3471         evac_term_attempts = evac.term_attempts();
3472         term_sec = evac.term_time();
3473         double elapsed_sec = os::elapsedTime() - start;
3474         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3475         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3476         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3477       }
3478 
3479       assert(pss->queue_is_empty(), "should be empty");
3480 
3481       if (log_is_enabled(Debug, gc, task, stats)) {
3482         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3483         size_t lab_waste;
3484         size_t lab_undo_waste;
3485         pss->waste(lab_waste, lab_undo_waste);
3486         _g1h->print_termination_stats(worker_id,
3487                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3488                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3489                                       term_sec * 1000.0,                          /* evac term time */
3490                                       evac_term_attempts,                         /* evac term attempts */
3491                                       lab_waste,                                  /* alloc buffer waste */
3492                                       lab_undo_waste                              /* undo waste */
3493                                       );
3494       }
3495 
3496       // Close the inner scope so that the ResourceMark and HandleMark
3497       // destructors are executed here and are included as part of the
3498       // "GC Worker Time".
3499     }
3500     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3501   }
3502 };
3503 
3504 void G1CollectedHeap::print_termination_stats_hdr() {
3505   log_debug(gc, task, stats)("GC Termination Stats");
3506   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3507   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3508   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3509 }
3510 
3511 void G1CollectedHeap::print_termination_stats(uint worker_id,
3512                                               double elapsed_ms,
3513                                               double strong_roots_ms,
3514                                               double term_ms,
3515                                               size_t term_attempts,
3516                                               size_t alloc_buffer_waste,
3517                                               size_t undo_waste) const {
3518   log_debug(gc, task, stats)
3519               ("%3d %9.2f %9.2f %6.2f "
3520                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3521                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3522                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3523                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3524                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3525                alloc_buffer_waste * HeapWordSize / K,
3526                undo_waste * HeapWordSize / K);
3527 }
3528 
3529 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
3530 private:
3531   BoolObjectClosure* _is_alive;
3532   int _initial_string_table_size;
3533   int _initial_symbol_table_size;
3534 
3535   bool  _process_strings;
3536   int _strings_processed;
3537   int _strings_removed;
3538 
3539   bool  _process_symbols;
3540   int _symbols_processed;
3541   int _symbols_removed;
3542 
3543 public:
3544   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
3545     AbstractGangTask("String/Symbol Unlinking"),
3546     _is_alive(is_alive),
3547     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3548     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
3549 
3550     _initial_string_table_size = StringTable::the_table()->table_size();
3551     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3552     if (process_strings) {
3553       StringTable::clear_parallel_claimed_index();
3554     }
3555     if (process_symbols) {
3556       SymbolTable::clear_parallel_claimed_index();
3557     }
3558   }
3559 
3560   ~G1StringSymbolTableUnlinkTask() {
3561     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3562               "claim value %d after unlink less than initial string table size %d",
3563               StringTable::parallel_claimed_index(), _initial_string_table_size);
3564     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3565               "claim value %d after unlink less than initial symbol table size %d",
3566               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3567 
3568     log_info(gc, stringtable)(
3569         "Cleaned string and symbol table, "
3570         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3571         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3572         strings_processed(), strings_removed(),
3573         symbols_processed(), symbols_removed());
3574   }
3575 
3576   void work(uint worker_id) {
3577     int strings_processed = 0;
3578     int strings_removed = 0;
3579     int symbols_processed = 0;
3580     int symbols_removed = 0;
3581     if (_process_strings) {
3582       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3583       Atomic::add(strings_processed, &_strings_processed);
3584       Atomic::add(strings_removed, &_strings_removed);
3585     }
3586     if (_process_symbols) {
3587       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3588       Atomic::add(symbols_processed, &_symbols_processed);
3589       Atomic::add(symbols_removed, &_symbols_removed);
3590     }
3591   }
3592 
3593   size_t strings_processed() const { return (size_t)_strings_processed; }
3594   size_t strings_removed()   const { return (size_t)_strings_removed; }
3595 
3596   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3597   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3598 };
3599 
3600 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3601 private:
3602   static Monitor* _lock;
3603 
3604   BoolObjectClosure* const _is_alive;
3605   const bool               _unloading_occurred;
3606   const uint               _num_workers;
3607 
3608   // Variables used to claim nmethods.
3609   CompiledMethod* _first_nmethod;
3610   volatile CompiledMethod* _claimed_nmethod;
3611 
3612   // The list of nmethods that need to be processed by the second pass.
3613   volatile CompiledMethod* _postponed_list;
3614   volatile uint            _num_entered_barrier;
3615 
3616  public:
3617   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3618       _is_alive(is_alive),
3619       _unloading_occurred(unloading_occurred),
3620       _num_workers(num_workers),
3621       _first_nmethod(NULL),
3622       _claimed_nmethod(NULL),
3623       _postponed_list(NULL),
3624       _num_entered_barrier(0)
3625   {
3626     CompiledMethod::increase_unloading_clock();
3627     // Get first alive nmethod
3628     CompiledMethodIterator iter = CompiledMethodIterator();
3629     if(iter.next_alive()) {
3630       _first_nmethod = iter.method();
3631     }
3632     _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3633   }
3634 
3635   ~G1CodeCacheUnloadingTask() {
3636     CodeCache::verify_clean_inline_caches();
3637 
3638     CodeCache::set_needs_cache_clean(false);
3639     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3640 
3641     CodeCache::verify_icholder_relocations();
3642   }
3643 
3644  private:
3645   void add_to_postponed_list(CompiledMethod* nm) {
3646       CompiledMethod* old;
3647       do {
3648         old = (CompiledMethod*)_postponed_list;
3649         nm->set_unloading_next(old);
3650       } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3651   }
3652 
3653   void clean_nmethod(CompiledMethod* nm) {
3654     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3655 
3656     if (postponed) {
3657       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3658       add_to_postponed_list(nm);
3659     }
3660 
3661     // Mark that this thread has been cleaned/unloaded.
3662     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3663     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3664   }
3665 
3666   void clean_nmethod_postponed(CompiledMethod* nm) {
3667     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3668   }
3669 
3670   static const int MaxClaimNmethods = 16;
3671 
3672   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3673     CompiledMethod* first;
3674     CompiledMethodIterator last;
3675 
3676     do {
3677       *num_claimed_nmethods = 0;
3678 
3679       first = (CompiledMethod*)_claimed_nmethod;
3680       last = CompiledMethodIterator(first);
3681 
3682       if (first != NULL) {
3683 
3684         for (int i = 0; i < MaxClaimNmethods; i++) {
3685           if (!last.next_alive()) {
3686             break;
3687           }
3688           claimed_nmethods[i] = last.method();
3689           (*num_claimed_nmethods)++;
3690         }
3691       }
3692 
3693     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3694   }
3695 
3696   CompiledMethod* claim_postponed_nmethod() {
3697     CompiledMethod* claim;
3698     CompiledMethod* next;
3699 
3700     do {
3701       claim = (CompiledMethod*)_postponed_list;
3702       if (claim == NULL) {
3703         return NULL;
3704       }
3705 
3706       next = claim->unloading_next();
3707 
3708     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3709 
3710     return claim;
3711   }
3712 
3713  public:
3714   // Mark that we're done with the first pass of nmethod cleaning.
3715   void barrier_mark(uint worker_id) {
3716     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3717     _num_entered_barrier++;
3718     if (_num_entered_barrier == _num_workers) {
3719       ml.notify_all();
3720     }
3721   }
3722 
3723   // See if we have to wait for the other workers to
3724   // finish their first-pass nmethod cleaning work.
3725   void barrier_wait(uint worker_id) {
3726     if (_num_entered_barrier < _num_workers) {
3727       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3728       while (_num_entered_barrier < _num_workers) {
3729           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3730       }
3731     }
3732   }
3733 
3734   // Cleaning and unloading of nmethods. Some work has to be postponed
3735   // to the second pass, when we know which nmethods survive.
3736   void work_first_pass(uint worker_id) {
3737     // The first nmethods is claimed by the first worker.
3738     if (worker_id == 0 && _first_nmethod != NULL) {
3739       clean_nmethod(_first_nmethod);
3740       _first_nmethod = NULL;
3741     }
3742 
3743     int num_claimed_nmethods;
3744     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3745 
3746     while (true) {
3747       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3748 
3749       if (num_claimed_nmethods == 0) {
3750         break;
3751       }
3752 
3753       for (int i = 0; i < num_claimed_nmethods; i++) {
3754         clean_nmethod(claimed_nmethods[i]);
3755       }
3756     }
3757   }
3758 
3759   void work_second_pass(uint worker_id) {
3760     CompiledMethod* nm;
3761     // Take care of postponed nmethods.
3762     while ((nm = claim_postponed_nmethod()) != NULL) {
3763       clean_nmethod_postponed(nm);
3764     }
3765   }
3766 };
3767 
3768 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3769 
3770 class G1KlassCleaningTask : public StackObj {
3771   BoolObjectClosure*                      _is_alive;
3772   volatile jint                           _clean_klass_tree_claimed;
3773   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3774 
3775  public:
3776   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3777       _is_alive(is_alive),
3778       _clean_klass_tree_claimed(0),
3779       _klass_iterator() {
3780   }
3781 
3782  private:
3783   bool claim_clean_klass_tree_task() {
3784     if (_clean_klass_tree_claimed) {
3785       return false;
3786     }
3787 
3788     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3789   }
3790 
3791   InstanceKlass* claim_next_klass() {
3792     Klass* klass;
3793     do {
3794       klass =_klass_iterator.next_klass();
3795     } while (klass != NULL && !klass->is_instance_klass());
3796 
3797     // this can be null so don't call InstanceKlass::cast
3798     return static_cast<InstanceKlass*>(klass);
3799   }
3800 
3801 public:
3802 
3803   void clean_klass(InstanceKlass* ik) {
3804     ik->clean_weak_instanceklass_links(_is_alive);
3805   }
3806 
3807   void work() {
3808     ResourceMark rm;
3809 
3810     // One worker will clean the subklass/sibling klass tree.
3811     if (claim_clean_klass_tree_task()) {
3812       Klass::clean_subklass_tree(_is_alive);
3813     }
3814 
3815     // All workers will help cleaning the classes,
3816     InstanceKlass* klass;
3817     while ((klass = claim_next_klass()) != NULL) {
3818       clean_klass(klass);
3819     }
3820   }
3821 };
3822 
3823 // To minimize the remark pause times, the tasks below are done in parallel.
3824 class G1ParallelCleaningTask : public AbstractGangTask {
3825 private:
3826   G1StringSymbolTableUnlinkTask _string_symbol_task;
3827   G1CodeCacheUnloadingTask      _code_cache_task;
3828   G1KlassCleaningTask           _klass_cleaning_task;
3829 
3830 public:
3831   // The constructor is run in the VMThread.
3832   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
3833       AbstractGangTask("Parallel Cleaning"),
3834       _string_symbol_task(is_alive, process_strings, process_symbols),
3835       _code_cache_task(num_workers, is_alive, unloading_occurred),
3836       _klass_cleaning_task(is_alive) {
3837   }
3838 
3839   // The parallel work done by all worker threads.
3840   void work(uint worker_id) {
3841     // Do first pass of code cache cleaning.
3842     _code_cache_task.work_first_pass(worker_id);
3843 
3844     // Let the threads mark that the first pass is done.
3845     _code_cache_task.barrier_mark(worker_id);
3846 
3847     // Clean the Strings and Symbols.
3848     _string_symbol_task.work(worker_id);
3849 
3850     // Wait for all workers to finish the first code cache cleaning pass.
3851     _code_cache_task.barrier_wait(worker_id);
3852 
3853     // Do the second code cache cleaning work, which realize on
3854     // the liveness information gathered during the first pass.
3855     _code_cache_task.work_second_pass(worker_id);
3856 
3857     // Clean all klasses that were not unloaded.
3858     _klass_cleaning_task.work();
3859   }
3860 };
3861 
3862 
3863 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
3864                                         bool process_strings,
3865                                         bool process_symbols,
3866                                         bool class_unloading_occurred) {
3867   uint n_workers = workers()->active_workers();
3868 
3869   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
3870                                         n_workers, class_unloading_occurred);
3871   workers()->run_task(&g1_unlink_task);
3872 }
3873 
3874 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
3875                                                      bool process_strings, bool process_symbols) {
3876   { // Timing scope
3877     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
3878     workers()->run_task(&g1_unlink_task);
3879   }
3880 }
3881 
3882 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3883  private:
3884   DirtyCardQueueSet* _queue;
3885   G1CollectedHeap* _g1h;
3886  public:
3887   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3888     _queue(queue), _g1h(g1h) { }
3889 
3890   virtual void work(uint worker_id) {
3891     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3892     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3893 
3894     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3895     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3896 
3897     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3898   }
3899 };
3900 
3901 void G1CollectedHeap::redirty_logged_cards() {
3902   double redirty_logged_cards_start = os::elapsedTime();
3903 
3904   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3905   dirty_card_queue_set().reset_for_par_iteration();
3906   workers()->run_task(&redirty_task);
3907 
3908   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3909   dcq.merge_bufferlists(&dirty_card_queue_set());
3910   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3911 
3912   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3913 }
3914 
3915 // Weak Reference Processing support
3916 
3917 // An always "is_alive" closure that is used to preserve referents.
3918 // If the object is non-null then it's alive.  Used in the preservation
3919 // of referent objects that are pointed to by reference objects
3920 // discovered by the CM ref processor.
3921 class G1AlwaysAliveClosure: public BoolObjectClosure {
3922   G1CollectedHeap* _g1;
3923 public:
3924   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3925   bool do_object_b(oop p) {
3926     if (p != NULL) {
3927       return true;
3928     }
3929     return false;
3930   }
3931 };
3932 
3933 bool G1STWIsAliveClosure::do_object_b(oop p) {
3934   // An object is reachable if it is outside the collection set,
3935   // or is inside and copied.
3936   return !_g1->is_in_cset(p) || p->is_forwarded();
3937 }
3938 
3939 // Non Copying Keep Alive closure
3940 class G1KeepAliveClosure: public OopClosure {
3941   G1CollectedHeap* _g1;
3942 public:
3943   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3944   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3945   void do_oop(oop* p) {
3946     oop obj = *p;
3947     assert(obj != NULL, "the caller should have filtered out NULL values");
3948 
3949     const InCSetState cset_state = _g1->in_cset_state(obj);
3950     if (!cset_state.is_in_cset_or_humongous()) {
3951       return;
3952     }
3953     if (cset_state.is_in_cset()) {
3954       assert( obj->is_forwarded(), "invariant" );
3955       *p = obj->forwardee();
3956     } else {
3957       assert(!obj->is_forwarded(), "invariant" );
3958       assert(cset_state.is_humongous(),
3959              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3960       _g1->set_humongous_is_live(obj);
3961     }
3962   }
3963 };
3964 
3965 // Copying Keep Alive closure - can be called from both
3966 // serial and parallel code as long as different worker
3967 // threads utilize different G1ParScanThreadState instances
3968 // and different queues.
3969 
3970 class G1CopyingKeepAliveClosure: public OopClosure {
3971   G1CollectedHeap*         _g1h;
3972   OopClosure*              _copy_non_heap_obj_cl;
3973   G1ParScanThreadState*    _par_scan_state;
3974 
3975 public:
3976   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3977                             OopClosure* non_heap_obj_cl,
3978                             G1ParScanThreadState* pss):
3979     _g1h(g1h),
3980     _copy_non_heap_obj_cl(non_heap_obj_cl),
3981     _par_scan_state(pss)
3982   {}
3983 
3984   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3985   virtual void do_oop(      oop* p) { do_oop_work(p); }
3986 
3987   template <class T> void do_oop_work(T* p) {
3988     oop obj = oopDesc::load_decode_heap_oop(p);
3989 
3990     if (_g1h->is_in_cset_or_humongous(obj)) {
3991       // If the referent object has been forwarded (either copied
3992       // to a new location or to itself in the event of an
3993       // evacuation failure) then we need to update the reference
3994       // field and, if both reference and referent are in the G1
3995       // heap, update the RSet for the referent.
3996       //
3997       // If the referent has not been forwarded then we have to keep
3998       // it alive by policy. Therefore we have copy the referent.
3999       //
4000       // If the reference field is in the G1 heap then we can push
4001       // on the PSS queue. When the queue is drained (after each
4002       // phase of reference processing) the object and it's followers
4003       // will be copied, the reference field set to point to the
4004       // new location, and the RSet updated. Otherwise we need to
4005       // use the the non-heap or metadata closures directly to copy
4006       // the referent object and update the pointer, while avoiding
4007       // updating the RSet.
4008 
4009       if (_g1h->is_in_g1_reserved(p)) {
4010         _par_scan_state->push_on_queue(p);
4011       } else {
4012         assert(!Metaspace::contains((const void*)p),
4013                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4014         _copy_non_heap_obj_cl->do_oop(p);
4015       }
4016     }
4017   }
4018 };
4019 
4020 // Serial drain queue closure. Called as the 'complete_gc'
4021 // closure for each discovered list in some of the
4022 // reference processing phases.
4023 
4024 class G1STWDrainQueueClosure: public VoidClosure {
4025 protected:
4026   G1CollectedHeap* _g1h;
4027   G1ParScanThreadState* _par_scan_state;
4028 
4029   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4030 
4031 public:
4032   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4033     _g1h(g1h),
4034     _par_scan_state(pss)
4035   { }
4036 
4037   void do_void() {
4038     G1ParScanThreadState* const pss = par_scan_state();
4039     pss->trim_queue();
4040   }
4041 };
4042 
4043 // Parallel Reference Processing closures
4044 
4045 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4046 // processing during G1 evacuation pauses.
4047 
4048 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4049 private:
4050   G1CollectedHeap*          _g1h;
4051   G1ParScanThreadStateSet*  _pss;
4052   RefToScanQueueSet*        _queues;
4053   WorkGang*                 _workers;
4054   uint                      _active_workers;
4055 
4056 public:
4057   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4058                            G1ParScanThreadStateSet* per_thread_states,
4059                            WorkGang* workers,
4060                            RefToScanQueueSet *task_queues,
4061                            uint n_workers) :
4062     _g1h(g1h),
4063     _pss(per_thread_states),
4064     _queues(task_queues),
4065     _workers(workers),
4066     _active_workers(n_workers)
4067   {
4068     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
4069   }
4070 
4071   // Executes the given task using concurrent marking worker threads.
4072   virtual void execute(ProcessTask& task);
4073   virtual void execute(EnqueueTask& task);
4074 };
4075 
4076 // Gang task for possibly parallel reference processing
4077 
4078 class G1STWRefProcTaskProxy: public AbstractGangTask {
4079   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4080   ProcessTask&     _proc_task;
4081   G1CollectedHeap* _g1h;
4082   G1ParScanThreadStateSet* _pss;
4083   RefToScanQueueSet* _task_queues;
4084   ParallelTaskTerminator* _terminator;
4085 
4086 public:
4087   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4088                         G1CollectedHeap* g1h,
4089                         G1ParScanThreadStateSet* per_thread_states,
4090                         RefToScanQueueSet *task_queues,
4091                         ParallelTaskTerminator* terminator) :
4092     AbstractGangTask("Process reference objects in parallel"),
4093     _proc_task(proc_task),
4094     _g1h(g1h),
4095     _pss(per_thread_states),
4096     _task_queues(task_queues),
4097     _terminator(terminator)
4098   {}
4099 
4100   virtual void work(uint worker_id) {
4101     // The reference processing task executed by a single worker.
4102     ResourceMark rm;
4103     HandleMark   hm;
4104 
4105     G1STWIsAliveClosure is_alive(_g1h);
4106 
4107     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4108     pss->set_ref_processor(NULL);
4109 
4110     // Keep alive closure.
4111     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4112 
4113     // Complete GC closure
4114     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4115 
4116     // Call the reference processing task's work routine.
4117     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4118 
4119     // Note we cannot assert that the refs array is empty here as not all
4120     // of the processing tasks (specifically phase2 - pp2_work) execute
4121     // the complete_gc closure (which ordinarily would drain the queue) so
4122     // the queue may not be empty.
4123   }
4124 };
4125 
4126 // Driver routine for parallel reference processing.
4127 // Creates an instance of the ref processing gang
4128 // task and has the worker threads execute it.
4129 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4130   assert(_workers != NULL, "Need parallel worker threads.");
4131 
4132   ParallelTaskTerminator terminator(_active_workers, _queues);
4133   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4134 
4135   _workers->run_task(&proc_task_proxy);
4136 }
4137 
4138 // Gang task for parallel reference enqueueing.
4139 
4140 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4141   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4142   EnqueueTask& _enq_task;
4143 
4144 public:
4145   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4146     AbstractGangTask("Enqueue reference objects in parallel"),
4147     _enq_task(enq_task)
4148   { }
4149 
4150   virtual void work(uint worker_id) {
4151     _enq_task.work(worker_id);
4152   }
4153 };
4154 
4155 // Driver routine for parallel reference enqueueing.
4156 // Creates an instance of the ref enqueueing gang
4157 // task and has the worker threads execute it.
4158 
4159 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4160   assert(_workers != NULL, "Need parallel worker threads.");
4161 
4162   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4163 
4164   _workers->run_task(&enq_task_proxy);
4165 }
4166 
4167 // End of weak reference support closures
4168 
4169 // Abstract task used to preserve (i.e. copy) any referent objects
4170 // that are in the collection set and are pointed to by reference
4171 // objects discovered by the CM ref processor.
4172 
4173 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4174 protected:
4175   G1CollectedHeap*         _g1h;
4176   G1ParScanThreadStateSet* _pss;
4177   RefToScanQueueSet*       _queues;
4178   ParallelTaskTerminator   _terminator;
4179   uint                     _n_workers;
4180 
4181 public:
4182   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4183     AbstractGangTask("ParPreserveCMReferents"),
4184     _g1h(g1h),
4185     _pss(per_thread_states),
4186     _queues(task_queues),
4187     _terminator(workers, _queues),
4188     _n_workers(workers)
4189   {
4190     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4191   }
4192 
4193   void work(uint worker_id) {
4194     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4195 
4196     ResourceMark rm;
4197     HandleMark   hm;
4198 
4199     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4200     pss->set_ref_processor(NULL);
4201     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4202 
4203     // Is alive closure
4204     G1AlwaysAliveClosure always_alive(_g1h);
4205 
4206     // Copying keep alive closure. Applied to referent objects that need
4207     // to be copied.
4208     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4209 
4210     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4211 
4212     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4213     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4214 
4215     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4216     // So this must be true - but assert just in case someone decides to
4217     // change the worker ids.
4218     assert(worker_id < limit, "sanity");
4219     assert(!rp->discovery_is_atomic(), "check this code");
4220 
4221     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4222     for (uint idx = worker_id; idx < limit; idx += stride) {
4223       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4224 
4225       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4226       while (iter.has_next()) {
4227         // Since discovery is not atomic for the CM ref processor, we
4228         // can see some null referent objects.
4229         iter.load_ptrs(DEBUG_ONLY(true));
4230         oop ref = iter.obj();
4231 
4232         // This will filter nulls.
4233         if (iter.is_referent_alive()) {
4234           iter.make_referent_alive();
4235         }
4236         iter.move_to_next();
4237       }
4238     }
4239 
4240     // Drain the queue - which may cause stealing
4241     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4242     drain_queue.do_void();
4243     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4244     assert(pss->queue_is_empty(), "should be");
4245   }
4246 };
4247 
4248 void G1CollectedHeap::process_weak_jni_handles() {
4249   double ref_proc_start = os::elapsedTime();
4250 
4251   G1STWIsAliveClosure is_alive(this);
4252   G1KeepAliveClosure keep_alive(this);
4253   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4254 
4255   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4256   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4257 }
4258 
4259 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4260   // Any reference objects, in the collection set, that were 'discovered'
4261   // by the CM ref processor should have already been copied (either by
4262   // applying the external root copy closure to the discovered lists, or
4263   // by following an RSet entry).
4264   //
4265   // But some of the referents, that are in the collection set, that these
4266   // reference objects point to may not have been copied: the STW ref
4267   // processor would have seen that the reference object had already
4268   // been 'discovered' and would have skipped discovering the reference,
4269   // but would not have treated the reference object as a regular oop.
4270   // As a result the copy closure would not have been applied to the
4271   // referent object.
4272   //
4273   // We need to explicitly copy these referent objects - the references
4274   // will be processed at the end of remarking.
4275   //
4276   // We also need to do this copying before we process the reference
4277   // objects discovered by the STW ref processor in case one of these
4278   // referents points to another object which is also referenced by an
4279   // object discovered by the STW ref processor.
4280   double preserve_cm_referents_time = 0.0;
4281 
4282   // To avoid spawning task when there is no work to do, check that
4283   // a concurrent cycle is active and that some references have been
4284   // discovered.
4285   if (concurrent_mark()->cmThread()->during_cycle() &&
4286       ref_processor_cm()->has_discovered_references()) {
4287     double preserve_cm_referents_start = os::elapsedTime();
4288     uint no_of_gc_workers = workers()->active_workers();
4289     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4290                                                    per_thread_states,
4291                                                    no_of_gc_workers,
4292                                                    _task_queues);
4293     workers()->run_task(&keep_cm_referents);
4294     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4295   }
4296 
4297   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4298 }
4299 
4300 // Weak Reference processing during an evacuation pause (part 1).
4301 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4302   double ref_proc_start = os::elapsedTime();
4303 
4304   ReferenceProcessor* rp = _ref_processor_stw;
4305   assert(rp->discovery_enabled(), "should have been enabled");
4306 
4307   // Closure to test whether a referent is alive.
4308   G1STWIsAliveClosure is_alive(this);
4309 
4310   // Even when parallel reference processing is enabled, the processing
4311   // of JNI refs is serial and performed serially by the current thread
4312   // rather than by a worker. The following PSS will be used for processing
4313   // JNI refs.
4314 
4315   // Use only a single queue for this PSS.
4316   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4317   pss->set_ref_processor(NULL);
4318   assert(pss->queue_is_empty(), "pre-condition");
4319 
4320   // Keep alive closure.
4321   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4322 
4323   // Serial Complete GC closure
4324   G1STWDrainQueueClosure drain_queue(this, pss);
4325 
4326   // Setup the soft refs policy...
4327   rp->setup_policy(false);
4328 
4329   ReferenceProcessorStats stats;
4330   if (!rp->processing_is_mt()) {
4331     // Serial reference processing...
4332     stats = rp->process_discovered_references(&is_alive,
4333                                               &keep_alive,
4334                                               &drain_queue,
4335                                               NULL,
4336                                               _gc_timer_stw);
4337   } else {
4338     uint no_of_gc_workers = workers()->active_workers();
4339 
4340     // Parallel reference processing
4341     assert(no_of_gc_workers <= rp->max_num_q(),
4342            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4343            no_of_gc_workers,  rp->max_num_q());
4344 
4345     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4346     stats = rp->process_discovered_references(&is_alive,
4347                                               &keep_alive,
4348                                               &drain_queue,
4349                                               &par_task_executor,
4350                                               _gc_timer_stw);
4351   }
4352 
4353   _gc_tracer_stw->report_gc_reference_stats(stats);
4354 
4355   // We have completed copying any necessary live referent objects.
4356   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4357 
4358   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4359   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4360 }
4361 
4362 // Weak Reference processing during an evacuation pause (part 2).
4363 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4364   double ref_enq_start = os::elapsedTime();
4365 
4366   ReferenceProcessor* rp = _ref_processor_stw;
4367   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4368 
4369   // Now enqueue any remaining on the discovered lists on to
4370   // the pending list.
4371   if (!rp->processing_is_mt()) {
4372     // Serial reference processing...
4373     rp->enqueue_discovered_references();
4374   } else {
4375     // Parallel reference enqueueing
4376 
4377     uint n_workers = workers()->active_workers();
4378 
4379     assert(n_workers <= rp->max_num_q(),
4380            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4381            n_workers,  rp->max_num_q());
4382 
4383     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4384     rp->enqueue_discovered_references(&par_task_executor);
4385   }
4386 
4387   rp->verify_no_references_recorded();
4388   assert(!rp->discovery_enabled(), "should have been disabled");
4389 
4390   // FIXME
4391   // CM's reference processing also cleans up the string and symbol tables.
4392   // Should we do that here also? We could, but it is a serial operation
4393   // and could significantly increase the pause time.
4394 
4395   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4396   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4397 }
4398 
4399 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4400   double merge_pss_time_start = os::elapsedTime();
4401   per_thread_states->flush();
4402   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4403 }
4404 
4405 void G1CollectedHeap::pre_evacuate_collection_set() {
4406   _expand_heap_after_alloc_failure = true;
4407   _evacuation_failed = false;
4408 
4409   // Disable the hot card cache.
4410   _hot_card_cache->reset_hot_cache_claimed_index();
4411   _hot_card_cache->set_use_cache(false);
4412 
4413   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4414   _preserved_marks_set.assert_empty();
4415 }
4416 
4417 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4418   // Should G1EvacuationFailureALot be in effect for this GC?
4419   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4420 
4421   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4422 
4423   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4424 
4425   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4426   if (collector_state()->during_initial_mark_pause()) {
4427     double start_clear_claimed_marks = os::elapsedTime();
4428 
4429     ClassLoaderDataGraph::clear_claimed_marks();
4430 
4431     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4432     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4433   }
4434 
4435   double start_par_time_sec = os::elapsedTime();
4436   double end_par_time_sec;
4437 
4438   {
4439     const uint n_workers = workers()->active_workers();
4440     G1RootProcessor root_processor(this, n_workers);
4441     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4442 
4443     print_termination_stats_hdr();
4444 
4445     workers()->run_task(&g1_par_task);
4446     end_par_time_sec = os::elapsedTime();
4447 
4448     // Closing the inner scope will execute the destructor
4449     // for the G1RootProcessor object. We record the current
4450     // elapsed time before closing the scope so that time
4451     // taken for the destructor is NOT included in the
4452     // reported parallel time.
4453   }
4454 
4455   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4456   phase_times->record_par_time(par_time_ms);
4457 
4458   double code_root_fixup_time_ms =
4459         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4460   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4461 }
4462 
4463 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4464   // Process any discovered reference objects - we have
4465   // to do this _before_ we retire the GC alloc regions
4466   // as we may have to copy some 'reachable' referent
4467   // objects (and their reachable sub-graphs) that were
4468   // not copied during the pause.
4469   if (g1_policy()->should_process_references()) {
4470     preserve_cm_referents(per_thread_states);
4471     process_discovered_references(per_thread_states);
4472   } else {
4473     ref_processor_stw()->verify_no_references_recorded();
4474     process_weak_jni_handles();
4475   }
4476 
4477   if (G1StringDedup::is_enabled()) {
4478     double fixup_start = os::elapsedTime();
4479 
4480     G1STWIsAliveClosure is_alive(this);
4481     G1KeepAliveClosure keep_alive(this);
4482     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4483 
4484     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4485     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4486   }
4487 
4488   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4489 
4490   if (evacuation_failed()) {
4491     restore_after_evac_failure();
4492 
4493     // Reset the G1EvacuationFailureALot counters and flags
4494     // Note: the values are reset only when an actual
4495     // evacuation failure occurs.
4496     NOT_PRODUCT(reset_evacuation_should_fail();)
4497   }
4498 
4499   _preserved_marks_set.assert_empty();
4500 
4501   // Enqueue any remaining references remaining on the STW
4502   // reference processor's discovered lists. We need to do
4503   // this after the card table is cleaned (and verified) as
4504   // the act of enqueueing entries on to the pending list
4505   // will log these updates (and dirty their associated
4506   // cards). We need these updates logged to update any
4507   // RSets.
4508   if (g1_policy()->should_process_references()) {
4509     enqueue_discovered_references(per_thread_states);
4510   } else {
4511     g1_policy()->phase_times()->record_ref_enq_time(0);
4512   }
4513 
4514   _allocator->release_gc_alloc_regions(evacuation_info);
4515 
4516   merge_per_thread_state_info(per_thread_states);
4517 
4518   // Reset and re-enable the hot card cache.
4519   // Note the counts for the cards in the regions in the
4520   // collection set are reset when the collection set is freed.
4521   _hot_card_cache->reset_hot_cache();
4522   _hot_card_cache->set_use_cache(true);
4523 
4524   purge_code_root_memory();
4525 
4526   redirty_logged_cards();
4527 #if defined(COMPILER2) || INCLUDE_JVMCI
4528   double start = os::elapsedTime();
4529   DerivedPointerTable::update_pointers();
4530   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4531 #endif
4532   g1_policy()->print_age_table();
4533 }
4534 
4535 void G1CollectedHeap::record_obj_copy_mem_stats() {
4536   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4537 
4538   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4539                                                create_g1_evac_summary(&_old_evac_stats));
4540 }
4541 
4542 void G1CollectedHeap::free_region(HeapRegion* hr,
4543                                   FreeRegionList* free_list,
4544                                   bool skip_remset,
4545                                   bool skip_hot_card_cache,
4546                                   bool locked) {
4547   assert(!hr->is_free(), "the region should not be free");
4548   assert(!hr->is_empty(), "the region should not be empty");
4549   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4550   assert(free_list != NULL, "pre-condition");
4551 
4552   if (G1VerifyBitmaps) {
4553     MemRegion mr(hr->bottom(), hr->end());
4554     concurrent_mark()->clearRangePrevBitmap(mr);
4555   }
4556 
4557   // Clear the card counts for this region.
4558   // Note: we only need to do this if the region is not young
4559   // (since we don't refine cards in young regions).
4560   if (!skip_hot_card_cache && !hr->is_young()) {
4561     _hot_card_cache->reset_card_counts(hr);
4562   }
4563   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4564   free_list->add_ordered(hr);
4565 }
4566 
4567 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4568                                             FreeRegionList* free_list,
4569                                             bool skip_remset) {
4570   assert(hr->is_humongous(), "this is only for humongous regions");
4571   assert(free_list != NULL, "pre-condition");
4572   hr->clear_humongous();
4573   free_region(hr, free_list, skip_remset);
4574 }
4575 
4576 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4577                                            const uint humongous_regions_removed) {
4578   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4579     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4580     _old_set.bulk_remove(old_regions_removed);
4581     _humongous_set.bulk_remove(humongous_regions_removed);
4582   }
4583 
4584 }
4585 
4586 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4587   assert(list != NULL, "list can't be null");
4588   if (!list->is_empty()) {
4589     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4590     _hrm.insert_list_into_free_list(list);
4591   }
4592 }
4593 
4594 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4595   decrease_used(bytes);
4596 }
4597 
4598 class G1ParScrubRemSetTask: public G1ParallelizeByRegionsTask {
4599   class G1ScrubRSClosure: public HeapRegionClosure {
4600     G1CardLiveData* _live_data;
4601   public:
4602     G1ScrubRSClosure(G1CardLiveData* live_data) :
4603       _live_data(live_data) {}
4604 
4605     bool doHeapRegion(HeapRegion* r) {
4606       if (!r->is_continues_humongous()) {
4607         r->rem_set()->scrub(_live_data);
4608       }
4609       return false;
4610     }
4611   };
4612 
4613 public:
4614   G1ParScrubRemSetTask(uint num_workers) :
4615     G1ParallelizeByRegionsTask("G1 ScrubRS", num_workers) {}
4616 
4617   void work(uint worker_id) {
4618     G1CollectedHeap* g1 = G1CollectedHeap::heap(); 
4619     G1ScrubRSClosure scrub_cl(&g1->g1_rem_set()->_card_live_data);
4620     all_heap_regions_work(&scrub_cl, worker_id);
4621   }
4622 };
4623 
4624 void G1CollectedHeap::scrub_rem_set() {
4625   uint num_workers = workers()->active_workers();
4626   G1ParScrubRemSetTask g1_par_scrub_rs_task(num_workers);
4627   workers()->run_task(&g1_par_scrub_rs_task);
4628 }
4629 
4630 class G1FreeCollectionSetTask : public AbstractGangTask {
4631 private:
4632 
4633   // Closure applied to all regions in the collection set to do work that needs to
4634   // be done serially in a single thread.
4635   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4636   private:
4637     EvacuationInfo* _evacuation_info;
4638     const size_t* _surviving_young_words;
4639 
4640     // Bytes used in successfully evacuated regions before the evacuation.
4641     size_t _before_used_bytes;
4642     // Bytes used in unsucessfully evacuated regions before the evacuation
4643     size_t _after_used_bytes;
4644 
4645     size_t _bytes_allocated_in_old_since_last_gc;
4646 
4647     size_t _failure_used_words;
4648     size_t _failure_waste_words;
4649 
4650     FreeRegionList _local_free_list;
4651   public:
4652     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4653       HeapRegionClosure(),
4654       _evacuation_info(evacuation_info),
4655       _surviving_young_words(surviving_young_words),
4656       _before_used_bytes(0),
4657       _after_used_bytes(0),
4658       _bytes_allocated_in_old_since_last_gc(0),
4659       _failure_used_words(0),
4660       _failure_waste_words(0),
4661       _local_free_list("Local Region List for CSet Freeing") {
4662     }
4663 
4664     virtual bool doHeapRegion(HeapRegion* r) {
4665       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4666 
4667       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4668       g1h->clear_in_cset(r);
4669 
4670       if (r->is_young()) {
4671         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4672                "Young index %d is wrong for region %u of type %s with %u young regions",
4673                r->young_index_in_cset(),
4674                r->hrm_index(),
4675                r->get_type_str(),
4676                g1h->collection_set()->young_region_length());
4677         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4678         r->record_surv_words_in_group(words_survived);
4679       }
4680 
4681       if (!r->evacuation_failed()) {
4682         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4683         _before_used_bytes += r->used();
4684         g1h->free_region(r,
4685                          &_local_free_list,
4686                          true, /* skip_remset */
4687                          true, /* skip_hot_card_cache */
4688                          true  /* locked */);
4689       } else {
4690         r->uninstall_surv_rate_group();
4691         r->set_young_index_in_cset(-1);
4692         r->set_evacuation_failed(false);
4693         // When moving a young gen region to old gen, we "allocate" that whole region
4694         // there. This is in addition to any already evacuated objects. Notify the
4695         // policy about that.
4696         // Old gen regions do not cause an additional allocation: both the objects
4697         // still in the region and the ones already moved are accounted for elsewhere.
4698         if (r->is_young()) {
4699           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4700         }
4701         // The region is now considered to be old.
4702         r->set_old();
4703         // Do some allocation statistics accounting. Regions that failed evacuation
4704         // are always made old, so there is no need to update anything in the young
4705         // gen statistics, but we need to update old gen statistics.
4706         size_t used_words = r->marked_bytes() / HeapWordSize;
4707 
4708         _failure_used_words += used_words;
4709         _failure_waste_words += HeapRegion::GrainWords - used_words;
4710 
4711         g1h->old_set_add(r);
4712         _after_used_bytes += r->used();
4713       }
4714       return false;
4715     }
4716 
4717     void complete_work() {
4718       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4719 
4720       _evacuation_info->set_regions_freed(_local_free_list.length());
4721       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4722 
4723       g1h->prepend_to_freelist(&_local_free_list);
4724       g1h->decrement_summary_bytes(_before_used_bytes);
4725 
4726       G1Policy* policy = g1h->g1_policy();
4727       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4728 
4729       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4730     }
4731   };
4732 
4733   G1CollectionSet* _collection_set;
4734   G1SerialFreeCollectionSetClosure _cl;
4735   const size_t* _surviving_young_words;
4736 
4737   size_t _rs_lengths;
4738 
4739   volatile jint _serial_work_claim;
4740 
4741   struct WorkItem {
4742     uint region_idx;
4743     bool is_young;
4744     bool evacuation_failed;
4745 
4746     WorkItem(HeapRegion* r) {
4747       region_idx = r->hrm_index();
4748       is_young = r->is_young();
4749       evacuation_failed = r->evacuation_failed();
4750     }
4751   };
4752 
4753   volatile size_t _parallel_work_claim;
4754   size_t _num_work_items;
4755   WorkItem* _work_items;
4756 
4757   void do_serial_work() {
4758     // Need to grab the lock to be allowed to modify the old region list.
4759     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4760     _collection_set->iterate(&_cl);
4761   }
4762 
4763   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4764     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4765 
4766     HeapRegion* r = g1h->region_at(region_idx);
4767     assert(!g1h->is_on_master_free_list(r), "sanity");
4768 
4769     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4770 
4771     if (!is_young) {
4772       g1h->_hot_card_cache->reset_card_counts(r);
4773     }
4774 
4775     if (!evacuation_failed) {
4776       r->rem_set()->clear_locked();
4777     }
4778   }
4779 
4780   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4781   private:
4782     size_t _cur_idx;
4783     WorkItem* _work_items;
4784   public:
4785     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4786 
4787     virtual bool doHeapRegion(HeapRegion* r) {
4788       _work_items[_cur_idx++] = WorkItem(r);
4789       return false;
4790     }
4791   };
4792 
4793   void prepare_work() {
4794     G1PrepareFreeCollectionSetClosure cl(_work_items);
4795     _collection_set->iterate(&cl);
4796   }
4797 
4798   void complete_work() {
4799     _cl.complete_work();
4800 
4801     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4802     policy->record_max_rs_lengths(_rs_lengths);
4803     policy->cset_regions_freed();
4804   }
4805 public:
4806   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4807     AbstractGangTask("G1 Free Collection Set"),
4808     _cl(evacuation_info, surviving_young_words),
4809     _collection_set(collection_set),
4810     _surviving_young_words(surviving_young_words),
4811     _serial_work_claim(0),
4812     _rs_lengths(0),
4813     _parallel_work_claim(0),
4814     _num_work_items(collection_set->region_length()),
4815     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4816     prepare_work();
4817   }
4818 
4819   ~G1FreeCollectionSetTask() {
4820     complete_work();
4821     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4822   }
4823 
4824   // Chunk size for work distribution. The chosen value has been determined experimentally
4825   // to be a good tradeoff between overhead and achievable parallelism.
4826   static uint chunk_size() { return 32; }
4827 
4828   virtual void work(uint worker_id) {
4829     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4830 
4831     // Claim serial work.
4832     if (_serial_work_claim == 0) {
4833       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4834       if (value == 0) {
4835         double serial_time = os::elapsedTime();
4836         do_serial_work();
4837         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4838       }
4839     }
4840 
4841     // Start parallel work.
4842     double young_time = 0.0;
4843     bool has_young_time = false;
4844     double non_young_time = 0.0;
4845     bool has_non_young_time = false;
4846 
4847     while (true) {
4848       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4849       size_t cur = end - chunk_size();
4850 
4851       if (cur >= _num_work_items) {
4852         break;
4853       }
4854 
4855       double start_time = os::elapsedTime();
4856 
4857       end = MIN2(end, _num_work_items);
4858 
4859       for (; cur < end; cur++) {
4860         bool is_young = _work_items[cur].is_young;
4861 
4862         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4863 
4864         double end_time = os::elapsedTime();
4865         double time_taken = end_time - start_time;
4866         if (is_young) {
4867           young_time += time_taken;
4868           has_young_time = true;
4869         } else {
4870           non_young_time += time_taken;
4871           has_non_young_time = true;
4872         }
4873         start_time = end_time;
4874       }
4875     }
4876 
4877     if (has_young_time) {
4878       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4879     }
4880     if (has_non_young_time) {
4881       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4882     }
4883   }
4884 };
4885 
4886 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4887   _eden.clear();
4888 
4889   double free_cset_start_time = os::elapsedTime();
4890 
4891   {
4892     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4893     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4894 
4895     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4896 
4897     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4898                         cl.name(),
4899                         num_workers,
4900                         _collection_set.region_length());
4901     workers()->run_task(&cl, num_workers);
4902   }
4903   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4904 
4905   collection_set->clear();
4906 }
4907 
4908 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4909  private:
4910   FreeRegionList* _free_region_list;
4911   HeapRegionSet* _proxy_set;
4912   uint _humongous_regions_removed;
4913   size_t _freed_bytes;
4914  public:
4915 
4916   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4917     _free_region_list(free_region_list), _humongous_regions_removed(0), _freed_bytes(0) {
4918   }
4919 
4920   virtual bool doHeapRegion(HeapRegion* r) {
4921     if (!r->is_starts_humongous()) {
4922       return false;
4923     }
4924 
4925     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4926 
4927     oop obj = (oop)r->bottom();
4928     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4929 
4930     // The following checks whether the humongous object is live are sufficient.
4931     // The main additional check (in addition to having a reference from the roots
4932     // or the young gen) is whether the humongous object has a remembered set entry.
4933     //
4934     // A humongous object cannot be live if there is no remembered set for it
4935     // because:
4936     // - there can be no references from within humongous starts regions referencing
4937     // the object because we never allocate other objects into them.
4938     // (I.e. there are no intra-region references that may be missed by the
4939     // remembered set)
4940     // - as soon there is a remembered set entry to the humongous starts region
4941     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4942     // until the end of a concurrent mark.
4943     //
4944     // It is not required to check whether the object has been found dead by marking
4945     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4946     // all objects allocated during that time are considered live.
4947     // SATB marking is even more conservative than the remembered set.
4948     // So if at this point in the collection there is no remembered set entry,
4949     // nobody has a reference to it.
4950     // At the start of collection we flush all refinement logs, and remembered sets
4951     // are completely up-to-date wrt to references to the humongous object.
4952     //
4953     // Other implementation considerations:
4954     // - never consider object arrays at this time because they would pose
4955     // considerable effort for cleaning up the the remembered sets. This is
4956     // required because stale remembered sets might reference locations that
4957     // are currently allocated into.
4958     uint region_idx = r->hrm_index();
4959     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4960         !r->rem_set()->is_empty()) {
4961       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4962                                region_idx,
4963                                (size_t)obj->size() * HeapWordSize,
4964                                p2i(r->bottom()),
4965                                r->rem_set()->occupied(),
4966                                r->rem_set()->strong_code_roots_list_length(),
4967                                next_bitmap->isMarked(r->bottom()),
4968                                g1h->is_humongous_reclaim_candidate(region_idx),
4969                                obj->is_typeArray()
4970                               );
4971       return false;
4972     }
4973 
4974     guarantee(obj->is_typeArray(),
4975               "Only eagerly reclaiming type arrays is supported, but the object "
4976               PTR_FORMAT " is not.", p2i(r->bottom()));
4977 
4978     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4979                              region_idx,
4980                              (size_t)obj->size() * HeapWordSize,
4981                              p2i(r->bottom()),
4982                              r->rem_set()->occupied(),
4983                              r->rem_set()->strong_code_roots_list_length(),
4984                              next_bitmap->isMarked(r->bottom()),
4985                              g1h->is_humongous_reclaim_candidate(region_idx),
4986                              obj->is_typeArray()
4987                             );
4988 
4989     // Need to clear mark bit of the humongous object if already set.
4990     if (next_bitmap->isMarked(r->bottom())) {
4991       next_bitmap->clear(r->bottom());
4992     }
4993     do {
4994       HeapRegion* next = g1h->next_region_in_humongous(r);
4995       _freed_bytes += r->used();
4996       r->set_containing_set(NULL);
4997       _humongous_regions_removed++;
4998       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4999       r = next;
5000     } while (r != NULL);
5001 
5002     return false;
5003   }
5004 
5005   uint humongous_free_count() {
5006     return _humongous_regions_removed;
5007   }
5008 
5009   size_t bytes_freed() const {
5010     return _freed_bytes;
5011   }
5012 };
5013 
5014 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5015   assert_at_safepoint(true);
5016 
5017   if (!G1EagerReclaimHumongousObjects ||
5018       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5019     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5020     return;
5021   }
5022 
5023   double start_time = os::elapsedTime();
5024 
5025   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5026 
5027   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5028   heap_region_iterate(&cl);
5029 
5030   remove_from_old_sets(0, cl.humongous_free_count());
5031 
5032   G1HRPrinter* hrp = hr_printer();
5033   if (hrp->is_active()) {
5034     FreeRegionListIterator iter(&local_cleanup_list);
5035     while (iter.more_available()) {
5036       HeapRegion* hr = iter.get_next();
5037       hrp->cleanup(hr);
5038     }
5039   }
5040 
5041   prepend_to_freelist(&local_cleanup_list);
5042   decrement_summary_bytes(cl.bytes_freed());
5043 
5044   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5045                                                                     cl.humongous_free_count());
5046 }
5047 
5048 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
5049 public:
5050   virtual bool doHeapRegion(HeapRegion* r) {
5051     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
5052     G1CollectedHeap::heap()->clear_in_cset(r);
5053     r->set_young_index_in_cset(-1);
5054     return false;
5055   }
5056 };
5057 
5058 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
5059   G1AbandonCollectionSetClosure cl;
5060   collection_set->iterate(&cl);
5061 
5062   collection_set->clear();
5063   collection_set->stop_incremental_building();
5064 }
5065 
5066 void G1CollectedHeap::set_free_regions_coming() {
5067   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5068 
5069   assert(!free_regions_coming(), "pre-condition");
5070   _free_regions_coming = true;
5071 }
5072 
5073 void G1CollectedHeap::reset_free_regions_coming() {
5074   assert(free_regions_coming(), "pre-condition");
5075 
5076   {
5077     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5078     _free_regions_coming = false;
5079     SecondaryFreeList_lock->notify_all();
5080   }
5081 
5082   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5083 }
5084 
5085 void G1CollectedHeap::wait_while_free_regions_coming() {
5086   // Most of the time we won't have to wait, so let's do a quick test
5087   // first before we take the lock.
5088   if (!free_regions_coming()) {
5089     return;
5090   }
5091 
5092   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5093 
5094   {
5095     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5096     while (free_regions_coming()) {
5097       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5098     }
5099   }
5100 
5101   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5102 }
5103 
5104 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5105   return _allocator->is_retained_old_region(hr);
5106 }
5107 
5108 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5109   _eden.add(hr);
5110   _g1_policy->set_region_eden(hr);
5111 }
5112 
5113 #ifdef ASSERT
5114 
5115 class NoYoungRegionsClosure: public HeapRegionClosure {
5116 private:
5117   bool _success;
5118 public:
5119   NoYoungRegionsClosure() : _success(true) { }
5120   bool doHeapRegion(HeapRegion* r) {
5121     if (r->is_young()) {
5122       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5123                             p2i(r->bottom()), p2i(r->end()));
5124       _success = false;
5125     }
5126     return false;
5127   }
5128   bool success() { return _success; }
5129 };
5130 
5131 bool G1CollectedHeap::check_young_list_empty() {
5132   bool ret = (young_regions_count() == 0);
5133 
5134   NoYoungRegionsClosure closure;
5135   heap_region_iterate(&closure);
5136   ret = ret && closure.success();
5137 
5138   return ret;
5139 }
5140 
5141 #endif // ASSERT
5142 
5143 class TearDownRegionSetsClosure : public HeapRegionClosure {
5144 private:
5145   HeapRegionSet *_old_set;
5146 
5147 public:
5148   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5149 
5150   bool doHeapRegion(HeapRegion* r) {
5151     if (r->is_old()) {
5152       _old_set->remove(r);
5153     } else if(r->is_young()) {
5154       r->uninstall_surv_rate_group();
5155     } else {
5156       // We ignore free regions, we'll empty the free list afterwards.
5157       // We ignore humongous regions, we're not tearing down the
5158       // humongous regions set.
5159       assert(r->is_free() || r->is_humongous(),
5160              "it cannot be another type");
5161     }
5162     return false;
5163   }
5164 
5165   ~TearDownRegionSetsClosure() {
5166     assert(_old_set->is_empty(), "post-condition");
5167   }
5168 };
5169 
5170 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5171   assert_at_safepoint(true /* should_be_vm_thread */);
5172 
5173   if (!free_list_only) {
5174     TearDownRegionSetsClosure cl(&_old_set);
5175     heap_region_iterate(&cl);
5176 
5177     // Note that emptying the _young_list is postponed and instead done as
5178     // the first step when rebuilding the regions sets again. The reason for
5179     // this is that during a full GC string deduplication needs to know if
5180     // a collected region was young or old when the full GC was initiated.
5181   }
5182   _hrm.remove_all_free_regions();
5183 }
5184 
5185 void G1CollectedHeap::increase_used(size_t bytes) {
5186   _summary_bytes_used += bytes;
5187 }
5188 
5189 void G1CollectedHeap::decrease_used(size_t bytes) {
5190   assert(_summary_bytes_used >= bytes,
5191          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5192          _summary_bytes_used, bytes);
5193   _summary_bytes_used -= bytes;
5194 }
5195 
5196 void G1CollectedHeap::set_used(size_t bytes) {
5197   _summary_bytes_used = bytes;
5198 }
5199 
5200 class RebuildRegionSetsClosure : public HeapRegionClosure {
5201 private:
5202   bool            _free_list_only;
5203   HeapRegionSet*   _old_set;
5204   HeapRegionManager*   _hrm;
5205   size_t          _total_used;
5206 
5207 public:
5208   RebuildRegionSetsClosure(bool free_list_only,
5209                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5210     _free_list_only(free_list_only),
5211     _old_set(old_set), _hrm(hrm), _total_used(0) {
5212     assert(_hrm->num_free_regions() == 0, "pre-condition");
5213     if (!free_list_only) {
5214       assert(_old_set->is_empty(), "pre-condition");
5215     }
5216   }
5217 
5218   bool doHeapRegion(HeapRegion* r) {
5219     if (r->is_empty()) {
5220       // Add free regions to the free list
5221       r->set_free();
5222       r->set_allocation_context(AllocationContext::system());
5223       _hrm->insert_into_free_list(r);
5224     } else if (!_free_list_only) {
5225 
5226       if (r->is_humongous()) {
5227         // We ignore humongous regions. We left the humongous set unchanged.
5228       } else {
5229         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5230         // We now consider all regions old, so register as such. Leave
5231         // archive regions set that way, however, while still adding
5232         // them to the old set.
5233         if (!r->is_archive()) {
5234           r->set_old();
5235         }
5236         _old_set->add(r);
5237       }
5238       _total_used += r->used();
5239     }
5240 
5241     return false;
5242   }
5243 
5244   size_t total_used() {
5245     return _total_used;
5246   }
5247 };
5248 
5249 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5250   assert_at_safepoint(true /* should_be_vm_thread */);
5251 
5252   if (!free_list_only) {
5253     _eden.clear();
5254     _survivor.clear();
5255   }
5256 
5257   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5258   heap_region_iterate(&cl);
5259 
5260   if (!free_list_only) {
5261     set_used(cl.total_used());
5262     if (_archive_allocator != NULL) {
5263       _archive_allocator->clear_used();
5264     }
5265   }
5266   assert(used_unlocked() == recalculate_used(),
5267          "inconsistent used_unlocked(), "
5268          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5269          used_unlocked(), recalculate_used());
5270 }
5271 
5272 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5273   _refine_cte_cl->set_concurrent(concurrent);
5274 }
5275 
5276 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5277   HeapRegion* hr = heap_region_containing(p);
5278   return hr->is_in(p);
5279 }
5280 
5281 // Methods for the mutator alloc region
5282 
5283 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5284                                                       bool force) {
5285   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5286   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5287   if (force || should_allocate) {
5288     HeapRegion* new_alloc_region = new_region(word_size,
5289                                               false /* is_old */,
5290                                               false /* do_expand */);
5291     if (new_alloc_region != NULL) {
5292       set_region_short_lived_locked(new_alloc_region);
5293       _hr_printer.alloc(new_alloc_region, !should_allocate);
5294       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5295       return new_alloc_region;
5296     }
5297   }
5298   return NULL;
5299 }
5300 
5301 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5302                                                   size_t allocated_bytes) {
5303   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5304   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5305 
5306   collection_set()->add_eden_region(alloc_region);
5307   increase_used(allocated_bytes);
5308   _hr_printer.retire(alloc_region);
5309   // We update the eden sizes here, when the region is retired,
5310   // instead of when it's allocated, since this is the point that its
5311   // used space has been recored in _summary_bytes_used.
5312   g1mm()->update_eden_size();
5313 }
5314 
5315 // Methods for the GC alloc regions
5316 
5317 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5318   if (dest.is_old()) {
5319     return true;
5320   } else {
5321     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5322   }
5323 }
5324 
5325 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5326   assert(FreeList_lock->owned_by_self(), "pre-condition");
5327 
5328   if (!has_more_regions(dest)) {
5329     return NULL;
5330   }
5331 
5332   const bool is_survivor = dest.is_young();
5333 
5334   HeapRegion* new_alloc_region = new_region(word_size,
5335                                             !is_survivor,
5336                                             true /* do_expand */);
5337   if (new_alloc_region != NULL) {
5338     // We really only need to do this for old regions given that we
5339     // should never scan survivors. But it doesn't hurt to do it
5340     // for survivors too.
5341     new_alloc_region->record_timestamp();
5342     if (is_survivor) {
5343       new_alloc_region->set_survivor();
5344       _survivor.add(new_alloc_region);
5345       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5346     } else {
5347       new_alloc_region->set_old();
5348       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5349     }
5350     _hr_printer.alloc(new_alloc_region);
5351     bool during_im = collector_state()->during_initial_mark_pause();
5352     new_alloc_region->note_start_of_copying(during_im);
5353     return new_alloc_region;
5354   }
5355   return NULL;
5356 }
5357 
5358 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5359                                              size_t allocated_bytes,
5360                                              InCSetState dest) {
5361   bool during_im = collector_state()->during_initial_mark_pause();
5362   alloc_region->note_end_of_copying(during_im);
5363   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5364   if (dest.is_old()) {
5365     _old_set.add(alloc_region);
5366   }
5367   _hr_printer.retire(alloc_region);
5368 }
5369 
5370 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5371   bool expanded = false;
5372   uint index = _hrm.find_highest_free(&expanded);
5373 
5374   if (index != G1_NO_HRM_INDEX) {
5375     if (expanded) {
5376       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5377                                 HeapRegion::GrainWords * HeapWordSize);
5378     }
5379     _hrm.allocate_free_regions_starting_at(index, 1);
5380     return region_at(index);
5381   }
5382   return NULL;
5383 }
5384 
5385 // Optimized nmethod scanning
5386 
5387 class RegisterNMethodOopClosure: public OopClosure {
5388   G1CollectedHeap* _g1h;
5389   nmethod* _nm;
5390 
5391   template <class T> void do_oop_work(T* p) {
5392     T heap_oop = oopDesc::load_heap_oop(p);
5393     if (!oopDesc::is_null(heap_oop)) {
5394       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5395       HeapRegion* hr = _g1h->heap_region_containing(obj);
5396       assert(!hr->is_continues_humongous(),
5397              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5398              " starting at " HR_FORMAT,
5399              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5400 
5401       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5402       hr->add_strong_code_root_locked(_nm);
5403     }
5404   }
5405 
5406 public:
5407   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5408     _g1h(g1h), _nm(nm) {}
5409 
5410   void do_oop(oop* p)       { do_oop_work(p); }
5411   void do_oop(narrowOop* p) { do_oop_work(p); }
5412 };
5413 
5414 class UnregisterNMethodOopClosure: public OopClosure {
5415   G1CollectedHeap* _g1h;
5416   nmethod* _nm;
5417 
5418   template <class T> void do_oop_work(T* p) {
5419     T heap_oop = oopDesc::load_heap_oop(p);
5420     if (!oopDesc::is_null(heap_oop)) {
5421       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5422       HeapRegion* hr = _g1h->heap_region_containing(obj);
5423       assert(!hr->is_continues_humongous(),
5424              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5425              " starting at " HR_FORMAT,
5426              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5427 
5428       hr->remove_strong_code_root(_nm);
5429     }
5430   }
5431 
5432 public:
5433   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5434     _g1h(g1h), _nm(nm) {}
5435 
5436   void do_oop(oop* p)       { do_oop_work(p); }
5437   void do_oop(narrowOop* p) { do_oop_work(p); }
5438 };
5439 
5440 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5441   CollectedHeap::register_nmethod(nm);
5442 
5443   guarantee(nm != NULL, "sanity");
5444   RegisterNMethodOopClosure reg_cl(this, nm);
5445   nm->oops_do(&reg_cl);
5446 }
5447 
5448 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5449   CollectedHeap::unregister_nmethod(nm);
5450 
5451   guarantee(nm != NULL, "sanity");
5452   UnregisterNMethodOopClosure reg_cl(this, nm);
5453   nm->oops_do(&reg_cl, true);
5454 }
5455 
5456 void G1CollectedHeap::purge_code_root_memory() {
5457   double purge_start = os::elapsedTime();
5458   G1CodeRootSet::purge();
5459   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5460   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5461 }
5462 
5463 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5464   G1CollectedHeap* _g1h;
5465 
5466 public:
5467   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5468     _g1h(g1h) {}
5469 
5470   void do_code_blob(CodeBlob* cb) {
5471     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5472     if (nm == NULL) {
5473       return;
5474     }
5475 
5476     if (ScavengeRootsInCode) {
5477       _g1h->register_nmethod(nm);
5478     }
5479   }
5480 };
5481 
5482 void G1CollectedHeap::rebuild_strong_code_roots() {
5483   RebuildStrongCodeRootClosure blob_cl(this);
5484   CodeCache::blobs_do(&blob_cl);
5485 }