1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  27 
  28 #include "classfile/javaClasses.hpp"
  29 #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.hpp"
  30 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  31 #include "gc/g1/heapRegionSet.hpp"
  32 #include "gc/shared/taskqueue.hpp"
  33 
  34 class G1CollectedHeap;
  35 class G1CMBitMap;
  36 class G1CMTask;
  37 class G1ConcurrentMark;
  38 class ConcurrentGCTimer;
  39 class G1OldTracer;
  40 class G1SurvivorRegions;
  41 typedef GenericTaskQueue<oop, mtGC>              G1CMTaskQueue;
  42 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
  43 
  44 // Closure used by CM during concurrent reference discovery
  45 // and reference processing (during remarking) to determine
  46 // if a particular object is alive. It is primarily used
  47 // to determine if referents of discovered reference objects
  48 // are alive. An instance is also embedded into the
  49 // reference processor as the _is_alive_non_header field
  50 class G1CMIsAliveClosure: public BoolObjectClosure {
  51   G1CollectedHeap* _g1;
  52  public:
  53   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
  54 
  55   bool do_object_b(oop obj);
  56 };
  57 
  58 // A generic CM bit map.  This is essentially a wrapper around the BitMap
  59 // class, with one bit per (1<<_shifter) HeapWords.
  60 
  61 class G1CMBitMapRO VALUE_OBJ_CLASS_SPEC {
  62  protected:
  63   HeapWord*  _bmStartWord; // base address of range covered by map
  64   size_t     _bmWordSize;  // map size (in #HeapWords covered)
  65   const int  _shifter;     // map to char or bit
  66   BitMapView _bm;          // the bit map itself
  67 
  68  public:
  69   // constructor
  70   G1CMBitMapRO(int shifter);
  71 
  72   // inquiries
  73   HeapWord* startWord()   const { return _bmStartWord; }
  74   // the following is one past the last word in space
  75   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
  76 
  77   // read marks
  78 
  79   bool isMarked(HeapWord* addr) const {
  80     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
  81            "outside underlying space?");
  82     return _bm.at(heapWordToOffset(addr));
  83   }
  84 
  85   // iteration
  86   inline bool iterate(BitMapClosure* cl, MemRegion mr);
  87 
  88   // Return the address corresponding to the next marked bit at or after
  89   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  90   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  91   HeapWord* getNextMarkedWordAddress(const HeapWord* addr,
  92                                      const HeapWord* limit = NULL) const;
  93 
  94   // conversion utilities
  95   HeapWord* offsetToHeapWord(size_t offset) const {
  96     return _bmStartWord + (offset << _shifter);
  97   }
  98   size_t heapWordToOffset(const HeapWord* addr) const {
  99     return pointer_delta(addr, _bmStartWord) >> _shifter;
 100   }
 101 
 102   // The argument addr should be the start address of a valid object
 103   inline HeapWord* nextObject(HeapWord* addr);
 104 
 105   void print_on_error(outputStream* st, const char* prefix) const;
 106 
 107   // debugging
 108   NOT_PRODUCT(bool covers(MemRegion rs) const;)
 109 };
 110 
 111 class G1CMBitMapMappingChangedListener : public G1MappingChangedListener {
 112  private:
 113   G1CMBitMap* _bm;
 114  public:
 115   G1CMBitMapMappingChangedListener() : _bm(NULL) {}
 116 
 117   void set_bitmap(G1CMBitMap* bm) { _bm = bm; }
 118 
 119   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 120 };
 121 
 122 class G1CMBitMap : public G1CMBitMapRO {
 123  private:
 124   G1CMBitMapMappingChangedListener _listener;
 125 
 126  public:
 127   static size_t compute_size(size_t heap_size);
 128   // Returns the amount of bytes on the heap between two marks in the bitmap.
 129   static size_t mark_distance();
 130   // Returns how many bytes (or bits) of the heap a single byte (or bit) of the
 131   // mark bitmap corresponds to. This is the same as the mark distance above.
 132   static size_t heap_map_factor() {
 133     return mark_distance();
 134   }
 135 
 136   G1CMBitMap() : G1CMBitMapRO(LogMinObjAlignment), _listener() { _listener.set_bitmap(this); }
 137 
 138   // Initializes the underlying BitMap to cover the given area.
 139   void initialize(MemRegion heap, G1RegionToSpaceMapper* storage);
 140 
 141   // Write marks.
 142   inline void mark(HeapWord* addr);
 143   inline void clear(HeapWord* addr);
 144   inline bool parMark(HeapWord* addr);
 145 
 146   void clear_range(MemRegion mr);
 147 };
 148 
 149 // Represents the overflow mark stack used by concurrent marking.
 150 //
 151 // Stores oops in a huge buffer in virtual memory that is always fully committed.
 152 // Resizing may only happen during a STW pause when the stack is empty.
 153 //
 154 // Memory is allocated on a "chunk" basis, i.e. a set of oops. For this, the mark
 155 // stack memory is split into evenly sized chunks of oops. Users can only
 156 // add or remove entries on that basis.
 157 // Chunks are filled in increasing address order. Not completely filled chunks
 158 // have a NULL element as a terminating element.
 159 //
 160 // Every chunk has a header containing a single pointer element used for memory
 161 // management. This wastes some space, but is negligible (< .1% with current sizing).
 162 //
 163 // Memory management is done using a mix of tracking a high water-mark indicating
 164 // that all chunks at a lower address are valid chunks, and a singly linked free
 165 // list connecting all empty chunks.
 166 class G1CMMarkStack VALUE_OBJ_CLASS_SPEC {
 167 public:
 168   // Number of oops that can fit in a single chunk.
 169   static const size_t OopsPerChunk = 1024 - 1 /* One reference for the next pointer */;
 170 private:
 171   struct OopChunk {
 172     OopChunk* next;
 173     oop data[OopsPerChunk];
 174   };
 175 
 176   size_t _max_chunk_capacity;    // Maximum number of OopChunk elements on the stack.
 177 
 178   OopChunk* _base;               // Bottom address of allocated memory area.
 179   size_t _chunk_capacity;        // Current maximum number of OopChunk elements.
 180 
 181   char _pad0[DEFAULT_CACHE_LINE_SIZE];
 182   OopChunk* volatile _free_list;  // Linked list of free chunks that can be allocated by users.
 183   char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(OopChunk*)];
 184   OopChunk* volatile _chunk_list; // List of chunks currently containing data.
 185   volatile size_t _chunks_in_chunk_list;
 186   char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(OopChunk*) - sizeof(size_t)];
 187 
 188   volatile size_t _hwm;          // High water mark within the reserved space.
 189   char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)];
 190 
 191   // Allocate a new chunk from the reserved memory, using the high water mark. Returns
 192   // NULL if out of memory.
 193   OopChunk* allocate_new_chunk();
 194 
 195   volatile bool _out_of_memory;
 196 
 197   // Atomically add the given chunk to the list.
 198   void add_chunk_to_list(OopChunk* volatile* list, OopChunk* elem);
 199   // Atomically remove and return a chunk from the given list. Returns NULL if the
 200   // list is empty.
 201   OopChunk* remove_chunk_from_list(OopChunk* volatile* list);
 202 
 203   void add_chunk_to_chunk_list(OopChunk* elem);
 204   void add_chunk_to_free_list(OopChunk* elem);
 205 
 206   OopChunk* remove_chunk_from_chunk_list();
 207   OopChunk* remove_chunk_from_free_list();
 208 
 209   bool  _should_expand;
 210 
 211   // Resizes the mark stack to the given new capacity. Releases any previous
 212   // memory if successful.
 213   bool resize(size_t new_capacity);
 214 
 215  public:
 216   G1CMMarkStack();
 217   ~G1CMMarkStack();
 218 
 219   // Alignment and minimum capacity of this mark stack in number of oops.
 220   static size_t capacity_alignment();
 221 
 222   // Allocate and initialize the mark stack with the given number of oops.
 223   bool initialize(size_t initial_capacity, size_t max_capacity);
 224 
 225   // Pushes the given buffer containing at most OopsPerChunk elements on the mark
 226   // stack. If less than OopsPerChunk elements are to be pushed, the array must
 227   // be terminated with a NULL.
 228   // Returns whether the buffer contents were successfully pushed to the global mark
 229   // stack.
 230   bool par_push_chunk(oop* buffer);
 231 
 232   // Pops a chunk from this mark stack, copying them into the given buffer. This
 233   // chunk may contain up to OopsPerChunk elements. If there are less, the last
 234   // element in the array is a NULL pointer.
 235   bool par_pop_chunk(oop* buffer);
 236 
 237   // Return whether the chunk list is empty. Racy due to unsynchronized access to
 238   // _chunk_list.
 239   bool is_empty() const { return _chunk_list == NULL; }
 240 
 241   size_t capacity() const  { return _chunk_capacity; }
 242 
 243   bool is_out_of_memory() const { return _out_of_memory; }
 244   void clear_out_of_memory() { _out_of_memory = false; }
 245 
 246   bool should_expand() const { return _should_expand; }
 247   void set_should_expand(bool value) { _should_expand = value; }
 248 
 249   // Expand the stack, typically in response to an overflow condition
 250   void expand();
 251 
 252   // Return the approximate number of oops on this mark stack. Racy due to
 253   // unsynchronized access to _chunks_in_chunk_list.
 254   size_t size() const { return _chunks_in_chunk_list * OopsPerChunk; }
 255 
 256   void set_empty();
 257 
 258   // Apply Fn to every oop on the mark stack. The mark stack must not
 259   // be modified while iterating.
 260   template<typename Fn> void iterate(Fn fn) const PRODUCT_RETURN;
 261 };
 262 
 263 // Root Regions are regions that are not empty at the beginning of a
 264 // marking cycle and which we might collect during an evacuation pause
 265 // while the cycle is active. Given that, during evacuation pauses, we
 266 // do not copy objects that are explicitly marked, what we have to do
 267 // for the root regions is to scan them and mark all objects reachable
 268 // from them. According to the SATB assumptions, we only need to visit
 269 // each object once during marking. So, as long as we finish this scan
 270 // before the next evacuation pause, we can copy the objects from the
 271 // root regions without having to mark them or do anything else to them.
 272 //
 273 // Currently, we only support root region scanning once (at the start
 274 // of the marking cycle) and the root regions are all the survivor
 275 // regions populated during the initial-mark pause.
 276 class G1CMRootRegions VALUE_OBJ_CLASS_SPEC {
 277 private:
 278   const G1SurvivorRegions* _survivors;
 279   G1ConcurrentMark*        _cm;
 280 
 281   volatile bool            _scan_in_progress;
 282   volatile bool            _should_abort;
 283   volatile int             _claimed_survivor_index;
 284 
 285   void notify_scan_done();
 286 
 287 public:
 288   G1CMRootRegions();
 289   // We actually do most of the initialization in this method.
 290   void init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm);
 291 
 292   // Reset the claiming / scanning of the root regions.
 293   void prepare_for_scan();
 294 
 295   // Forces get_next() to return NULL so that the iteration aborts early.
 296   void abort() { _should_abort = true; }
 297 
 298   // Return true if the CM thread are actively scanning root regions,
 299   // false otherwise.
 300   bool scan_in_progress() { return _scan_in_progress; }
 301 
 302   // Claim the next root region to scan atomically, or return NULL if
 303   // all have been claimed.
 304   HeapRegion* claim_next();
 305 
 306   // The number of root regions to scan.
 307   uint num_root_regions() const;
 308 
 309   void cancel_scan();
 310 
 311   // Flag that we're done with root region scanning and notify anyone
 312   // who's waiting on it. If aborted is false, assume that all regions
 313   // have been claimed.
 314   void scan_finished();
 315 
 316   // If CM threads are still scanning root regions, wait until they
 317   // are done. Return true if we had to wait, false otherwise.
 318   bool wait_until_scan_finished();
 319 };
 320 
 321 class ConcurrentMarkThread;
 322 
 323 class G1ConcurrentMark: public CHeapObj<mtGC> {
 324   friend class ConcurrentMarkThread;
 325   friend class G1ParNoteEndTask;
 326   friend class G1VerifyLiveDataClosure;
 327   friend class G1CMRefProcTaskProxy;
 328   friend class G1CMRefProcTaskExecutor;
 329   friend class G1CMKeepAliveAndDrainClosure;
 330   friend class G1CMDrainMarkingStackClosure;
 331   friend class G1CMBitMapClosure;
 332   friend class G1CMConcurrentMarkingTask;
 333   friend class G1CMRemarkTask;
 334   friend class G1CMTask;
 335 
 336 protected:
 337   ConcurrentMarkThread* _cmThread;   // The thread doing the work
 338   G1CollectedHeap*      _g1h;        // The heap
 339   uint                  _parallel_marking_threads; // The number of marking
 340                                                    // threads we're using
 341   uint                  _max_parallel_marking_threads; // Max number of marking
 342                                                        // threads we'll ever use
 343   double                _sleep_factor; // How much we have to sleep, with
 344                                        // respect to the work we just did, to
 345                                        // meet the marking overhead goal
 346   double                _marking_task_overhead; // Marking target overhead for
 347                                                 // a single task
 348 
 349   FreeRegionList        _cleanup_list;
 350 
 351   // Concurrent marking support structures
 352   G1CMBitMap              _markBitMap1;
 353   G1CMBitMap              _markBitMap2;
 354   G1CMBitMapRO*           _prevMarkBitMap; // Completed mark bitmap
 355   G1CMBitMap*             _nextMarkBitMap; // Under-construction mark bitmap
 356 
 357   // Heap bounds
 358   HeapWord*               _heap_start;
 359   HeapWord*               _heap_end;
 360 
 361   // Root region tracking and claiming
 362   G1CMRootRegions         _root_regions;
 363 
 364   // For gray objects
 365   G1CMMarkStack           _global_mark_stack; // Grey objects behind global finger
 366   HeapWord* volatile      _finger;  // The global finger, region aligned,
 367                                     // always points to the end of the
 368                                     // last claimed region
 369 
 370   // Marking tasks
 371   uint                    _max_worker_id;// Maximum worker id
 372   uint                    _active_tasks; // Task num currently active
 373   G1CMTask**              _tasks;        // Task queue array (max_worker_id len)
 374   G1CMTaskQueueSet*       _task_queues;  // Task queue set
 375   ParallelTaskTerminator  _terminator;   // For termination
 376 
 377   // Two sync barriers that are used to synchronize tasks when an
 378   // overflow occurs. The algorithm is the following. All tasks enter
 379   // the first one to ensure that they have all stopped manipulating
 380   // the global data structures. After they exit it, they re-initialize
 381   // their data structures and task 0 re-initializes the global data
 382   // structures. Then, they enter the second sync barrier. This
 383   // ensure, that no task starts doing work before all data
 384   // structures (local and global) have been re-initialized. When they
 385   // exit it, they are free to start working again.
 386   WorkGangBarrierSync     _first_overflow_barrier_sync;
 387   WorkGangBarrierSync     _second_overflow_barrier_sync;
 388 
 389   // This is set by any task, when an overflow on the global data
 390   // structures is detected
 391   volatile bool           _has_overflown;
 392   // True: marking is concurrent, false: we're in remark
 393   volatile bool           _concurrent;
 394   // Set at the end of a Full GC so that marking aborts
 395   volatile bool           _has_aborted;
 396 
 397   // Used when remark aborts due to an overflow to indicate that
 398   // another concurrent marking phase should start
 399   volatile bool           _restart_for_overflow;
 400 
 401   // This is true from the very start of concurrent marking until the
 402   // point when all the tasks complete their work. It is really used
 403   // to determine the points between the end of concurrent marking and
 404   // time of remark.
 405   volatile bool           _concurrent_marking_in_progress;
 406 
 407   ConcurrentGCTimer*      _gc_timer_cm;
 408 
 409   G1OldTracer*            _gc_tracer_cm;
 410 
 411   // All of these times are in ms
 412   NumberSeq _init_times;
 413   NumberSeq _remark_times;
 414   NumberSeq _remark_mark_times;
 415   NumberSeq _remark_weak_ref_times;
 416   NumberSeq _cleanup_times;
 417   double    _total_counting_time;
 418   double    _total_rs_scrub_time;
 419 
 420   double*   _accum_task_vtime;   // Accumulated task vtime
 421 
 422   WorkGang* _parallel_workers;
 423 
 424   void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
 425   void weakRefsWork(bool clear_all_soft_refs);
 426 
 427   void swapMarkBitMaps();
 428 
 429   // It resets the global marking data structures, as well as the
 430   // task local ones; should be called during initial mark.
 431   void reset();
 432 
 433   // Resets all the marking data structures. Called when we have to restart
 434   // marking or when marking completes (via set_non_marking_state below).
 435   void reset_marking_state(bool clear_overflow = true);
 436 
 437   // We do this after we're done with marking so that the marking data
 438   // structures are initialized to a sensible and predictable state.
 439   void set_non_marking_state();
 440 
 441   // Called to indicate how many threads are currently active.
 442   void set_concurrency(uint active_tasks);
 443 
 444   // It should be called to indicate which phase we're in (concurrent
 445   // mark or remark) and how many threads are currently active.
 446   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
 447 
 448   // Prints all gathered CM-related statistics
 449   void print_stats();
 450 
 451   bool cleanup_list_is_empty() {
 452     return _cleanup_list.is_empty();
 453   }
 454 
 455   // Accessor methods
 456   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
 457   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
 458   double sleep_factor()                     { return _sleep_factor; }
 459   double marking_task_overhead()            { return _marking_task_overhead;}
 460 
 461   HeapWord*               finger()          { return _finger;   }
 462   bool                    concurrent()      { return _concurrent; }
 463   uint                    active_tasks()    { return _active_tasks; }
 464   ParallelTaskTerminator* terminator()      { return &_terminator; }
 465 
 466   // It claims the next available region to be scanned by a marking
 467   // task/thread. It might return NULL if the next region is empty or
 468   // we have run out of regions. In the latter case, out_of_regions()
 469   // determines whether we've really run out of regions or the task
 470   // should call claim_region() again. This might seem a bit
 471   // awkward. Originally, the code was written so that claim_region()
 472   // either successfully returned with a non-empty region or there
 473   // were no more regions to be claimed. The problem with this was
 474   // that, in certain circumstances, it iterated over large chunks of
 475   // the heap finding only empty regions and, while it was working, it
 476   // was preventing the calling task to call its regular clock
 477   // method. So, this way, each task will spend very little time in
 478   // claim_region() and is allowed to call the regular clock method
 479   // frequently.
 480   HeapRegion* claim_region(uint worker_id);
 481 
 482   // It determines whether we've run out of regions to scan. Note that
 483   // the finger can point past the heap end in case the heap was expanded
 484   // to satisfy an allocation without doing a GC. This is fine, because all
 485   // objects in those regions will be considered live anyway because of
 486   // SATB guarantees (i.e. their TAMS will be equal to bottom).
 487   bool        out_of_regions() { return _finger >= _heap_end; }
 488 
 489   // Returns the task with the given id
 490   G1CMTask* task(int id) {
 491     assert(0 <= id && id < (int) _active_tasks,
 492            "task id not within active bounds");
 493     return _tasks[id];
 494   }
 495 
 496   // Returns the task queue with the given id
 497   G1CMTaskQueue* task_queue(int id) {
 498     assert(0 <= id && id < (int) _active_tasks,
 499            "task queue id not within active bounds");
 500     return (G1CMTaskQueue*) _task_queues->queue(id);
 501   }
 502 
 503   // Returns the task queue set
 504   G1CMTaskQueueSet* task_queues()  { return _task_queues; }
 505 
 506   // Access / manipulation of the overflow flag which is set to
 507   // indicate that the global stack has overflown
 508   bool has_overflown()           { return _has_overflown; }
 509   void set_has_overflown()       { _has_overflown = true; }
 510   void clear_has_overflown()     { _has_overflown = false; }
 511   bool restart_for_overflow()    { return _restart_for_overflow; }
 512 
 513   // Methods to enter the two overflow sync barriers
 514   void enter_first_sync_barrier(uint worker_id);
 515   void enter_second_sync_barrier(uint worker_id);
 516 
 517   // Card index of the bottom of the G1 heap. Used for biasing indices into
 518   // the card bitmaps.
 519   intptr_t _heap_bottom_card_num;
 520 
 521   // Set to true when initialization is complete
 522   bool _completed_initialization;
 523 
 524   // end_timer, true to end gc timer after ending concurrent phase.
 525   void register_concurrent_phase_end_common(bool end_timer);
 526 
 527   // Clear the given bitmap in parallel using the given WorkGang. If may_yield is
 528   // true, periodically insert checks to see if this method should exit prematurely.
 529   void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield);
 530 public:
 531   // Manipulation of the global mark stack.
 532   // The push and pop operations are used by tasks for transfers
 533   // between task-local queues and the global mark stack.
 534   bool mark_stack_push(oop* arr) {
 535     if (!_global_mark_stack.par_push_chunk(arr)) {
 536       set_has_overflown();
 537       return false;
 538     }
 539     return true;
 540   }
 541   bool mark_stack_pop(oop* arr) {
 542     return _global_mark_stack.par_pop_chunk(arr);
 543   }
 544   size_t mark_stack_size()                { return _global_mark_stack.size(); }
 545   size_t partial_mark_stack_size_target() { return _global_mark_stack.capacity()/3; }
 546   bool mark_stack_overflow()              { return _global_mark_stack.is_out_of_memory(); }
 547   bool mark_stack_empty()                 { return _global_mark_stack.is_empty(); }
 548 
 549   G1CMRootRegions* root_regions() { return &_root_regions; }
 550 
 551   bool concurrent_marking_in_progress() {
 552     return _concurrent_marking_in_progress;
 553   }
 554   void set_concurrent_marking_in_progress() {
 555     _concurrent_marking_in_progress = true;
 556   }
 557   void clear_concurrent_marking_in_progress() {
 558     _concurrent_marking_in_progress = false;
 559   }
 560 
 561   void concurrent_cycle_start();
 562   void concurrent_cycle_end();
 563 
 564   void update_accum_task_vtime(int i, double vtime) {
 565     _accum_task_vtime[i] += vtime;
 566   }
 567 
 568   double all_task_accum_vtime() {
 569     double ret = 0.0;
 570     for (uint i = 0; i < _max_worker_id; ++i)
 571       ret += _accum_task_vtime[i];
 572     return ret;
 573   }
 574 
 575   // Attempts to steal an object from the task queues of other tasks
 576   bool try_stealing(uint worker_id, int* hash_seed, oop& obj);
 577 
 578   G1ConcurrentMark(G1CollectedHeap* g1h,
 579                    G1RegionToSpaceMapper* prev_bitmap_storage,
 580                    G1RegionToSpaceMapper* next_bitmap_storage);
 581   ~G1ConcurrentMark();
 582 
 583   ConcurrentMarkThread* cmThread() { return _cmThread; }
 584 
 585   G1CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 586   G1CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 587 
 588   // Returns the number of GC threads to be used in a concurrent
 589   // phase based on the number of GC threads being used in a STW
 590   // phase.
 591   uint scale_parallel_threads(uint n_par_threads);
 592 
 593   // Calculates the number of GC threads to be used in a concurrent phase.
 594   uint calc_parallel_marking_threads();
 595 
 596   // The following three are interaction between CM and
 597   // G1CollectedHeap
 598 
 599   // This notifies CM that a root during initial-mark needs to be
 600   // grayed. It is MT-safe. hr is the region that
 601   // contains the object and it's passed optionally from callers who
 602   // might already have it (no point in recalculating it).
 603   inline void grayRoot(oop obj,
 604                        HeapRegion* hr = NULL);
 605 
 606   // Prepare internal data structures for the next mark cycle. This includes clearing
 607   // the next mark bitmap and some internal data structures. This method is intended
 608   // to be called concurrently to the mutator. It will yield to safepoint requests.
 609   void cleanup_for_next_mark();
 610 
 611   // Clear the previous marking bitmap during safepoint.
 612   void clear_prev_bitmap(WorkGang* workers);
 613 
 614   // Return whether the next mark bitmap has no marks set. To be used for assertions
 615   // only. Will not yield to pause requests.
 616   bool nextMarkBitmapIsClear();
 617 
 618   // These two do the work that needs to be done before and after the
 619   // initial root checkpoint. Since this checkpoint can be done at two
 620   // different points (i.e. an explicit pause or piggy-backed on a
 621   // young collection), then it's nice to be able to easily share the
 622   // pre/post code. It might be the case that we can put everything in
 623   // the post method. TP
 624   void checkpointRootsInitialPre();
 625   void checkpointRootsInitialPost();
 626 
 627   // Scan all the root regions and mark everything reachable from
 628   // them.
 629   void scan_root_regions();
 630 
 631   // Scan a single root region and mark everything reachable from it.
 632   void scanRootRegion(HeapRegion* hr);
 633 
 634   // Do concurrent phase of marking, to a tentative transitive closure.
 635   void mark_from_roots();
 636 
 637   void checkpointRootsFinal(bool clear_all_soft_refs);
 638   void checkpointRootsFinalWork();
 639   void cleanup();
 640   void complete_cleanup();
 641 
 642   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 643   // this carefully!
 644   inline void markPrev(oop p);
 645 
 646   // Clears marks for all objects in the given range, for the prev or
 647   // next bitmaps.  NB: the previous bitmap is usually
 648   // read-only, so use this carefully!
 649   void clearRangePrevBitmap(MemRegion mr);
 650 
 651   // Verify that there are no CSet oops on the stacks (taskqueues /
 652   // global mark stack) and fingers (global / per-task).
 653   // If marking is not in progress, it's a no-op.
 654   void verify_no_cset_oops() PRODUCT_RETURN;
 655 
 656   inline bool isPrevMarked(oop p) const;
 657 
 658   inline bool do_yield_check();
 659 
 660   // Abandon current marking iteration due to a Full GC.
 661   void abort();
 662 
 663   bool has_aborted()      { return _has_aborted; }
 664 
 665   void print_summary_info();
 666 
 667   void print_worker_threads_on(outputStream* st) const;
 668   void threads_do(ThreadClosure* tc) const;
 669 
 670   void print_on_error(outputStream* st) const;
 671 
 672   // Attempts to mark the given object on the next mark bitmap.
 673   inline bool par_mark(oop obj);
 674 
 675   // Returns true if initialization was successfully completed.
 676   bool completed_initialization() const {
 677     return _completed_initialization;
 678   }
 679 
 680   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
 681   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
 682 
 683 private:
 684   // Clear (Reset) all liveness count data.
 685   void clear_live_data(WorkGang* workers);
 686 
 687 #ifdef ASSERT
 688   // Verify all of the above data structures that they are in initial state.
 689   void verify_live_data_clear();
 690 #endif
 691 
 692   // Aggregates the per-card liveness data based on the current marking. Also sets
 693   // the amount of marked bytes for each region.
 694   void create_live_data();
 695 
 696   void finalize_live_data();
 697 
 698   void verify_live_data();
 699 };
 700 
 701 // A class representing a marking task.
 702 class G1CMTask : public TerminatorTerminator {
 703 private:
 704   enum PrivateConstants {
 705     // The regular clock call is called once the scanned words reaches
 706     // this limit
 707     words_scanned_period          = 12*1024,
 708     // The regular clock call is called once the number of visited
 709     // references reaches this limit
 710     refs_reached_period           = 1024,
 711     // Initial value for the hash seed, used in the work stealing code
 712     init_hash_seed                = 17
 713   };
 714 
 715   G1CMObjArrayProcessor       _objArray_processor;
 716 
 717   uint                        _worker_id;
 718   G1CollectedHeap*            _g1h;
 719   G1ConcurrentMark*           _cm;
 720   G1CMBitMap*                 _nextMarkBitMap;
 721   // the task queue of this task
 722   G1CMTaskQueue*              _task_queue;
 723 private:
 724   // the task queue set---needed for stealing
 725   G1CMTaskQueueSet*           _task_queues;
 726   // indicates whether the task has been claimed---this is only  for
 727   // debugging purposes
 728   bool                        _claimed;
 729 
 730   // number of calls to this task
 731   int                         _calls;
 732 
 733   // when the virtual timer reaches this time, the marking step should
 734   // exit
 735   double                      _time_target_ms;
 736   // the start time of the current marking step
 737   double                      _start_time_ms;
 738 
 739   // the oop closure used for iterations over oops
 740   G1CMOopClosure*             _cm_oop_closure;
 741 
 742   // the region this task is scanning, NULL if we're not scanning any
 743   HeapRegion*                 _curr_region;
 744   // the local finger of this task, NULL if we're not scanning a region
 745   HeapWord*                   _finger;
 746   // limit of the region this task is scanning, NULL if we're not scanning one
 747   HeapWord*                   _region_limit;
 748 
 749   // the number of words this task has scanned
 750   size_t                      _words_scanned;
 751   // When _words_scanned reaches this limit, the regular clock is
 752   // called. Notice that this might be decreased under certain
 753   // circumstances (i.e. when we believe that we did an expensive
 754   // operation).
 755   size_t                      _words_scanned_limit;
 756   // the initial value of _words_scanned_limit (i.e. what it was
 757   // before it was decreased).
 758   size_t                      _real_words_scanned_limit;
 759 
 760   // the number of references this task has visited
 761   size_t                      _refs_reached;
 762   // When _refs_reached reaches this limit, the regular clock is
 763   // called. Notice this this might be decreased under certain
 764   // circumstances (i.e. when we believe that we did an expensive
 765   // operation).
 766   size_t                      _refs_reached_limit;
 767   // the initial value of _refs_reached_limit (i.e. what it was before
 768   // it was decreased).
 769   size_t                      _real_refs_reached_limit;
 770 
 771   // used by the work stealing stuff
 772   int                         _hash_seed;
 773   // if this is true, then the task has aborted for some reason
 774   bool                        _has_aborted;
 775   // set when the task aborts because it has met its time quota
 776   bool                        _has_timed_out;
 777   // true when we're draining SATB buffers; this avoids the task
 778   // aborting due to SATB buffers being available (as we're already
 779   // dealing with them)
 780   bool                        _draining_satb_buffers;
 781 
 782   // number sequence of past step times
 783   NumberSeq                   _step_times_ms;
 784   // elapsed time of this task
 785   double                      _elapsed_time_ms;
 786   // termination time of this task
 787   double                      _termination_time_ms;
 788   // when this task got into the termination protocol
 789   double                      _termination_start_time_ms;
 790 
 791   // true when the task is during a concurrent phase, false when it is
 792   // in the remark phase (so, in the latter case, we do not have to
 793   // check all the things that we have to check during the concurrent
 794   // phase, i.e. SATB buffer availability...)
 795   bool                        _concurrent;
 796 
 797   TruncatedSeq                _marking_step_diffs_ms;
 798 
 799   // it updates the local fields after this task has claimed
 800   // a new region to scan
 801   void setup_for_region(HeapRegion* hr);
 802   // it brings up-to-date the limit of the region
 803   void update_region_limit();
 804 
 805   // called when either the words scanned or the refs visited limit
 806   // has been reached
 807   void reached_limit();
 808   // recalculates the words scanned and refs visited limits
 809   void recalculate_limits();
 810   // decreases the words scanned and refs visited limits when we reach
 811   // an expensive operation
 812   void decrease_limits();
 813   // it checks whether the words scanned or refs visited reached their
 814   // respective limit and calls reached_limit() if they have
 815   void check_limits() {
 816     if (_words_scanned >= _words_scanned_limit ||
 817         _refs_reached >= _refs_reached_limit) {
 818       reached_limit();
 819     }
 820   }
 821   // this is supposed to be called regularly during a marking step as
 822   // it checks a bunch of conditions that might cause the marking step
 823   // to abort
 824   void regular_clock_call();
 825   bool concurrent() { return _concurrent; }
 826 
 827   // Test whether obj might have already been passed over by the
 828   // mark bitmap scan, and so needs to be pushed onto the mark stack.
 829   bool is_below_finger(oop obj, HeapWord* global_finger) const;
 830 
 831   template<bool scan> void process_grey_object(oop obj);
 832 public:
 833   // Apply the closure on the given area of the objArray. Return the number of words
 834   // scanned.
 835   inline size_t scan_objArray(objArrayOop obj, MemRegion mr);
 836   // It resets the task; it should be called right at the beginning of
 837   // a marking phase.
 838   void reset(G1CMBitMap* _nextMarkBitMap);
 839   // it clears all the fields that correspond to a claimed region.
 840   void clear_region_fields();
 841 
 842   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
 843 
 844   // The main method of this class which performs a marking step
 845   // trying not to exceed the given duration. However, it might exit
 846   // prematurely, according to some conditions (i.e. SATB buffers are
 847   // available for processing).
 848   void do_marking_step(double target_ms,
 849                        bool do_termination,
 850                        bool is_serial);
 851 
 852   // These two calls start and stop the timer
 853   void record_start_time() {
 854     _elapsed_time_ms = os::elapsedTime() * 1000.0;
 855   }
 856   void record_end_time() {
 857     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
 858   }
 859 
 860   // returns the worker ID associated with this task.
 861   uint worker_id() { return _worker_id; }
 862 
 863   // From TerminatorTerminator. It determines whether this task should
 864   // exit the termination protocol after it's entered it.
 865   virtual bool should_exit_termination();
 866 
 867   // Resets the local region fields after a task has finished scanning a
 868   // region; or when they have become stale as a result of the region
 869   // being evacuated.
 870   void giveup_current_region();
 871 
 872   HeapWord* finger()            { return _finger; }
 873 
 874   bool has_aborted()            { return _has_aborted; }
 875   void set_has_aborted()        { _has_aborted = true; }
 876   void clear_has_aborted()      { _has_aborted = false; }
 877   bool has_timed_out()          { return _has_timed_out; }
 878   bool claimed()                { return _claimed; }
 879 
 880   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
 881 
 882   // Increment the number of references this task has visited.
 883   void increment_refs_reached() { ++_refs_reached; }
 884 
 885   // Grey the object by marking it.  If not already marked, push it on
 886   // the local queue if below the finger.
 887   // obj is below its region's NTAMS.
 888   inline void make_reference_grey(oop obj);
 889 
 890   // Grey the object (by calling make_grey_reference) if required,
 891   // e.g. obj is below its containing region's NTAMS.
 892   // Precondition: obj is a valid heap object.
 893   inline void deal_with_reference(oop obj);
 894 
 895   // It scans an object and visits its children.
 896   inline void scan_object(oop obj);
 897 
 898   // It pushes an object on the local queue.
 899   inline void push(oop obj);
 900 
 901   // Move entries to the global stack.
 902   void move_entries_to_global_stack();
 903   // Move entries from the global stack, return true if we were successful to do so.
 904   bool get_entries_from_global_stack();
 905 
 906   // It pops and scans objects from the local queue. If partially is
 907   // true, then it stops when the queue size is of a given limit. If
 908   // partially is false, then it stops when the queue is empty.
 909   void drain_local_queue(bool partially);
 910   // It moves entries from the global stack to the local queue and
 911   // drains the local queue. If partially is true, then it stops when
 912   // both the global stack and the local queue reach a given size. If
 913   // partially if false, it tries to empty them totally.
 914   void drain_global_stack(bool partially);
 915   // It keeps picking SATB buffers and processing them until no SATB
 916   // buffers are available.
 917   void drain_satb_buffers();
 918 
 919   // moves the local finger to a new location
 920   inline void move_finger_to(HeapWord* new_finger) {
 921     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
 922     _finger = new_finger;
 923   }
 924 
 925   G1CMTask(uint worker_id,
 926            G1ConcurrentMark *cm,
 927            G1CMTaskQueue* task_queue,
 928            G1CMTaskQueueSet* task_queues);
 929 
 930   // it prints statistics associated with this task
 931   void print_stats();
 932 };
 933 
 934 // Class that's used to to print out per-region liveness
 935 // information. It's currently used at the end of marking and also
 936 // after we sort the old regions at the end of the cleanup operation.
 937 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
 938 private:
 939   // Accumulators for these values.
 940   size_t _total_used_bytes;
 941   size_t _total_capacity_bytes;
 942   size_t _total_prev_live_bytes;
 943   size_t _total_next_live_bytes;
 944 
 945   // Accumulator for the remembered set size
 946   size_t _total_remset_bytes;
 947 
 948   // Accumulator for strong code roots memory size
 949   size_t _total_strong_code_roots_bytes;
 950 
 951   static double perc(size_t val, size_t total) {
 952     if (total == 0) {
 953       return 0.0;
 954     } else {
 955       return 100.0 * ((double) val / (double) total);
 956     }
 957   }
 958 
 959   static double bytes_to_mb(size_t val) {
 960     return (double) val / (double) M;
 961   }
 962 
 963 public:
 964   // The header and footer are printed in the constructor and
 965   // destructor respectively.
 966   G1PrintRegionLivenessInfoClosure(const char* phase_name);
 967   virtual bool doHeapRegion(HeapRegion* r);
 968   ~G1PrintRegionLivenessInfoClosure();
 969 };
 970 
 971 #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP