1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "gc/parallel/objectStartArray.hpp"
  28 #include "gc/parallel/parallelScavengeHeap.hpp"
  29 #include "gc/parallel/psMarkSweep.hpp"
  30 #include "gc/parallel/psMarkSweepDecorator.hpp"
  31 #include "gc/serial/markSweep.inline.hpp"
  32 #include "gc/shared/spaceDecorator.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "runtime/prefetch.inline.hpp"
  35 
  36 PSMarkSweepDecorator* PSMarkSweepDecorator::_destination_decorator = NULL;
  37 
  38 
  39 void PSMarkSweepDecorator::set_destination_decorator_tenured() {
  40   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
  41   _destination_decorator = heap->old_gen()->object_mark_sweep();
  42 }
  43 
  44 void PSMarkSweepDecorator::advance_destination_decorator() {
  45   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
  46 
  47   assert(_destination_decorator != NULL, "Sanity");
  48 
  49   PSMarkSweepDecorator* first = heap->old_gen()->object_mark_sweep();
  50   PSMarkSweepDecorator* second = heap->young_gen()->eden_mark_sweep();
  51   PSMarkSweepDecorator* third = heap->young_gen()->from_mark_sweep();
  52   PSMarkSweepDecorator* fourth = heap->young_gen()->to_mark_sweep();
  53 
  54   if ( _destination_decorator == first ) {
  55     _destination_decorator = second;
  56   } else if ( _destination_decorator == second ) {
  57     _destination_decorator = third;
  58   } else if ( _destination_decorator == third ) {
  59     _destination_decorator = fourth;
  60   } else {
  61     fatal("PSMarkSweep attempting to advance past last compaction area");
  62   }
  63 }
  64 
  65 PSMarkSweepDecorator* PSMarkSweepDecorator::destination_decorator() {
  66   assert(_destination_decorator != NULL, "Sanity");
  67 
  68   return _destination_decorator;
  69 }
  70 
  71 // FIX ME FIX ME FIX ME FIX ME!!!!!!!!!
  72 // The object forwarding code is duplicated. Factor this out!!!!!
  73 //
  74 // This method "precompacts" objects inside its space to dest. It places forwarding
  75 // pointers into markOops for use by adjust_pointers. If "dest" should overflow, we
  76 // finish by compacting into our own space.
  77 
  78 void PSMarkSweepDecorator::precompact() {
  79   // Reset our own compact top.
  80   set_compaction_top(space()->bottom());
  81 
  82   /* We allow some amount of garbage towards the bottom of the space, so
  83    * we don't start compacting before there is a significant gain to be made.
  84    * Occasionally, we want to ensure a full compaction, which is determined
  85    * by the MarkSweepAlwaysCompactCount parameter. This is a significant
  86    * performance improvement!
  87    */
  88   bool skip_dead = ((PSMarkSweep::total_invocations() % MarkSweepAlwaysCompactCount) != 0);
  89 
  90   size_t allowed_deadspace = 0;
  91   if (skip_dead) {
  92     const size_t ratio = allowed_dead_ratio();
  93     allowed_deadspace = space()->capacity_in_words() * ratio / 100;
  94   }
  95 
  96   // Fetch the current destination decorator
  97   PSMarkSweepDecorator* dest = destination_decorator();
  98   ObjectStartArray* start_array = dest->start_array();
  99 
 100   HeapWord* compact_top = dest->compaction_top();
 101   HeapWord* compact_end = dest->space()->end();
 102 
 103   HeapWord* q = space()->bottom();
 104   HeapWord* t = space()->top();
 105 
 106   HeapWord*  end_of_live= q;    /* One byte beyond the last byte of the last
 107                                    live object. */
 108   HeapWord*  first_dead = space()->end(); /* The first dead object. */
 109 
 110   const intx interval = PrefetchScanIntervalInBytes;
 111 
 112   while (q < t) {
 113     assert(oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() ||
 114            oop(q)->mark()->has_bias_pattern(),
 115            "these are the only valid states during a mark sweep");
 116     if (oop(q)->is_gc_marked()) {
 117       /* prefetch beyond q */
 118       Prefetch::write(q, interval);
 119       size_t size = oop(q)->size();
 120 
 121       size_t compaction_max_size = pointer_delta(compact_end, compact_top);
 122 
 123       // This should only happen if a space in the young gen overflows the
 124       // old gen. If that should happen, we null out the start_array, because
 125       // the young spaces are not covered by one.
 126       while(size > compaction_max_size) {
 127         // First record the last compact_top
 128         dest->set_compaction_top(compact_top);
 129 
 130         // Advance to the next compaction decorator
 131         advance_destination_decorator();
 132         dest = destination_decorator();
 133 
 134         // Update compaction info
 135         start_array = dest->start_array();
 136         compact_top = dest->compaction_top();
 137         compact_end = dest->space()->end();
 138         assert(compact_top == dest->space()->bottom(), "Advanced to space already in use");
 139         assert(compact_end > compact_top, "Must always be space remaining");
 140         compaction_max_size =
 141           pointer_delta(compact_end, compact_top);
 142       }
 143 
 144       // store the forwarding pointer into the mark word
 145       if (q != compact_top) {
 146         oop(q)->forward_to(oop(compact_top));
 147         assert(oop(q)->is_gc_marked(), "encoding the pointer should preserve the mark");
 148       } else {
 149         // if the object isn't moving we can just set the mark to the default
 150         // mark and handle it specially later on.
 151         oop(q)->init_mark();
 152         assert(oop(q)->forwardee() == NULL, "should be forwarded to NULL");
 153       }
 154 
 155       // Update object start array
 156       if (start_array) {
 157         start_array->allocate_block(compact_top);
 158       }
 159 
 160       compact_top += size;
 161       assert(compact_top <= dest->space()->end(),
 162         "Exceeding space in destination");
 163 
 164       q += size;
 165       end_of_live = q;
 166     } else {
 167       /* run over all the contiguous dead objects */
 168       HeapWord* end = q;
 169       do {
 170         /* prefetch beyond end */
 171         Prefetch::write(end, interval);
 172         end += oop(end)->size();
 173       } while (end < t && (!oop(end)->is_gc_marked()));
 174 
 175       /* see if we might want to pretend this object is alive so that
 176        * we don't have to compact quite as often.
 177        */
 178       if (allowed_deadspace > 0 && q == compact_top) {
 179         size_t sz = pointer_delta(end, q);
 180         if (insert_deadspace(allowed_deadspace, q, sz)) {
 181           size_t compaction_max_size = pointer_delta(compact_end, compact_top);
 182 
 183           // This should only happen if a space in the young gen overflows the
 184           // old gen. If that should happen, we null out the start_array, because
 185           // the young spaces are not covered by one.
 186           while (sz > compaction_max_size) {
 187             // First record the last compact_top
 188             dest->set_compaction_top(compact_top);
 189 
 190             // Advance to the next compaction decorator
 191             advance_destination_decorator();
 192             dest = destination_decorator();
 193 
 194             // Update compaction info
 195             start_array = dest->start_array();
 196             compact_top = dest->compaction_top();
 197             compact_end = dest->space()->end();
 198             assert(compact_top == dest->space()->bottom(), "Advanced to space already in use");
 199             assert(compact_end > compact_top, "Must always be space remaining");
 200             compaction_max_size =
 201               pointer_delta(compact_end, compact_top);
 202           }
 203 
 204           // store the forwarding pointer into the mark word
 205           if (q != compact_top) {
 206             oop(q)->forward_to(oop(compact_top));
 207             assert(oop(q)->is_gc_marked(), "encoding the pointer should preserve the mark");
 208           } else {
 209             // if the object isn't moving we can just set the mark to the default
 210             // mark and handle it specially later on.
 211             oop(q)->init_mark();
 212             assert(oop(q)->forwardee() == NULL, "should be forwarded to NULL");
 213           }
 214 
 215           // Update object start array
 216           if (start_array) {
 217             start_array->allocate_block(compact_top);
 218           }
 219 
 220           compact_top += sz;
 221           assert(compact_top <= dest->space()->end(),
 222             "Exceeding space in destination");
 223 
 224           q = end;
 225           end_of_live = end;
 226           continue;
 227         }
 228       }
 229 
 230       // q is a pointer to a dead object. Use this dead memory to store a pointer to the next live object.
 231       (*(HeapWord**)q) = end;
 232 
 233       /* see if this is the first dead region. */
 234       if (q < first_dead) {
 235         first_dead = q;
 236       }
 237 
 238       /* move on to the next object */
 239       q = end;
 240     }
 241   }
 242 
 243   assert(q == t, "just checking");
 244   _end_of_live = end_of_live;
 245   if (end_of_live < first_dead) {
 246     first_dead = end_of_live;
 247   }
 248   _first_dead = first_dead;
 249 
 250   // Update compaction top
 251   dest->set_compaction_top(compact_top);
 252 }
 253 
 254 bool PSMarkSweepDecorator::insert_deadspace(size_t& allowed_deadspace_words,
 255                                             HeapWord* q, size_t deadlength) {
 256   if (allowed_deadspace_words >= deadlength) {
 257     allowed_deadspace_words -= deadlength;
 258     CollectedHeap::fill_with_object(q, deadlength);
 259     oop(q)->set_mark(oop(q)->mark()->set_marked());
 260     assert((int) deadlength == oop(q)->size(), "bad filler object size");
 261     // Recall that we required "q == compaction_top".
 262     return true;
 263   } else {
 264     allowed_deadspace_words = 0;
 265     return false;
 266   }
 267 }
 268 
 269 void PSMarkSweepDecorator::adjust_pointers(MarkSweep* ms) {
 270   // adjust all the interior pointers to point at the new locations of objects
 271   // Used by MarkSweep::mark_sweep_phase3()
 272 
 273   HeapWord* q = space()->bottom();
 274   HeapWord* t = _end_of_live;  // Established by "prepare_for_compaction".
 275 
 276   assert(_first_dead <= _end_of_live, "Stands to reason, no?");
 277 
 278   if (q < t && _first_dead > q &&
 279       !oop(q)->is_gc_marked()) {
 280     // we have a chunk of the space which hasn't moved and we've
 281     // reinitialized the mark word during the previous pass, so we can't
 282     // use is_gc_marked for the traversal.
 283     HeapWord* end = _first_dead;
 284 
 285     while (q < end) {
 286       // point all the oops to the new location
 287       assert(ms!= NULL, " MarkSweep must be active");
 288       size_t size = ms->adjust_pointers(oop(q));
 289       q += size;
 290     }
 291 
 292     if (_first_dead == t) {
 293       q = t;
 294     } else {
 295       // The first dead object should contain a pointer to the first live object
 296       q = *(HeapWord**)_first_dead;
 297     }
 298   }
 299   const intx interval = PrefetchScanIntervalInBytes;
 300 
 301   debug_only(HeapWord* prev_q = NULL);
 302   while (q < t) {
 303     // prefetch beyond q
 304     Prefetch::write(q, interval);
 305     if (oop(q)->is_gc_marked()) {
 306       // q is alive
 307       // point all the oops to the new location
 308       assert(ms!= NULL, " MarkSweep must be active");
 309       size_t size = ms->adjust_pointers(oop(q));
 310       debug_only(prev_q = q);
 311       q += size;
 312     } else {
 313       debug_only(prev_q = q);
 314       // The first dead object is no longer an object. At that memory address,
 315       // there is a pointer to the first live object that the previous phase found.
 316       q = *(HeapWord**)q;
 317       assert(q > prev_q, "we should be moving forward through memory, q: " PTR_FORMAT ", prev_q: " PTR_FORMAT, p2i(q), p2i(prev_q));
 318     }
 319   }
 320 
 321   assert(q == t, "just checking");
 322 }
 323 
 324 void PSMarkSweepDecorator::compact(bool mangle_free_space ) {
 325   // Copy all live objects to their new location
 326   // Used by MarkSweep::mark_sweep_phase4()
 327 
 328   HeapWord*       q = space()->bottom();
 329   HeapWord* const t = _end_of_live;
 330   debug_only(HeapWord* prev_q = NULL);
 331 
 332   if (q < t && _first_dead > q &&
 333       !oop(q)->is_gc_marked()) {
 334 #ifdef ASSERT
 335     // we have a chunk of the space which hasn't moved and we've reinitialized the
 336     // mark word during the previous pass, so we can't use is_gc_marked for the
 337     // traversal.
 338     HeapWord* const end = _first_dead;
 339 
 340     while (q < end) {
 341       size_t size = oop(q)->size();
 342       assert(!oop(q)->is_gc_marked(), "should be unmarked (special dense prefix handling)");
 343       debug_only(prev_q = q);
 344       q += size;
 345     }
 346 #endif
 347 
 348     if (_first_dead == t) {
 349       q = t;
 350     } else {
 351       // $$$ Funky
 352       q = (HeapWord*) oop(_first_dead)->mark()->decode_pointer();
 353     }
 354   }
 355 
 356   const intx scan_interval = PrefetchScanIntervalInBytes;
 357   const intx copy_interval = PrefetchCopyIntervalInBytes;
 358 
 359   while (q < t) {
 360     if (!oop(q)->is_gc_marked()) {
 361       // mark is pointer to next marked oop
 362       debug_only(prev_q = q);
 363       q = (HeapWord*) oop(q)->mark()->decode_pointer();
 364       assert(q > prev_q, "we should be moving forward through memory");
 365     } else {
 366       // prefetch beyond q
 367       Prefetch::read(q, scan_interval);
 368 
 369       // size and destination
 370       size_t size = oop(q)->size();
 371       HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee();
 372 
 373       // prefetch beyond compaction_top
 374       Prefetch::write(compaction_top, copy_interval);
 375 
 376       // copy object and reinit its mark
 377       assert(q != compaction_top, "everything in this pass should be moving");
 378       Copy::aligned_conjoint_words(q, compaction_top, size);
 379       oop(compaction_top)->init_mark();
 380       assert(oop(compaction_top)->klass() != NULL, "should have a class");
 381 
 382       debug_only(prev_q = q);
 383       q += size;
 384     }
 385   }
 386 
 387   assert(compaction_top() >= space()->bottom() && compaction_top() <= space()->end(),
 388          "should point inside space");
 389   space()->set_top(compaction_top());
 390 
 391   if (mangle_free_space) {
 392     space()->mangle_unused_area();
 393   }
 394 }