1 /*
   2  * Copyright (c) 2002, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2017, SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_PPC_VM_MACROASSEMBLER_PPC_HPP
  27 #define CPU_PPC_VM_MACROASSEMBLER_PPC_HPP
  28 
  29 #include "asm/assembler.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 #include "utilities/macros.hpp"
  32 
  33 // MacroAssembler extends Assembler by a few frequently used macros.
  34 
  35 class ciTypeArray;
  36 
  37 class MacroAssembler: public Assembler {
  38  public:
  39   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  40 
  41   //
  42   // Optimized instruction emitters
  43   //
  44 
  45   inline static int largeoffset_si16_si16_hi(int si31) { return (si31 + (1<<15)) >> 16; }
  46   inline static int largeoffset_si16_si16_lo(int si31) { return si31 - (((si31 + (1<<15)) >> 16) << 16); }
  47 
  48   // load d = *[a+si31]
  49   // Emits several instructions if the offset is not encodable in one instruction.
  50   void ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop);
  51   void ld_largeoffset          (Register d, int si31, Register a, int emit_filler_nop);
  52   inline static bool is_ld_largeoffset(address a);
  53   inline static int get_ld_largeoffset_offset(address a);
  54 
  55   inline void round_to(Register r, int modulus);
  56 
  57   // Load/store with type given by parameter.
  58   void load_sized_value( Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes, bool is_signed);
  59   void store_sized_value(Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes);
  60 
  61   // Move register if destination register and target register are different
  62   inline void mr_if_needed(Register rd, Register rs);
  63   inline void fmr_if_needed(FloatRegister rd, FloatRegister rs);
  64   // This is dedicated for emitting scheduled mach nodes. For better
  65   // readability of the ad file I put it here.
  66   // Endgroups are not needed if
  67   //  - the scheduler is off
  68   //  - the scheduler found that there is a natural group end, in that
  69   //    case it reduced the size of the instruction used in the test
  70   //    yielding 'needed'.
  71   inline void endgroup_if_needed(bool needed);
  72 
  73   // Memory barriers.
  74   inline void membar(int bits);
  75   inline void release();
  76   inline void acquire();
  77   inline void fence();
  78 
  79   // nop padding
  80   void align(int modulus, int max = 252, int rem = 0);
  81 
  82   //
  83   // Constants, loading constants, TOC support
  84   //
  85 
  86   // Address of the global TOC.
  87   inline static address global_toc();
  88   // Offset of given address to the global TOC.
  89   inline static int offset_to_global_toc(const address addr);
  90 
  91   // Address of TOC of the current method.
  92   inline address method_toc();
  93   // Offset of given address to TOC of the current method.
  94   inline int offset_to_method_toc(const address addr);
  95 
  96   // Global TOC.
  97   void calculate_address_from_global_toc(Register dst, address addr,
  98                                          bool hi16 = true, bool lo16 = true,
  99                                          bool add_relocation = true, bool emit_dummy_addr = false);
 100   inline void calculate_address_from_global_toc_hi16only(Register dst, address addr) {
 101     calculate_address_from_global_toc(dst, addr, true, false);
 102   };
 103   inline void calculate_address_from_global_toc_lo16only(Register dst, address addr) {
 104     calculate_address_from_global_toc(dst, addr, false, true);
 105   };
 106 
 107   inline static bool is_calculate_address_from_global_toc_at(address a, address bound);
 108   // Returns address of first instruction in sequence.
 109   static address patch_calculate_address_from_global_toc_at(address a, address bound, address addr);
 110   static address get_address_of_calculate_address_from_global_toc_at(address a, address addr);
 111 
 112 #ifdef _LP64
 113   // Patch narrow oop constant.
 114   inline static bool is_set_narrow_oop(address a, address bound);
 115   // Returns address of first instruction in sequence.
 116   static address patch_set_narrow_oop(address a, address bound, narrowOop data);
 117   static narrowOop get_narrow_oop(address a, address bound);
 118 #endif
 119 
 120   inline static bool is_load_const_at(address a);
 121 
 122   // Emits an oop const to the constant pool, loads the constant, and
 123   // sets a relocation info with address current_pc.
 124   // Returns true if successful.
 125   bool load_const_from_method_toc(Register dst, AddressLiteral& a, Register toc, bool fixed_size = false);
 126 
 127   static bool is_load_const_from_method_toc_at(address a);
 128   static int get_offset_of_load_const_from_method_toc_at(address a);
 129 
 130   // Get the 64 bit constant from a `load_const' sequence.
 131   static long get_const(address load_const);
 132 
 133   // Patch the 64 bit constant of a `load_const' sequence. This is a
 134   // low level procedure. It neither flushes the instruction cache nor
 135   // is it atomic.
 136   static void patch_const(address load_const, long x);
 137 
 138   // Metadata in code that we have to keep track of.
 139   AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index
 140   AddressLiteral constant_metadata_address(Metadata* obj); // find_index
 141   // Oops used directly in compiled code are stored in the constant pool,
 142   // and loaded from there.
 143   // Allocate new entry for oop in constant pool. Generate relocation.
 144   AddressLiteral allocate_oop_address(jobject obj);
 145   // Find oop obj in constant pool. Return relocation with it's index.
 146   AddressLiteral constant_oop_address(jobject obj);
 147 
 148   // Find oop in constant pool and emit instructions to load it.
 149   // Uses constant_oop_address.
 150   inline void set_oop_constant(jobject obj, Register d);
 151   // Same as load_address.
 152   inline void set_oop         (AddressLiteral obj_addr, Register d);
 153 
 154   // Read runtime constant:  Issue load if constant not yet established,
 155   // else use real constant.
 156   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 157                                                 Register tmp,
 158                                                 int offset);
 159 
 160   //
 161   // branch, jump
 162   //
 163 
 164   inline void pd_patch_instruction(address branch, address target);
 165   NOT_PRODUCT(static void pd_print_patched_instruction(address branch);)
 166 
 167   // Conditional far branch for destinations encodable in 24+2 bits.
 168   // Same interface as bc, e.g. no inverse boint-field.
 169   enum {
 170     bc_far_optimize_not         = 0,
 171     bc_far_optimize_on_relocate = 1
 172   };
 173   // optimize: flag for telling the conditional far branch to optimize
 174   //           itself when relocated.
 175   void bc_far(int boint, int biint, Label& dest, int optimize);
 176   void bc_far_optimized(int boint, int biint, Label& dest); // 1 or 2 instructions
 177   // Relocation of conditional far branches.
 178   static bool    is_bc_far_at(address instruction_addr);
 179   static address get_dest_of_bc_far_at(address instruction_addr);
 180   static void    set_dest_of_bc_far_at(address instruction_addr, address dest);
 181  private:
 182   static bool inline is_bc_far_variant1_at(address instruction_addr);
 183   static bool inline is_bc_far_variant2_at(address instruction_addr);
 184   static bool inline is_bc_far_variant3_at(address instruction_addr);
 185  public:
 186 
 187   // Convenience bc_far versions.
 188   inline void blt_far(ConditionRegister crx, Label& L, int optimize);
 189   inline void bgt_far(ConditionRegister crx, Label& L, int optimize);
 190   inline void beq_far(ConditionRegister crx, Label& L, int optimize);
 191   inline void bso_far(ConditionRegister crx, Label& L, int optimize);
 192   inline void bge_far(ConditionRegister crx, Label& L, int optimize);
 193   inline void ble_far(ConditionRegister crx, Label& L, int optimize);
 194   inline void bne_far(ConditionRegister crx, Label& L, int optimize);
 195   inline void bns_far(ConditionRegister crx, Label& L, int optimize);
 196 
 197   // Emit, identify and patch a NOT mt-safe patchable 64 bit absolute call/jump.
 198  private:
 199   enum {
 200     bxx64_patchable_instruction_count = (2/*load_codecache_const*/ + 3/*5load_const*/ + 1/*mtctr*/ + 1/*bctrl*/),
 201     bxx64_patchable_size              = bxx64_patchable_instruction_count * BytesPerInstWord,
 202     bxx64_patchable_ret_addr_offset   = bxx64_patchable_size
 203   };
 204   void bxx64_patchable(address target, relocInfo::relocType rt, bool link);
 205   static bool is_bxx64_patchable_at(            address instruction_addr, bool link);
 206   // Does the instruction use a pc-relative encoding of the destination?
 207   static bool is_bxx64_patchable_pcrelative_at( address instruction_addr, bool link);
 208   static bool is_bxx64_patchable_variant1_at(   address instruction_addr, bool link);
 209   // Load destination relative to global toc.
 210   static bool is_bxx64_patchable_variant1b_at(  address instruction_addr, bool link);
 211   static bool is_bxx64_patchable_variant2_at(   address instruction_addr, bool link);
 212   static void set_dest_of_bxx64_patchable_at(   address instruction_addr, address target, bool link);
 213   static address get_dest_of_bxx64_patchable_at(address instruction_addr, bool link);
 214 
 215  public:
 216   // call
 217   enum {
 218     bl64_patchable_instruction_count = bxx64_patchable_instruction_count,
 219     bl64_patchable_size              = bxx64_patchable_size,
 220     bl64_patchable_ret_addr_offset   = bxx64_patchable_ret_addr_offset
 221   };
 222   inline void bl64_patchable(address target, relocInfo::relocType rt) {
 223     bxx64_patchable(target, rt, /*link=*/true);
 224   }
 225   inline static bool is_bl64_patchable_at(address instruction_addr) {
 226     return is_bxx64_patchable_at(instruction_addr, /*link=*/true);
 227   }
 228   inline static bool is_bl64_patchable_pcrelative_at(address instruction_addr) {
 229     return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/true);
 230   }
 231   inline static void set_dest_of_bl64_patchable_at(address instruction_addr, address target) {
 232     set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/true);
 233   }
 234   inline static address get_dest_of_bl64_patchable_at(address instruction_addr) {
 235     return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/true);
 236   }
 237   // jump
 238   enum {
 239     b64_patchable_instruction_count = bxx64_patchable_instruction_count,
 240     b64_patchable_size              = bxx64_patchable_size,
 241   };
 242   inline void b64_patchable(address target, relocInfo::relocType rt) {
 243     bxx64_patchable(target, rt, /*link=*/false);
 244   }
 245   inline static bool is_b64_patchable_at(address instruction_addr) {
 246     return is_bxx64_patchable_at(instruction_addr, /*link=*/false);
 247   }
 248   inline static bool is_b64_patchable_pcrelative_at(address instruction_addr) {
 249     return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/false);
 250   }
 251   inline static void set_dest_of_b64_patchable_at(address instruction_addr, address target) {
 252     set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/false);
 253   }
 254   inline static address get_dest_of_b64_patchable_at(address instruction_addr) {
 255     return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/false);
 256   }
 257 
 258   //
 259   // Support for frame handling
 260   //
 261 
 262   // some ABI-related functions
 263   void save_nonvolatile_gprs(   Register dst_base, int offset);
 264   void restore_nonvolatile_gprs(Register src_base, int offset);
 265   enum { num_volatile_regs = 11 + 14 }; // GPR + FPR
 266   void save_volatile_gprs(   Register dst_base, int offset);
 267   void restore_volatile_gprs(Register src_base, int offset);
 268   void save_LR_CR(   Register tmp);     // tmp contains LR on return.
 269   void restore_LR_CR(Register tmp);
 270 
 271   // Get current PC using bl-next-instruction trick.
 272   address get_PC_trash_LR(Register result);
 273 
 274   // Resize current frame either relatively wrt to current SP or absolute.
 275   void resize_frame(Register offset, Register tmp);
 276   void resize_frame(int      offset, Register tmp);
 277   void resize_frame_absolute(Register addr, Register tmp1, Register tmp2);
 278 
 279   // Push a frame of size bytes.
 280   void push_frame(Register bytes, Register tmp);
 281 
 282   // Push a frame of size `bytes'. No abi space provided.
 283   void push_frame(unsigned int bytes, Register tmp);
 284 
 285   // Push a frame of size `bytes' plus abi_reg_args on top.
 286   void push_frame_reg_args(unsigned int bytes, Register tmp);
 287 
 288   // Setup up a new C frame with a spill area for non-volatile GPRs and additional
 289   // space for local variables
 290   void push_frame_reg_args_nonvolatiles(unsigned int bytes, Register tmp);
 291 
 292   // pop current C frame
 293   void pop_frame();
 294 
 295   //
 296   // Calls
 297   //
 298 
 299  private:
 300   address _last_calls_return_pc;
 301 
 302 #if defined(ABI_ELFv2)
 303   // Generic version of a call to C function.
 304   // Updates and returns _last_calls_return_pc.
 305   address branch_to(Register function_entry, bool and_link);
 306 #else
 307   // Generic version of a call to C function via a function descriptor
 308   // with variable support for C calling conventions (TOC, ENV, etc.).
 309   // updates and returns _last_calls_return_pc.
 310   address branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
 311                     bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee);
 312 #endif
 313 
 314  public:
 315 
 316   // Get the pc where the last call will return to. returns _last_calls_return_pc.
 317   inline address last_calls_return_pc();
 318 
 319 #if defined(ABI_ELFv2)
 320   // Call a C function via a function descriptor and use full C
 321   // calling conventions. Updates and returns _last_calls_return_pc.
 322   address call_c(Register function_entry);
 323   // For tail calls: only branch, don't link, so callee returns to caller of this function.
 324   address call_c_and_return_to_caller(Register function_entry);
 325   address call_c(address function_entry, relocInfo::relocType rt);
 326 #else
 327   // Call a C function via a function descriptor and use full C
 328   // calling conventions. Updates and returns _last_calls_return_pc.
 329   address call_c(Register function_descriptor);
 330   // For tail calls: only branch, don't link, so callee returns to caller of this function.
 331   address call_c_and_return_to_caller(Register function_descriptor);
 332   address call_c(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt);
 333   address call_c_using_toc(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt,
 334                            Register toc);
 335 #endif
 336 
 337  protected:
 338 
 339   // It is imperative that all calls into the VM are handled via the
 340   // call_VM macros. They make sure that the stack linkage is setup
 341   // correctly. call_VM's correspond to ENTRY/ENTRY_X entry points
 342   // while call_VM_leaf's correspond to LEAF entry points.
 343   //
 344   // This is the base routine called by the different versions of
 345   // call_VM. The interpreter may customize this version by overriding
 346   // it for its purposes (e.g., to save/restore additional registers
 347   // when doing a VM call).
 348   //
 349   // If no last_java_sp is specified (noreg) then SP will be used instead.
 350   virtual void call_VM_base(
 351      // where an oop-result ends up if any; use noreg otherwise
 352     Register        oop_result,
 353     // to set up last_Java_frame in stubs; use noreg otherwise
 354     Register        last_java_sp,
 355     // the entry point
 356     address         entry_point,
 357     // flag which indicates if exception should be checked
 358     bool            check_exception = true
 359   );
 360 
 361   // Support for VM calls. This is the base routine called by the
 362   // different versions of call_VM_leaf. The interpreter may customize
 363   // this version by overriding it for its purposes (e.g., to
 364   // save/restore additional registers when doing a VM call).
 365   void call_VM_leaf_base(address entry_point);
 366 
 367  public:
 368   // Call into the VM.
 369   // Passes the thread pointer (in R3_ARG1) as a prepended argument.
 370   // Makes sure oop return values are visible to the GC.
 371   void call_VM(Register oop_result, address entry_point, bool check_exceptions = true);
 372   void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
 373   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 374   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg3, bool check_exceptions = true);
 375   void call_VM_leaf(address entry_point);
 376   void call_VM_leaf(address entry_point, Register arg_1);
 377   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 378   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 379 
 380   // Call a stub function via a function descriptor, but don't save
 381   // TOC before call, don't setup TOC and ENV for call, and don't
 382   // restore TOC after call. Updates and returns _last_calls_return_pc.
 383   inline address call_stub(Register function_entry);
 384   inline void call_stub_and_return_to(Register function_entry, Register return_pc);
 385 
 386   //
 387   // Java utilities
 388   //
 389 
 390   // Read from the polling page, its address is already in a register.
 391   inline void load_from_polling_page(Register polling_page_address, int offset = 0);
 392   // Check whether instruction is a read access to the polling page
 393   // which was emitted by load_from_polling_page(..).
 394   static bool is_load_from_polling_page(int instruction, void* ucontext/*may be NULL*/,
 395                                         address* polling_address_ptr = NULL);
 396 
 397   // Check whether instruction is a write access to the memory
 398   // serialization page realized by one of the instructions stw, stwu,
 399   // stwx, or stwux.
 400   static bool is_memory_serialization(int instruction, JavaThread* thread, void* ucontext);
 401 
 402   // Support for NULL-checks
 403   //
 404   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 405   // If the accessed location is M[reg + offset] and the offset is known, provide the
 406   // offset. No explicit code generation is needed if the offset is within a certain
 407   // range (0 <= offset <= page_size).
 408 
 409   // Stack overflow checking
 410   void bang_stack_with_offset(int offset);
 411 
 412   // If instruction is a stack bang of the form ld, stdu, or
 413   // stdux, return the banged address. Otherwise, return 0.
 414   static address get_stack_bang_address(int instruction, void* ucontext);
 415 
 416   // Check for reserved stack access in method being exited. If the reserved
 417   // stack area was accessed, protect it again and throw StackOverflowError.
 418   void reserved_stack_check(Register return_pc);
 419 
 420   // Atomics
 421   // CmpxchgX sets condition register to cmpX(current, compare).
 422   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
 423   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
 424   static inline bool cmpxchgx_hint_acquire_lock()  { return true; }
 425   // The stxcx will probably not be succeeded by a releasing store.
 426   static inline bool cmpxchgx_hint_release_lock()  { return false; }
 427   static inline bool cmpxchgx_hint_atomic_update() { return false; }
 428 
 429   // Cmpxchg semantics
 430   enum {
 431     MemBarNone = 0,
 432     MemBarRel  = 1,
 433     MemBarAcq  = 2,
 434     MemBarFenceAfter = 4 // use powers of 2
 435   };
 436  private:
 437   // Helper functions for word/sub-word atomics.
 438   void atomic_get_and_modify_generic(Register dest_current_value, Register exchange_value,
 439                                      Register addr_base, Register tmp1, Register tmp2, Register tmp3,
 440                                      bool cmpxchgx_hint, bool is_add, int size);
 441   void cmpxchg_loop_body(ConditionRegister flag, Register dest_current_value,
 442                          Register compare_value, Register exchange_value,
 443                          Register addr_base, Register tmp1, Register tmp2,
 444                          Label &retry, Label &failed, bool cmpxchgx_hint, int size);
 445   void cmpxchg_generic(ConditionRegister flag,
 446                        Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
 447                        Register tmp1, Register tmp2,
 448                        int semantics, bool cmpxchgx_hint, Register int_flag_success, bool contention_hint, bool weak, int size);
 449  public:
 450   // Temps and addr_base are killed if processor does not support Power 8 instructions.
 451   // Result will be sign extended.
 452   void getandsetb(Register dest_current_value, Register exchange_value, Register addr_base,
 453                   Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) {
 454     atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, false, 1);
 455   }
 456   // Temps and addr_base are killed if processor does not support Power 8 instructions.
 457   // Result will be sign extended.
 458   void getandseth(Register dest_current_value, Register exchange_value, Register addr_base,
 459                   Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) {
 460     atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, false, 2);
 461   }
 462   void getandsetw(Register dest_current_value, Register exchange_value, Register addr_base,
 463                   bool cmpxchgx_hint) {
 464     atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, noreg, noreg, noreg, cmpxchgx_hint, false, 4);
 465   }
 466   void getandsetd(Register dest_current_value, Register exchange_value, Register addr_base,
 467                   bool cmpxchgx_hint);
 468   // tmp2/3 and addr_base are killed if processor does not support Power 8 instructions (tmp1 is always needed).
 469   // Result will be sign extended.
 470   void getandaddb(Register dest_current_value, Register inc_value, Register addr_base,
 471                   Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) {
 472     atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, true, 1);
 473   }
 474   // tmp2/3 and addr_base are killed if processor does not support Power 8 instructions (tmp1 is always needed).
 475   // Result will be sign extended.
 476   void getandaddh(Register dest_current_value, Register inc_value, Register addr_base,
 477                   Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) {
 478     atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, true, 2);
 479   }
 480   void getandaddw(Register dest_current_value, Register inc_value, Register addr_base,
 481                   Register tmp1, bool cmpxchgx_hint) {
 482     atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, noreg, noreg, cmpxchgx_hint, true, 4);
 483   }
 484   void getandaddd(Register dest_current_value, Register exchange_value, Register addr_base,
 485                   Register tmp, bool cmpxchgx_hint);
 486   // Temps, addr_base and exchange_value are killed if processor does not support Power 8 instructions.
 487   // compare_value must be at least 32 bit sign extended. Result will be sign extended.
 488   void cmpxchgb(ConditionRegister flag,
 489                 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
 490                 Register tmp1, Register tmp2, int semantics, bool cmpxchgx_hint = false,
 491                 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false) {
 492     cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2,
 493                     semantics, cmpxchgx_hint, int_flag_success, contention_hint, weak, 1);
 494   }
 495   // Temps, addr_base and exchange_value are killed if processor does not support Power 8 instructions.
 496   // compare_value must be at least 32 bit sign extended. Result will be sign extended.
 497   void cmpxchgh(ConditionRegister flag,
 498                 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
 499                 Register tmp1, Register tmp2, int semantics, bool cmpxchgx_hint = false,
 500                 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false) {
 501     cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2,
 502                     semantics, cmpxchgx_hint, int_flag_success, contention_hint, weak, 2);
 503   }
 504   void cmpxchgw(ConditionRegister flag,
 505                 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
 506                 int semantics, bool cmpxchgx_hint = false,
 507                 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false) {
 508     cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, noreg, noreg,
 509                     semantics, cmpxchgx_hint, int_flag_success, contention_hint, weak, 4);
 510   }
 511   void cmpxchgd(ConditionRegister flag,
 512                 Register dest_current_value, RegisterOrConstant compare_value, Register exchange_value,
 513                 Register addr_base, int semantics, bool cmpxchgx_hint = false,
 514                 Register int_flag_success = noreg, Label* failed = NULL, bool contention_hint = false, bool weak = false);
 515 
 516   // interface method calling
 517   void lookup_interface_method(Register recv_klass,
 518                                Register intf_klass,
 519                                RegisterOrConstant itable_index,
 520                                Register method_result,
 521                                Register temp_reg, Register temp2_reg,
 522                                Label& no_such_interface);
 523 
 524   // virtual method calling
 525   void lookup_virtual_method(Register recv_klass,
 526                              RegisterOrConstant vtable_index,
 527                              Register method_result);
 528 
 529   // Test sub_klass against super_klass, with fast and slow paths.
 530 
 531   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 532   // One of the three labels can be NULL, meaning take the fall-through.
 533   // If super_check_offset is -1, the value is loaded up from super_klass.
 534   // No registers are killed, except temp_reg and temp2_reg.
 535   // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
 536   void check_klass_subtype_fast_path(Register sub_klass,
 537                                      Register super_klass,
 538                                      Register temp1_reg,
 539                                      Register temp2_reg,
 540                                      Label* L_success,
 541                                      Label* L_failure,
 542                                      Label* L_slow_path = NULL, // default fall through
 543                                      RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 544 
 545   // The rest of the type check; must be wired to a corresponding fast path.
 546   // It does not repeat the fast path logic, so don't use it standalone.
 547   // The temp_reg can be noreg, if no temps are available.
 548   // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
 549   // Updates the sub's secondary super cache as necessary.
 550   void check_klass_subtype_slow_path(Register sub_klass,
 551                                      Register super_klass,
 552                                      Register temp1_reg,
 553                                      Register temp2_reg,
 554                                      Label* L_success = NULL,
 555                                      Register result_reg = noreg);
 556 
 557   // Simplified, combined version, good for typical uses.
 558   // Falls through on failure.
 559   void check_klass_subtype(Register sub_klass,
 560                            Register super_klass,
 561                            Register temp1_reg,
 562                            Register temp2_reg,
 563                            Label& L_success);
 564 
 565   // Method handle support (JSR 292).
 566   void check_method_handle_type(Register mtype_reg, Register mh_reg, Register temp_reg, Label& wrong_method_type);
 567 
 568   RegisterOrConstant argument_offset(RegisterOrConstant arg_slot, Register temp_reg, int extra_slot_offset = 0);
 569 
 570   // Biased locking support
 571   // Upon entry,obj_reg must contain the target object, and mark_reg
 572   // must contain the target object's header.
 573   // Destroys mark_reg if an attempt is made to bias an anonymously
 574   // biased lock. In this case a failure will go either to the slow
 575   // case or fall through with the notEqual condition code set with
 576   // the expectation that the slow case in the runtime will be called.
 577   // In the fall-through case where the CAS-based lock is done,
 578   // mark_reg is not destroyed.
 579   void biased_locking_enter(ConditionRegister cr_reg, Register obj_reg, Register mark_reg, Register temp_reg,
 580                             Register temp2_reg, Label& done, Label* slow_case = NULL);
 581   // Upon entry, the base register of mark_addr must contain the oop.
 582   // Destroys temp_reg.
 583   // If allow_delay_slot_filling is set to true, the next instruction
 584   // emitted after this one will go in an annulled delay slot if the
 585   // biased locking exit case failed.
 586   void biased_locking_exit(ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done);
 587 
 588   // allocation (for C1)
 589   void eden_allocate(
 590     Register obj,                      // result: pointer to object after successful allocation
 591     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 592     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 593     Register t1,                       // temp register
 594     Register t2,                       // temp register
 595     Label&   slow_case                 // continuation point if fast allocation fails
 596   );
 597   void tlab_allocate(
 598     Register obj,                      // result: pointer to object after successful allocation
 599     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 600     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 601     Register t1,                       // temp register
 602     Label&   slow_case                 // continuation point if fast allocation fails
 603   );
 604   void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
 605   void incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register t1, Register t2);
 606 
 607   enum { trampoline_stub_size = 6 * 4 };
 608   address emit_trampoline_stub(int destination_toc_offset, int insts_call_instruction_offset, Register Rtoc = noreg);
 609 
 610   void atomic_inc_ptr(Register addr, Register result, int simm16 = 1);
 611   void atomic_ori_int(Register addr, Register result, int uimm16);
 612 
 613 #if INCLUDE_RTM_OPT
 614   void rtm_counters_update(Register abort_status, Register rtm_counters);
 615   void branch_on_random_using_tb(Register tmp, int count, Label& brLabel);
 616   void rtm_abort_ratio_calculation(Register rtm_counters_reg, RTMLockingCounters* rtm_counters,
 617                                    Metadata* method_data);
 618   void rtm_profiling(Register abort_status_Reg, Register temp_Reg,
 619                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 620   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status,
 621                                Label& retryLabel, Label* checkRetry = NULL);
 622   void rtm_retry_lock_on_busy(Register retry_count, Register owner_addr, Label& retryLabel);
 623   void rtm_stack_locking(ConditionRegister flag, Register obj, Register mark_word, Register tmp,
 624                          Register retry_on_abort_count,
 625                          RTMLockingCounters* stack_rtm_counters,
 626                          Metadata* method_data, bool profile_rtm,
 627                          Label& DONE_LABEL, Label& IsInflated);
 628   void rtm_inflated_locking(ConditionRegister flag, Register obj, Register mark_word, Register box,
 629                             Register retry_on_busy_count, Register retry_on_abort_count,
 630                             RTMLockingCounters* rtm_counters,
 631                             Metadata* method_data, bool profile_rtm,
 632                             Label& DONE_LABEL);
 633 #endif
 634 
 635   void compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box,
 636                                  Register tmp1, Register tmp2, Register tmp3,
 637                                  bool try_bias = UseBiasedLocking,
 638                                  RTMLockingCounters* rtm_counters = NULL,
 639                                  RTMLockingCounters* stack_rtm_counters = NULL,
 640                                  Metadata* method_data = NULL,
 641                                  bool use_rtm = false, bool profile_rtm = false);
 642 
 643   void compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box,
 644                                    Register tmp1, Register tmp2, Register tmp3,
 645                                    bool try_bias = UseBiasedLocking, bool use_rtm = false);
 646 
 647   // Support for serializing memory accesses between threads
 648   void serialize_memory(Register thread, Register tmp1, Register tmp2);
 649 
 650   // GC barrier support.
 651   void card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp);
 652   void card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj);
 653 
 654   void resolve_jobject(Register value, Register tmp1, Register tmp2, bool needs_frame);
 655 
 656 #if INCLUDE_ALL_GCS
 657   // General G1 pre-barrier generator.
 658   void g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val,
 659                             Register Rtmp1, Register Rtmp2, bool needs_frame = false);
 660   // General G1 post-barrier generator
 661   void g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1,
 662                              Register Rtmp2, Register Rtmp3, Label *filtered_ext = NULL);
 663 #endif
 664 
 665   // Support for managing the JavaThread pointer (i.e.; the reference to
 666   // thread-local information).
 667 
 668   // Support for last Java frame (but use call_VM instead where possible):
 669   // access R16_thread->last_Java_sp.
 670   void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
 671   void reset_last_Java_frame(void);
 672   void set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1);
 673 
 674   // Read vm result from thread: oop_result = R16_thread->result;
 675   void get_vm_result  (Register oop_result);
 676   void get_vm_result_2(Register metadata_result);
 677 
 678   static bool needs_explicit_null_check(intptr_t offset);
 679 
 680   // Trap-instruction-based checks.
 681   // Range checks can be distinguished from zero checks as they check 32 bit,
 682   // zero checks all 64 bits (tw, td).
 683   inline void trap_null_check(Register a, trap_to_bits cmp = traptoEqual);
 684   static bool is_trap_null_check(int x) {
 685     return is_tdi(x, traptoEqual,               -1/*any reg*/, 0) ||
 686            is_tdi(x, traptoGreaterThanUnsigned, -1/*any reg*/, 0);
 687   }
 688 
 689   inline void trap_zombie_not_entrant();
 690   static bool is_trap_zombie_not_entrant(int x) { return is_tdi(x, traptoUnconditional, 0/*reg 0*/, 1); }
 691 
 692   inline void trap_should_not_reach_here();
 693   static bool is_trap_should_not_reach_here(int x) { return is_tdi(x, traptoUnconditional, 0/*reg 0*/, 2); }
 694 
 695   inline void trap_ic_miss_check(Register a, Register b);
 696   static bool is_trap_ic_miss_check(int x) {
 697     return is_td(x, traptoGreaterThanUnsigned | traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/);
 698   }
 699 
 700   // Implicit or explicit null check, jumps to static address exception_entry.
 701   inline void null_check_throw(Register a, int offset, Register temp_reg, address exception_entry);
 702   inline void null_check(Register a, int offset, Label *Lis_null); // implicit only if Lis_null not provided
 703 
 704   // Load heap oop and decompress. Loaded oop may not be null.
 705   // Specify tmp to save one cycle.
 706   inline void load_heap_oop_not_null(Register d, RegisterOrConstant offs, Register s1 = noreg,
 707                                      Register tmp = noreg);
 708   // Store heap oop and decompress.  Decompressed oop may not be null.
 709   // Specify tmp register if d should not be changed.
 710   inline void store_heap_oop_not_null(Register d, RegisterOrConstant offs, Register s1,
 711                                       Register tmp = noreg);
 712 
 713   // Null allowed.
 714   inline void load_heap_oop(Register d, RegisterOrConstant offs, Register s1 = noreg, Label *is_null = NULL);
 715 
 716   // Encode/decode heap oop. Oop may not be null, else en/decoding goes wrong.
 717   // src == d allowed.
 718   inline Register encode_heap_oop_not_null(Register d, Register src = noreg);
 719   inline Register decode_heap_oop_not_null(Register d, Register src = noreg);
 720 
 721   // Null allowed.
 722   inline Register encode_heap_oop(Register d, Register src); // Prefer null check in GC barrier!
 723   inline void decode_heap_oop(Register d);
 724 
 725   // Load/Store klass oop from klass field. Compress.
 726   void load_klass(Register dst, Register src);
 727   void store_klass(Register dst_oop, Register klass, Register tmp = R0);
 728   void store_klass_gap(Register dst_oop, Register val = noreg); // Will store 0 if val not specified.
 729 
 730   void resolve_oop_handle(Register result);
 731   void load_mirror_from_const_method(Register mirror, Register const_method);
 732 
 733   static int instr_size_for_decode_klass_not_null();
 734   void decode_klass_not_null(Register dst, Register src = noreg);
 735   Register encode_klass_not_null(Register dst, Register src = noreg);
 736 
 737   // SIGTRAP-based range checks for arrays.
 738   inline void trap_range_check_l(Register a, Register b);
 739   inline void trap_range_check_l(Register a, int si16);
 740   static bool is_trap_range_check_l(int x) {
 741     return (is_tw (x, traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/) ||
 742             is_twi(x, traptoLessThanUnsigned, -1/*any reg*/)                  );
 743   }
 744   inline void trap_range_check_le(Register a, int si16);
 745   static bool is_trap_range_check_le(int x) {
 746     return is_twi(x, traptoEqual | traptoLessThanUnsigned, -1/*any reg*/);
 747   }
 748   inline void trap_range_check_g(Register a, int si16);
 749   static bool is_trap_range_check_g(int x) {
 750     return is_twi(x, traptoGreaterThanUnsigned, -1/*any reg*/);
 751   }
 752   inline void trap_range_check_ge(Register a, Register b);
 753   inline void trap_range_check_ge(Register a, int si16);
 754   static bool is_trap_range_check_ge(int x) {
 755     return (is_tw (x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/, -1/*any reg*/) ||
 756             is_twi(x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/)                  );
 757   }
 758   static bool is_trap_range_check(int x) {
 759     return is_trap_range_check_l(x) || is_trap_range_check_le(x) ||
 760            is_trap_range_check_g(x) || is_trap_range_check_ge(x);
 761   }
 762 
 763   void clear_memory_unrolled(Register base_ptr, int cnt_dwords, Register tmp = R0, int offset = 0);
 764   void clear_memory_constlen(Register base_ptr, int cnt_dwords, Register tmp = R0);
 765   void clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp = R0, long const_cnt = -1);
 766 
 767 #ifdef COMPILER2
 768   // Intrinsics for CompactStrings
 769   // Compress char[] to byte[] by compressing 16 bytes at once.
 770   void string_compress_16(Register src, Register dst, Register cnt,
 771                           Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5,
 772                           Label& Lfailure);
 773 
 774   // Compress char[] to byte[]. cnt must be positive int.
 775   void string_compress(Register src, Register dst, Register cnt, Register tmp, Label& Lfailure);
 776 
 777   // Inflate byte[] to char[] by inflating 16 bytes at once.
 778   void string_inflate_16(Register src, Register dst, Register cnt,
 779                          Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
 780 
 781   // Inflate byte[] to char[]. cnt must be positive int.
 782   void string_inflate(Register src, Register dst, Register cnt, Register tmp);
 783 
 784   void string_compare(Register str1, Register str2, Register cnt1, Register cnt2,
 785                       Register tmp1, Register result, int ae);
 786 
 787   void array_equals(bool is_array_equ, Register ary1, Register ary2,
 788                     Register limit, Register tmp1, Register result, bool is_byte);
 789 
 790   void string_indexof(Register result, Register haystack, Register haycnt,
 791                       Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
 792                       Register tmp1, Register tmp2, Register tmp3, Register tmp4, int ae);
 793 
 794   void string_indexof_char(Register result, Register haystack, Register haycnt,
 795                            Register needle, jchar needleChar, Register tmp1, Register tmp2, bool is_byte);
 796 
 797   void has_negatives(Register src, Register cnt, Register result, Register tmp1, Register tmp2);
 798 #endif
 799 
 800   // Emitters for BigInteger.multiplyToLen intrinsic.
 801   inline void multiply64(Register dest_hi, Register dest_lo,
 802                          Register x, Register y);
 803   void add2_with_carry(Register dest_hi, Register dest_lo,
 804                        Register src1, Register src2);
 805   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
 806                              Register y, Register y_idx, Register z,
 807                              Register carry, Register product_high, Register product,
 808                              Register idx, Register kdx, Register tmp);
 809   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
 810                               Register yz_idx, Register idx, Register carry,
 811                               Register product_high, Register product, Register tmp,
 812                               int offset);
 813   void multiply_128_x_128_loop(Register x_xstart,
 814                                Register y, Register z,
 815                                Register yz_idx, Register idx, Register carry,
 816                                Register product_high, Register product,
 817                                Register carry2, Register tmp);
 818   void multiply_to_len(Register x, Register xlen,
 819                        Register y, Register ylen,
 820                        Register z, Register zlen,
 821                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5,
 822                        Register tmp6, Register tmp7, Register tmp8, Register tmp9, Register tmp10,
 823                        Register tmp11, Register tmp12, Register tmp13);
 824 
 825   // Emitters for CRC32 calculation.
 826   // A note on invertCRC:
 827   //   Unfortunately, internal representation of crc differs between CRC32 and CRC32C.
 828   //   CRC32 holds it's current crc value in the externally visible representation.
 829   //   CRC32C holds it's current crc value in internal format, ready for updating.
 830   //   Thus, the crc value must be bit-flipped before updating it in the CRC32 case.
 831   //   In the CRC32C case, it must be bit-flipped when it is given to the outside world (getValue()).
 832   //   The bool invertCRC parameter indicates whether bit-flipping is required before updates.
 833   void load_reverse_32(Register dst, Register src);
 834   int  crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3);
 835   void fold_byte_crc32(Register crc, Register val, Register table, Register tmp);
 836   void fold_8bit_crc32(Register crc, Register table, Register tmp);
 837   void update_byte_crc32(Register crc, Register val, Register table);
 838   void update_byteLoop_crc32(Register crc, Register buf, Register len, Register table,
 839                              Register data, bool loopAlignment);
 840   void update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
 841                           Register t0,  Register t1,  Register t2,  Register t3,
 842                           Register tc0, Register tc1, Register tc2, Register tc3);
 843   void kernel_crc32_2word(Register crc, Register buf, Register len, Register table,
 844                           Register t0,  Register t1,  Register t2,  Register t3,
 845                           Register tc0, Register tc1, Register tc2, Register tc3,
 846                           bool invertCRC);
 847   void kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
 848                           Register t0,  Register t1,  Register t2,  Register t3,
 849                           Register tc0, Register tc1, Register tc2, Register tc3,
 850                           bool invertCRC);
 851   void kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
 852                           Register t0,  Register t1,  Register t2,  Register t3,
 853                           bool invertCRC);
 854   void kernel_crc32_1word_vpmsumd(Register crc, Register buf, Register len, Register table,
 855                           Register constants, Register barretConstants,
 856                           Register t0,  Register t1, Register t2, Register t3, Register t4,
 857                           bool invertCRC);
 858   void kernel_crc32_1word_aligned(Register crc, Register buf, Register len,
 859                           Register constants, Register barretConstants,
 860                           Register t0, Register t1, Register t2);
 861 
 862   void kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp,
 863                                bool invertCRC);
 864   void kernel_crc32_singleByteReg(Register crc, Register val, Register table,
 865                                   bool invertCRC);
 866 
 867   //
 868   // Debugging
 869   //
 870 
 871   // assert on cr0
 872   void asm_assert(bool check_equal, const char* msg, int id);
 873   void asm_assert_eq(const char* msg, int id) { asm_assert(true, msg, id); }
 874   void asm_assert_ne(const char* msg, int id) { asm_assert(false, msg, id); }
 875 
 876  private:
 877   void asm_assert_mems_zero(bool check_equal, int size, int mem_offset, Register mem_base,
 878                             const char* msg, int id);
 879 
 880  public:
 881 
 882   void asm_assert_mem8_is_zero(int mem_offset, Register mem_base, const char* msg, int id) {
 883     asm_assert_mems_zero(true,  8, mem_offset, mem_base, msg, id);
 884   }
 885   void asm_assert_mem8_isnot_zero(int mem_offset, Register mem_base, const char* msg, int id) {
 886     asm_assert_mems_zero(false, 8, mem_offset, mem_base, msg, id);
 887   }
 888 
 889   // Verify R16_thread contents.
 890   void verify_thread();
 891 
 892   // Emit code to verify that reg contains a valid oop if +VerifyOops is set.
 893   void verify_oop(Register reg, const char* s = "broken oop");
 894   void verify_oop_addr(RegisterOrConstant offs, Register base, const char* s = "contains broken oop");
 895 
 896   // TODO: verify method and klass metadata (compare against vptr?)
 897   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 898   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line) {}
 899 
 900   // Convenience method returning function entry. For the ELFv1 case
 901   // creates function descriptor at the current address and returs
 902   // the pointer to it. For the ELFv2 case returns the current address.
 903   inline address function_entry();
 904 
 905 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 906 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 907 
 908  private:
 909 
 910   enum {
 911     stop_stop                = 0,
 912     stop_untested            = 1,
 913     stop_unimplemented       = 2,
 914     stop_shouldnotreachhere  = 3,
 915     stop_end                 = 4
 916   };
 917   void stop(int type, const char* msg, int id);
 918 
 919  public:
 920   // Prints msg, dumps registers and stops execution.
 921   void stop         (const char* msg = "", int id = 0) { stop(stop_stop,               msg, id); }
 922   void untested     (const char* msg = "", int id = 0) { stop(stop_untested,           msg, id); }
 923   void unimplemented(const char* msg = "", int id = 0) { stop(stop_unimplemented,      msg, id); }
 924   void should_not_reach_here()                         { stop(stop_shouldnotreachhere,  "", -1); }
 925 
 926   void zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) PRODUCT_RETURN;
 927 };
 928 
 929 // class SkipIfEqualZero:
 930 //
 931 // Instantiating this class will result in assembly code being output that will
 932 // jump around any code emitted between the creation of the instance and it's
 933 // automatic destruction at the end of a scope block, depending on the value of
 934 // the flag passed to the constructor, which will be checked at run-time.
 935 class SkipIfEqualZero : public StackObj {
 936  private:
 937   MacroAssembler* _masm;
 938   Label _label;
 939 
 940  public:
 941    // 'Temp' is a temp register that this object can use (and trash).
 942    explicit SkipIfEqualZero(MacroAssembler*, Register temp, const bool* flag_addr);
 943    ~SkipIfEqualZero();
 944 };
 945 
 946 #endif // CPU_PPC_VM_MACROASSEMBLER_PPC_HPP