/* * Copyright (c) 1995, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.lang; import java.lang.RuntimePermission; import java.lang.module.ModuleDescriptor; import java.lang.module.ModuleDescriptor.Exports; import java.lang.module.ModuleDescriptor.Opens; import java.lang.reflect.Layer; import java.lang.reflect.Member; import java.lang.reflect.Module; import java.io.FileDescriptor; import java.io.File; import java.io.FilePermission; import java.net.InetAddress; import java.net.SocketPermission; import java.security.AccessControlContext; import java.security.AccessController; import java.security.Permission; import java.security.PrivilegedAction; import java.security.Security; import java.security.SecurityPermission; import java.util.HashSet; import java.util.Objects; import java.util.PropertyPermission; import java.util.Set; import java.util.stream.Collectors; import java.util.stream.Stream; import jdk.internal.reflect.CallerSensitive; import sun.security.util.SecurityConstants; /** * The security manager is a class that allows * applications to implement a security policy. It allows an * application to determine, before performing a possibly unsafe or * sensitive operation, what the operation is and whether * it is being attempted in a security context that allows the * operation to be performed. The * application can allow or disallow the operation. *

* The SecurityManager class contains many methods with * names that begin with the word check. These methods * are called by various methods in the Java libraries before those * methods perform certain potentially sensitive operations. The * invocation of such a check method typically looks like this: *

 *     SecurityManager security = System.getSecurityManager();
 *     if (security != null) {
 *         security.checkXXX(argument,  . . . );
 *     }
 * 
*

* The security manager is thereby given an opportunity to prevent * completion of the operation by throwing an exception. A security * manager routine simply returns if the operation is permitted, but * throws a SecurityException if the operation is not * permitted. *

* The current security manager is set by the * setSecurityManager method in class * System. The current security manager is obtained * by the getSecurityManager method. *

* The special method * {@link SecurityManager#checkPermission(java.security.Permission)} * determines whether an access request indicated by a specified * permission should be granted or denied. The * default implementation calls * *

 *   AccessController.checkPermission(perm);
 * 
* *

* If a requested access is allowed, * checkPermission returns quietly. If denied, a * SecurityException is thrown. *

* As of Java 2 SDK v1.2, the default implementation of each of the other * check methods in SecurityManager is to * call the SecurityManager checkPermission method * to determine if the calling thread has permission to perform the requested * operation. *

* Note that the checkPermission method with * just a single permission argument always performs security checks * within the context of the currently executing thread. * Sometimes a security check that should be made within a given context * will actually need to be done from within a * different context (for example, from within a worker thread). * The {@link SecurityManager#getSecurityContext getSecurityContext} method * and the {@link SecurityManager#checkPermission(java.security.Permission, * java.lang.Object) checkPermission} * method that includes a context argument are provided * for this situation. The * getSecurityContext method returns a "snapshot" * of the current calling context. (The default implementation * returns an AccessControlContext object.) A sample call is * the following: * *

 *   Object context = null;
 *   SecurityManager sm = System.getSecurityManager();
 *   if (sm != null) context = sm.getSecurityContext();
 * 
* *

* The checkPermission method * that takes a context object in addition to a permission * makes access decisions based on that context, * rather than on that of the current execution thread. * Code within a different context can thus call that method, * passing the permission and the * previously-saved context object. A sample call, using the * SecurityManager sm obtained as in the previous example, * is the following: * *

 *   if (sm != null) sm.checkPermission(permission, context);
 * 
* *

Permissions fall into these categories: File, Socket, Net, * Security, Runtime, Property, AWT, Reflect, and Serializable. * The classes managing these various * permission categories are java.io.FilePermission, * java.net.SocketPermission, * java.net.NetPermission, * java.security.SecurityPermission, * java.lang.RuntimePermission, * java.util.PropertyPermission, * java.awt.AWTPermission, * java.lang.reflect.ReflectPermission, and * java.io.SerializablePermission. * *

All but the first two (FilePermission and SocketPermission) are * subclasses of java.security.BasicPermission, which itself * is an abstract subclass of the * top-level class for permissions, which is * java.security.Permission. BasicPermission defines the * functionality needed for all permissions that contain a name * that follows the hierarchical property naming convention * (for example, "exitVM", "setFactory", "queuePrintJob", etc). * An asterisk * may appear at the end of the name, following a ".", or by itself, to * signify a wildcard match. For example: "a.*" or "*" is valid, * "*a" or "a*b" is not valid. * *

FilePermission and SocketPermission are subclasses of the * top-level class for permissions * (java.security.Permission). Classes like these * that have a more complicated name syntax than that used by * BasicPermission subclass directly from Permission rather than from * BasicPermission. For example, * for a java.io.FilePermission object, the permission name is * the path name of a file (or directory). * *

Some of the permission classes have an "actions" list that tells * the actions that are permitted for the object. For example, * for a java.io.FilePermission object, the actions list * (such as "read, write") specifies which actions are granted for the * specified file (or for files in the specified directory). * *

Other permission classes are for "named" permissions - * ones that contain a name but no actions list; you either have the * named permission or you don't. * *

Note: There is also a java.security.AllPermission * permission that implies all permissions. It exists to simplify the work * of system administrators who might need to perform multiple * tasks that require all (or numerous) permissions. *

* See * Permissions in the JDK for permission-related information. * This document includes, for example, a table listing the various SecurityManager * check methods and the permission(s) the default * implementation of each such method requires. * It also contains a table of all the version 1.2 methods * that require permissions, and for each such method tells * which permission it requires. *

* For more information about SecurityManager changes made in * the JDK and advice regarding porting of 1.1-style security managers, * see the security documentation. * * @author Arthur van Hoff * @author Roland Schemers * * @see java.lang.ClassLoader * @see java.lang.SecurityException * @see java.lang.System#getSecurityManager() getSecurityManager * @see java.lang.System#setSecurityManager(java.lang.SecurityManager) * setSecurityManager * @see java.security.AccessController AccessController * @see java.security.AccessControlContext AccessControlContext * @see java.security.AccessControlException AccessControlException * @see java.security.Permission * @see java.security.BasicPermission * @see java.io.FilePermission * @see java.net.SocketPermission * @see java.util.PropertyPermission * @see java.lang.RuntimePermission * @see java.awt.AWTPermission * @see java.security.Policy Policy * @see java.security.SecurityPermission SecurityPermission * @see java.security.ProtectionDomain * * @since 1.0 */ public class SecurityManager { /** * This field is true if there is a security check in * progress; false otherwise. * * @deprecated This type of security checking is not recommended. * It is recommended that the checkPermission * call be used instead. This field is subject to removal in a * future version of Java SE. */ @Deprecated(since="1.2", forRemoval=true) protected boolean inCheck; /* * Have we been initialized. Effective against finalizer attacks. */ private boolean initialized = false; /** * returns true if the current context has been granted AllPermission */ private boolean hasAllPermission() { try { checkPermission(SecurityConstants.ALL_PERMISSION); return true; } catch (SecurityException se) { return false; } } /** * Tests if there is a security check in progress. * * @return the value of the inCheck field. This field * should contain true if a security check is * in progress, * false otherwise. * @see java.lang.SecurityManager#inCheck * @deprecated This type of security checking is not recommended. * It is recommended that the checkPermission * call be used instead. This method is subject to removal in a * future version of Java SE. */ @Deprecated(since="1.2", forRemoval=true) public boolean getInCheck() { return inCheck; } /** * Constructs a new SecurityManager. * *

If there is a security manager already installed, this method first * calls the security manager's checkPermission method * with the RuntimePermission("createSecurityManager") * permission to ensure the calling thread has permission to create a new * security manager. * This may result in throwing a SecurityException. * * @exception java.lang.SecurityException if a security manager already * exists and its checkPermission method * doesn't allow creation of a new security manager. * @see java.lang.System#getSecurityManager() * @see #checkPermission(java.security.Permission) checkPermission * @see java.lang.RuntimePermission */ public SecurityManager() { synchronized(SecurityManager.class) { SecurityManager sm = System.getSecurityManager(); if (sm != null) { // ask the currently installed security manager if we // can create a new one. sm.checkPermission(new RuntimePermission ("createSecurityManager")); } initialized = true; } } /** * Returns the current execution stack as an array of classes. *

* The length of the array is the number of methods on the execution * stack. The element at index 0 is the class of the * currently executing method, the element at index 1 is * the class of that method's caller, and so on. * * @return the execution stack. */ protected native Class[] getClassContext(); /** * Returns the class loader of the most recently executing method from * a class defined using a non-system class loader. A non-system * class loader is defined as being a class loader that is not equal to * the system class loader (as returned * by {@link ClassLoader#getSystemClassLoader}) or one of its ancestors. *

* This method will return * null in the following three cases: *

    *
  1. All methods on the execution stack are from classes * defined using the system class loader or one of its ancestors. * *
  2. All methods on the execution stack up to the first * "privileged" caller * (see {@link java.security.AccessController#doPrivileged}) * are from classes * defined using the system class loader or one of its ancestors. * *
  3. A call to checkPermission with * java.security.AllPermission does not * result in a SecurityException. * *
* * @return the class loader of the most recent occurrence on the stack * of a method from a class defined using a non-system class * loader. * * @deprecated This type of security checking is not recommended. * It is recommended that the checkPermission * call be used instead. This method is subject to removal in a * future version of Java SE. * * @see java.lang.ClassLoader#getSystemClassLoader() getSystemClassLoader * @see #checkPermission(java.security.Permission) checkPermission */ @Deprecated(since="1.2", forRemoval=true) protected ClassLoader currentClassLoader() { ClassLoader cl = currentClassLoader0(); if ((cl != null) && hasAllPermission()) cl = null; return cl; } private native ClassLoader currentClassLoader0(); /** * Returns the class of the most recently executing method from * a class defined using a non-system class loader. A non-system * class loader is defined as being a class loader that is not equal to * the system class loader (as returned * by {@link ClassLoader#getSystemClassLoader}) or one of its ancestors. *

* This method will return * null in the following three cases: *

    *
  1. All methods on the execution stack are from classes * defined using the system class loader or one of its ancestors. * *
  2. All methods on the execution stack up to the first * "privileged" caller * (see {@link java.security.AccessController#doPrivileged}) * are from classes * defined using the system class loader or one of its ancestors. * *
  3. A call to checkPermission with * java.security.AllPermission does not * result in a SecurityException. * *
* * @return the class of the most recent occurrence on the stack * of a method from a class defined using a non-system class * loader. * * @deprecated This type of security checking is not recommended. * It is recommended that the checkPermission * call be used instead. This method is subject to removal in a * future version of Java SE. * * @see java.lang.ClassLoader#getSystemClassLoader() getSystemClassLoader * @see #checkPermission(java.security.Permission) checkPermission */ @Deprecated(since="1.2", forRemoval=true) protected Class currentLoadedClass() { Class c = currentLoadedClass0(); if ((c != null) && hasAllPermission()) c = null; return c; } /** * Returns the stack depth of the specified class. * * @param name the fully qualified name of the class to search for. * @return the depth on the stack frame of the first occurrence of a * method from a class with the specified name; * -1 if such a frame cannot be found. * @deprecated This type of security checking is not recommended. * It is recommended that the checkPermission * call be used instead. This method is subject to removal in a * future version of Java SE. */ @Deprecated(since="1.2", forRemoval=true) protected native int classDepth(String name); /** * Returns the stack depth of the most recently executing method * from a class defined using a non-system class loader. A non-system * class loader is defined as being a class loader that is not equal to * the system class loader (as returned * by {@link ClassLoader#getSystemClassLoader}) or one of its ancestors. *

* This method will return * -1 in the following three cases: *

    *
  1. All methods on the execution stack are from classes * defined using the system class loader or one of its ancestors. * *
  2. All methods on the execution stack up to the first * "privileged" caller * (see {@link java.security.AccessController#doPrivileged}) * are from classes * defined using the system class loader or one of its ancestors. * *
  3. A call to checkPermission with * java.security.AllPermission does not * result in a SecurityException. * *
* * @return the depth on the stack frame of the most recent occurrence of * a method from a class defined using a non-system class loader. * * @deprecated This type of security checking is not recommended. * It is recommended that the checkPermission * call be used instead. This method is subject to removal in a * future version of Java SE. * * @see java.lang.ClassLoader#getSystemClassLoader() getSystemClassLoader * @see #checkPermission(java.security.Permission) checkPermission */ @Deprecated(since="1.2", forRemoval=true) protected int classLoaderDepth() { int depth = classLoaderDepth0(); if (depth != -1) { if (hasAllPermission()) depth = -1; else depth--; // make sure we don't include ourself } return depth; } private native int classLoaderDepth0(); /** * Tests if a method from a class with the specified * name is on the execution stack. * * @param name the fully qualified name of the class. * @return true if a method from a class with the specified * name is on the execution stack; false otherwise. * @deprecated This type of security checking is not recommended. * It is recommended that the checkPermission * call be used instead. This method is subject to removal in a * future version of Java SE. */ @Deprecated(since="1.2", forRemoval=true) protected boolean inClass(String name) { return classDepth(name) >= 0; } /** * Basically, tests if a method from a class defined using a * class loader is on the execution stack. * * @return true if a call to currentClassLoader * has a non-null return value. * * @deprecated This type of security checking is not recommended. * It is recommended that the checkPermission * call be used instead. This method is subject to removal in a * future version of Java SE. * @see #currentClassLoader() currentClassLoader */ @Deprecated(since="1.2", forRemoval=true) protected boolean inClassLoader() { return currentClassLoader() != null; } /** * Creates an object that encapsulates the current execution * environment. The result of this method is used, for example, by the * three-argument checkConnect method and by the * two-argument checkRead method. * These methods are needed because a trusted method may be called * on to read a file or open a socket on behalf of another method. * The trusted method needs to determine if the other (possibly * untrusted) method would be allowed to perform the operation on its * own. *

The default implementation of this method is to return * an AccessControlContext object. * * @return an implementation-dependent object that encapsulates * sufficient information about the current execution environment * to perform some security checks later. * @see java.lang.SecurityManager#checkConnect(java.lang.String, int, * java.lang.Object) checkConnect * @see java.lang.SecurityManager#checkRead(java.lang.String, * java.lang.Object) checkRead * @see java.security.AccessControlContext AccessControlContext */ public Object getSecurityContext() { return AccessController.getContext(); } /** * Throws a SecurityException if the requested * access, specified by the given permission, is not permitted based * on the security policy currently in effect. *

* This method calls AccessController.checkPermission * with the given permission. * * @param perm the requested permission. * @exception SecurityException if access is not permitted based on * the current security policy. * @exception NullPointerException if the permission argument is * null. * @since 1.2 */ public void checkPermission(Permission perm) { java.security.AccessController.checkPermission(perm); } /** * Throws a SecurityException if the * specified security context is denied access to the resource * specified by the given permission. * The context must be a security * context returned by a previous call to * getSecurityContext and the access control * decision is based upon the configured security policy for * that security context. *

* If context is an instance of * AccessControlContext then the * AccessControlContext.checkPermission method is * invoked with the specified permission. *

* If context is not an instance of * AccessControlContext then a * SecurityException is thrown. * * @param perm the specified permission * @param context a system-dependent security context. * @exception SecurityException if the specified security context * is not an instance of AccessControlContext * (e.g., is null), or is denied access to the * resource specified by the given permission. * @exception NullPointerException if the permission argument is * null. * @see java.lang.SecurityManager#getSecurityContext() * @see java.security.AccessControlContext#checkPermission(java.security.Permission) * @since 1.2 */ public void checkPermission(Permission perm, Object context) { if (context instanceof AccessControlContext) { ((AccessControlContext)context).checkPermission(perm); } else { throw new SecurityException(); } } /** * Throws a SecurityException if the * calling thread is not allowed to create a new class loader. *

* This method calls checkPermission with the * RuntimePermission("createClassLoader") * permission. *

* If you override this method, then you should make a call to * super.checkCreateClassLoader * at the point the overridden method would normally throw an * exception. * * @exception SecurityException if the calling thread does not * have permission * to create a new class loader. * @see java.lang.ClassLoader#ClassLoader() * @see #checkPermission(java.security.Permission) checkPermission */ public void checkCreateClassLoader() { checkPermission(SecurityConstants.CREATE_CLASSLOADER_PERMISSION); } /** * reference to the root thread group, used for the checkAccess * methods. */ private static ThreadGroup rootGroup = getRootGroup(); private static ThreadGroup getRootGroup() { ThreadGroup root = Thread.currentThread().getThreadGroup(); while (root.getParent() != null) { root = root.getParent(); } return root; } /** * Throws a SecurityException if the * calling thread is not allowed to modify the thread argument. *

* This method is invoked for the current security manager by the * stop, suspend, resume, * setPriority, setName, and * setDaemon methods of class Thread. *

* If the thread argument is a system thread (belongs to * the thread group with a null parent) then * this method calls checkPermission with the * RuntimePermission("modifyThread") permission. * If the thread argument is not a system thread, * this method just returns silently. *

* Applications that want a stricter policy should override this * method. If this method is overridden, the method that overrides * it should additionally check to see if the calling thread has the * RuntimePermission("modifyThread") permission, and * if so, return silently. This is to ensure that code granted * that permission (such as the JDK itself) is allowed to * manipulate any thread. *

* If this method is overridden, then * super.checkAccess should * be called by the first statement in the overridden method, or the * equivalent security check should be placed in the overridden method. * * @param t the thread to be checked. * @exception SecurityException if the calling thread does not have * permission to modify the thread. * @exception NullPointerException if the thread argument is * null. * @see java.lang.Thread#resume() resume * @see java.lang.Thread#setDaemon(boolean) setDaemon * @see java.lang.Thread#setName(java.lang.String) setName * @see java.lang.Thread#setPriority(int) setPriority * @see java.lang.Thread#stop() stop * @see java.lang.Thread#suspend() suspend * @see #checkPermission(java.security.Permission) checkPermission */ public void checkAccess(Thread t) { if (t == null) { throw new NullPointerException("thread can't be null"); } if (t.getThreadGroup() == rootGroup) { checkPermission(SecurityConstants.MODIFY_THREAD_PERMISSION); } else { // just return } } /** * Throws a SecurityException if the * calling thread is not allowed to modify the thread group argument. *

* This method is invoked for the current security manager when a * new child thread or child thread group is created, and by the * setDaemon, setMaxPriority, * stop, suspend, resume, and * destroy methods of class ThreadGroup. *

* If the thread group argument is the system thread group ( * has a null parent) then * this method calls checkPermission with the * RuntimePermission("modifyThreadGroup") permission. * If the thread group argument is not the system thread group, * this method just returns silently. *

* Applications that want a stricter policy should override this * method. If this method is overridden, the method that overrides * it should additionally check to see if the calling thread has the * RuntimePermission("modifyThreadGroup") permission, and * if so, return silently. This is to ensure that code granted * that permission (such as the JDK itself) is allowed to * manipulate any thread. *

* If this method is overridden, then * super.checkAccess should * be called by the first statement in the overridden method, or the * equivalent security check should be placed in the overridden method. * * @param g the thread group to be checked. * @exception SecurityException if the calling thread does not have * permission to modify the thread group. * @exception NullPointerException if the thread group argument is * null. * @see java.lang.ThreadGroup#destroy() destroy * @see java.lang.ThreadGroup#resume() resume * @see java.lang.ThreadGroup#setDaemon(boolean) setDaemon * @see java.lang.ThreadGroup#setMaxPriority(int) setMaxPriority * @see java.lang.ThreadGroup#stop() stop * @see java.lang.ThreadGroup#suspend() suspend * @see #checkPermission(java.security.Permission) checkPermission */ public void checkAccess(ThreadGroup g) { if (g == null) { throw new NullPointerException("thread group can't be null"); } if (g == rootGroup) { checkPermission(SecurityConstants.MODIFY_THREADGROUP_PERMISSION); } else { // just return } } /** * Throws a SecurityException if the * calling thread is not allowed to cause the Java Virtual Machine to * halt with the specified status code. *

* This method is invoked for the current security manager by the * exit method of class Runtime. A status * of 0 indicates success; other values indicate various * errors. *

* This method calls checkPermission with the * RuntimePermission("exitVM."+status) permission. *

* If you override this method, then you should make a call to * super.checkExit * at the point the overridden method would normally throw an * exception. * * @param status the exit status. * @exception SecurityException if the calling thread does not have * permission to halt the Java Virtual Machine with * the specified status. * @see java.lang.Runtime#exit(int) exit * @see #checkPermission(java.security.Permission) checkPermission */ public void checkExit(int status) { checkPermission(new RuntimePermission("exitVM."+status)); } /** * Throws a SecurityException if the * calling thread is not allowed to create a subprocess. *

* This method is invoked for the current security manager by the * exec methods of class Runtime. *

* This method calls checkPermission with the * FilePermission(cmd,"execute") permission * if cmd is an absolute path, otherwise it calls * checkPermission with * FilePermission("<<ALL FILES>>","execute"). *

* If you override this method, then you should make a call to * super.checkExec * at the point the overridden method would normally throw an * exception. * * @param cmd the specified system command. * @exception SecurityException if the calling thread does not have * permission to create a subprocess. * @exception NullPointerException if the cmd argument is * null. * @see java.lang.Runtime#exec(java.lang.String) * @see java.lang.Runtime#exec(java.lang.String, java.lang.String[]) * @see java.lang.Runtime#exec(java.lang.String[]) * @see java.lang.Runtime#exec(java.lang.String[], java.lang.String[]) * @see #checkPermission(java.security.Permission) checkPermission */ public void checkExec(String cmd) { File f = new File(cmd); if (f.isAbsolute()) { checkPermission(new FilePermission(cmd, SecurityConstants.FILE_EXECUTE_ACTION)); } else { checkPermission(new FilePermission("<>", SecurityConstants.FILE_EXECUTE_ACTION)); } } /** * Throws a SecurityException if the * calling thread is not allowed to dynamic link the library code * specified by the string argument file. The argument is either a * simple library name or a complete filename. *

* This method is invoked for the current security manager by * methods load and loadLibrary of class * Runtime. *

* This method calls checkPermission with the * RuntimePermission("loadLibrary."+lib) permission. *

* If you override this method, then you should make a call to * super.checkLink * at the point the overridden method would normally throw an * exception. * * @param lib the name of the library. * @exception SecurityException if the calling thread does not have * permission to dynamically link the library. * @exception NullPointerException if the lib argument is * null. * @see java.lang.Runtime#load(java.lang.String) * @see java.lang.Runtime#loadLibrary(java.lang.String) * @see #checkPermission(java.security.Permission) checkPermission */ public void checkLink(String lib) { if (lib == null) { throw new NullPointerException("library can't be null"); } checkPermission(new RuntimePermission("loadLibrary."+lib)); } /** * Throws a SecurityException if the * calling thread is not allowed to read from the specified file * descriptor. *

* This method calls checkPermission with the * RuntimePermission("readFileDescriptor") * permission. *

* If you override this method, then you should make a call to * super.checkRead * at the point the overridden method would normally throw an * exception. * * @param fd the system-dependent file descriptor. * @exception SecurityException if the calling thread does not have * permission to access the specified file descriptor. * @exception NullPointerException if the file descriptor argument is * null. * @see java.io.FileDescriptor * @see #checkPermission(java.security.Permission) checkPermission */ public void checkRead(FileDescriptor fd) { if (fd == null) { throw new NullPointerException("file descriptor can't be null"); } checkPermission(new RuntimePermission("readFileDescriptor")); } /** * Throws a SecurityException if the * calling thread is not allowed to read the file specified by the * string argument. *

* This method calls checkPermission with the * FilePermission(file,"read") permission. *

* If you override this method, then you should make a call to * super.checkRead * at the point the overridden method would normally throw an * exception. * * @param file the system-dependent file name. * @exception SecurityException if the calling thread does not have * permission to access the specified file. * @exception NullPointerException if the file argument is * null. * @see #checkPermission(java.security.Permission) checkPermission */ public void checkRead(String file) { checkPermission(new FilePermission(file, SecurityConstants.FILE_READ_ACTION)); } /** * Throws a SecurityException if the * specified security context is not allowed to read the file * specified by the string argument. The context must be a security * context returned by a previous call to * getSecurityContext. *

If context is an instance of * AccessControlContext then the * AccessControlContext.checkPermission method will * be invoked with the FilePermission(file,"read") permission. *

If context is not an instance of * AccessControlContext then a * SecurityException is thrown. *

* If you override this method, then you should make a call to * super.checkRead * at the point the overridden method would normally throw an * exception. * * @param file the system-dependent filename. * @param context a system-dependent security context. * @exception SecurityException if the specified security context * is not an instance of AccessControlContext * (e.g., is null), or does not have permission * to read the specified file. * @exception NullPointerException if the file argument is * null. * @see java.lang.SecurityManager#getSecurityContext() * @see java.security.AccessControlContext#checkPermission(java.security.Permission) */ public void checkRead(String file, Object context) { checkPermission( new FilePermission(file, SecurityConstants.FILE_READ_ACTION), context); } /** * Throws a SecurityException if the * calling thread is not allowed to write to the specified file * descriptor. *

* This method calls checkPermission with the * RuntimePermission("writeFileDescriptor") * permission. *

* If you override this method, then you should make a call to * super.checkWrite * at the point the overridden method would normally throw an * exception. * * @param fd the system-dependent file descriptor. * @exception SecurityException if the calling thread does not have * permission to access the specified file descriptor. * @exception NullPointerException if the file descriptor argument is * null. * @see java.io.FileDescriptor * @see #checkPermission(java.security.Permission) checkPermission */ public void checkWrite(FileDescriptor fd) { if (fd == null) { throw new NullPointerException("file descriptor can't be null"); } checkPermission(new RuntimePermission("writeFileDescriptor")); } /** * Throws a SecurityException if the * calling thread is not allowed to write to the file specified by * the string argument. *

* This method calls checkPermission with the * FilePermission(file,"write") permission. *

* If you override this method, then you should make a call to * super.checkWrite * at the point the overridden method would normally throw an * exception. * * @param file the system-dependent filename. * @exception SecurityException if the calling thread does not * have permission to access the specified file. * @exception NullPointerException if the file argument is * null. * @see #checkPermission(java.security.Permission) checkPermission */ public void checkWrite(String file) { checkPermission(new FilePermission(file, SecurityConstants.FILE_WRITE_ACTION)); } /** * Throws a SecurityException if the * calling thread is not allowed to delete the specified file. *

* This method is invoked for the current security manager by the * delete method of class File. *

* This method calls checkPermission with the * FilePermission(file,"delete") permission. *

* If you override this method, then you should make a call to * super.checkDelete * at the point the overridden method would normally throw an * exception. * * @param file the system-dependent filename. * @exception SecurityException if the calling thread does not * have permission to delete the file. * @exception NullPointerException if the file argument is * null. * @see java.io.File#delete() * @see #checkPermission(java.security.Permission) checkPermission */ public void checkDelete(String file) { checkPermission(new FilePermission(file, SecurityConstants.FILE_DELETE_ACTION)); } /** * Throws a SecurityException if the * calling thread is not allowed to open a socket connection to the * specified host and port number. *

* A port number of -1 indicates that the calling * method is attempting to determine the IP address of the specified * host name. *

* This method calls checkPermission with the * SocketPermission(host+":"+port,"connect") permission if * the port is not equal to -1. If the port is equal to -1, then * it calls checkPermission with the * SocketPermission(host,"resolve") permission. *

* If you override this method, then you should make a call to * super.checkConnect * at the point the overridden method would normally throw an * exception. * * @param host the host name port to connect to. * @param port the protocol port to connect to. * @exception SecurityException if the calling thread does not have * permission to open a socket connection to the specified * host and port. * @exception NullPointerException if the host argument is * null. * @see #checkPermission(java.security.Permission) checkPermission */ public void checkConnect(String host, int port) { if (host == null) { throw new NullPointerException("host can't be null"); } if (!host.startsWith("[") && host.indexOf(':') != -1) { host = "[" + host + "]"; } if (port == -1) { checkPermission(new SocketPermission(host, SecurityConstants.SOCKET_RESOLVE_ACTION)); } else { checkPermission(new SocketPermission(host+":"+port, SecurityConstants.SOCKET_CONNECT_ACTION)); } } /** * Throws a SecurityException if the * specified security context is not allowed to open a socket * connection to the specified host and port number. *

* A port number of -1 indicates that the calling * method is attempting to determine the IP address of the specified * host name. *

If context is not an instance of * AccessControlContext then a * SecurityException is thrown. *

* Otherwise, the port number is checked. If it is not equal * to -1, the context's checkPermission * method is called with a * SocketPermission(host+":"+port,"connect") permission. * If the port is equal to -1, then * the context's checkPermission method * is called with a * SocketPermission(host,"resolve") permission. *

* If you override this method, then you should make a call to * super.checkConnect * at the point the overridden method would normally throw an * exception. * * @param host the host name port to connect to. * @param port the protocol port to connect to. * @param context a system-dependent security context. * @exception SecurityException if the specified security context * is not an instance of AccessControlContext * (e.g., is null), or does not have permission * to open a socket connection to the specified * host and port. * @exception NullPointerException if the host argument is * null. * @see java.lang.SecurityManager#getSecurityContext() * @see java.security.AccessControlContext#checkPermission(java.security.Permission) */ public void checkConnect(String host, int port, Object context) { if (host == null) { throw new NullPointerException("host can't be null"); } if (!host.startsWith("[") && host.indexOf(':') != -1) { host = "[" + host + "]"; } if (port == -1) checkPermission(new SocketPermission(host, SecurityConstants.SOCKET_RESOLVE_ACTION), context); else checkPermission(new SocketPermission(host+":"+port, SecurityConstants.SOCKET_CONNECT_ACTION), context); } /** * Throws a SecurityException if the * calling thread is not allowed to wait for a connection request on * the specified local port number. *

* This method calls checkPermission with the * SocketPermission("localhost:"+port,"listen"). *

* If you override this method, then you should make a call to * super.checkListen * at the point the overridden method would normally throw an * exception. * * @param port the local port. * @exception SecurityException if the calling thread does not have * permission to listen on the specified port. * @see #checkPermission(java.security.Permission) checkPermission */ public void checkListen(int port) { checkPermission(new SocketPermission("localhost:"+port, SecurityConstants.SOCKET_LISTEN_ACTION)); } /** * Throws a SecurityException if the * calling thread is not permitted to accept a socket connection from * the specified host and port number. *

* This method is invoked for the current security manager by the * accept method of class ServerSocket. *

* This method calls checkPermission with the * SocketPermission(host+":"+port,"accept") permission. *

* If you override this method, then you should make a call to * super.checkAccept * at the point the overridden method would normally throw an * exception. * * @param host the host name of the socket connection. * @param port the port number of the socket connection. * @exception SecurityException if the calling thread does not have * permission to accept the connection. * @exception NullPointerException if the host argument is * null. * @see java.net.ServerSocket#accept() * @see #checkPermission(java.security.Permission) checkPermission */ public void checkAccept(String host, int port) { if (host == null) { throw new NullPointerException("host can't be null"); } if (!host.startsWith("[") && host.indexOf(':') != -1) { host = "[" + host + "]"; } checkPermission(new SocketPermission(host+":"+port, SecurityConstants.SOCKET_ACCEPT_ACTION)); } /** * Throws a SecurityException if the * calling thread is not allowed to use * (join/leave/send/receive) IP multicast. *

* This method calls checkPermission with the * java.net.SocketPermission(maddr.getHostAddress(), * "accept,connect") permission. *

* If you override this method, then you should make a call to * super.checkMulticast * at the point the overridden method would normally throw an * exception. * * @param maddr Internet group address to be used. * @exception SecurityException if the calling thread is not allowed to * use (join/leave/send/receive) IP multicast. * @exception NullPointerException if the address argument is * null. * @since 1.1 * @see #checkPermission(java.security.Permission) checkPermission */ public void checkMulticast(InetAddress maddr) { String host = maddr.getHostAddress(); if (!host.startsWith("[") && host.indexOf(':') != -1) { host = "[" + host + "]"; } checkPermission(new SocketPermission(host, SecurityConstants.SOCKET_CONNECT_ACCEPT_ACTION)); } /** * Throws a SecurityException if the * calling thread is not allowed to use * (join/leave/send/receive) IP multicast. *

* This method calls checkPermission with the * java.net.SocketPermission(maddr.getHostAddress(), * "accept,connect") permission. *

* If you override this method, then you should make a call to * super.checkMulticast * at the point the overridden method would normally throw an * exception. * * @param maddr Internet group address to be used. * @param ttl value in use, if it is multicast send. * Note: this particular implementation does not use the ttl * parameter. * @exception SecurityException if the calling thread is not allowed to * use (join/leave/send/receive) IP multicast. * @exception NullPointerException if the address argument is * null. * @since 1.1 * @deprecated Use #checkPermission(java.security.Permission) instead * @see #checkPermission(java.security.Permission) checkPermission */ @Deprecated(since="1.4") public void checkMulticast(InetAddress maddr, byte ttl) { String host = maddr.getHostAddress(); if (!host.startsWith("[") && host.indexOf(':') != -1) { host = "[" + host + "]"; } checkPermission(new SocketPermission(host, SecurityConstants.SOCKET_CONNECT_ACCEPT_ACTION)); } /** * Throws a SecurityException if the * calling thread is not allowed to access or modify the system * properties. *

* This method is used by the getProperties and * setProperties methods of class System. *

* This method calls checkPermission with the * PropertyPermission("*", "read,write") permission. *

* If you override this method, then you should make a call to * super.checkPropertiesAccess * at the point the overridden method would normally throw an * exception. * * @exception SecurityException if the calling thread does not have * permission to access or modify the system properties. * @see java.lang.System#getProperties() * @see java.lang.System#setProperties(java.util.Properties) * @see #checkPermission(java.security.Permission) checkPermission */ public void checkPropertiesAccess() { checkPermission(new PropertyPermission("*", SecurityConstants.PROPERTY_RW_ACTION)); } /** * Throws a SecurityException if the * calling thread is not allowed to access the system property with * the specified key name. *

* This method is used by the getProperty method of * class System. *

* This method calls checkPermission with the * PropertyPermission(key, "read") permission. *

* If you override this method, then you should make a call to * super.checkPropertyAccess * at the point the overridden method would normally throw an * exception. * * @param key a system property key. * * @exception SecurityException if the calling thread does not have * permission to access the specified system property. * @exception NullPointerException if the key argument is * null. * @exception IllegalArgumentException if key is empty. * * @see java.lang.System#getProperty(java.lang.String) * @see #checkPermission(java.security.Permission) checkPermission */ public void checkPropertyAccess(String key) { checkPermission(new PropertyPermission(key, SecurityConstants.PROPERTY_READ_ACTION)); } /** * Returns {@code true} if the calling thread has {@code AllPermission}. * * @param window not used except to check if it is {@code null}. * @return {@code true} if the calling thread has {@code AllPermission}. * @exception NullPointerException if the {@code window} argument is * {@code null}. * @deprecated This method was originally used to check if the calling thread * was trusted to bring up a top-level window. The method has been * obsoleted and code should instead use {@link #checkPermission} * to check {@code AWTPermission("showWindowWithoutWarningBanner")}. * This method is subject to removal in a future version of Java SE. * @see #checkPermission(java.security.Permission) checkPermission */ @Deprecated(since="1.8", forRemoval=true) public boolean checkTopLevelWindow(Object window) { if (window == null) { throw new NullPointerException("window can't be null"); } return hasAllPermission(); } /** * Throws a SecurityException if the * calling thread is not allowed to initiate a print job request. *

* This method calls * checkPermission with the * RuntimePermission("queuePrintJob") permission. *

* If you override this method, then you should make a call to * super.checkPrintJobAccess * at the point the overridden method would normally throw an * exception. * * @exception SecurityException if the calling thread does not have * permission to initiate a print job request. * @since 1.1 * @see #checkPermission(java.security.Permission) checkPermission */ public void checkPrintJobAccess() { checkPermission(new RuntimePermission("queuePrintJob")); } /** * Throws {@code SecurityException} if the calling thread does * not have {@code AllPermission}. * * @since 1.1 * @exception SecurityException if the calling thread does not have * {@code AllPermission} * @deprecated This method was originally used to check if the calling * thread could access the system clipboard. The method has been * obsoleted and code should instead use {@link #checkPermission} * to check {@code AWTPermission("accessClipboard")}. * This method is subject to removal in a future version of Java SE. * @see #checkPermission(java.security.Permission) checkPermission */ @Deprecated(since="1.8", forRemoval=true) public void checkSystemClipboardAccess() { checkPermission(SecurityConstants.ALL_PERMISSION); } /** * Throws {@code SecurityException} if the calling thread does * not have {@code AllPermission}. * * @since 1.1 * @exception SecurityException if the calling thread does not have * {@code AllPermission} * @deprecated This method was originally used to check if the calling * thread could access the AWT event queue. The method has been * obsoleted and code should instead use {@link #checkPermission} * to check {@code AWTPermission("accessEventQueue")}. * This method is subject to removal in a future version of Java SE. * @see #checkPermission(java.security.Permission) checkPermission */ @Deprecated(since="1.8", forRemoval=true) public void checkAwtEventQueueAccess() { checkPermission(SecurityConstants.ALL_PERMISSION); } /* * We have an initial invalid bit (initially false) for the class * variables which tell if the cache is valid. If the underlying * java.security.Security property changes via setProperty(), the * Security class uses reflection to change the variable and thus * invalidate the cache. * * Locking is handled by synchronization to the * packageAccessLock/packageDefinitionLock objects. They are only * used in this class. * * Note that cache invalidation as a result of the property change * happens without using these locks, so there may be a delay between * when a thread updates the property and when other threads updates * the cache. */ private static boolean packageAccessValid = false; private static String[] packageAccess; private static final Object packageAccessLock = new Object(); private static boolean packageDefinitionValid = false; private static String[] packageDefinition; private static final Object packageDefinitionLock = new Object(); private static String[] getPackages(String p) { String packages[] = null; if (p != null && !p.equals("")) { java.util.StringTokenizer tok = new java.util.StringTokenizer(p, ","); int n = tok.countTokens(); if (n > 0) { packages = new String[n]; int i = 0; while (tok.hasMoreElements()) { String s = tok.nextToken().trim(); packages[i++] = s; } } } if (packages == null) { packages = new String[0]; } return packages; } // The non-exported packages of the modules in the boot layer that are // loaded by the platform class loader or its ancestors. A non-exported // package is a package that either is not exported at all by its containing // module or is exported in a qualified fashion by its containing module. private static final Set nonExportedPkgs; static { // Get the modules in the boot layer Stream bootLayerModules = Layer.boot().modules().stream(); // Filter out the modules loaded by the boot or platform loader PrivilegedAction> pa = () -> bootLayerModules.filter(SecurityManager::isBootOrPlatformModule) .collect(Collectors.toSet()); Set modules = AccessController.doPrivileged(pa); // Filter out the non-exported packages nonExportedPkgs = modules.stream() .map(Module::getDescriptor) .map(SecurityManager::nonExportedPkgs) .flatMap(Set::stream) .collect(Collectors.toSet()); } /** * Called by java.security.Security */ static void invalidatePackageAccessCache() { synchronized (packageAccessLock) { packageAccessValid = false; } synchronized (packageDefinitionLock) { packageDefinitionValid = false; } } /** * Returns true if the module's loader is the boot or platform loader. */ private static boolean isBootOrPlatformModule(Module m) { return m.getClassLoader() == null || m.getClassLoader() == ClassLoader.getPlatformClassLoader(); } /** * Returns the non-exported packages of the specified module. */ private static Set nonExportedPkgs(ModuleDescriptor md) { // start with all packages in the module Set pkgs = new HashSet<>(md.packages()); // remove the non-qualified exported packages md.exports().stream() .filter(p -> !p.isQualified()) .map(Exports::source) .forEach(pkgs::remove); // remove the non-qualified open packages md.opens().stream() .filter(p -> !p.isQualified()) .map(Opens::source) .forEach(pkgs::remove); return pkgs; } /** * Throws a {@code SecurityException} if the calling thread is not allowed * to access the specified package. *

* This method is called by the {@code loadClass} method of class loaders. *

* This method checks if the specified package starts with or equals * any of the packages in the {@code package.access} Security Property. * An implementation may also check the package against an additional * list of restricted packages as noted below. If the package is restricted, * {@link #checkPermission(Permission)} is called with a * {@code RuntimePermission("accessClassInPackage."+pkg)} permission. *

* If this method is overridden, then {@code super.checkPackageAccess} * should be called as the first line in the overridden method. * * @implNote * This implementation also restricts all non-exported packages of modules * loaded by {@linkplain ClassLoader#getPlatformClassLoader * the platform class loader} or its ancestors. A "non-exported package" * refers to a package that is not exported to all modules. Specifically, * it refers to a package that either is not exported at all by its * containing module or is exported in a qualified fashion by its * containing module. * * @param pkg the package name. * @throws SecurityException if the calling thread does not have * permission to access the specified package. * @throws NullPointerException if the package name argument is * {@code null}. * @see java.lang.ClassLoader#loadClass(String, boolean) loadClass * @see java.security.Security#getProperty getProperty * @see #checkPermission(Permission) checkPermission */ public void checkPackageAccess(String pkg) { Objects.requireNonNull(pkg, "package name can't be null"); // check if pkg is not exported to all modules if (nonExportedPkgs.contains(pkg)) { checkPermission( new RuntimePermission("accessClassInPackage." + pkg)); return; } String[] restrictedPkgs; synchronized (packageAccessLock) { /* * Do we need to update our property array? */ if (!packageAccessValid) { String tmpPropertyStr = AccessController.doPrivileged( new PrivilegedAction<>() { public String run() { return Security.getProperty("package.access"); } } ); packageAccess = getPackages(tmpPropertyStr); packageAccessValid = true; } // Using a snapshot of packageAccess -- don't care if static field // changes afterwards; array contents won't change. restrictedPkgs = packageAccess; } /* * Traverse the list of packages, check for any matches. */ final int plen = pkg.length(); for (String restrictedPkg : restrictedPkgs) { final int rlast = restrictedPkg.length() - 1; // Optimizations: // // If rlast >= plen then restrictedPkg is longer than pkg by at // least one char. This means pkg cannot start with restrictedPkg, // since restrictedPkg will be longer than pkg. // // Similarly if rlast != plen, then pkg + "." cannot be the same // as restrictedPkg, since pkg + "." will have a different length // than restrictedPkg. // if (rlast < plen && pkg.startsWith(restrictedPkg) || // The following test is equivalent to // restrictedPkg.equals(pkg + ".") but is noticeably more // efficient: rlast == plen && restrictedPkg.startsWith(pkg) && restrictedPkg.charAt(rlast) == '.') { checkPermission( new RuntimePermission("accessClassInPackage." + pkg)); break; // No need to continue; only need to check this once } } } /** * Throws a {@code SecurityException} if the calling thread is not * allowed to define classes in the specified package. *

* This method is called by the {@code loadClass} method of some * class loaders. *

* This method checks if the specified package starts with or equals * any of the packages in the {@code package.definition} Security * Property. An implementation may also check the package against an * additional list of restricted packages as noted below. If the package * is restricted, {@link #checkPermission(Permission)} is called with a * {@code RuntimePermission("defineClassInPackage."+pkg)} permission. *

* If this method is overridden, then {@code super.checkPackageDefinition} * should be called as the first line in the overridden method. * * @implNote * This implementation also restricts all non-exported packages of modules * loaded by {@linkplain ClassLoader#getPlatformClassLoader * the platform class loader} or its ancestors. A "non-exported package" * refers to a package that is not exported to all modules. Specifically, * it refers to a package that either is not exported at all by its * containing module or is exported in a qualified fashion by its * containing module. * * @param pkg the package name. * @throws SecurityException if the calling thread does not have * permission to define classes in the specified package. * @throws NullPointerException if the package name argument is * {@code null}. * @see java.lang.ClassLoader#loadClass(String, boolean) * @see java.security.Security#getProperty getProperty * @see #checkPermission(Permission) checkPermission */ public void checkPackageDefinition(String pkg) { Objects.requireNonNull(pkg, "package name can't be null"); // check if pkg is not exported to all modules if (nonExportedPkgs.contains(pkg)) { checkPermission( new RuntimePermission("defineClassInPackage." + pkg)); return; } String[] pkgs; synchronized (packageDefinitionLock) { /* * Do we need to update our property array? */ if (!packageDefinitionValid) { String tmpPropertyStr = AccessController.doPrivileged( new PrivilegedAction<>() { public String run() { return java.security.Security.getProperty( "package.definition"); } } ); packageDefinition = getPackages(tmpPropertyStr); packageDefinitionValid = true; } // Using a snapshot of packageDefinition -- don't care if static // field changes afterwards; array contents won't change. pkgs = packageDefinition; } /* * Traverse the list of packages, check for any matches. */ for (String restrictedPkg : pkgs) { if (pkg.startsWith(restrictedPkg) || restrictedPkg.equals(pkg + ".")) { checkPermission( new RuntimePermission("defineClassInPackage." + pkg)); break; // No need to continue; only need to check this once } } } /** * Throws a SecurityException if the * calling thread is not allowed to set the socket factory used by * ServerSocket or Socket, or the stream * handler factory used by URL. *

* This method calls checkPermission with the * RuntimePermission("setFactory") permission. *

* If you override this method, then you should make a call to * super.checkSetFactory * at the point the overridden method would normally throw an * exception. * * @exception SecurityException if the calling thread does not have * permission to specify a socket factory or a stream * handler factory. * * @see java.net.ServerSocket#setSocketFactory(java.net.SocketImplFactory) setSocketFactory * @see java.net.Socket#setSocketImplFactory(java.net.SocketImplFactory) setSocketImplFactory * @see java.net.URL#setURLStreamHandlerFactory(java.net.URLStreamHandlerFactory) setURLStreamHandlerFactory * @see #checkPermission(java.security.Permission) checkPermission */ public void checkSetFactory() { checkPermission(new RuntimePermission("setFactory")); } /** * Throws a SecurityException if the * calling thread is not allowed to access members. *

* The default policy is to allow access to PUBLIC members, as well * as access to classes that have the same class loader as the caller. * In all other cases, this method calls checkPermission * with the RuntimePermission("accessDeclaredMembers") * permission. *

* If this method is overridden, then a call to * super.checkMemberAccess cannot be made, * as the default implementation of checkMemberAccess * relies on the code being checked being at a stack depth of * 4. * * @param clazz the class that reflection is to be performed on. * * @param which type of access, PUBLIC or DECLARED. * * @exception SecurityException if the caller does not have * permission to access members. * @exception NullPointerException if the clazz argument is * null. * * @deprecated This method relies on the caller being at a stack depth * of 4 which is error-prone and cannot be enforced by the runtime. * Users of this method should instead invoke {@link #checkPermission} * directly. * This method is subject to removal in a future version of Java SE. * * @see java.lang.reflect.Member * @since 1.1 * @see #checkPermission(java.security.Permission) checkPermission */ @Deprecated(since="1.8", forRemoval=true) @CallerSensitive public void checkMemberAccess(Class clazz, int which) { if (clazz == null) { throw new NullPointerException("class can't be null"); } if (which != Member.PUBLIC) { Class stack[] = getClassContext(); /* * stack depth of 4 should be the caller of one of the * methods in java.lang.Class that invoke checkMember * access. The stack should look like: * * someCaller [3] * java.lang.Class.someReflectionAPI [2] * java.lang.Class.checkMemberAccess [1] * SecurityManager.checkMemberAccess [0] * */ if ((stack.length<4) || (stack[3].getClassLoader() != clazz.getClassLoader())) { checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION); } } } /** * Determines whether the permission with the specified permission target * name should be granted or denied. * *

If the requested permission is allowed, this method returns * quietly. If denied, a SecurityException is raised. * *

This method creates a SecurityPermission object for * the given permission target name and calls checkPermission * with it. * *

See the documentation for * {@link java.security.SecurityPermission} for * a list of possible permission target names. * *

If you override this method, then you should make a call to * super.checkSecurityAccess * at the point the overridden method would normally throw an * exception. * * @param target the target name of the SecurityPermission. * * @exception SecurityException if the calling thread does not have * permission for the requested access. * @exception NullPointerException if target is null. * @exception IllegalArgumentException if target is empty. * * @since 1.1 * @see #checkPermission(java.security.Permission) checkPermission */ public void checkSecurityAccess(String target) { checkPermission(new SecurityPermission(target)); } private native Class currentLoadedClass0(); /** * Returns the thread group into which to instantiate any new * thread being created at the time this is being called. * By default, it returns the thread group of the current * thread. This should be overridden by a specific security * manager to return the appropriate thread group. * * @return ThreadGroup that new threads are instantiated into * @since 1.1 * @see java.lang.ThreadGroup */ public ThreadGroup getThreadGroup() { return Thread.currentThread().getThreadGroup(); } }