1 /*
   2  * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.org.objectweb.asm.ClassWriter;
  29 import jdk.internal.org.objectweb.asm.Opcodes;
  30 import jdk.internal.reflect.CallerSensitive;
  31 import jdk.internal.reflect.Reflection;
  32 import jdk.internal.vm.annotation.ForceInline;
  33 import sun.invoke.util.ValueConversions;
  34 import sun.invoke.util.VerifyAccess;
  35 import sun.invoke.util.Wrapper;
  36 import sun.reflect.misc.ReflectUtil;
  37 import sun.security.util.SecurityConstants;
  38 
  39 import java.lang.invoke.LambdaForm.BasicType;
  40 import java.lang.reflect.Constructor;
  41 import java.lang.reflect.Field;
  42 import java.lang.reflect.Member;
  43 import java.lang.reflect.Method;
  44 import java.lang.reflect.Modifier;
  45 import java.lang.reflect.Module;
  46 import java.lang.reflect.ReflectPermission;
  47 import java.nio.ByteOrder;
  48 import java.util.ArrayList;
  49 import java.util.Arrays;
  50 import java.util.BitSet;
  51 import java.util.Iterator;
  52 import java.util.List;
  53 import java.util.Objects;
  54 import java.util.concurrent.ConcurrentHashMap;
  55 import java.util.stream.Collectors;
  56 import java.util.stream.Stream;
  57 
  58 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
  59 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  60 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  61 import static java.lang.invoke.MethodType.methodType;
  62 
  63 /**
  64  * This class consists exclusively of static methods that operate on or return
  65  * method handles. They fall into several categories:
  66  * <ul>
  67  * <li>Lookup methods which help create method handles for methods and fields.
  68  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  69  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  70  * </ul>
  71  *
  72  * @author John Rose, JSR 292 EG
  73  * @since 1.7
  74  */
  75 public class MethodHandles {
  76 
  77     private MethodHandles() { }  // do not instantiate
  78 
  79     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  80 
  81     // See IMPL_LOOKUP below.
  82 
  83     //// Method handle creation from ordinary methods.
  84 
  85     /**
  86      * Returns a {@link Lookup lookup object} with
  87      * full capabilities to emulate all supported bytecode behaviors of the caller.
  88      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
  89      * Factory methods on the lookup object can create
  90      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  91      * for any member that the caller has access to via bytecodes,
  92      * including protected and private fields and methods.
  93      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
  94      * Do not store it in place where untrusted code can access it.
  95      * <p>
  96      * This method is caller sensitive, which means that it may return different
  97      * values to different callers.
  98      * <p>
  99      * For any given caller class {@code C}, the lookup object returned by this call
 100      * has equivalent capabilities to any lookup object
 101      * supplied by the JVM to the bootstrap method of an
 102      * <a href="package-summary.html#indyinsn">invokedynamic instruction</a>
 103      * executing in the same caller class {@code C}.
 104      * @return a lookup object for the caller of this method, with private access
 105      */
 106     @CallerSensitive
 107     @ForceInline // to ensure Reflection.getCallerClass optimization
 108     public static Lookup lookup() {
 109         return new Lookup(Reflection.getCallerClass());
 110     }
 111 
 112     /**
 113      * Returns a {@link Lookup lookup object} which is trusted minimally.
 114      * It can only be used to create method handles to public members in
 115      * public classes in packages that are exported unconditionally.
 116      * <p>
 117      * For now, the {@linkplain Lookup#lookupClass lookup class} of this lookup
 118      * object is in an unnamed module.
 119      * Consequently, the lookup context of this lookup object will be the bootstrap
 120      * class loader, which means it cannot find user classes.
 121      *
 122      * <p style="font-size:smaller;">
 123      * <em>Discussion:</em>
 124      * The lookup class can be changed to any other class {@code C} using an expression of the form
 125      * {@link Lookup#in publicLookup().in(C.class)}.
 126      * but may change the lookup context by virtue of changing the class loader.
 127      * A public lookup object is always subject to
 128      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 129      * Also, it cannot access
 130      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 131      * @return a lookup object which is trusted minimally
 132      */
 133     public static Lookup publicLookup() {
 134         // During VM startup then only classes in the java.base module can be
 135         // loaded and linked. This is because java.base exports aren't setup until
 136         // the module system is initialized, hence types in the unnamed module
 137         // (or any named module) can't link to java/lang/Object.
 138         if (!jdk.internal.misc.VM.isModuleSystemInited()) {
 139             return new Lookup(Object.class, Lookup.PUBLIC);
 140         } else {
 141             return LookupHelper.PUBLIC_LOOKUP;
 142         }
 143     }
 144 
 145     /**
 146      * Returns a {@link Lookup lookup object} with full capabilities to emulate all
 147      * supported bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">
 148      * private access</a>, on a target class.
 149      * This method checks that a caller, specified as a {@code Lookup} object, is allowed to
 150      * do <em>deep reflection</em> on the target class. If {@code m1} is the module containing
 151      * the {@link Lookup#lookupClass() lookup class}, and {@code m2} is the module containing
 152      * the target class, then this check ensures that
 153      * <ul>
 154      *     <li>{@code m1} {@link Module#canRead reads} {@code m2}.</li>
 155      *     <li>{@code m2} {@link Module#isOpen(String,Module) opens} the package containing
 156      *     the target class to at least {@code m1}.</li>
 157      *     <li>The lookup has the {@link Lookup#MODULE MODULE} lookup mode.</li>
 158      * </ul>
 159      * <p>
 160      * If there is a security manager, its {@code checkPermission} method is called to
 161      * check {@code ReflectPermission("suppressAccessChecks")}.
 162      * @apiNote The {@code MODULE} lookup mode serves to authenticate that the lookup object
 163      * was created by code in the caller module (or derived from a lookup object originally
 164      * created by the caller). A lookup object with the {@code MODULE} lookup mode can be
 165      * shared with trusted parties without giving away {@code PRIVATE} and {@code PACKAGE}
 166      * access to the caller.
 167      * @param targetClass the target class
 168      * @param lookup the caller lookup object
 169      * @return a lookup object for the target class, with private access
 170      * @throws IllegalArgumentException if {@code targetClass} is a primitve type or array class
 171      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
 172      * @throws IllegalAccessException if the access check specified above fails
 173      * @throws SecurityException if denied by the security manager
 174      * @since 9
 175      * @see Lookup#dropLookupMode
 176      */
 177     public static Lookup privateLookupIn(Class<?> targetClass, Lookup lookup) throws IllegalAccessException {
 178         SecurityManager sm = System.getSecurityManager();
 179         if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
 180         if (targetClass.isPrimitive())
 181             throw new IllegalArgumentException(targetClass + " is a primitive class");
 182         if (targetClass.isArray())
 183             throw new IllegalArgumentException(targetClass + " is an array class");
 184         Module targetModule = targetClass.getModule();
 185         Module callerModule = lookup.lookupClass().getModule();
 186         if (callerModule != targetModule && targetModule.isNamed()) {
 187             if (!callerModule.canRead(targetModule))
 188                 throw new IllegalAccessException(callerModule + " does not read " + targetModule);
 189             String pn = targetClass.getPackageName();
 190             assert pn != null && pn.length() > 0 : "unnamed package cannot be in named module";
 191             if (!targetModule.isOpen(pn, callerModule))
 192                 throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
 193         }
 194         if ((lookup.lookupModes() & Lookup.MODULE) == 0)
 195             throw new IllegalAccessException("lookup does not have MODULE lookup mode");
 196         return new Lookup(targetClass);
 197     }
 198 
 199     /**
 200      * Performs an unchecked "crack" of a
 201      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 202      * The result is as if the user had obtained a lookup object capable enough
 203      * to crack the target method handle, called
 204      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 205      * on the target to obtain its symbolic reference, and then called
 206      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 207      * to resolve the symbolic reference to a member.
 208      * <p>
 209      * If there is a security manager, its {@code checkPermission} method
 210      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 211      * @param <T> the desired type of the result, either {@link Member} or a subtype
 212      * @param target a direct method handle to crack into symbolic reference components
 213      * @param expected a class object representing the desired result type {@code T}
 214      * @return a reference to the method, constructor, or field object
 215      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
 216      * @exception NullPointerException if either argument is {@code null}
 217      * @exception IllegalArgumentException if the target is not a direct method handle
 218      * @exception ClassCastException if the member is not of the expected type
 219      * @since 1.8
 220      */
 221     public static <T extends Member> T
 222     reflectAs(Class<T> expected, MethodHandle target) {
 223         SecurityManager smgr = System.getSecurityManager();
 224         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 225         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 226         return lookup.revealDirect(target).reflectAs(expected, lookup);
 227     }
 228     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 229     private static final java.security.Permission ACCESS_PERMISSION =
 230         new ReflectPermission("suppressAccessChecks");
 231 
 232     /**
 233      * A <em>lookup object</em> is a factory for creating method handles,
 234      * when the creation requires access checking.
 235      * Method handles do not perform
 236      * access checks when they are called, but rather when they are created.
 237      * Therefore, method handle access
 238      * restrictions must be enforced when a method handle is created.
 239      * The caller class against which those restrictions are enforced
 240      * is known as the {@linkplain #lookupClass lookup class}.
 241      * <p>
 242      * A lookup class which needs to create method handles will call
 243      * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself.
 244      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 245      * determined, and securely stored in the {@code Lookup} object.
 246      * The lookup class (or its delegates) may then use factory methods
 247      * on the {@code Lookup} object to create method handles for access-checked members.
 248      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 249      * even private ones.
 250      *
 251      * <h1><a name="lookups"></a>Lookup Factory Methods</h1>
 252      * The factory methods on a {@code Lookup} object correspond to all major
 253      * use cases for methods, constructors, and fields.
 254      * Each method handle created by a factory method is the functional
 255      * equivalent of a particular <em>bytecode behavior</em>.
 256      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
 257      * Here is a summary of the correspondence between these factory methods and
 258      * the behavior of the resulting method handles:
 259      * <table border=1 cellpadding=5 summary="lookup method behaviors">
 260      * <tr>
 261      *     <th><a name="equiv"></a>lookup expression</th>
 262      *     <th>member</th>
 263      *     <th>bytecode behavior</th>
 264      * </tr>
 265      * <tr>
 266      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
 267      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 268      * </tr>
 269      * <tr>
 270      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
 271      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
 272      * </tr>
 273      * <tr>
 274      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
 275      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 276      * </tr>
 277      * <tr>
 278      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
 279      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 280      * </tr>
 281      * <tr>
 282      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
 283      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 284      * </tr>
 285      * <tr>
 286      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
 287      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 288      * </tr>
 289      * <tr>
 290      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
 291      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 292      * </tr>
 293      * <tr>
 294      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
 295      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 296      * </tr>
 297      * <tr>
 298      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
 299      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 300      * </tr>
 301      * <tr>
 302      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
 303      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 304      * </tr>
 305      * <tr>
 306      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
 307      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 308      * </tr>
 309      * <tr>
 310      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
 311      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 312      * </tr>
 313      * <tr>
 314      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
 315      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 316      * </tr>
 317      * <tr>
 318      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</td>
 319      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 320      * </tr>
 321      * </table>
 322      *
 323      * Here, the type {@code C} is the class or interface being searched for a member,
 324      * documented as a parameter named {@code refc} in the lookup methods.
 325      * The method type {@code MT} is composed from the return type {@code T}
 326      * and the sequence of argument types {@code A*}.
 327      * The constructor also has a sequence of argument types {@code A*} and
 328      * is deemed to return the newly-created object of type {@code C}.
 329      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 330      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 331      * if it is present, it is always the leading argument to the method handle invocation.
 332      * (In the case of some {@code protected} members, {@code this} may be
 333      * restricted in type to the lookup class; see below.)
 334      * The name {@code arg} stands for all the other method handle arguments.
 335      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 336      * stands for a null reference if the accessed method or field is static,
 337      * and {@code this} otherwise.
 338      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 339      * for reflective objects corresponding to the given members.
 340      * <p>
 341      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 342      * as if by {@code ldc CONSTANT_Class}.
 343      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 344      * <p>
 345      * In cases where the given member is of variable arity (i.e., a method or constructor)
 346      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 347      * In all other cases, the returned method handle will be of fixed arity.
 348      * <p style="font-size:smaller;">
 349      * <em>Discussion:</em>
 350      * The equivalence between looked-up method handles and underlying
 351      * class members and bytecode behaviors
 352      * can break down in a few ways:
 353      * <ul style="font-size:smaller;">
 354      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 355      * the lookup can still succeed, even when there is no equivalent
 356      * Java expression or bytecoded constant.
 357      * <li>Likewise, if {@code T} or {@code MT}
 358      * is not symbolically accessible from the lookup class's loader,
 359      * the lookup can still succeed.
 360      * For example, lookups for {@code MethodHandle.invokeExact} and
 361      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 362      * <li>If there is a security manager installed, it can forbid the lookup
 363      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 364      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 365      * constant is not subject to security manager checks.
 366      * <li>If the looked-up method has a
 367      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 368      * the method handle creation may fail, due to the method handle
 369      * type having too many parameters.
 370      * </ul>
 371      *
 372      * <h1><a name="access"></a>Access checking</h1>
 373      * Access checks are applied in the factory methods of {@code Lookup},
 374      * when a method handle is created.
 375      * This is a key difference from the Core Reflection API, since
 376      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 377      * performs access checking against every caller, on every call.
 378      * <p>
 379      * All access checks start from a {@code Lookup} object, which
 380      * compares its recorded lookup class against all requests to
 381      * create method handles.
 382      * A single {@code Lookup} object can be used to create any number
 383      * of access-checked method handles, all checked against a single
 384      * lookup class.
 385      * <p>
 386      * A {@code Lookup} object can be shared with other trusted code,
 387      * such as a metaobject protocol.
 388      * A shared {@code Lookup} object delegates the capability
 389      * to create method handles on private members of the lookup class.
 390      * Even if privileged code uses the {@code Lookup} object,
 391      * the access checking is confined to the privileges of the
 392      * original lookup class.
 393      * <p>
 394      * A lookup can fail, because
 395      * the containing class is not accessible to the lookup class, or
 396      * because the desired class member is missing, or because the
 397      * desired class member is not accessible to the lookup class, or
 398      * because the lookup object is not trusted enough to access the member.
 399      * In any of these cases, a {@code ReflectiveOperationException} will be
 400      * thrown from the attempted lookup.  The exact class will be one of
 401      * the following:
 402      * <ul>
 403      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 404      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 405      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 406      * </ul>
 407      * <p>
 408      * In general, the conditions under which a method handle may be
 409      * looked up for a method {@code M} are no more restrictive than the conditions
 410      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 411      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 412      * a method handle lookup will generally raise a corresponding
 413      * checked exception, such as {@code NoSuchMethodException}.
 414      * And the effect of invoking the method handle resulting from the lookup
 415      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 416      * to executing the compiled, verified, and resolved call to {@code M}.
 417      * The same point is true of fields and constructors.
 418      * <p style="font-size:smaller;">
 419      * <em>Discussion:</em>
 420      * Access checks only apply to named and reflected methods,
 421      * constructors, and fields.
 422      * Other method handle creation methods, such as
 423      * {@link MethodHandle#asType MethodHandle.asType},
 424      * do not require any access checks, and are used
 425      * independently of any {@code Lookup} object.
 426      * <p>
 427      * If the desired member is {@code protected}, the usual JVM rules apply,
 428      * including the requirement that the lookup class must be either be in the
 429      * same package as the desired member, or must inherit that member.
 430      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
 431      * In addition, if the desired member is a non-static field or method
 432      * in a different package, the resulting method handle may only be applied
 433      * to objects of the lookup class or one of its subclasses.
 434      * This requirement is enforced by narrowing the type of the leading
 435      * {@code this} parameter from {@code C}
 436      * (which will necessarily be a superclass of the lookup class)
 437      * to the lookup class itself.
 438      * <p>
 439      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 440      * that the receiver argument must match both the resolved method <em>and</em>
 441      * the current class.  Again, this requirement is enforced by narrowing the
 442      * type of the leading parameter to the resulting method handle.
 443      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
 444      * <p>
 445      * The JVM represents constructors and static initializer blocks as internal methods
 446      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 447      * The internal syntax of invocation instructions allows them to refer to such internal
 448      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 449      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 450      * <p>
 451      * In some cases, access between nested classes is obtained by the Java compiler by creating
 452      * an wrapper method to access a private method of another class
 453      * in the same top-level declaration.
 454      * For example, a nested class {@code C.D}
 455      * can access private members within other related classes such as
 456      * {@code C}, {@code C.D.E}, or {@code C.B},
 457      * but the Java compiler may need to generate wrapper methods in
 458      * those related classes.  In such cases, a {@code Lookup} object on
 459      * {@code C.E} would be unable to those private members.
 460      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 461      * which can transform a lookup on {@code C.E} into one on any of those other
 462      * classes, without special elevation of privilege.
 463      * <p>
 464      * The accesses permitted to a given lookup object may be limited,
 465      * according to its set of {@link #lookupModes lookupModes},
 466      * to a subset of members normally accessible to the lookup class.
 467      * For example, the {@link MethodHandles#publicLookup publicLookup}
 468      * method produces a lookup object which is only allowed to access
 469      * public members in public classes of exported packages.
 470      * The caller sensitive method {@link MethodHandles#lookup lookup}
 471      * produces a lookup object with full capabilities relative to
 472      * its caller class, to emulate all supported bytecode behaviors.
 473      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 474      * with fewer access modes than the original lookup object.
 475      *
 476      * <p style="font-size:smaller;">
 477      * <a name="privacc"></a>
 478      * <em>Discussion of private access:</em>
 479      * We say that a lookup has <em>private access</em>
 480      * if its {@linkplain #lookupModes lookup modes}
 481      * include the possibility of accessing {@code private} members.
 482      * As documented in the relevant methods elsewhere,
 483      * only lookups with private access possess the following capabilities:
 484      * <ul style="font-size:smaller;">
 485      * <li>access private fields, methods, and constructors of the lookup class
 486      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 487      *     such as {@code Class.forName}
 488      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 489      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 490      *     for classes accessible to the lookup class
 491      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 492      *     within the same package member
 493      * </ul>
 494      * <p style="font-size:smaller;">
 495      * Each of these permissions is a consequence of the fact that a lookup object
 496      * with private access can be securely traced back to an originating class,
 497      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 498      * can be reliably determined and emulated by method handles.
 499      *
 500      * <h1><a name="secmgr"></a>Security manager interactions</h1>
 501      * Although bytecode instructions can only refer to classes in
 502      * a related class loader, this API can search for methods in any
 503      * class, as long as a reference to its {@code Class} object is
 504      * available.  Such cross-loader references are also possible with the
 505      * Core Reflection API, and are impossible to bytecode instructions
 506      * such as {@code invokestatic} or {@code getfield}.
 507      * There is a {@linkplain java.lang.SecurityManager security manager API}
 508      * to allow applications to check such cross-loader references.
 509      * These checks apply to both the {@code MethodHandles.Lookup} API
 510      * and the Core Reflection API
 511      * (as found on {@link java.lang.Class Class}).
 512      * <p>
 513      * If a security manager is present, member and class lookups are subject to
 514      * additional checks.
 515      * From one to three calls are made to the security manager.
 516      * Any of these calls can refuse access by throwing a
 517      * {@link java.lang.SecurityException SecurityException}.
 518      * Define {@code smgr} as the security manager,
 519      * {@code lookc} as the lookup class of the current lookup object,
 520      * {@code refc} as the containing class in which the member
 521      * is being sought, and {@code defc} as the class in which the
 522      * member is actually defined.
 523      * (If a class or other type is being accessed,
 524      * the {@code refc} and {@code defc} values are the class itself.)
 525      * The value {@code lookc} is defined as <em>not present</em>
 526      * if the current lookup object does not have
 527      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
 528      * The calls are made according to the following rules:
 529      * <ul>
 530      * <li><b>Step 1:</b>
 531      *     If {@code lookc} is not present, or if its class loader is not
 532      *     the same as or an ancestor of the class loader of {@code refc},
 533      *     then {@link SecurityManager#checkPackageAccess
 534      *     smgr.checkPackageAccess(refcPkg)} is called,
 535      *     where {@code refcPkg} is the package of {@code refc}.
 536      * <li><b>Step 2a:</b>
 537      *     If the retrieved member is not public and
 538      *     {@code lookc} is not present, then
 539      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 540      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
 541      * <li><b>Step 2b:</b>
 542      *     If the retrieved class has a {@code null} class loader,
 543      *     and {@code lookc} is not present, then
 544      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 545      *     with {@code RuntimePermission("getClassLoader")} is called.
 546      * <li><b>Step 3:</b>
 547      *     If the retrieved member is not public,
 548      *     and if {@code lookc} is not present,
 549      *     and if {@code defc} and {@code refc} are different,
 550      *     then {@link SecurityManager#checkPackageAccess
 551      *     smgr.checkPackageAccess(defcPkg)} is called,
 552      *     where {@code defcPkg} is the package of {@code defc}.
 553      * </ul>
 554      * Security checks are performed after other access checks have passed.
 555      * Therefore, the above rules presuppose a member or class that is public,
 556      * or else that is being accessed from a lookup class that has
 557      * rights to access the member or class.
 558      *
 559      * <h1><a name="callsens"></a>Caller sensitive methods</h1>
 560      * A small number of Java methods have a special property called caller sensitivity.
 561      * A <em>caller-sensitive</em> method can behave differently depending on the
 562      * identity of its immediate caller.
 563      * <p>
 564      * If a method handle for a caller-sensitive method is requested,
 565      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
 566      * but they take account of the lookup class in a special way.
 567      * The resulting method handle behaves as if it were called
 568      * from an instruction contained in the lookup class,
 569      * so that the caller-sensitive method detects the lookup class.
 570      * (By contrast, the invoker of the method handle is disregarded.)
 571      * Thus, in the case of caller-sensitive methods,
 572      * different lookup classes may give rise to
 573      * differently behaving method handles.
 574      * <p>
 575      * In cases where the lookup object is
 576      * {@link MethodHandles#publicLookup() publicLookup()},
 577      * or some other lookup object without
 578      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
 579      * the lookup class is disregarded.
 580      * In such cases, no caller-sensitive method handle can be created,
 581      * access is forbidden, and the lookup fails with an
 582      * {@code IllegalAccessException}.
 583      * <p style="font-size:smaller;">
 584      * <em>Discussion:</em>
 585      * For example, the caller-sensitive method
 586      * {@link java.lang.Class#forName(String) Class.forName(x)}
 587      * can return varying classes or throw varying exceptions,
 588      * depending on the class loader of the class that calls it.
 589      * A public lookup of {@code Class.forName} will fail, because
 590      * there is no reasonable way to determine its bytecode behavior.
 591      * <p style="font-size:smaller;">
 592      * If an application caches method handles for broad sharing,
 593      * it should use {@code publicLookup()} to create them.
 594      * If there is a lookup of {@code Class.forName}, it will fail,
 595      * and the application must take appropriate action in that case.
 596      * It may be that a later lookup, perhaps during the invocation of a
 597      * bootstrap method, can incorporate the specific identity
 598      * of the caller, making the method accessible.
 599      * <p style="font-size:smaller;">
 600      * The function {@code MethodHandles.lookup} is caller sensitive
 601      * so that there can be a secure foundation for lookups.
 602      * Nearly all other methods in the JSR 292 API rely on lookup
 603      * objects to check access requests.
 604      */
 605     public static final
 606     class Lookup {
 607         /** The class on behalf of whom the lookup is being performed. */
 608         private final Class<?> lookupClass;
 609 
 610         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
 611         private final int allowedModes;
 612 
 613         /** A single-bit mask representing {@code public} access,
 614          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 615          *  The value, {@code 0x01}, happens to be the same as the value of the
 616          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
 617          */
 618         public static final int PUBLIC = Modifier.PUBLIC;
 619 
 620         /** A single-bit mask representing {@code private} access,
 621          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 622          *  The value, {@code 0x02}, happens to be the same as the value of the
 623          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
 624          */
 625         public static final int PRIVATE = Modifier.PRIVATE;
 626 
 627         /** A single-bit mask representing {@code protected} access,
 628          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 629          *  The value, {@code 0x04}, happens to be the same as the value of the
 630          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
 631          */
 632         public static final int PROTECTED = Modifier.PROTECTED;
 633 
 634         /** A single-bit mask representing {@code package} access (default access),
 635          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 636          *  The value is {@code 0x08}, which does not correspond meaningfully to
 637          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 638          */
 639         public static final int PACKAGE = Modifier.STATIC;
 640 
 641         /** A single-bit mask representing {@code module} access (default access),
 642          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 643          *  The value is {@code 0x10}, which does not correspond meaningfully to
 644          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 645          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
 646          *  with this lookup mode can access all public types in the module of the
 647          *  lookup class and public types in packages exported by other modules
 648          *  to the module of the lookup class.
 649          *  @since 9
 650          */
 651         public static final int MODULE = PACKAGE << 1;
 652 
 653         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE);
 654         private static final int TRUSTED   = -1;
 655 
 656         private static int fixmods(int mods) {
 657             mods &= (ALL_MODES - PACKAGE - MODULE);
 658             return (mods != 0) ? mods : (PACKAGE | MODULE);
 659         }
 660 
 661         /** Tells which class is performing the lookup.  It is this class against
 662          *  which checks are performed for visibility and access permissions.
 663          *  <p>
 664          *  The class implies a maximum level of access permission,
 665          *  but the permissions may be additionally limited by the bitmask
 666          *  {@link #lookupModes lookupModes}, which controls whether non-public members
 667          *  can be accessed.
 668          *  @return the lookup class, on behalf of which this lookup object finds members
 669          */
 670         public Class<?> lookupClass() {
 671             return lookupClass;
 672         }
 673 
 674         // This is just for calling out to MethodHandleImpl.
 675         private Class<?> lookupClassOrNull() {
 676             return (allowedModes == TRUSTED) ? null : lookupClass;
 677         }
 678 
 679         /** Tells which access-protection classes of members this lookup object can produce.
 680          *  The result is a bit-mask of the bits
 681          *  {@linkplain #PUBLIC PUBLIC (0x01)},
 682          *  {@linkplain #PRIVATE PRIVATE (0x02)},
 683          *  {@linkplain #PROTECTED PROTECTED (0x04)},
 684          *  {@linkplain #PACKAGE PACKAGE (0x08)},
 685          *  and {@linkplain #MODULE MODULE (0x10)}.
 686          *  <p>
 687          *  A freshly-created lookup object
 688          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class}
 689          *  has all possible bits set, since the caller class can access all its own members,
 690          *  all public types in the caller's module, and all public types in packages exported
 691          *  by other modules to the caller's module.
 692          *  A lookup object on a new lookup class
 693          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
 694          *  may have some mode bits set to zero.
 695          *  Mode bits can also be
 696          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
 697          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
 698          *  The purpose of this is to restrict access via the new lookup object,
 699          *  so that it can access only names which can be reached by the original
 700          *  lookup object, and also by the new lookup class.
 701          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
 702          *  @see #in
 703          *  @see #dropLookupMode
 704          */
 705         public int lookupModes() {
 706             return allowedModes & ALL_MODES;
 707         }
 708 
 709         /** Embody the current class (the lookupClass) as a lookup class
 710          * for method handle creation.
 711          * Must be called by from a method in this package,
 712          * which in turn is called by a method not in this package.
 713          */
 714         Lookup(Class<?> lookupClass) {
 715             this(lookupClass, ALL_MODES);
 716             // make sure we haven't accidentally picked up a privileged class:
 717             checkUnprivilegedlookupClass(lookupClass, ALL_MODES);
 718         }
 719 
 720         private Lookup(Class<?> lookupClass, int allowedModes) {
 721             this.lookupClass = lookupClass;
 722             this.allowedModes = allowedModes;
 723         }
 724 
 725         /**
 726          * Creates a lookup on the specified new lookup class.
 727          * The resulting object will report the specified
 728          * class as its own {@link #lookupClass lookupClass}.
 729          * <p>
 730          * However, the resulting {@code Lookup} object is guaranteed
 731          * to have no more access capabilities than the original.
 732          * In particular, access capabilities can be lost as follows:<ul>
 733          * <li>If the lookup class for this {@code Lookup} is not in a named module,
 734          * and the new lookup class is in a named module {@code M}, then no members in
 735          * {@code M}'s non-exported packages will be accessible.
 736          * <li>If the lookup for this {@code Lookup} is in a named module, and the
 737          * new lookup class is in a different module {@code M}, then no members, not even
 738          * public members in {@code M}'s exported packages, will be accessible.
 739          * <li>If the new lookup class differs from the old one,
 740          * protected members will not be accessible by virtue of inheritance.
 741          * (Protected members may continue to be accessible because of package sharing.)
 742          * <li>If the new lookup class is in a different package
 743          * than the old one, protected and default (package) members will not be accessible.
 744          * <li>If the new lookup class is not within the same package member
 745          * as the old one, private members will not be accessible.
 746          * <li>If the new lookup class is not accessible to the old lookup class,
 747          * then no members, not even public members, will be accessible.
 748          * (In all other cases, public members will continue to be accessible.)
 749          * </ul>
 750          * <p>
 751          * The resulting lookup's capabilities for loading classes
 752          * (used during {@link #findClass} invocations)
 753          * are determined by the lookup class' loader,
 754          * which may change due to this operation.
 755          *
 756          * @param requestedLookupClass the desired lookup class for the new lookup object
 757          * @return a lookup object which reports the desired lookup class, or the same object
 758          * if there is no change
 759          * @throws NullPointerException if the argument is null
 760          */
 761         public Lookup in(Class<?> requestedLookupClass) {
 762             Objects.requireNonNull(requestedLookupClass);
 763             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
 764                 return new Lookup(requestedLookupClass, ALL_MODES);
 765             if (requestedLookupClass == this.lookupClass)
 766                 return this;  // keep same capabilities
 767 
 768             int newModes = (allowedModes & (ALL_MODES & ~PROTECTED));
 769             if (!VerifyAccess.isSameModule(this.lookupClass, requestedLookupClass)) {
 770                 // Allowed to teleport from an unnamed to a named module but resulting
 771                 // Lookup has no access to module private members
 772                 if (this.lookupClass.getModule().isNamed()) {
 773                     newModes = 0;
 774                 } else {
 775                     newModes &= ~MODULE;
 776                 }
 777             }
 778             if ((newModes & PACKAGE) != 0
 779                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
 780                 newModes &= ~(PACKAGE|PRIVATE);
 781             }
 782             // Allow nestmate lookups to be created without special privilege:
 783             if ((newModes & PRIVATE) != 0
 784                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
 785                 newModes &= ~PRIVATE;
 786             }
 787             if ((newModes & PUBLIC) != 0
 788                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
 789                 // The requested class it not accessible from the lookup class.
 790                 // No permissions.
 791                 newModes = 0;
 792             }
 793 
 794             checkUnprivilegedlookupClass(requestedLookupClass, newModes);
 795             return new Lookup(requestedLookupClass, newModes);
 796         }
 797 
 798 
 799         /**
 800          * Creates a lookup on the same lookup class which this lookup object
 801          * finds members, but with a lookup mode that has lost the given lookup mode.
 802          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
 803          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED} or {@link #PRIVATE PRIVATE}.
 804          * {@link #PROTECTED PROTECTED} is always dropped and so the resulting lookup
 805          * mode will never have this access capability. When dropping {@code PACKAGE}
 806          * then the resulting lookup will not have {@code PACKAGE} or {@code PRIVATE}
 807          * access. When dropping {@code MODULE} then the resulting lookup will not
 808          * have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. If {@code
 809          * PUBLIC} is dropped then the resulting lookup has no access.
 810          * @param modeToDrop the lookup mode to drop
 811          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
 812          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
 813          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED} or {@code PRIVATE}
 814          * @since 9
 815          * @see MethodHandles#privateLookupIn
 816          */
 817         public Lookup dropLookupMode(int modeToDrop) {
 818             int oldModes = lookupModes();
 819             int newModes = oldModes & ~(modeToDrop | PROTECTED);
 820             switch (modeToDrop) {
 821                 case PUBLIC: newModes &= ~(ALL_MODES); break;
 822                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
 823                 case PACKAGE: newModes &= ~(PRIVATE); break;
 824                 case PROTECTED:
 825                 case PRIVATE: break;
 826                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
 827             }
 828             if (newModes == oldModes) return this;  // return self if no change
 829             return new Lookup(lookupClass(), newModes);
 830         }
 831 
 832         // Make sure outer class is initialized first.
 833         static { IMPL_NAMES.getClass(); }
 834 
 835         /** Package-private version of lookup which is trusted. */
 836         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
 837 
 838         private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) {
 839             String name = lookupClass.getName();
 840             if (name.startsWith("java.lang.invoke."))
 841                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
 842 
 843             // For caller-sensitive MethodHandles.lookup() disallow lookup from
 844             // restricted packages.  This a fragile and blunt approach.
 845             // TODO replace with a more formal and less fragile mechanism
 846             // that does not bluntly restrict classes under packages within
 847             // java.base from looking up MethodHandles or VarHandles.
 848             if (allowedModes == ALL_MODES && lookupClass.getClassLoader() == null) {
 849                 if ((name.startsWith("java.") &&
 850                      !name.equals("java.lang.Thread") &&
 851                      !name.startsWith("java.util.concurrent.")) ||
 852                     (name.startsWith("sun.") &&
 853                      !name.startsWith("sun.invoke."))) {
 854                     throw newIllegalArgumentException("illegal lookupClass: " + lookupClass);
 855                 }
 856             }
 857         }
 858 
 859         /**
 860          * Displays the name of the class from which lookups are to be made.
 861          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
 862          * If there are restrictions on the access permitted to this lookup,
 863          * this is indicated by adding a suffix to the class name, consisting
 864          * of a slash and a keyword.  The keyword represents the strongest
 865          * allowed access, and is chosen as follows:
 866          * <ul>
 867          * <li>If no access is allowed, the suffix is "/noaccess".
 868          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
 869          * <li>If only public and module access are allowed, the suffix is "/module".
 870          * <li>If only public, module and package access are allowed, the suffix is "/package".
 871          * <li>If only public, module, package, and private access are allowed, the suffix is "/private".
 872          * </ul>
 873          * If none of the above cases apply, it is the case that full
 874          * access (public, module, package, private, and protected) is allowed.
 875          * In this case, no suffix is added.
 876          * This is true only of an object obtained originally from
 877          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
 878          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
 879          * always have restricted access, and will display a suffix.
 880          * <p>
 881          * (It may seem strange that protected access should be
 882          * stronger than private access.  Viewed independently from
 883          * package access, protected access is the first to be lost,
 884          * because it requires a direct subclass relationship between
 885          * caller and callee.)
 886          * @see #in
 887          */
 888         @Override
 889         public String toString() {
 890             String cname = lookupClass.getName();
 891             switch (allowedModes) {
 892             case 0:  // no privileges
 893                 return cname + "/noaccess";
 894             case PUBLIC:
 895                 return cname + "/public";
 896             case PUBLIC|MODULE:
 897                 return cname + "/module";
 898             case PUBLIC|MODULE|PACKAGE:
 899                 return cname + "/package";
 900             case ALL_MODES & ~PROTECTED:
 901                 return cname + "/private";
 902             case ALL_MODES:
 903                 return cname;
 904             case TRUSTED:
 905                 return "/trusted";  // internal only; not exported
 906             default:  // Should not happen, but it's a bitfield...
 907                 cname = cname + "/" + Integer.toHexString(allowedModes);
 908                 assert(false) : cname;
 909                 return cname;
 910             }
 911         }
 912 
 913         /**
 914          * Produces a method handle for a static method.
 915          * The type of the method handle will be that of the method.
 916          * (Since static methods do not take receivers, there is no
 917          * additional receiver argument inserted into the method handle type,
 918          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
 919          * The method and all its argument types must be accessible to the lookup object.
 920          * <p>
 921          * The returned method handle will have
 922          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 923          * the method's variable arity modifier bit ({@code 0x0080}) is set.
 924          * <p>
 925          * If the returned method handle is invoked, the method's class will
 926          * be initialized, if it has not already been initialized.
 927          * <p><b>Example:</b>
 928          * <blockquote><pre>{@code
 929 import static java.lang.invoke.MethodHandles.*;
 930 import static java.lang.invoke.MethodType.*;
 931 ...
 932 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
 933   "asList", methodType(List.class, Object[].class));
 934 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
 935          * }</pre></blockquote>
 936          * @param refc the class from which the method is accessed
 937          * @param name the name of the method
 938          * @param type the type of the method
 939          * @return the desired method handle
 940          * @throws NoSuchMethodException if the method does not exist
 941          * @throws IllegalAccessException if access checking fails,
 942          *                                or if the method is not {@code static},
 943          *                                or if the method's variable arity modifier bit
 944          *                                is set and {@code asVarargsCollector} fails
 945          * @exception SecurityException if a security manager is present and it
 946          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
 947          * @throws NullPointerException if any argument is null
 948          */
 949         public
 950         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
 951             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
 952             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
 953         }
 954 
 955         /**
 956          * Produces a method handle for a virtual method.
 957          * The type of the method handle will be that of the method,
 958          * with the receiver type (usually {@code refc}) prepended.
 959          * The method and all its argument types must be accessible to the lookup object.
 960          * <p>
 961          * When called, the handle will treat the first argument as a receiver
 962          * and dispatch on the receiver's type to determine which method
 963          * implementation to enter.
 964          * (The dispatching action is identical with that performed by an
 965          * {@code invokevirtual} or {@code invokeinterface} instruction.)
 966          * <p>
 967          * The first argument will be of type {@code refc} if the lookup
 968          * class has full privileges to access the member.  Otherwise
 969          * the member must be {@code protected} and the first argument
 970          * will be restricted in type to the lookup class.
 971          * <p>
 972          * The returned method handle will have
 973          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 974          * the method's variable arity modifier bit ({@code 0x0080}) is set.
 975          * <p>
 976          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
 977          * instructions and method handles produced by {@code findVirtual},
 978          * if the class is {@code MethodHandle} and the name string is
 979          * {@code invokeExact} or {@code invoke}, the resulting
 980          * method handle is equivalent to one produced by
 981          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
 982          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
 983          * with the same {@code type} argument.
 984          * <p>
 985          * If the class is {@code VarHandle} and the name string corresponds to
 986          * the name of a signature-polymorphic access mode method, the resulting
 987          * method handle is equivalent to one produced by
 988          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
 989          * the access mode corresponding to the name string and with the same
 990          * {@code type} arguments.
 991          * <p>
 992          * <b>Example:</b>
 993          * <blockquote><pre>{@code
 994 import static java.lang.invoke.MethodHandles.*;
 995 import static java.lang.invoke.MethodType.*;
 996 ...
 997 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
 998   "concat", methodType(String.class, String.class));
 999 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
1000   "hashCode", methodType(int.class));
1001 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
1002   "hashCode", methodType(int.class));
1003 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
1004 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
1005 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
1006 // interface method:
1007 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
1008   "subSequence", methodType(CharSequence.class, int.class, int.class));
1009 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
1010 // constructor "internal method" must be accessed differently:
1011 MethodType MT_newString = methodType(void.class); //()V for new String()
1012 try { assertEquals("impossible", lookup()
1013         .findVirtual(String.class, "<init>", MT_newString));
1014  } catch (NoSuchMethodException ex) { } // OK
1015 MethodHandle MH_newString = publicLookup()
1016   .findConstructor(String.class, MT_newString);
1017 assertEquals("", (String) MH_newString.invokeExact());
1018          * }</pre></blockquote>
1019          *
1020          * @param refc the class or interface from which the method is accessed
1021          * @param name the name of the method
1022          * @param type the type of the method, with the receiver argument omitted
1023          * @return the desired method handle
1024          * @throws NoSuchMethodException if the method does not exist
1025          * @throws IllegalAccessException if access checking fails,
1026          *                                or if the method is {@code static},
1027          *                                or if the method is {@code private} method of interface,
1028          *                                or if the method's variable arity modifier bit
1029          *                                is set and {@code asVarargsCollector} fails
1030          * @exception SecurityException if a security manager is present and it
1031          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1032          * @throws NullPointerException if any argument is null
1033          */
1034         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1035             if (refc == MethodHandle.class) {
1036                 MethodHandle mh = findVirtualForMH(name, type);
1037                 if (mh != null)  return mh;
1038             } else if (refc == VarHandle.class) {
1039                 MethodHandle mh = findVirtualForVH(name, type);
1040                 if (mh != null)  return mh;
1041             }
1042             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
1043             MemberName method = resolveOrFail(refKind, refc, name, type);
1044             return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
1045         }
1046         private MethodHandle findVirtualForMH(String name, MethodType type) {
1047             // these names require special lookups because of the implicit MethodType argument
1048             if ("invoke".equals(name))
1049                 return invoker(type);
1050             if ("invokeExact".equals(name))
1051                 return exactInvoker(type);
1052             assert(!MemberName.isMethodHandleInvokeName(name));
1053             return null;
1054         }
1055         private MethodHandle findVirtualForVH(String name, MethodType type) {
1056             try {
1057                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
1058             } catch (IllegalArgumentException e) {
1059                 return null;
1060             }
1061         }
1062 
1063         /**
1064          * Produces a method handle which creates an object and initializes it, using
1065          * the constructor of the specified type.
1066          * The parameter types of the method handle will be those of the constructor,
1067          * while the return type will be a reference to the constructor's class.
1068          * The constructor and all its argument types must be accessible to the lookup object.
1069          * <p>
1070          * The requested type must have a return type of {@code void}.
1071          * (This is consistent with the JVM's treatment of constructor type descriptors.)
1072          * <p>
1073          * The returned method handle will have
1074          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1075          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1076          * <p>
1077          * If the returned method handle is invoked, the constructor's class will
1078          * be initialized, if it has not already been initialized.
1079          * <p><b>Example:</b>
1080          * <blockquote><pre>{@code
1081 import static java.lang.invoke.MethodHandles.*;
1082 import static java.lang.invoke.MethodType.*;
1083 ...
1084 MethodHandle MH_newArrayList = publicLookup().findConstructor(
1085   ArrayList.class, methodType(void.class, Collection.class));
1086 Collection orig = Arrays.asList("x", "y");
1087 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
1088 assert(orig != copy);
1089 assertEquals(orig, copy);
1090 // a variable-arity constructor:
1091 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
1092   ProcessBuilder.class, methodType(void.class, String[].class));
1093 ProcessBuilder pb = (ProcessBuilder)
1094   MH_newProcessBuilder.invoke("x", "y", "z");
1095 assertEquals("[x, y, z]", pb.command().toString());
1096          * }</pre></blockquote>
1097          * @param refc the class or interface from which the method is accessed
1098          * @param type the type of the method, with the receiver argument omitted, and a void return type
1099          * @return the desired method handle
1100          * @throws NoSuchMethodException if the constructor does not exist
1101          * @throws IllegalAccessException if access checking fails
1102          *                                or if the method's variable arity modifier bit
1103          *                                is set and {@code asVarargsCollector} fails
1104          * @exception SecurityException if a security manager is present and it
1105          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1106          * @throws NullPointerException if any argument is null
1107          */
1108         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1109             if (refc.isArray()) {
1110                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
1111             }
1112             String name = "<init>";
1113             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
1114             return getDirectConstructor(refc, ctor);
1115         }
1116 
1117         /**
1118          * Looks up a class by name from the lookup context defined by this {@code Lookup} object. The static
1119          * initializer of the class is not run.
1120          * <p>
1121          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, its class
1122          * loader, and the {@linkplain #lookupModes() lookup modes}. In particular, the method first attempts to
1123          * load the requested class, and then determines whether the class is accessible to this lookup object.
1124          *
1125          * @param targetName the fully qualified name of the class to be looked up.
1126          * @return the requested class.
1127          * @exception SecurityException if a security manager is present and it
1128          *            <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1129          * @throws LinkageError if the linkage fails
1130          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
1131          * @throws IllegalAccessException if the class is not accessible, using the allowed access
1132          * modes.
1133          * @exception SecurityException if a security manager is present and it
1134          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1135          * @since 9
1136          */
1137         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
1138             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
1139             return accessClass(targetClass);
1140         }
1141 
1142         /**
1143          * Determines if a class can be accessed from the lookup context defined by this {@code Lookup} object. The
1144          * static initializer of the class is not run.
1145          * <p>
1146          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class} and the
1147          * {@linkplain #lookupModes() lookup modes}.
1148          *
1149          * @param targetClass the class to be access-checked
1150          *
1151          * @return the class that has been access-checked
1152          *
1153          * @throws IllegalAccessException if the class is not accessible from the lookup class, using the allowed access
1154          * modes.
1155          * @exception SecurityException if a security manager is present and it
1156          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1157          * @since 9
1158          */
1159         public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
1160             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, allowedModes)) {
1161                 throw new MemberName(targetClass).makeAccessException("access violation", this);
1162             }
1163             checkSecurityManager(targetClass, null);
1164             return targetClass;
1165         }
1166 
1167         /**
1168          * Produces an early-bound method handle for a virtual method.
1169          * It will bypass checks for overriding methods on the receiver,
1170          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1171          * instruction from within the explicitly specified {@code specialCaller}.
1172          * The type of the method handle will be that of the method,
1173          * with a suitably restricted receiver type prepended.
1174          * (The receiver type will be {@code specialCaller} or a subtype.)
1175          * The method and all its argument types must be accessible
1176          * to the lookup object.
1177          * <p>
1178          * Before method resolution,
1179          * if the explicitly specified caller class is not identical with the
1180          * lookup class, or if this lookup object does not have
1181          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1182          * privileges, the access fails.
1183          * <p>
1184          * The returned method handle will have
1185          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1186          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1187          * <p style="font-size:smaller;">
1188          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
1189          * even though the {@code invokespecial} instruction can refer to them
1190          * in special circumstances.  Use {@link #findConstructor findConstructor}
1191          * to access instance initialization methods in a safe manner.)</em>
1192          * <p><b>Example:</b>
1193          * <blockquote><pre>{@code
1194 import static java.lang.invoke.MethodHandles.*;
1195 import static java.lang.invoke.MethodType.*;
1196 ...
1197 static class Listie extends ArrayList {
1198   public String toString() { return "[wee Listie]"; }
1199   static Lookup lookup() { return MethodHandles.lookup(); }
1200 }
1201 ...
1202 // no access to constructor via invokeSpecial:
1203 MethodHandle MH_newListie = Listie.lookup()
1204   .findConstructor(Listie.class, methodType(void.class));
1205 Listie l = (Listie) MH_newListie.invokeExact();
1206 try { assertEquals("impossible", Listie.lookup().findSpecial(
1207         Listie.class, "<init>", methodType(void.class), Listie.class));
1208  } catch (NoSuchMethodException ex) { } // OK
1209 // access to super and self methods via invokeSpecial:
1210 MethodHandle MH_super = Listie.lookup().findSpecial(
1211   ArrayList.class, "toString" , methodType(String.class), Listie.class);
1212 MethodHandle MH_this = Listie.lookup().findSpecial(
1213   Listie.class, "toString" , methodType(String.class), Listie.class);
1214 MethodHandle MH_duper = Listie.lookup().findSpecial(
1215   Object.class, "toString" , methodType(String.class), Listie.class);
1216 assertEquals("[]", (String) MH_super.invokeExact(l));
1217 assertEquals(""+l, (String) MH_this.invokeExact(l));
1218 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
1219 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
1220         String.class, "toString", methodType(String.class), Listie.class));
1221  } catch (IllegalAccessException ex) { } // OK
1222 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
1223 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
1224          * }</pre></blockquote>
1225          *
1226          * @param refc the class or interface from which the method is accessed
1227          * @param name the name of the method (which must not be "&lt;init&gt;")
1228          * @param type the type of the method, with the receiver argument omitted
1229          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
1230          * @return the desired method handle
1231          * @throws NoSuchMethodException if the method does not exist
1232          * @throws IllegalAccessException if access checking fails,
1233          *                                or if the method is {@code static},
1234          *                                or if the method's variable arity modifier bit
1235          *                                is set and {@code asVarargsCollector} fails
1236          * @exception SecurityException if a security manager is present and it
1237          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1238          * @throws NullPointerException if any argument is null
1239          */
1240         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
1241                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
1242             checkSpecialCaller(specialCaller, refc);
1243             Lookup specialLookup = this.in(specialCaller);
1244             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
1245             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1246         }
1247 
1248         /**
1249          * Produces a method handle giving read access to a non-static field.
1250          * The type of the method handle will have a return type of the field's
1251          * value type.
1252          * The method handle's single argument will be the instance containing
1253          * the field.
1254          * Access checking is performed immediately on behalf of the lookup class.
1255          * @param refc the class or interface from which the method is accessed
1256          * @param name the field's name
1257          * @param type the field's type
1258          * @return a method handle which can load values from the field
1259          * @throws NoSuchFieldException if the field does not exist
1260          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1261          * @exception SecurityException if a security manager is present and it
1262          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1263          * @throws NullPointerException if any argument is null
1264          * @see #findVarHandle(Class, String, Class)
1265          */
1266         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1267             MemberName field = resolveOrFail(REF_getField, refc, name, type);
1268             return getDirectField(REF_getField, refc, field);
1269         }
1270 
1271         /**
1272          * Produces a method handle giving write access to a non-static field.
1273          * The type of the method handle will have a void return type.
1274          * The method handle will take two arguments, the instance containing
1275          * the field, and the value to be stored.
1276          * The second argument will be of the field's value type.
1277          * Access checking is performed immediately on behalf of the lookup class.
1278          * @param refc the class or interface from which the method is accessed
1279          * @param name the field's name
1280          * @param type the field's type
1281          * @return a method handle which can store values into the field
1282          * @throws NoSuchFieldException if the field does not exist
1283          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1284          * @exception SecurityException if a security manager is present and it
1285          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1286          * @throws NullPointerException if any argument is null
1287          * @see #findVarHandle(Class, String, Class)
1288          */
1289         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1290             MemberName field = resolveOrFail(REF_putField, refc, name, type);
1291             return getDirectField(REF_putField, refc, field);
1292         }
1293 
1294         /**
1295          * Produces a VarHandle giving access to non-static fields of type
1296          * {@code T} declared by a receiver class of type {@code R}, supporting
1297          * shape {@code (R : T)}.
1298          * <p>
1299          * Access checking is performed immediately on behalf of the lookup
1300          * class.
1301          * <p>
1302          * Certain access modes of the returned VarHandle are unsupported under
1303          * the following conditions:
1304          * <ul>
1305          * <li>if the field is declared {@code final}, then the write, atomic
1306          *     update, numeric atomic update, and bitwise atomic update access
1307          *     modes are unsupported.
1308          * <li>if the field type is anything other than {@code byte},
1309          *     {@code short}, {@code char}, {@code int}, {@code long},
1310          *     {@code float}, or {@code double} then numeric atomic update
1311          *     access modes are unsupported.
1312          * <li>if the field type is anything other than {@code boolean},
1313          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1314          *     {@code long} then bitwise atomic update access modes are
1315          *     unsupported.
1316          * </ul>
1317          * <p>
1318          * If the field is declared {@code volatile} then the returned VarHandle
1319          * will override access to the field (effectively ignore the
1320          * {@code volatile} declaration) in accordance to it's specified
1321          * access modes.
1322          * <p>
1323          * If the field type is {@code float} or {@code double} then numeric
1324          * and atomic update access modes compare values using their bitwise
1325          * representation (see {@link Float#floatToRawIntBits} and
1326          * {@link Double#doubleToRawLongBits}, respectively).
1327          * @apiNote
1328          * Bitwise comparison of {@code float} values or {@code double} values,
1329          * as performed by the numeric and atomic update access modes, differ
1330          * from the primitive {@code ==} operator and the {@link Float#equals}
1331          * and {@link Double#equals} methods, specifically with respect to
1332          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1333          * Care should be taken when performing a compare and set or a compare
1334          * and exchange operation with such values since the operation may
1335          * unexpectedly fail.
1336          * There are many possible NaN values that are considered to be
1337          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1338          * provided by Java can distinguish between them.  Operation failure can
1339          * occur if the expected or witness value is a NaN value and it is
1340          * transformed (perhaps in a platform specific manner) into another NaN
1341          * value, and thus has a different bitwise representation (see
1342          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1343          * details).
1344          * The values {@code -0.0} and {@code +0.0} have different bitwise
1345          * representations but are considered equal when using the primitive
1346          * {@code ==} operator.  Operation failure can occur if, for example, a
1347          * numeric algorithm computes an expected value to be say {@code -0.0}
1348          * and previously computed the witness value to be say {@code +0.0}.
1349          * @param recv the receiver class, of type {@code R}, that declares the
1350          * non-static field
1351          * @param name the field's name
1352          * @param type the field's type, of type {@code T}
1353          * @return a VarHandle giving access to non-static fields.
1354          * @throws NoSuchFieldException if the field does not exist
1355          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1356          * @exception SecurityException if a security manager is present and it
1357          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1358          * @throws NullPointerException if any argument is null
1359          * @since 9
1360          */
1361         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1362             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
1363             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
1364             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
1365         }
1366 
1367         /**
1368          * Produces a method handle giving read access to a static field.
1369          * The type of the method handle will have a return type of the field's
1370          * value type.
1371          * The method handle will take no arguments.
1372          * Access checking is performed immediately on behalf of the lookup class.
1373          * <p>
1374          * If the returned method handle is invoked, the field's class will
1375          * be initialized, if it has not already been initialized.
1376          * @param refc the class or interface from which the method is accessed
1377          * @param name the field's name
1378          * @param type the field's type
1379          * @return a method handle which can load values from the field
1380          * @throws NoSuchFieldException if the field does not exist
1381          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1382          * @exception SecurityException if a security manager is present and it
1383          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1384          * @throws NullPointerException if any argument is null
1385          */
1386         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1387             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
1388             return getDirectField(REF_getStatic, refc, field);
1389         }
1390 
1391         /**
1392          * Produces a method handle giving write access to a static field.
1393          * The type of the method handle will have a void return type.
1394          * The method handle will take a single
1395          * argument, of the field's value type, the value to be stored.
1396          * Access checking is performed immediately on behalf of the lookup class.
1397          * <p>
1398          * If the returned method handle is invoked, the field's class will
1399          * be initialized, if it has not already been initialized.
1400          * @param refc the class or interface from which the method is accessed
1401          * @param name the field's name
1402          * @param type the field's type
1403          * @return a method handle which can store values into the field
1404          * @throws NoSuchFieldException if the field does not exist
1405          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1406          * @exception SecurityException if a security manager is present and it
1407          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1408          * @throws NullPointerException if any argument is null
1409          */
1410         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1411             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
1412             return getDirectField(REF_putStatic, refc, field);
1413         }
1414 
1415         /**
1416          * Produces a VarHandle giving access to a static field of type
1417          * {@code T} declared by a given declaring class, supporting shape
1418          * {@code ((empty) : T)}.
1419          * <p>
1420          * Access checking is performed immediately on behalf of the lookup
1421          * class.
1422          * <p>
1423          * If the returned VarHandle is operated on, the declaring class will be
1424          * initialized, if it has not already been initialized.
1425          * <p>
1426          * Certain access modes of the returned VarHandle are unsupported under
1427          * the following conditions:
1428          * <ul>
1429          * <li>if the field is declared {@code final}, then the write, atomic
1430          *     update, numeric atomic update, and bitwise atomic update access
1431          *     modes are unsupported.
1432          * <li>if the field type is anything other than {@code byte},
1433          *     {@code short}, {@code char}, {@code int}, {@code long},
1434          *     {@code float}, or {@code double}, then numeric atomic update
1435          *     access modes are unsupported.
1436          * <li>if the field type is anything other than {@code boolean},
1437          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1438          *     {@code long} then bitwise atomic update access modes are
1439          *     unsupported.
1440          * </ul>
1441          * <p>
1442          * If the field is declared {@code volatile} then the returned VarHandle
1443          * will override access to the field (effectively ignore the
1444          * {@code volatile} declaration) in accordance to it's specified
1445          * access modes.
1446          * <p>
1447          * If the field type is {@code float} or {@code double} then numeric
1448          * and atomic update access modes compare values using their bitwise
1449          * representation (see {@link Float#floatToRawIntBits} and
1450          * {@link Double#doubleToRawLongBits}, respectively).
1451          * @apiNote
1452          * Bitwise comparison of {@code float} values or {@code double} values,
1453          * as performed by the numeric and atomic update access modes, differ
1454          * from the primitive {@code ==} operator and the {@link Float#equals}
1455          * and {@link Double#equals} methods, specifically with respect to
1456          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1457          * Care should be taken when performing a compare and set or a compare
1458          * and exchange operation with such values since the operation may
1459          * unexpectedly fail.
1460          * There are many possible NaN values that are considered to be
1461          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1462          * provided by Java can distinguish between them.  Operation failure can
1463          * occur if the expected or witness value is a NaN value and it is
1464          * transformed (perhaps in a platform specific manner) into another NaN
1465          * value, and thus has a different bitwise representation (see
1466          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1467          * details).
1468          * The values {@code -0.0} and {@code +0.0} have different bitwise
1469          * representations but are considered equal when using the primitive
1470          * {@code ==} operator.  Operation failure can occur if, for example, a
1471          * numeric algorithm computes an expected value to be say {@code -0.0}
1472          * and previously computed the witness value to be say {@code +0.0}.
1473          * @param decl the class that declares the static field
1474          * @param name the field's name
1475          * @param type the field's type, of type {@code T}
1476          * @return a VarHandle giving access to a static field
1477          * @throws NoSuchFieldException if the field does not exist
1478          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1479          * @exception SecurityException if a security manager is present and it
1480          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1481          * @throws NullPointerException if any argument is null
1482          * @since 9
1483          */
1484         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1485             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
1486             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
1487             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
1488         }
1489 
1490         /**
1491          * Produces an early-bound method handle for a non-static method.
1492          * The receiver must have a supertype {@code defc} in which a method
1493          * of the given name and type is accessible to the lookup class.
1494          * The method and all its argument types must be accessible to the lookup object.
1495          * The type of the method handle will be that of the method,
1496          * without any insertion of an additional receiver parameter.
1497          * The given receiver will be bound into the method handle,
1498          * so that every call to the method handle will invoke the
1499          * requested method on the given receiver.
1500          * <p>
1501          * The returned method handle will have
1502          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1503          * the method's variable arity modifier bit ({@code 0x0080}) is set
1504          * <em>and</em> the trailing array argument is not the only argument.
1505          * (If the trailing array argument is the only argument,
1506          * the given receiver value will be bound to it.)
1507          * <p>
1508          * This is equivalent to the following code:
1509          * <blockquote><pre>{@code
1510 import static java.lang.invoke.MethodHandles.*;
1511 import static java.lang.invoke.MethodType.*;
1512 ...
1513 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
1514 MethodHandle mh1 = mh0.bindTo(receiver);
1515 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
1516 return mh1;
1517          * }</pre></blockquote>
1518          * where {@code defc} is either {@code receiver.getClass()} or a super
1519          * type of that class, in which the requested method is accessible
1520          * to the lookup class.
1521          * (Note that {@code bindTo} does not preserve variable arity.)
1522          * @param receiver the object from which the method is accessed
1523          * @param name the name of the method
1524          * @param type the type of the method, with the receiver argument omitted
1525          * @return the desired method handle
1526          * @throws NoSuchMethodException if the method does not exist
1527          * @throws IllegalAccessException if access checking fails
1528          *                                or if the method's variable arity modifier bit
1529          *                                is set and {@code asVarargsCollector} fails
1530          * @exception SecurityException if a security manager is present and it
1531          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1532          * @throws NullPointerException if any argument is null
1533          * @see MethodHandle#bindTo
1534          * @see #findVirtual
1535          */
1536         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1537             Class<? extends Object> refc = receiver.getClass(); // may get NPE
1538             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
1539             MethodHandle mh = getDirectMethodNoRestrict(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1540             return mh.bindArgumentL(0, receiver).setVarargs(method);
1541         }
1542 
1543         /**
1544          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1545          * to <i>m</i>, if the lookup class has permission.
1546          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
1547          * If <i>m</i> is virtual, overriding is respected on every call.
1548          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
1549          * The type of the method handle will be that of the method,
1550          * with the receiver type prepended (but only if it is non-static).
1551          * If the method's {@code accessible} flag is not set,
1552          * access checking is performed immediately on behalf of the lookup class.
1553          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
1554          * <p>
1555          * The returned method handle will have
1556          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1557          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1558          * <p>
1559          * If <i>m</i> is static, and
1560          * if the returned method handle is invoked, the method's class will
1561          * be initialized, if it has not already been initialized.
1562          * @param m the reflected method
1563          * @return a method handle which can invoke the reflected method
1564          * @throws IllegalAccessException if access checking fails
1565          *                                or if the method's variable arity modifier bit
1566          *                                is set and {@code asVarargsCollector} fails
1567          * @throws NullPointerException if the argument is null
1568          */
1569         public MethodHandle unreflect(Method m) throws IllegalAccessException {
1570             if (m.getDeclaringClass() == MethodHandle.class) {
1571                 MethodHandle mh = unreflectForMH(m);
1572                 if (mh != null)  return mh;
1573             }
1574             if (m.getDeclaringClass() == VarHandle.class) {
1575                 MethodHandle mh = unreflectForVH(m);
1576                 if (mh != null)  return mh;
1577             }
1578             MemberName method = new MemberName(m);
1579             byte refKind = method.getReferenceKind();
1580             if (refKind == REF_invokeSpecial)
1581                 refKind = REF_invokeVirtual;
1582             assert(method.isMethod());
1583             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
1584             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
1585         }
1586         private MethodHandle unreflectForMH(Method m) {
1587             // these names require special lookups because they throw UnsupportedOperationException
1588             if (MemberName.isMethodHandleInvokeName(m.getName()))
1589                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
1590             return null;
1591         }
1592         private MethodHandle unreflectForVH(Method m) {
1593             // these names require special lookups because they throw UnsupportedOperationException
1594             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
1595                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
1596             return null;
1597         }
1598 
1599         /**
1600          * Produces a method handle for a reflected method.
1601          * It will bypass checks for overriding methods on the receiver,
1602          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1603          * instruction from within the explicitly specified {@code specialCaller}.
1604          * The type of the method handle will be that of the method,
1605          * with a suitably restricted receiver type prepended.
1606          * (The receiver type will be {@code specialCaller} or a subtype.)
1607          * If the method's {@code accessible} flag is not set,
1608          * access checking is performed immediately on behalf of the lookup class,
1609          * as if {@code invokespecial} instruction were being linked.
1610          * <p>
1611          * Before method resolution,
1612          * if the explicitly specified caller class is not identical with the
1613          * lookup class, or if this lookup object does not have
1614          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1615          * privileges, the access fails.
1616          * <p>
1617          * The returned method handle will have
1618          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1619          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1620          * @param m the reflected method
1621          * @param specialCaller the class nominally calling the method
1622          * @return a method handle which can invoke the reflected method
1623          * @throws IllegalAccessException if access checking fails,
1624          *                                or if the method is {@code static},
1625          *                                or if the method's variable arity modifier bit
1626          *                                is set and {@code asVarargsCollector} fails
1627          * @throws NullPointerException if any argument is null
1628          */
1629         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
1630             checkSpecialCaller(specialCaller, null);
1631             Lookup specialLookup = this.in(specialCaller);
1632             MemberName method = new MemberName(m, true);
1633             assert(method.isMethod());
1634             // ignore m.isAccessible:  this is a new kind of access
1635             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
1636         }
1637 
1638         /**
1639          * Produces a method handle for a reflected constructor.
1640          * The type of the method handle will be that of the constructor,
1641          * with the return type changed to the declaring class.
1642          * The method handle will perform a {@code newInstance} operation,
1643          * creating a new instance of the constructor's class on the
1644          * arguments passed to the method handle.
1645          * <p>
1646          * If the constructor's {@code accessible} flag is not set,
1647          * access checking is performed immediately on behalf of the lookup class.
1648          * <p>
1649          * The returned method handle will have
1650          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1651          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1652          * <p>
1653          * If the returned method handle is invoked, the constructor's class will
1654          * be initialized, if it has not already been initialized.
1655          * @param c the reflected constructor
1656          * @return a method handle which can invoke the reflected constructor
1657          * @throws IllegalAccessException if access checking fails
1658          *                                or if the method's variable arity modifier bit
1659          *                                is set and {@code asVarargsCollector} fails
1660          * @throws NullPointerException if the argument is null
1661          */
1662         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
1663             MemberName ctor = new MemberName(c);
1664             assert(ctor.isConstructor());
1665             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
1666             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
1667         }
1668 
1669         /**
1670          * Produces a method handle giving read access to a reflected field.
1671          * The type of the method handle will have a return type of the field's
1672          * value type.
1673          * If the field is static, the method handle will take no arguments.
1674          * Otherwise, its single argument will be the instance containing
1675          * the field.
1676          * If the field's {@code accessible} flag is not set,
1677          * access checking is performed immediately on behalf of the lookup class.
1678          * <p>
1679          * If the field is static, and
1680          * if the returned method handle is invoked, the field's class will
1681          * be initialized, if it has not already been initialized.
1682          * @param f the reflected field
1683          * @return a method handle which can load values from the reflected field
1684          * @throws IllegalAccessException if access checking fails
1685          * @throws NullPointerException if the argument is null
1686          */
1687         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
1688             return unreflectField(f, false);
1689         }
1690         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
1691             MemberName field = new MemberName(f, isSetter);
1692             assert(isSetter
1693                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
1694                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
1695             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
1696             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
1697         }
1698 
1699         /**
1700          * Produces a method handle giving write access to a reflected field.
1701          * The type of the method handle will have a void return type.
1702          * If the field is static, the method handle will take a single
1703          * argument, of the field's value type, the value to be stored.
1704          * Otherwise, the two arguments will be the instance containing
1705          * the field, and the value to be stored.
1706          * If the field's {@code accessible} flag is not set,
1707          * access checking is performed immediately on behalf of the lookup class.
1708          * <p>
1709          * If the field is static, and
1710          * if the returned method handle is invoked, the field's class will
1711          * be initialized, if it has not already been initialized.
1712          * @param f the reflected field
1713          * @return a method handle which can store values into the reflected field
1714          * @throws IllegalAccessException if access checking fails
1715          * @throws NullPointerException if the argument is null
1716          */
1717         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1718             return unreflectField(f, true);
1719         }
1720 
1721         /**
1722          * Produces a VarHandle that accesses fields of type {@code T} declared
1723          * by a class of type {@code R}, as described by the given reflected
1724          * field.
1725          * If the field is non-static the VarHandle supports a shape of
1726          * {@code (R : T)}, otherwise supports a shape of {@code ((empty) : T)}.
1727          * <p>
1728          * Access checking is performed immediately on behalf of the lookup
1729          * class, regardless of the value of the field's {@code accessible}
1730          * flag.
1731          * <p>
1732          * If the field is static, and if the returned VarHandle is operated
1733          * on, the field's declaring class will be initialized, if it has not
1734          * already been initialized.
1735          * <p>
1736          * Certain access modes of the returned VarHandle are unsupported under
1737          * the following conditions:
1738          * <ul>
1739          * <li>if the field is declared {@code final}, then the write, atomic
1740          *     update, numeric atomic update, and bitwise atomic update access
1741          *     modes are unsupported.
1742          * <li>if the field type is anything other than {@code byte},
1743          *     {@code short}, {@code char}, {@code int}, {@code long},
1744          *     {@code float}, or {@code double} then numeric atomic update
1745          *     access modes are unsupported.
1746          * <li>if the field type is anything other than {@code boolean},
1747          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1748          *     {@code long} then bitwise atomic update access modes are
1749          *     unsupported.
1750          * </ul>
1751          * <p>
1752          * If the field is declared {@code volatile} then the returned VarHandle
1753          * will override access to the field (effectively ignore the
1754          * {@code volatile} declaration) in accordance to it's specified
1755          * access modes.
1756          * <p>
1757          * If the field type is {@code float} or {@code double} then numeric
1758          * and atomic update access modes compare values using their bitwise
1759          * representation (see {@link Float#floatToRawIntBits} and
1760          * {@link Double#doubleToRawLongBits}, respectively).
1761          * @apiNote
1762          * Bitwise comparison of {@code float} values or {@code double} values,
1763          * as performed by the numeric and atomic update access modes, differ
1764          * from the primitive {@code ==} operator and the {@link Float#equals}
1765          * and {@link Double#equals} methods, specifically with respect to
1766          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1767          * Care should be taken when performing a compare and set or a compare
1768          * and exchange operation with such values since the operation may
1769          * unexpectedly fail.
1770          * There are many possible NaN values that are considered to be
1771          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1772          * provided by Java can distinguish between them.  Operation failure can
1773          * occur if the expected or witness value is a NaN value and it is
1774          * transformed (perhaps in a platform specific manner) into another NaN
1775          * value, and thus has a different bitwise representation (see
1776          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1777          * details).
1778          * The values {@code -0.0} and {@code +0.0} have different bitwise
1779          * representations but are considered equal when using the primitive
1780          * {@code ==} operator.  Operation failure can occur if, for example, a
1781          * numeric algorithm computes an expected value to be say {@code -0.0}
1782          * and previously computed the witness value to be say {@code +0.0}.
1783          * @param f the reflected field, with a field of type {@code T}, and
1784          * a declaring class of type {@code R}
1785          * @return a VarHandle giving access to non-static fields or a static
1786          * field
1787          * @throws IllegalAccessException if access checking fails
1788          * @throws NullPointerException if the argument is null
1789          * @since 9
1790          */
1791         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
1792             MemberName getField = new MemberName(f, false);
1793             MemberName putField = new MemberName(f, true);
1794             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
1795                                                       f.getDeclaringClass(), getField, putField);
1796         }
1797 
1798         /**
1799          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1800          * created by this lookup object or a similar one.
1801          * Security and access checks are performed to ensure that this lookup object
1802          * is capable of reproducing the target method handle.
1803          * This means that the cracking may fail if target is a direct method handle
1804          * but was created by an unrelated lookup object.
1805          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
1806          * and was created by a lookup object for a different class.
1807          * @param target a direct method handle to crack into symbolic reference components
1808          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
1809          * @exception SecurityException if a security manager is present and it
1810          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1811          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
1812          * @exception NullPointerException if the target is {@code null}
1813          * @see MethodHandleInfo
1814          * @since 1.8
1815          */
1816         public MethodHandleInfo revealDirect(MethodHandle target) {
1817             MemberName member = target.internalMemberName();
1818             if (member == null || (!member.isResolved() &&
1819                                    !member.isMethodHandleInvoke() &&
1820                                    !member.isVarHandleMethodInvoke()))
1821                 throw newIllegalArgumentException("not a direct method handle");
1822             Class<?> defc = member.getDeclaringClass();
1823             byte refKind = member.getReferenceKind();
1824             assert(MethodHandleNatives.refKindIsValid(refKind));
1825             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
1826                 // Devirtualized method invocation is usually formally virtual.
1827                 // To avoid creating extra MemberName objects for this common case,
1828                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
1829                 refKind = REF_invokeVirtual;
1830             if (refKind == REF_invokeVirtual && defc.isInterface())
1831                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
1832                 refKind = REF_invokeInterface;
1833             // Check SM permissions and member access before cracking.
1834             try {
1835                 checkAccess(refKind, defc, member);
1836                 checkSecurityManager(defc, member);
1837             } catch (IllegalAccessException ex) {
1838                 throw new IllegalArgumentException(ex);
1839             }
1840             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
1841                 Class<?> callerClass = target.internalCallerClass();
1842                 if (!hasPrivateAccess() || callerClass != lookupClass())
1843                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
1844             }
1845             // Produce the handle to the results.
1846             return new InfoFromMemberName(this, member, refKind);
1847         }
1848 
1849         /// Helper methods, all package-private.
1850 
1851         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1852             checkSymbolicClass(refc);  // do this before attempting to resolve
1853             Objects.requireNonNull(name);
1854             Objects.requireNonNull(type);
1855             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1856                                             NoSuchFieldException.class);
1857         }
1858 
1859         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1860             checkSymbolicClass(refc);  // do this before attempting to resolve
1861             Objects.requireNonNull(name);
1862             Objects.requireNonNull(type);
1863             checkMethodName(refKind, name);  // NPE check on name
1864             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1865                                             NoSuchMethodException.class);
1866         }
1867 
1868         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
1869             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
1870             Objects.requireNonNull(member.getName());
1871             Objects.requireNonNull(member.getType());
1872             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
1873                                             ReflectiveOperationException.class);
1874         }
1875 
1876         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
1877             Objects.requireNonNull(refc);
1878             Class<?> caller = lookupClassOrNull();
1879             if (caller != null && !VerifyAccess.isClassAccessible(refc, caller, allowedModes))
1880                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
1881         }
1882 
1883         /** Check name for an illegal leading "&lt;" character. */
1884         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
1885             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
1886                 throw new NoSuchMethodException("illegal method name: "+name);
1887         }
1888 
1889 
1890         /**
1891          * Find my trustable caller class if m is a caller sensitive method.
1892          * If this lookup object has private access, then the caller class is the lookupClass.
1893          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
1894          */
1895         Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
1896             Class<?> callerClass = null;
1897             if (MethodHandleNatives.isCallerSensitive(m)) {
1898                 // Only lookups with private access are allowed to resolve caller-sensitive methods
1899                 if (hasPrivateAccess()) {
1900                     callerClass = lookupClass;
1901                 } else {
1902                     throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
1903                 }
1904             }
1905             return callerClass;
1906         }
1907 
1908         /**
1909          * Returns {@code true} if this lookup has {@code PRIVATE} access.
1910          * @return {@code true} if this lookup has {@code PRIVATE} acesss.
1911          * @since 9
1912          */
1913         public boolean hasPrivateAccess() {
1914             return (allowedModes & PRIVATE) != 0;
1915         }
1916 
1917         /**
1918          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
1919          * Determines a trustable caller class to compare with refc, the symbolic reference class.
1920          * If this lookup object has private access, then the caller class is the lookupClass.
1921          */
1922         void checkSecurityManager(Class<?> refc, MemberName m) {
1923             SecurityManager smgr = System.getSecurityManager();
1924             if (smgr == null)  return;
1925             if (allowedModes == TRUSTED)  return;
1926 
1927             // Step 1:
1928             boolean fullPowerLookup = hasPrivateAccess();
1929             if (!fullPowerLookup ||
1930                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
1931                 ReflectUtil.checkPackageAccess(refc);
1932             }
1933 
1934             if (m == null) {  // findClass or accessClass
1935                 // Step 2b:
1936                 if (!fullPowerLookup) {
1937                     smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
1938                 }
1939                 return;
1940             }
1941 
1942             // Step 2a:
1943             if (m.isPublic()) return;
1944             if (!fullPowerLookup) {
1945                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
1946             }
1947 
1948             // Step 3:
1949             Class<?> defc = m.getDeclaringClass();
1950             if (!fullPowerLookup && defc != refc) {
1951                 ReflectUtil.checkPackageAccess(defc);
1952             }
1953         }
1954 
1955         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
1956             boolean wantStatic = (refKind == REF_invokeStatic);
1957             String message;
1958             if (m.isConstructor())
1959                 message = "expected a method, not a constructor";
1960             else if (!m.isMethod())
1961                 message = "expected a method";
1962             else if (wantStatic != m.isStatic())
1963                 message = wantStatic ? "expected a static method" : "expected a non-static method";
1964             else
1965                 { checkAccess(refKind, refc, m); return; }
1966             throw m.makeAccessException(message, this);
1967         }
1968 
1969         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
1970             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
1971             String message;
1972             if (wantStatic != m.isStatic())
1973                 message = wantStatic ? "expected a static field" : "expected a non-static field";
1974             else
1975                 { checkAccess(refKind, refc, m); return; }
1976             throw m.makeAccessException(message, this);
1977         }
1978 
1979         /** Check public/protected/private bits on the symbolic reference class and its member. */
1980         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
1981             assert(m.referenceKindIsConsistentWith(refKind) &&
1982                    MethodHandleNatives.refKindIsValid(refKind) &&
1983                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
1984             int allowedModes = this.allowedModes;
1985             if (allowedModes == TRUSTED)  return;
1986             int mods = m.getModifiers();
1987             if (Modifier.isProtected(mods) &&
1988                     refKind == REF_invokeVirtual &&
1989                     m.getDeclaringClass() == Object.class &&
1990                     m.getName().equals("clone") &&
1991                     refc.isArray()) {
1992                 // The JVM does this hack also.
1993                 // (See ClassVerifier::verify_invoke_instructions
1994                 // and LinkResolver::check_method_accessability.)
1995                 // Because the JVM does not allow separate methods on array types,
1996                 // there is no separate method for int[].clone.
1997                 // All arrays simply inherit Object.clone.
1998                 // But for access checking logic, we make Object.clone
1999                 // (normally protected) appear to be public.
2000                 // Later on, when the DirectMethodHandle is created,
2001                 // its leading argument will be restricted to the
2002                 // requested array type.
2003                 // N.B. The return type is not adjusted, because
2004                 // that is *not* the bytecode behavior.
2005                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
2006             }
2007             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
2008                 // cannot "new" a protected ctor in a different package
2009                 mods ^= Modifier.PROTECTED;
2010             }
2011             if (Modifier.isFinal(mods) &&
2012                     MethodHandleNatives.refKindIsSetter(refKind))
2013                 throw m.makeAccessException("unexpected set of a final field", this);
2014             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
2015             if ((requestedModes & allowedModes) != 0) {
2016                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
2017                                                     mods, lookupClass(), allowedModes))
2018                     return;
2019             } else {
2020                 // Protected members can also be checked as if they were package-private.
2021                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
2022                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
2023                     return;
2024             }
2025             throw m.makeAccessException(accessFailedMessage(refc, m), this);
2026         }
2027 
2028         String accessFailedMessage(Class<?> refc, MemberName m) {
2029             Class<?> defc = m.getDeclaringClass();
2030             int mods = m.getModifiers();
2031             // check the class first:
2032             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
2033                                (defc == refc ||
2034                                 Modifier.isPublic(refc.getModifiers())));
2035             if (!classOK && (allowedModes & PACKAGE) != 0) {
2036                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) &&
2037                            (defc == refc ||
2038                             VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES)));
2039             }
2040             if (!classOK)
2041                 return "class is not public";
2042             if (Modifier.isPublic(mods))
2043                 return "access to public member failed";  // (how?, module not readable?)
2044             if (Modifier.isPrivate(mods))
2045                 return "member is private";
2046             if (Modifier.isProtected(mods))
2047                 return "member is protected";
2048             return "member is private to package";
2049         }
2050 
2051         private static final boolean ALLOW_NESTMATE_ACCESS = false;
2052 
2053         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
2054             int allowedModes = this.allowedModes;
2055             if (allowedModes == TRUSTED)  return;
2056             if (!hasPrivateAccess()
2057                 || (specialCaller != lookupClass()
2058                        // ensure non-abstract methods in superinterfaces can be special-invoked
2059                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))
2060                     && !(ALLOW_NESTMATE_ACCESS &&
2061                          VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
2062                 throw new MemberName(specialCaller).
2063                     makeAccessException("no private access for invokespecial", this);
2064         }
2065 
2066         private boolean restrictProtectedReceiver(MemberName method) {
2067             // The accessing class only has the right to use a protected member
2068             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
2069             if (!method.isProtected() || method.isStatic()
2070                 || allowedModes == TRUSTED
2071                 || method.getDeclaringClass() == lookupClass()
2072                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())
2073                 || (ALLOW_NESTMATE_ACCESS &&
2074                     VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
2075                 return false;
2076             return true;
2077         }
2078         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
2079             assert(!method.isStatic());
2080             // receiver type of mh is too wide; narrow to caller
2081             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
2082                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
2083             }
2084             MethodType rawType = mh.type();
2085             if (rawType.parameterType(0) == caller)  return mh;
2086             MethodType narrowType = rawType.changeParameterType(0, caller);
2087             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
2088             assert(mh.viewAsTypeChecks(narrowType, true));
2089             return mh.copyWith(narrowType, mh.form);
2090         }
2091 
2092         /** Check access and get the requested method. */
2093         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
2094             final boolean doRestrict    = true;
2095             final boolean checkSecurity = true;
2096             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
2097         }
2098         /** Check access and get the requested method, eliding receiver narrowing rules. */
2099         private MethodHandle getDirectMethodNoRestrict(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
2100             final boolean doRestrict    = false;
2101             final boolean checkSecurity = true;
2102             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
2103         }
2104         /** Check access and get the requested method, eliding security manager checks. */
2105         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
2106             final boolean doRestrict    = true;
2107             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2108             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
2109         }
2110         /** Common code for all methods; do not call directly except from immediately above. */
2111         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
2112                                                    boolean checkSecurity,
2113                                                    boolean doRestrict, Class<?> callerClass) throws IllegalAccessException {
2114             checkMethod(refKind, refc, method);
2115             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2116             if (checkSecurity)
2117                 checkSecurityManager(refc, method);
2118             assert(!method.isMethodHandleInvoke());
2119 
2120             if (refKind == REF_invokeSpecial &&
2121                 refc != lookupClass() &&
2122                 !refc.isInterface() &&
2123                 refc != lookupClass().getSuperclass() &&
2124                 refc.isAssignableFrom(lookupClass())) {
2125                 assert(!method.getName().equals("<init>"));  // not this code path
2126                 // Per JVMS 6.5, desc. of invokespecial instruction:
2127                 // If the method is in a superclass of the LC,
2128                 // and if our original search was above LC.super,
2129                 // repeat the search (symbolic lookup) from LC.super
2130                 // and continue with the direct superclass of that class,
2131                 // and so forth, until a match is found or no further superclasses exist.
2132                 // FIXME: MemberName.resolve should handle this instead.
2133                 Class<?> refcAsSuper = lookupClass();
2134                 MemberName m2;
2135                 do {
2136                     refcAsSuper = refcAsSuper.getSuperclass();
2137                     m2 = new MemberName(refcAsSuper,
2138                                         method.getName(),
2139                                         method.getMethodType(),
2140                                         REF_invokeSpecial);
2141                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
2142                 } while (m2 == null &&         // no method is found yet
2143                          refc != refcAsSuper); // search up to refc
2144                 if (m2 == null)  throw new InternalError(method.toString());
2145                 method = m2;
2146                 refc = refcAsSuper;
2147                 // redo basic checks
2148                 checkMethod(refKind, refc, method);
2149             }
2150 
2151             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method);
2152             MethodHandle mh = dmh;
2153             // Optionally narrow the receiver argument to refc using restrictReceiver.
2154             if (doRestrict &&
2155                    (refKind == REF_invokeSpecial ||
2156                        (MethodHandleNatives.refKindHasReceiver(refKind) &&
2157                            restrictProtectedReceiver(method)))) {
2158                 mh = restrictReceiver(method, dmh, lookupClass());
2159             }
2160             mh = maybeBindCaller(method, mh, callerClass);
2161             mh = mh.setVarargs(method);
2162             return mh;
2163         }
2164         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
2165                                              Class<?> callerClass)
2166                                              throws IllegalAccessException {
2167             if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
2168                 return mh;
2169             Class<?> hostClass = lookupClass;
2170             if (!hasPrivateAccess())  // caller must have private access
2171                 hostClass = callerClass;  // callerClass came from a security manager style stack walk
2172             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
2173             // Note: caller will apply varargs after this step happens.
2174             return cbmh;
2175         }
2176         /** Check access and get the requested field. */
2177         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
2178             final boolean checkSecurity = true;
2179             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
2180         }
2181         /** Check access and get the requested field, eliding security manager checks. */
2182         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
2183             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2184             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
2185         }
2186         /** Common code for all fields; do not call directly except from immediately above. */
2187         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
2188                                                   boolean checkSecurity) throws IllegalAccessException {
2189             checkField(refKind, refc, field);
2190             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2191             if (checkSecurity)
2192                 checkSecurityManager(refc, field);
2193             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
2194             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
2195                                     restrictProtectedReceiver(field));
2196             if (doRestrict)
2197                 return restrictReceiver(field, dmh, lookupClass());
2198             return dmh;
2199         }
2200         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
2201                                             Class<?> refc, MemberName getField, MemberName putField)
2202                 throws IllegalAccessException {
2203             final boolean checkSecurity = true;
2204             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2205         }
2206         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
2207                                                              Class<?> refc, MemberName getField, MemberName putField)
2208                 throws IllegalAccessException {
2209             final boolean checkSecurity = false;
2210             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2211         }
2212         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
2213                                                   Class<?> refc, MemberName getField, MemberName putField,
2214                                                   boolean checkSecurity) throws IllegalAccessException {
2215             assert getField.isStatic() == putField.isStatic();
2216             assert getField.isGetter() && putField.isSetter();
2217             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
2218             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
2219 
2220             checkField(getRefKind, refc, getField);
2221             if (checkSecurity)
2222                 checkSecurityManager(refc, getField);
2223 
2224             if (!putField.isFinal()) {
2225                 // A VarHandle does not support updates to final fields, any
2226                 // such VarHandle to a final field will be read-only and
2227                 // therefore the following write-based accessibility checks are
2228                 // only required for non-final fields
2229                 checkField(putRefKind, refc, putField);
2230                 if (checkSecurity)
2231                     checkSecurityManager(refc, putField);
2232             }
2233 
2234             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
2235                                   restrictProtectedReceiver(getField));
2236             if (doRestrict) {
2237                 assert !getField.isStatic();
2238                 // receiver type of VarHandle is too wide; narrow to caller
2239                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
2240                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
2241                 }
2242                 refc = lookupClass();
2243             }
2244             return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED);
2245         }
2246         /** Check access and get the requested constructor. */
2247         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2248             final boolean checkSecurity = true;
2249             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2250         }
2251         /** Check access and get the requested constructor, eliding security manager checks. */
2252         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2253             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2254             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2255         }
2256         /** Common code for all constructors; do not call directly except from immediately above. */
2257         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
2258                                                   boolean checkSecurity) throws IllegalAccessException {
2259             assert(ctor.isConstructor());
2260             checkAccess(REF_newInvokeSpecial, refc, ctor);
2261             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2262             if (checkSecurity)
2263                 checkSecurityManager(refc, ctor);
2264             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
2265             return DirectMethodHandle.make(ctor).setVarargs(ctor);
2266         }
2267 
2268         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
2269          */
2270         /*non-public*/
2271         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
2272             if (!(type instanceof Class || type instanceof MethodType))
2273                 throw new InternalError("unresolved MemberName");
2274             MemberName member = new MemberName(refKind, defc, name, type);
2275             MethodHandle mh = LOOKASIDE_TABLE.get(member);
2276             if (mh != null) {
2277                 checkSymbolicClass(defc);
2278                 return mh;
2279             }
2280             // Treat MethodHandle.invoke and invokeExact specially.
2281             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
2282                 mh = findVirtualForMH(member.getName(), member.getMethodType());
2283                 if (mh != null) {
2284                     return mh;
2285                 }
2286             }
2287             MemberName resolved = resolveOrFail(refKind, member);
2288             mh = getDirectMethodForConstant(refKind, defc, resolved);
2289             if (mh instanceof DirectMethodHandle
2290                     && canBeCached(refKind, defc, resolved)) {
2291                 MemberName key = mh.internalMemberName();
2292                 if (key != null) {
2293                     key = key.asNormalOriginal();
2294                 }
2295                 if (member.equals(key)) {  // better safe than sorry
2296                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
2297                 }
2298             }
2299             return mh;
2300         }
2301         private
2302         boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
2303             if (refKind == REF_invokeSpecial) {
2304                 return false;
2305             }
2306             if (!Modifier.isPublic(defc.getModifiers()) ||
2307                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
2308                     !member.isPublic() ||
2309                     member.isCallerSensitive()) {
2310                 return false;
2311             }
2312             ClassLoader loader = defc.getClassLoader();
2313             if (!jdk.internal.misc.VM.isSystemDomainLoader(loader)) {
2314                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
2315                 boolean found = false;
2316                 while (sysl != null) {
2317                     if (loader == sysl) { found = true; break; }
2318                     sysl = sysl.getParent();
2319                 }
2320                 if (!found) {
2321                     return false;
2322                 }
2323             }
2324             try {
2325                 MemberName resolved2 = publicLookup().resolveOrFail(refKind,
2326                     new MemberName(refKind, defc, member.getName(), member.getType()));
2327                 checkSecurityManager(defc, resolved2);
2328             } catch (ReflectiveOperationException | SecurityException ex) {
2329                 return false;
2330             }
2331             return true;
2332         }
2333         private
2334         MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
2335                 throws ReflectiveOperationException {
2336             if (MethodHandleNatives.refKindIsField(refKind)) {
2337                 return getDirectFieldNoSecurityManager(refKind, defc, member);
2338             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
2339                 return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
2340             } else if (refKind == REF_newInvokeSpecial) {
2341                 return getDirectConstructorNoSecurityManager(defc, member);
2342             }
2343             // oops
2344             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
2345         }
2346 
2347         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
2348     }
2349 
2350     /**
2351      * Helper class used to lazily create PUBLIC_LOOKUP with a lookup class
2352      * in an <em>unnamed module</em>.
2353      *
2354      * @see Lookup#publicLookup
2355      */
2356     private static class LookupHelper {
2357         private static final String UNNAMED = "Unnamed";
2358         private static final String OBJECT  = "java/lang/Object";
2359 
2360         private static Class<?> createClass() {
2361             try {
2362                 ClassWriter cw = new ClassWriter(0);
2363                 cw.visit(Opcodes.V1_8,
2364                          Opcodes.ACC_FINAL + Opcodes.ACC_SUPER,
2365                          UNNAMED,
2366                          null,
2367                          OBJECT,
2368                          null);
2369                 cw.visitSource(UNNAMED, null);
2370                 cw.visitEnd();
2371                 byte[] bytes = cw.toByteArray();
2372                 ClassLoader loader = new ClassLoader(null) {
2373                     @Override
2374                     protected Class<?> findClass(String cn) throws ClassNotFoundException {
2375                         if (cn.equals(UNNAMED))
2376                             return super.defineClass(UNNAMED, bytes, 0, bytes.length);
2377                         throw new ClassNotFoundException(cn);
2378                     }
2379                 };
2380                 return loader.loadClass(UNNAMED);
2381             } catch (Exception e) {
2382                 throw new InternalError(e);
2383             }
2384         }
2385 
2386         private static final Class<?> PUBLIC_LOOKUP_CLASS = createClass();
2387 
2388         /**
2389          * Lookup that is trusted minimally. It can only be used to create
2390          * method handles to publicly accessible members in exported packages.
2391          *
2392          * @see MethodHandles#publicLookup
2393          */
2394         static final Lookup PUBLIC_LOOKUP = new Lookup(PUBLIC_LOOKUP_CLASS, Lookup.PUBLIC);
2395     }
2396 
2397     /**
2398      * Produces a method handle constructing arrays of a desired type.
2399      * The return type of the method handle will be the array type.
2400      * The type of its sole argument will be {@code int}, which specifies the size of the array.
2401      * @param arrayClass an array type
2402      * @return a method handle which can create arrays of the given type
2403      * @throws NullPointerException if the argument is {@code null}
2404      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
2405      * @see java.lang.reflect.Array#newInstance(Class, int)
2406      * @since 9
2407      */
2408     public static
2409     MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
2410         if (!arrayClass.isArray()) {
2411             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
2412         }
2413         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
2414                 bindTo(arrayClass.getComponentType());
2415         return ani.asType(ani.type().changeReturnType(arrayClass));
2416     }
2417 
2418     /**
2419      * Produces a method handle returning the length of an array.
2420      * The type of the method handle will have {@code int} as return type,
2421      * and its sole argument will be the array type.
2422      * @param arrayClass an array type
2423      * @return a method handle which can retrieve the length of an array of the given array type
2424      * @throws NullPointerException if the argument is {@code null}
2425      * @throws IllegalArgumentException if arrayClass is not an array type
2426      * @since 9
2427      */
2428     public static
2429     MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
2430         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
2431     }
2432 
2433     /**
2434      * Produces a method handle giving read access to elements of an array.
2435      * The type of the method handle will have a return type of the array's
2436      * element type.  Its first argument will be the array type,
2437      * and the second will be {@code int}.
2438      * @param arrayClass an array type
2439      * @return a method handle which can load values from the given array type
2440      * @throws NullPointerException if the argument is null
2441      * @throws  IllegalArgumentException if arrayClass is not an array type
2442      */
2443     public static
2444     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
2445         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
2446     }
2447 
2448     /**
2449      * Produces a method handle giving write access to elements of an array.
2450      * The type of the method handle will have a void return type.
2451      * Its last argument will be the array's element type.
2452      * The first and second arguments will be the array type and int.
2453      * @param arrayClass the class of an array
2454      * @return a method handle which can store values into the array type
2455      * @throws NullPointerException if the argument is null
2456      * @throws IllegalArgumentException if arrayClass is not an array type
2457      */
2458     public static
2459     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
2460         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
2461     }
2462 
2463     /**
2464      *
2465      * Produces a VarHandle giving access to elements of an array type
2466      * {@code T[]}, supporting shape {@code (T[], int : T)}.
2467      * <p>
2468      * Certain access modes of the returned VarHandle are unsupported under
2469      * the following conditions:
2470      * <ul>
2471      * <li>if the component type is anything other than {@code byte},
2472      *     {@code short}, {@code char}, {@code int}, {@code long},
2473      *     {@code float}, or {@code double} then numeric atomic update access
2474      *     modes are unsupported.
2475      * <li>if the field type is anything other than {@code boolean},
2476      *     {@code byte}, {@code short}, {@code char}, {@code int} or
2477      *     {@code long} then bitwise atomic update access modes are
2478      *     unsupported.
2479      * </ul>
2480      * <p>
2481      * If the component type is {@code float} or {@code double} then numeric
2482      * and atomic update access modes compare values using their bitwise
2483      * representation (see {@link Float#floatToRawIntBits} and
2484      * {@link Double#doubleToRawLongBits}, respectively).
2485      * @apiNote
2486      * Bitwise comparison of {@code float} values or {@code double} values,
2487      * as performed by the numeric and atomic update access modes, differ
2488      * from the primitive {@code ==} operator and the {@link Float#equals}
2489      * and {@link Double#equals} methods, specifically with respect to
2490      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2491      * Care should be taken when performing a compare and set or a compare
2492      * and exchange operation with such values since the operation may
2493      * unexpectedly fail.
2494      * There are many possible NaN values that are considered to be
2495      * {@code NaN} in Java, although no IEEE 754 floating-point operation
2496      * provided by Java can distinguish between them.  Operation failure can
2497      * occur if the expected or witness value is a NaN value and it is
2498      * transformed (perhaps in a platform specific manner) into another NaN
2499      * value, and thus has a different bitwise representation (see
2500      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2501      * details).
2502      * The values {@code -0.0} and {@code +0.0} have different bitwise
2503      * representations but are considered equal when using the primitive
2504      * {@code ==} operator.  Operation failure can occur if, for example, a
2505      * numeric algorithm computes an expected value to be say {@code -0.0}
2506      * and previously computed the witness value to be say {@code +0.0}.
2507      * @param arrayClass the class of an array, of type {@code T[]}
2508      * @return a VarHandle giving access to elements of an array
2509      * @throws NullPointerException if the arrayClass is null
2510      * @throws IllegalArgumentException if arrayClass is not an array type
2511      * @since 9
2512      */
2513     public static
2514     VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
2515         return VarHandles.makeArrayElementHandle(arrayClass);
2516     }
2517 
2518     /**
2519      * Produces a VarHandle giving access to elements of a {@code byte[]} array
2520      * viewed as if it were a different primitive array type, such as
2521      * {@code int[]} or {@code long[]}.  The shape of the resulting VarHandle is
2522      * {@code (byte[], int : T)}, where the {@code int} coordinate type
2523      * corresponds to an argument that is an index in a {@code byte[]} array,
2524      * and {@code T} is the component type of the given view array class.  The
2525      * returned VarHandle accesses bytes at an index in a {@code byte[]} array,
2526      * composing bytes to or from a value of {@code T} according to the given
2527      * endianness.
2528      * <p>
2529      * The supported component types (variables types) are {@code short},
2530      * {@code char}, {@code int}, {@code long}, {@code float} and
2531      * {@code double}.
2532      * <p>
2533      * Access of bytes at a given index will result in an
2534      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2535      * or greater than the {@code byte[]} array length minus the size (in bytes)
2536      * of {@code T}.
2537      * <p>
2538      * Access of bytes at an index may be aligned or misaligned for {@code T},
2539      * with respect to the underlying memory address, {@code A} say, associated
2540      * with the array and index.
2541      * If access is misaligned then access for anything other than the
2542      * {@code get} and {@code set} access modes will result in an
2543      * {@code IllegalStateException}.  In such cases atomic access is only
2544      * guaranteed with respect to the largest power of two that divides the GCD
2545      * of {@code A} and the size (in bytes) of {@code T}.
2546      * If access is aligned then following access modes are supported and are
2547      * guaranteed to support atomic access:
2548      * <ul>
2549      * <li>read write access modes for all {@code T}, with the exception of
2550      *     access modes {@code get} and {@code set} for {@code long} and
2551      *     {@code double} on 32-bit platforms.
2552      * <li>atomic update access modes for {@code int}, {@code long},
2553      *     {@code float} or {@code double}.
2554      *     (Future major platform releases of the JDK may support additional
2555      *     types for certain currently unsupported access modes.)
2556      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2557      *     (Future major platform releases of the JDK may support additional
2558      *     numeric types for certain currently unsupported access modes.)
2559      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
2560      *     (Future major platform releases of the JDK may support additional
2561      *     numeric types for certain currently unsupported access modes.)
2562      * </ul>
2563      * <p>
2564      * Misaligned access, and therefore atomicity guarantees, may be determined
2565      * for {@code byte[]} arrays without operating on a specific array.  Given
2566      * an {@code index}, {@code T} and it's corresponding boxed type,
2567      * {@code T_BOX}, misalignment may be determined as follows:
2568      * <pre>{@code
2569      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2570      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
2571      *     alignmentOffset(0, sizeOfT);
2572      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
2573      * boolean isMisaligned = misalignedAtIndex != 0;
2574      * }</pre>
2575      * <p>
2576      * If the variable type is {@code float} or {@code double} then atomic
2577      * update access modes compare values using their bitwise representation
2578      * (see {@link Float#floatToRawIntBits} and
2579      * {@link Double#doubleToRawLongBits}, respectively).
2580      * @param viewArrayClass the view array class, with a component type of
2581      * type {@code T}
2582      * @param byteOrder the endianness of the view array elements, as
2583      * stored in the underlying {@code byte} array
2584      * @return a VarHandle giving access to elements of a {@code byte[]} array
2585      * viewed as if elements corresponding to the components type of the view
2586      * array class
2587      * @throws NullPointerException if viewArrayClass or byteOrder is null
2588      * @throws IllegalArgumentException if viewArrayClass is not an array type
2589      * @throws UnsupportedOperationException if the component type of
2590      * viewArrayClass is not supported as a variable type
2591      * @since 9
2592      */
2593     public static
2594     VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
2595                                      ByteOrder byteOrder) throws IllegalArgumentException {
2596         Objects.requireNonNull(byteOrder);
2597         return VarHandles.byteArrayViewHandle(viewArrayClass,
2598                                               byteOrder == ByteOrder.BIG_ENDIAN);
2599     }
2600 
2601     /**
2602      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
2603      * viewed as if it were an array of elements of a different primitive
2604      * component type to that of {@code byte}, such as {@code int[]} or
2605      * {@code long[]}.  The shape of the resulting VarHandle is
2606      * {@code (ByteBuffer, int : T)}, where the {@code int} coordinate type
2607      * corresponds to an argument that is an index in a {@code ByteBuffer}, and
2608      * {@code T} is the component type of the given view array class.  The
2609      * returned VarHandle accesses bytes at an index in a {@code ByteBuffer},
2610      * composing bytes to or from a value of {@code T} according to the given
2611      * endianness.
2612      * <p>
2613      * The supported component types (variables types) are {@code short},
2614      * {@code char}, {@code int}, {@code long}, {@code float} and
2615      * {@code double}.
2616      * <p>
2617      * Access will result in a {@code ReadOnlyBufferException} for anything
2618      * other than the read access modes if the {@code ByteBuffer} is read-only.
2619      * <p>
2620      * Access of bytes at a given index will result in an
2621      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2622      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
2623      * {@code T}.
2624      * <p>
2625      * Access of bytes at an index may be aligned or misaligned for {@code T},
2626      * with respect to the underlying memory address, {@code A} say, associated
2627      * with the {@code ByteBuffer} and index.
2628      * If access is misaligned then access for anything other than the
2629      * {@code get} and {@code set} access modes will result in an
2630      * {@code IllegalStateException}.  In such cases atomic access is only
2631      * guaranteed with respect to the largest power of two that divides the GCD
2632      * of {@code A} and the size (in bytes) of {@code T}.
2633      * If access is aligned then following access modes are supported and are
2634      * guaranteed to support atomic access:
2635      * <ul>
2636      * <li>read write access modes for all {@code T}, with the exception of
2637      *     access modes {@code get} and {@code set} for {@code long} and
2638      *     {@code double} on 32-bit platforms.
2639      * <li>atomic update access modes for {@code int}, {@code long},
2640      *     {@code float} or {@code double}.
2641      *     (Future major platform releases of the JDK may support additional
2642      *     types for certain currently unsupported access modes.)
2643      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2644      *     (Future major platform releases of the JDK may support additional
2645      *     numeric types for certain currently unsupported access modes.)
2646      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
2647      *     (Future major platform releases of the JDK may support additional
2648      *     numeric types for certain currently unsupported access modes.)
2649      * </ul>
2650      * <p>
2651      * Misaligned access, and therefore atomicity guarantees, may be determined
2652      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
2653      * {@code index}, {@code T} and it's corresponding boxed type,
2654      * {@code T_BOX}, as follows:
2655      * <pre>{@code
2656      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2657      * ByteBuffer bb = ...
2658      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
2659      * boolean isMisaligned = misalignedAtIndex != 0;
2660      * }</pre>
2661      * <p>
2662      * If the variable type is {@code float} or {@code double} then atomic
2663      * update access modes compare values using their bitwise representation
2664      * (see {@link Float#floatToRawIntBits} and
2665      * {@link Double#doubleToRawLongBits}, respectively).
2666      * @param viewArrayClass the view array class, with a component type of
2667      * type {@code T}
2668      * @param byteOrder the endianness of the view array elements, as
2669      * stored in the underlying {@code ByteBuffer} (Note this overrides the
2670      * endianness of a {@code ByteBuffer})
2671      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
2672      * viewed as if elements corresponding to the components type of the view
2673      * array class
2674      * @throws NullPointerException if viewArrayClass or byteOrder is null
2675      * @throws IllegalArgumentException if viewArrayClass is not an array type
2676      * @throws UnsupportedOperationException if the component type of
2677      * viewArrayClass is not supported as a variable type
2678      * @since 9
2679      */
2680     public static
2681     VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
2682                                       ByteOrder byteOrder) throws IllegalArgumentException {
2683         Objects.requireNonNull(byteOrder);
2684         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
2685                                                    byteOrder == ByteOrder.BIG_ENDIAN);
2686     }
2687 
2688 
2689     /// method handle invocation (reflective style)
2690 
2691     /**
2692      * Produces a method handle which will invoke any method handle of the
2693      * given {@code type}, with a given number of trailing arguments replaced by
2694      * a single trailing {@code Object[]} array.
2695      * The resulting invoker will be a method handle with the following
2696      * arguments:
2697      * <ul>
2698      * <li>a single {@code MethodHandle} target
2699      * <li>zero or more leading values (counted by {@code leadingArgCount})
2700      * <li>an {@code Object[]} array containing trailing arguments
2701      * </ul>
2702      * <p>
2703      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
2704      * the indicated {@code type}.
2705      * That is, if the target is exactly of the given {@code type}, it will behave
2706      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
2707      * is used to convert the target to the required {@code type}.
2708      * <p>
2709      * The type of the returned invoker will not be the given {@code type}, but rather
2710      * will have all parameters except the first {@code leadingArgCount}
2711      * replaced by a single array of type {@code Object[]}, which will be
2712      * the final parameter.
2713      * <p>
2714      * Before invoking its target, the invoker will spread the final array, apply
2715      * reference casts as necessary, and unbox and widen primitive arguments.
2716      * If, when the invoker is called, the supplied array argument does
2717      * not have the correct number of elements, the invoker will throw
2718      * an {@link IllegalArgumentException} instead of invoking the target.
2719      * <p>
2720      * This method is equivalent to the following code (though it may be more efficient):
2721      * <blockquote><pre>{@code
2722 MethodHandle invoker = MethodHandles.invoker(type);
2723 int spreadArgCount = type.parameterCount() - leadingArgCount;
2724 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
2725 return invoker;
2726      * }</pre></blockquote>
2727      * This method throws no reflective or security exceptions.
2728      * @param type the desired target type
2729      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
2730      * @return a method handle suitable for invoking any method handle of the given type
2731      * @throws NullPointerException if {@code type} is null
2732      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
2733      *                  the range from 0 to {@code type.parameterCount()} inclusive,
2734      *                  or if the resulting method handle's type would have
2735      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2736      */
2737     public static
2738     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
2739         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
2740             throw newIllegalArgumentException("bad argument count", leadingArgCount);
2741         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
2742         return type.invokers().spreadInvoker(leadingArgCount);
2743     }
2744 
2745     /**
2746      * Produces a special <em>invoker method handle</em> which can be used to
2747      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
2748      * The resulting invoker will have a type which is
2749      * exactly equal to the desired type, except that it will accept
2750      * an additional leading argument of type {@code MethodHandle}.
2751      * <p>
2752      * This method is equivalent to the following code (though it may be more efficient):
2753      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
2754      *
2755      * <p style="font-size:smaller;">
2756      * <em>Discussion:</em>
2757      * Invoker method handles can be useful when working with variable method handles
2758      * of unknown types.
2759      * For example, to emulate an {@code invokeExact} call to a variable method
2760      * handle {@code M}, extract its type {@code T},
2761      * look up the invoker method {@code X} for {@code T},
2762      * and call the invoker method, as {@code X.invoke(T, A...)}.
2763      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
2764      * is unknown.)
2765      * If spreading, collecting, or other argument transformations are required,
2766      * they can be applied once to the invoker {@code X} and reused on many {@code M}
2767      * method handle values, as long as they are compatible with the type of {@code X}.
2768      * <p style="font-size:smaller;">
2769      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2770      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2771      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2772      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2773      * <p>
2774      * This method throws no reflective or security exceptions.
2775      * @param type the desired target type
2776      * @return a method handle suitable for invoking any method handle of the given type
2777      * @throws IllegalArgumentException if the resulting method handle's type would have
2778      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2779      */
2780     public static
2781     MethodHandle exactInvoker(MethodType type) {
2782         return type.invokers().exactInvoker();
2783     }
2784 
2785     /**
2786      * Produces a special <em>invoker method handle</em> which can be used to
2787      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
2788      * The resulting invoker will have a type which is
2789      * exactly equal to the desired type, except that it will accept
2790      * an additional leading argument of type {@code MethodHandle}.
2791      * <p>
2792      * Before invoking its target, if the target differs from the expected type,
2793      * the invoker will apply reference casts as
2794      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
2795      * Similarly, the return value will be converted as necessary.
2796      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
2797      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
2798      * <p>
2799      * This method is equivalent to the following code (though it may be more efficient):
2800      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
2801      * <p style="font-size:smaller;">
2802      * <em>Discussion:</em>
2803      * A {@linkplain MethodType#genericMethodType general method type} is one which
2804      * mentions only {@code Object} arguments and return values.
2805      * An invoker for such a type is capable of calling any method handle
2806      * of the same arity as the general type.
2807      * <p style="font-size:smaller;">
2808      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2809      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2810      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2811      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2812      * <p>
2813      * This method throws no reflective or security exceptions.
2814      * @param type the desired target type
2815      * @return a method handle suitable for invoking any method handle convertible to the given type
2816      * @throws IllegalArgumentException if the resulting method handle's type would have
2817      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2818      */
2819     public static
2820     MethodHandle invoker(MethodType type) {
2821         return type.invokers().genericInvoker();
2822     }
2823 
2824     /**
2825      * Produces a special <em>invoker method handle</em> which can be used to
2826      * invoke a signature-polymorphic access mode method on any VarHandle whose
2827      * associated access mode type is compatible with the given type.
2828      * The resulting invoker will have a type which is exactly equal to the
2829      * desired given type, except that it will accept an additional leading
2830      * argument of type {@code VarHandle}.
2831      *
2832      * @param accessMode the VarHandle access mode
2833      * @param type the desired target type
2834      * @return a method handle suitable for invoking an access mode method of
2835      *         any VarHandle whose access mode type is of the given type.
2836      * @since 9
2837      */
2838     static public
2839     MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
2840         return type.invokers().varHandleMethodExactInvoker(accessMode);
2841     }
2842 
2843     /**
2844      * Produces a special <em>invoker method handle</em> which can be used to
2845      * invoke a signature-polymorphic access mode method on any VarHandle whose
2846      * associated access mode type is compatible with the given type.
2847      * The resulting invoker will have a type which is exactly equal to the
2848      * desired given type, except that it will accept an additional leading
2849      * argument of type {@code VarHandle}.
2850      * <p>
2851      * Before invoking its target, if the access mode type differs from the
2852      * desired given type, the invoker will apply reference casts as necessary
2853      * and box, unbox, or widen primitive values, as if by
2854      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
2855      * converted as necessary.
2856      * <p>
2857      * This method is equivalent to the following code (though it may be more
2858      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
2859      *
2860      * @param accessMode the VarHandle access mode
2861      * @param type the desired target type
2862      * @return a method handle suitable for invoking an access mode method of
2863      *         any VarHandle whose access mode type is convertible to the given
2864      *         type.
2865      * @since 9
2866      */
2867     static public
2868     MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
2869         return type.invokers().varHandleMethodInvoker(accessMode);
2870     }
2871 
2872     static /*non-public*/
2873     MethodHandle basicInvoker(MethodType type) {
2874         return type.invokers().basicInvoker();
2875     }
2876 
2877      /// method handle modification (creation from other method handles)
2878 
2879     /**
2880      * Produces a method handle which adapts the type of the
2881      * given method handle to a new type by pairwise argument and return type conversion.
2882      * The original type and new type must have the same number of arguments.
2883      * The resulting method handle is guaranteed to report a type
2884      * which is equal to the desired new type.
2885      * <p>
2886      * If the original type and new type are equal, returns target.
2887      * <p>
2888      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
2889      * and some additional conversions are also applied if those conversions fail.
2890      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
2891      * if possible, before or instead of any conversions done by {@code asType}:
2892      * <ul>
2893      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
2894      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
2895      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
2896      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
2897      *     the boolean is converted to a byte value, 1 for true, 0 for false.
2898      *     (This treatment follows the usage of the bytecode verifier.)
2899      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
2900      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
2901      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
2902      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
2903      *     then a Java casting conversion (JLS 5.5) is applied.
2904      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
2905      *     widening and/or narrowing.)
2906      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
2907      *     conversion will be applied at runtime, possibly followed
2908      *     by a Java casting conversion (JLS 5.5) on the primitive value,
2909      *     possibly followed by a conversion from byte to boolean by testing
2910      *     the low-order bit.
2911      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
2912      *     and if the reference is null at runtime, a zero value is introduced.
2913      * </ul>
2914      * @param target the method handle to invoke after arguments are retyped
2915      * @param newType the expected type of the new method handle
2916      * @return a method handle which delegates to the target after performing
2917      *           any necessary argument conversions, and arranges for any
2918      *           necessary return value conversions
2919      * @throws NullPointerException if either argument is null
2920      * @throws WrongMethodTypeException if the conversion cannot be made
2921      * @see MethodHandle#asType
2922      */
2923     public static
2924     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
2925         explicitCastArgumentsChecks(target, newType);
2926         // use the asTypeCache when possible:
2927         MethodType oldType = target.type();
2928         if (oldType == newType)  return target;
2929         if (oldType.explicitCastEquivalentToAsType(newType)) {
2930             return target.asFixedArity().asType(newType);
2931         }
2932         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
2933     }
2934 
2935     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
2936         if (target.type().parameterCount() != newType.parameterCount()) {
2937             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
2938         }
2939     }
2940 
2941     /**
2942      * Produces a method handle which adapts the calling sequence of the
2943      * given method handle to a new type, by reordering the arguments.
2944      * The resulting method handle is guaranteed to report a type
2945      * which is equal to the desired new type.
2946      * <p>
2947      * The given array controls the reordering.
2948      * Call {@code #I} the number of incoming parameters (the value
2949      * {@code newType.parameterCount()}, and call {@code #O} the number
2950      * of outgoing parameters (the value {@code target.type().parameterCount()}).
2951      * Then the length of the reordering array must be {@code #O},
2952      * and each element must be a non-negative number less than {@code #I}.
2953      * For every {@code N} less than {@code #O}, the {@code N}-th
2954      * outgoing argument will be taken from the {@code I}-th incoming
2955      * argument, where {@code I} is {@code reorder[N]}.
2956      * <p>
2957      * No argument or return value conversions are applied.
2958      * The type of each incoming argument, as determined by {@code newType},
2959      * must be identical to the type of the corresponding outgoing parameter
2960      * or parameters in the target method handle.
2961      * The return type of {@code newType} must be identical to the return
2962      * type of the original target.
2963      * <p>
2964      * The reordering array need not specify an actual permutation.
2965      * An incoming argument will be duplicated if its index appears
2966      * more than once in the array, and an incoming argument will be dropped
2967      * if its index does not appear in the array.
2968      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
2969      * incoming arguments which are not mentioned in the reordering array
2970      * may be of any type, as determined only by {@code newType}.
2971      * <blockquote><pre>{@code
2972 import static java.lang.invoke.MethodHandles.*;
2973 import static java.lang.invoke.MethodType.*;
2974 ...
2975 MethodType intfn1 = methodType(int.class, int.class);
2976 MethodType intfn2 = methodType(int.class, int.class, int.class);
2977 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
2978 assert(sub.type().equals(intfn2));
2979 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
2980 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
2981 assert((int)rsub.invokeExact(1, 100) == 99);
2982 MethodHandle add = ... (int x, int y) -> (x+y) ...;
2983 assert(add.type().equals(intfn2));
2984 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
2985 assert(twice.type().equals(intfn1));
2986 assert((int)twice.invokeExact(21) == 42);
2987      * }</pre></blockquote>
2988      * <p>
2989      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
2990      * variable-arity method handle}, even if the original target method handle was.
2991      * @param target the method handle to invoke after arguments are reordered
2992      * @param newType the expected type of the new method handle
2993      * @param reorder an index array which controls the reordering
2994      * @return a method handle which delegates to the target after it
2995      *           drops unused arguments and moves and/or duplicates the other arguments
2996      * @throws NullPointerException if any argument is null
2997      * @throws IllegalArgumentException if the index array length is not equal to
2998      *                  the arity of the target, or if any index array element
2999      *                  not a valid index for a parameter of {@code newType},
3000      *                  or if two corresponding parameter types in
3001      *                  {@code target.type()} and {@code newType} are not identical,
3002      */
3003     public static
3004     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
3005         reorder = reorder.clone();  // get a private copy
3006         MethodType oldType = target.type();
3007         permuteArgumentChecks(reorder, newType, oldType);
3008         // first detect dropped arguments and handle them separately
3009         int[] originalReorder = reorder;
3010         BoundMethodHandle result = target.rebind();
3011         LambdaForm form = result.form;
3012         int newArity = newType.parameterCount();
3013         // Normalize the reordering into a real permutation,
3014         // by removing duplicates and adding dropped elements.
3015         // This somewhat improves lambda form caching, as well
3016         // as simplifying the transform by breaking it up into steps.
3017         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
3018             if (ddIdx > 0) {
3019                 // We found a duplicated entry at reorder[ddIdx].
3020                 // Example:  (x,y,z)->asList(x,y,z)
3021                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
3022                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
3023                 // The starred element corresponds to the argument
3024                 // deleted by the dupArgumentForm transform.
3025                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
3026                 boolean killFirst = false;
3027                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
3028                     // Set killFirst if the dup is larger than an intervening position.
3029                     // This will remove at least one inversion from the permutation.
3030                     if (dupVal > val) killFirst = true;
3031                 }
3032                 if (!killFirst) {
3033                     srcPos = dstPos;
3034                     dstPos = ddIdx;
3035                 }
3036                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
3037                 assert (reorder[srcPos] == reorder[dstPos]);
3038                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
3039                 // contract the reordering by removing the element at dstPos
3040                 int tailPos = dstPos + 1;
3041                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
3042                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
3043             } else {
3044                 int dropVal = ~ddIdx, insPos = 0;
3045                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
3046                     // Find first element of reorder larger than dropVal.
3047                     // This is where we will insert the dropVal.
3048                     insPos += 1;
3049                 }
3050                 Class<?> ptype = newType.parameterType(dropVal);
3051                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
3052                 oldType = oldType.insertParameterTypes(insPos, ptype);
3053                 // expand the reordering by inserting an element at insPos
3054                 int tailPos = insPos + 1;
3055                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
3056                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
3057                 reorder[insPos] = dropVal;
3058             }
3059             assert (permuteArgumentChecks(reorder, newType, oldType));
3060         }
3061         assert (reorder.length == newArity);  // a perfect permutation
3062         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
3063         form = form.editor().permuteArgumentsForm(1, reorder);
3064         if (newType == result.type() && form == result.internalForm())
3065             return result;
3066         return result.copyWith(newType, form);
3067     }
3068 
3069     /**
3070      * Return an indication of any duplicate or omission in reorder.
3071      * If the reorder contains a duplicate entry, return the index of the second occurrence.
3072      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
3073      * Otherwise, return zero.
3074      * If an element not in [0..newArity-1] is encountered, return reorder.length.
3075      */
3076     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
3077         final int BIT_LIMIT = 63;  // max number of bits in bit mask
3078         if (newArity < BIT_LIMIT) {
3079             long mask = 0;
3080             for (int i = 0; i < reorder.length; i++) {
3081                 int arg = reorder[i];
3082                 if (arg >= newArity) {
3083                     return reorder.length;
3084                 }
3085                 long bit = 1L << arg;
3086                 if ((mask & bit) != 0) {
3087                     return i;  // >0 indicates a dup
3088                 }
3089                 mask |= bit;
3090             }
3091             if (mask == (1L << newArity) - 1) {
3092                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
3093                 return 0;
3094             }
3095             // find first zero
3096             long zeroBit = Long.lowestOneBit(~mask);
3097             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
3098             assert(zeroPos <= newArity);
3099             if (zeroPos == newArity) {
3100                 return 0;
3101             }
3102             return ~zeroPos;
3103         } else {
3104             // same algorithm, different bit set
3105             BitSet mask = new BitSet(newArity);
3106             for (int i = 0; i < reorder.length; i++) {
3107                 int arg = reorder[i];
3108                 if (arg >= newArity) {
3109                     return reorder.length;
3110                 }
3111                 if (mask.get(arg)) {
3112                     return i;  // >0 indicates a dup
3113                 }
3114                 mask.set(arg);
3115             }
3116             int zeroPos = mask.nextClearBit(0);
3117             assert(zeroPos <= newArity);
3118             if (zeroPos == newArity) {
3119                 return 0;
3120             }
3121             return ~zeroPos;
3122         }
3123     }
3124 
3125     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
3126         if (newType.returnType() != oldType.returnType())
3127             throw newIllegalArgumentException("return types do not match",
3128                     oldType, newType);
3129         if (reorder.length == oldType.parameterCount()) {
3130             int limit = newType.parameterCount();
3131             boolean bad = false;
3132             for (int j = 0; j < reorder.length; j++) {
3133                 int i = reorder[j];
3134                 if (i < 0 || i >= limit) {
3135                     bad = true; break;
3136                 }
3137                 Class<?> src = newType.parameterType(i);
3138                 Class<?> dst = oldType.parameterType(j);
3139                 if (src != dst)
3140                     throw newIllegalArgumentException("parameter types do not match after reorder",
3141                             oldType, newType);
3142             }
3143             if (!bad)  return true;
3144         }
3145         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
3146     }
3147 
3148     /**
3149      * Produces a method handle of the requested return type which returns the given
3150      * constant value every time it is invoked.
3151      * <p>
3152      * Before the method handle is returned, the passed-in value is converted to the requested type.
3153      * If the requested type is primitive, widening primitive conversions are attempted,
3154      * else reference conversions are attempted.
3155      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
3156      * @param type the return type of the desired method handle
3157      * @param value the value to return
3158      * @return a method handle of the given return type and no arguments, which always returns the given value
3159      * @throws NullPointerException if the {@code type} argument is null
3160      * @throws ClassCastException if the value cannot be converted to the required return type
3161      * @throws IllegalArgumentException if the given type is {@code void.class}
3162      */
3163     public static
3164     MethodHandle constant(Class<?> type, Object value) {
3165         if (type.isPrimitive()) {
3166             if (type == void.class)
3167                 throw newIllegalArgumentException("void type");
3168             Wrapper w = Wrapper.forPrimitiveType(type);
3169             value = w.convert(value, type);
3170             if (w.zero().equals(value))
3171                 return zero(w, type);
3172             return insertArguments(identity(type), 0, value);
3173         } else {
3174             if (value == null)
3175                 return zero(Wrapper.OBJECT, type);
3176             return identity(type).bindTo(value);
3177         }
3178     }
3179 
3180     /**
3181      * Produces a method handle which returns its sole argument when invoked.
3182      * @param type the type of the sole parameter and return value of the desired method handle
3183      * @return a unary method handle which accepts and returns the given type
3184      * @throws NullPointerException if the argument is null
3185      * @throws IllegalArgumentException if the given type is {@code void.class}
3186      */
3187     public static
3188     MethodHandle identity(Class<?> type) {
3189         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
3190         int pos = btw.ordinal();
3191         MethodHandle ident = IDENTITY_MHS[pos];
3192         if (ident == null) {
3193             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
3194         }
3195         if (ident.type().returnType() == type)
3196             return ident;
3197         // something like identity(Foo.class); do not bother to intern these
3198         assert (btw == Wrapper.OBJECT);
3199         return makeIdentity(type);
3200     }
3201 
3202     /**
3203      * Produces a constant method handle of the requested return type which
3204      * returns the default value for that type every time it is invoked.
3205      * The resulting constant method handle will have no side effects.
3206      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
3207      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
3208      * since {@code explicitCastArguments} converts {@code null} to default values.
3209      * @param type the expected return type of the desired method handle
3210      * @return a constant method handle that takes no arguments
3211      *         and returns the default value of the given type (or void, if the type is void)
3212      * @throws NullPointerException if the argument is null
3213      * @see MethodHandles#constant
3214      * @see MethodHandles#empty
3215      * @see MethodHandles#explicitCastArguments
3216      * @since 9
3217      */
3218     public static MethodHandle zero(Class<?> type) {
3219         Objects.requireNonNull(type);
3220         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
3221     }
3222 
3223     private static MethodHandle identityOrVoid(Class<?> type) {
3224         return type == void.class ? zero(type) : identity(type);
3225     }
3226 
3227     /**
3228      * Produces a method handle of the requested type which ignores any arguments, does nothing,
3229      * and returns a suitable default depending on the return type.
3230      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
3231      * <p>The returned method handle is equivalent to
3232      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
3233      * <p>
3234      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
3235      * {@code guardWithTest(pred, target, empty(target.type())}.
3236      * @param type the type of the desired method handle
3237      * @return a constant method handle of the given type, which returns a default value of the given return type
3238      * @throws NullPointerException if the argument is null
3239      * @see MethodHandles#zero
3240      * @see MethodHandles#constant
3241      * @since 9
3242      */
3243     public static  MethodHandle empty(MethodType type) {
3244         Objects.requireNonNull(type);
3245         return dropArguments(zero(type.returnType()), 0, type.parameterList());
3246     }
3247 
3248     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
3249     private static MethodHandle makeIdentity(Class<?> ptype) {
3250         MethodType mtype = methodType(ptype, ptype);
3251         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
3252         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
3253     }
3254 
3255     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
3256         int pos = btw.ordinal();
3257         MethodHandle zero = ZERO_MHS[pos];
3258         if (zero == null) {
3259             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
3260         }
3261         if (zero.type().returnType() == rtype)
3262             return zero;
3263         assert(btw == Wrapper.OBJECT);
3264         return makeZero(rtype);
3265     }
3266     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
3267     private static MethodHandle makeZero(Class<?> rtype) {
3268         MethodType mtype = methodType(rtype);
3269         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
3270         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
3271     }
3272 
3273     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
3274         // Simulate a CAS, to avoid racy duplication of results.
3275         MethodHandle prev = cache[pos];
3276         if (prev != null) return prev;
3277         return cache[pos] = value;
3278     }
3279 
3280     /**
3281      * Provides a target method handle with one or more <em>bound arguments</em>
3282      * in advance of the method handle's invocation.
3283      * The formal parameters to the target corresponding to the bound
3284      * arguments are called <em>bound parameters</em>.
3285      * Returns a new method handle which saves away the bound arguments.
3286      * When it is invoked, it receives arguments for any non-bound parameters,
3287      * binds the saved arguments to their corresponding parameters,
3288      * and calls the original target.
3289      * <p>
3290      * The type of the new method handle will drop the types for the bound
3291      * parameters from the original target type, since the new method handle
3292      * will no longer require those arguments to be supplied by its callers.
3293      * <p>
3294      * Each given argument object must match the corresponding bound parameter type.
3295      * If a bound parameter type is a primitive, the argument object
3296      * must be a wrapper, and will be unboxed to produce the primitive value.
3297      * <p>
3298      * The {@code pos} argument selects which parameters are to be bound.
3299      * It may range between zero and <i>N-L</i> (inclusively),
3300      * where <i>N</i> is the arity of the target method handle
3301      * and <i>L</i> is the length of the values array.
3302      * <p>
3303      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3304      * variable-arity method handle}, even if the original target method handle was.
3305      * @param target the method handle to invoke after the argument is inserted
3306      * @param pos where to insert the argument (zero for the first)
3307      * @param values the series of arguments to insert
3308      * @return a method handle which inserts an additional argument,
3309      *         before calling the original method handle
3310      * @throws NullPointerException if the target or the {@code values} array is null
3311      * @see MethodHandle#bindTo
3312      */
3313     public static
3314     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
3315         int insCount = values.length;
3316         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
3317         if (insCount == 0)  return target;
3318         BoundMethodHandle result = target.rebind();
3319         for (int i = 0; i < insCount; i++) {
3320             Object value = values[i];
3321             Class<?> ptype = ptypes[pos+i];
3322             if (ptype.isPrimitive()) {
3323                 result = insertArgumentPrimitive(result, pos, ptype, value);
3324             } else {
3325                 value = ptype.cast(value);  // throw CCE if needed
3326                 result = result.bindArgumentL(pos, value);
3327             }
3328         }
3329         return result;
3330     }
3331 
3332     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
3333                                                              Class<?> ptype, Object value) {
3334         Wrapper w = Wrapper.forPrimitiveType(ptype);
3335         // perform unboxing and/or primitive conversion
3336         value = w.convert(value, ptype);
3337         switch (w) {
3338         case INT:     return result.bindArgumentI(pos, (int)value);
3339         case LONG:    return result.bindArgumentJ(pos, (long)value);
3340         case FLOAT:   return result.bindArgumentF(pos, (float)value);
3341         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
3342         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
3343         }
3344     }
3345 
3346     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
3347         MethodType oldType = target.type();
3348         int outargs = oldType.parameterCount();
3349         int inargs  = outargs - insCount;
3350         if (inargs < 0)
3351             throw newIllegalArgumentException("too many values to insert");
3352         if (pos < 0 || pos > inargs)
3353             throw newIllegalArgumentException("no argument type to append");
3354         return oldType.ptypes();
3355     }
3356 
3357     /**
3358      * Produces a method handle which will discard some dummy arguments
3359      * before calling some other specified <i>target</i> method handle.
3360      * The type of the new method handle will be the same as the target's type,
3361      * except it will also include the dummy argument types,
3362      * at some given position.
3363      * <p>
3364      * The {@code pos} argument may range between zero and <i>N</i>,
3365      * where <i>N</i> is the arity of the target.
3366      * If {@code pos} is zero, the dummy arguments will precede
3367      * the target's real arguments; if {@code pos} is <i>N</i>
3368      * they will come after.
3369      * <p>
3370      * <b>Example:</b>
3371      * <blockquote><pre>{@code
3372 import static java.lang.invoke.MethodHandles.*;
3373 import static java.lang.invoke.MethodType.*;
3374 ...
3375 MethodHandle cat = lookup().findVirtual(String.class,
3376   "concat", methodType(String.class, String.class));
3377 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3378 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
3379 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
3380 assertEquals(bigType, d0.type());
3381 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
3382      * }</pre></blockquote>
3383      * <p>
3384      * This method is also equivalent to the following code:
3385      * <blockquote><pre>
3386      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
3387      * </pre></blockquote>
3388      * @param target the method handle to invoke after the arguments are dropped
3389      * @param valueTypes the type(s) of the argument(s) to drop
3390      * @param pos position of first argument to drop (zero for the leftmost)
3391      * @return a method handle which drops arguments of the given types,
3392      *         before calling the original method handle
3393      * @throws NullPointerException if the target is null,
3394      *                              or if the {@code valueTypes} list or any of its elements is null
3395      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3396      *                  or if {@code pos} is negative or greater than the arity of the target,
3397      *                  or if the new method handle's type would have too many parameters
3398      */
3399     public static
3400     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3401         return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
3402     }
3403 
3404     private static List<Class<?>> copyTypes(Object[] array) {
3405         return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
3406     }
3407 
3408     private static
3409     MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3410         MethodType oldType = target.type();  // get NPE
3411         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
3412         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
3413         if (dropped == 0)  return target;
3414         BoundMethodHandle result = target.rebind();
3415         LambdaForm lform = result.form;
3416         int insertFormArg = 1 + pos;
3417         for (Class<?> ptype : valueTypes) {
3418             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
3419         }
3420         result = result.copyWith(newType, lform);
3421         return result;
3422     }
3423 
3424     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
3425         int dropped = valueTypes.size();
3426         MethodType.checkSlotCount(dropped);
3427         int outargs = oldType.parameterCount();
3428         int inargs  = outargs + dropped;
3429         if (pos < 0 || pos > outargs)
3430             throw newIllegalArgumentException("no argument type to remove"
3431                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
3432                     );
3433         return dropped;
3434     }
3435 
3436     /**
3437      * Produces a method handle which will discard some dummy arguments
3438      * before calling some other specified <i>target</i> method handle.
3439      * The type of the new method handle will be the same as the target's type,
3440      * except it will also include the dummy argument types,
3441      * at some given position.
3442      * <p>
3443      * The {@code pos} argument may range between zero and <i>N</i>,
3444      * where <i>N</i> is the arity of the target.
3445      * If {@code pos} is zero, the dummy arguments will precede
3446      * the target's real arguments; if {@code pos} is <i>N</i>
3447      * they will come after.
3448      * @apiNote
3449      * <blockquote><pre>{@code
3450 import static java.lang.invoke.MethodHandles.*;
3451 import static java.lang.invoke.MethodType.*;
3452 ...
3453 MethodHandle cat = lookup().findVirtual(String.class,
3454   "concat", methodType(String.class, String.class));
3455 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3456 MethodHandle d0 = dropArguments(cat, 0, String.class);
3457 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
3458 MethodHandle d1 = dropArguments(cat, 1, String.class);
3459 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
3460 MethodHandle d2 = dropArguments(cat, 2, String.class);
3461 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
3462 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
3463 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
3464      * }</pre></blockquote>
3465      * <p>
3466      * This method is also equivalent to the following code:
3467      * <blockquote><pre>
3468      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
3469      * </pre></blockquote>
3470      * @param target the method handle to invoke after the arguments are dropped
3471      * @param valueTypes the type(s) of the argument(s) to drop
3472      * @param pos position of first argument to drop (zero for the leftmost)
3473      * @return a method handle which drops arguments of the given types,
3474      *         before calling the original method handle
3475      * @throws NullPointerException if the target is null,
3476      *                              or if the {@code valueTypes} array or any of its elements is null
3477      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3478      *                  or if {@code pos} is negative or greater than the arity of the target,
3479      *                  or if the new method handle's type would have
3480      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
3481      */
3482     public static
3483     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
3484         return dropArguments0(target, pos, copyTypes(valueTypes));
3485     }
3486 
3487     // private version which allows caller some freedom with error handling
3488     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
3489                                       boolean nullOnFailure) {
3490         newTypes = copyTypes(newTypes.toArray());
3491         List<Class<?>> oldTypes = target.type().parameterList();
3492         int match = oldTypes.size();
3493         if (skip != 0) {
3494             if (skip < 0 || skip > match) {
3495                 throw newIllegalArgumentException("illegal skip", skip, target);
3496             }
3497             oldTypes = oldTypes.subList(skip, match);
3498             match -= skip;
3499         }
3500         List<Class<?>> addTypes = newTypes;
3501         int add = addTypes.size();
3502         if (pos != 0) {
3503             if (pos < 0 || pos > add) {
3504                 throw newIllegalArgumentException("illegal pos", pos, newTypes);
3505             }
3506             addTypes = addTypes.subList(pos, add);
3507             add -= pos;
3508             assert(addTypes.size() == add);
3509         }
3510         // Do not add types which already match the existing arguments.
3511         if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
3512             if (nullOnFailure) {
3513                 return null;
3514             }
3515             throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
3516         }
3517         addTypes = addTypes.subList(match, add);
3518         add -= match;
3519         assert(addTypes.size() == add);
3520         // newTypes:     (   P*[pos], M*[match], A*[add] )
3521         // target: ( S*[skip],        M*[match]  )
3522         MethodHandle adapter = target;
3523         if (add > 0) {
3524             adapter = dropArguments0(adapter, skip+ match, addTypes);
3525         }
3526         // adapter: (S*[skip],        M*[match], A*[add] )
3527         if (pos > 0) {
3528             adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
3529         }
3530         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
3531         return adapter;
3532     }
3533 
3534     /**
3535      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
3536      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
3537      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
3538      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
3539      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
3540      * {@link #dropArguments(MethodHandle, int, Class[])}.
3541      * <p>
3542      * The resulting handle will have the same return type as the target handle.
3543      * <p>
3544      * In more formal terms, assume these two type lists:<ul>
3545      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
3546      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
3547      * {@code newTypes}.
3548      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
3549      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
3550      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
3551      * sub-list.
3552      * </ul>
3553      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
3554      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
3555      * {@link #dropArguments(MethodHandle, int, Class[])}.
3556      * <p>
3557      * @apiNote
3558      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
3559      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
3560      * <blockquote><pre>{@code
3561 import static java.lang.invoke.MethodHandles.*;
3562 import static java.lang.invoke.MethodType.*;
3563 ...
3564 ...
3565 MethodHandle h0 = constant(boolean.class, true);
3566 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
3567 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
3568 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
3569 if (h1.type().parameterCount() < h2.type().parameterCount())
3570     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
3571 else
3572     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
3573 MethodHandle h3 = guardWithTest(h0, h1, h2);
3574 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
3575      * }</pre></blockquote>
3576      * @param target the method handle to adapt
3577      * @param skip number of targets parameters to disregard (they will be unchanged)
3578      * @param newTypes the list of types to match {@code target}'s parameter type list to
3579      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
3580      * @return a possibly adapted method handle
3581      * @throws NullPointerException if either argument is null
3582      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
3583      *         or if {@code skip} is negative or greater than the arity of the target,
3584      *         or if {@code pos} is negative or greater than the newTypes list size,
3585      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
3586      *         {@code pos}.
3587      * @since 9
3588      */
3589     public static
3590     MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
3591         Objects.requireNonNull(target);
3592         Objects.requireNonNull(newTypes);
3593         return dropArgumentsToMatch(target, skip, newTypes, pos, false);
3594     }
3595 
3596     /**
3597      * Adapts a target method handle by pre-processing
3598      * one or more of its arguments, each with its own unary filter function,
3599      * and then calling the target with each pre-processed argument
3600      * replaced by the result of its corresponding filter function.
3601      * <p>
3602      * The pre-processing is performed by one or more method handles,
3603      * specified in the elements of the {@code filters} array.
3604      * The first element of the filter array corresponds to the {@code pos}
3605      * argument of the target, and so on in sequence.
3606      * <p>
3607      * Null arguments in the array are treated as identity functions,
3608      * and the corresponding arguments left unchanged.
3609      * (If there are no non-null elements in the array, the original target is returned.)
3610      * Each filter is applied to the corresponding argument of the adapter.
3611      * <p>
3612      * If a filter {@code F} applies to the {@code N}th argument of
3613      * the target, then {@code F} must be a method handle which
3614      * takes exactly one argument.  The type of {@code F}'s sole argument
3615      * replaces the corresponding argument type of the target
3616      * in the resulting adapted method handle.
3617      * The return type of {@code F} must be identical to the corresponding
3618      * parameter type of the target.
3619      * <p>
3620      * It is an error if there are elements of {@code filters}
3621      * (null or not)
3622      * which do not correspond to argument positions in the target.
3623      * <p><b>Example:</b>
3624      * <blockquote><pre>{@code
3625 import static java.lang.invoke.MethodHandles.*;
3626 import static java.lang.invoke.MethodType.*;
3627 ...
3628 MethodHandle cat = lookup().findVirtual(String.class,
3629   "concat", methodType(String.class, String.class));
3630 MethodHandle upcase = lookup().findVirtual(String.class,
3631   "toUpperCase", methodType(String.class));
3632 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3633 MethodHandle f0 = filterArguments(cat, 0, upcase);
3634 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
3635 MethodHandle f1 = filterArguments(cat, 1, upcase);
3636 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
3637 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
3638 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
3639      * }</pre></blockquote>
3640      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3641      * denotes the return type of both the {@code target} and resulting adapter.
3642      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
3643      * of the parameters and arguments that precede and follow the filter position
3644      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
3645      * values of the filtered parameters and arguments; they also represent the
3646      * return types of the {@code filter[i]} handles. The latter accept arguments
3647      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
3648      * the resulting adapter.
3649      * <blockquote><pre>{@code
3650      * T target(P... p, A[i]... a[i], B... b);
3651      * A[i] filter[i](V[i]);
3652      * T adapter(P... p, V[i]... v[i], B... b) {
3653      *   return target(p..., filter[i](v[i])..., b...);
3654      * }
3655      * }</pre></blockquote>
3656      * <p>
3657      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3658      * variable-arity method handle}, even if the original target method handle was.
3659      *
3660      * @param target the method handle to invoke after arguments are filtered
3661      * @param pos the position of the first argument to filter
3662      * @param filters method handles to call initially on filtered arguments
3663      * @return method handle which incorporates the specified argument filtering logic
3664      * @throws NullPointerException if the target is null
3665      *                              or if the {@code filters} array is null
3666      * @throws IllegalArgumentException if a non-null element of {@code filters}
3667      *          does not match a corresponding argument type of target as described above,
3668      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
3669      *          or if the resulting method handle's type would have
3670      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3671      */
3672     public static
3673     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
3674         filterArgumentsCheckArity(target, pos, filters);
3675         MethodHandle adapter = target;
3676         int curPos = pos-1;  // pre-incremented
3677         for (MethodHandle filter : filters) {
3678             curPos += 1;
3679             if (filter == null)  continue;  // ignore null elements of filters
3680             adapter = filterArgument(adapter, curPos, filter);
3681         }
3682         return adapter;
3683     }
3684 
3685     /*non-public*/ static
3686     MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
3687         filterArgumentChecks(target, pos, filter);
3688         MethodType targetType = target.type();
3689         MethodType filterType = filter.type();
3690         BoundMethodHandle result = target.rebind();
3691         Class<?> newParamType = filterType.parameterType(0);
3692         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
3693         MethodType newType = targetType.changeParameterType(pos, newParamType);
3694         result = result.copyWithExtendL(newType, lform, filter);
3695         return result;
3696     }
3697 
3698     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
3699         MethodType targetType = target.type();
3700         int maxPos = targetType.parameterCount();
3701         if (pos + filters.length > maxPos)
3702             throw newIllegalArgumentException("too many filters");
3703     }
3704 
3705     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
3706         MethodType targetType = target.type();
3707         MethodType filterType = filter.type();
3708         if (filterType.parameterCount() != 1
3709             || filterType.returnType() != targetType.parameterType(pos))
3710             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3711     }
3712 
3713     /**
3714      * Adapts a target method handle by pre-processing
3715      * a sub-sequence of its arguments with a filter (another method handle).
3716      * The pre-processed arguments are replaced by the result (if any) of the
3717      * filter function.
3718      * The target is then called on the modified (usually shortened) argument list.
3719      * <p>
3720      * If the filter returns a value, the target must accept that value as
3721      * its argument in position {@code pos}, preceded and/or followed by
3722      * any arguments not passed to the filter.
3723      * If the filter returns void, the target must accept all arguments
3724      * not passed to the filter.
3725      * No arguments are reordered, and a result returned from the filter
3726      * replaces (in order) the whole subsequence of arguments originally
3727      * passed to the adapter.
3728      * <p>
3729      * The argument types (if any) of the filter
3730      * replace zero or one argument types of the target, at position {@code pos},
3731      * in the resulting adapted method handle.
3732      * The return type of the filter (if any) must be identical to the
3733      * argument type of the target at position {@code pos}, and that target argument
3734      * is supplied by the return value of the filter.
3735      * <p>
3736      * In all cases, {@code pos} must be greater than or equal to zero, and
3737      * {@code pos} must also be less than or equal to the target's arity.
3738      * <p><b>Example:</b>
3739      * <blockquote><pre>{@code
3740 import static java.lang.invoke.MethodHandles.*;
3741 import static java.lang.invoke.MethodType.*;
3742 ...
3743 MethodHandle deepToString = publicLookup()
3744   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
3745 
3746 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
3747 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
3748 
3749 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
3750 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
3751 
3752 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
3753 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
3754 assertEquals("[top, [up, down], strange]",
3755              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
3756 
3757 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
3758 assertEquals("[top, [up, down], [strange]]",
3759              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
3760 
3761 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
3762 assertEquals("[top, [[up, down, strange], charm], bottom]",
3763              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
3764      * }</pre></blockquote>
3765      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3766      * represents the return type of the {@code target} and resulting adapter.
3767      * {@code V}/{@code v} stand for the return type and value of the
3768      * {@code filter}, which are also found in the signature and arguments of
3769      * the {@code target}, respectively, unless {@code V} is {@code void}.
3770      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
3771      * and values preceding and following the collection position, {@code pos},
3772      * in the {@code target}'s signature. They also turn up in the resulting
3773      * adapter's signature and arguments, where they surround
3774      * {@code B}/{@code b}, which represent the parameter types and arguments
3775      * to the {@code filter} (if any).
3776      * <blockquote><pre>{@code
3777      * T target(A...,V,C...);
3778      * V filter(B...);
3779      * T adapter(A... a,B... b,C... c) {
3780      *   V v = filter(b...);
3781      *   return target(a...,v,c...);
3782      * }
3783      * // and if the filter has no arguments:
3784      * T target2(A...,V,C...);
3785      * V filter2();
3786      * T adapter2(A... a,C... c) {
3787      *   V v = filter2();
3788      *   return target2(a...,v,c...);
3789      * }
3790      * // and if the filter has a void return:
3791      * T target3(A...,C...);
3792      * void filter3(B...);
3793      * T adapter3(A... a,B... b,C... c) {
3794      *   filter3(b...);
3795      *   return target3(a...,c...);
3796      * }
3797      * }</pre></blockquote>
3798      * <p>
3799      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
3800      * one which first "folds" the affected arguments, and then drops them, in separate
3801      * steps as follows:
3802      * <blockquote><pre>{@code
3803      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
3804      * mh = MethodHandles.foldArguments(mh, coll); //step 1
3805      * }</pre></blockquote>
3806      * If the target method handle consumes no arguments besides than the result
3807      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
3808      * is equivalent to {@code filterReturnValue(coll, mh)}.
3809      * If the filter method handle {@code coll} consumes one argument and produces
3810      * a non-void result, then {@code collectArguments(mh, N, coll)}
3811      * is equivalent to {@code filterArguments(mh, N, coll)}.
3812      * Other equivalences are possible but would require argument permutation.
3813      * <p>
3814      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3815      * variable-arity method handle}, even if the original target method handle was.
3816      *
3817      * @param target the method handle to invoke after filtering the subsequence of arguments
3818      * @param pos the position of the first adapter argument to pass to the filter,
3819      *            and/or the target argument which receives the result of the filter
3820      * @param filter method handle to call on the subsequence of arguments
3821      * @return method handle which incorporates the specified argument subsequence filtering logic
3822      * @throws NullPointerException if either argument is null
3823      * @throws IllegalArgumentException if the return type of {@code filter}
3824      *          is non-void and is not the same as the {@code pos} argument of the target,
3825      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
3826      *          or if the resulting method handle's type would have
3827      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3828      * @see MethodHandles#foldArguments
3829      * @see MethodHandles#filterArguments
3830      * @see MethodHandles#filterReturnValue
3831      */
3832     public static
3833     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
3834         MethodType newType = collectArgumentsChecks(target, pos, filter);
3835         MethodType collectorType = filter.type();
3836         BoundMethodHandle result = target.rebind();
3837         LambdaForm lform;
3838         if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) {
3839             lform = result.editor().collectArgumentArrayForm(1 + pos, filter);
3840             if (lform != null) {
3841                 return result.copyWith(newType, lform);
3842             }
3843         }
3844         lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
3845         return result.copyWithExtendL(newType, lform, filter);
3846     }
3847 
3848     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
3849         MethodType targetType = target.type();
3850         MethodType filterType = filter.type();
3851         Class<?> rtype = filterType.returnType();
3852         List<Class<?>> filterArgs = filterType.parameterList();
3853         if (rtype == void.class) {
3854             return targetType.insertParameterTypes(pos, filterArgs);
3855         }
3856         if (rtype != targetType.parameterType(pos)) {
3857             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3858         }
3859         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
3860     }
3861 
3862     /**
3863      * Adapts a target method handle by post-processing
3864      * its return value (if any) with a filter (another method handle).
3865      * The result of the filter is returned from the adapter.
3866      * <p>
3867      * If the target returns a value, the filter must accept that value as
3868      * its only argument.
3869      * If the target returns void, the filter must accept no arguments.
3870      * <p>
3871      * The return type of the filter
3872      * replaces the return type of the target
3873      * in the resulting adapted method handle.
3874      * The argument type of the filter (if any) must be identical to the
3875      * return type of the target.
3876      * <p><b>Example:</b>
3877      * <blockquote><pre>{@code
3878 import static java.lang.invoke.MethodHandles.*;
3879 import static java.lang.invoke.MethodType.*;
3880 ...
3881 MethodHandle cat = lookup().findVirtual(String.class,
3882   "concat", methodType(String.class, String.class));
3883 MethodHandle length = lookup().findVirtual(String.class,
3884   "length", methodType(int.class));
3885 System.out.println((String) cat.invokeExact("x", "y")); // xy
3886 MethodHandle f0 = filterReturnValue(cat, length);
3887 System.out.println((int) f0.invokeExact("x", "y")); // 2
3888      * }</pre></blockquote>
3889      * <p>Here is pseudocode for the resulting adapter. In the code,
3890      * {@code T}/{@code t} represent the result type and value of the
3891      * {@code target}; {@code V}, the result type of the {@code filter}; and
3892      * {@code A}/{@code a}, the types and values of the parameters and arguments
3893      * of the {@code target} as well as the resulting adapter.
3894      * <blockquote><pre>{@code
3895      * T target(A...);
3896      * V filter(T);
3897      * V adapter(A... a) {
3898      *   T t = target(a...);
3899      *   return filter(t);
3900      * }
3901      * // and if the target has a void return:
3902      * void target2(A...);
3903      * V filter2();
3904      * V adapter2(A... a) {
3905      *   target2(a...);
3906      *   return filter2();
3907      * }
3908      * // and if the filter has a void return:
3909      * T target3(A...);
3910      * void filter3(V);
3911      * void adapter3(A... a) {
3912      *   T t = target3(a...);
3913      *   filter3(t);
3914      * }
3915      * }</pre></blockquote>
3916      * <p>
3917      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3918      * variable-arity method handle}, even if the original target method handle was.
3919      * @param target the method handle to invoke before filtering the return value
3920      * @param filter method handle to call on the return value
3921      * @return method handle which incorporates the specified return value filtering logic
3922      * @throws NullPointerException if either argument is null
3923      * @throws IllegalArgumentException if the argument list of {@code filter}
3924      *          does not match the return type of target as described above
3925      */
3926     public static
3927     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
3928         MethodType targetType = target.type();
3929         MethodType filterType = filter.type();
3930         filterReturnValueChecks(targetType, filterType);
3931         BoundMethodHandle result = target.rebind();
3932         BasicType rtype = BasicType.basicType(filterType.returnType());
3933         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
3934         MethodType newType = targetType.changeReturnType(filterType.returnType());
3935         result = result.copyWithExtendL(newType, lform, filter);
3936         return result;
3937     }
3938 
3939     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
3940         Class<?> rtype = targetType.returnType();
3941         int filterValues = filterType.parameterCount();
3942         if (filterValues == 0
3943                 ? (rtype != void.class)
3944                 : (rtype != filterType.parameterType(0) || filterValues != 1))
3945             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3946     }
3947 
3948     /**
3949      * Adapts a target method handle by pre-processing
3950      * some of its arguments, and then calling the target with
3951      * the result of the pre-processing, inserted into the original
3952      * sequence of arguments.
3953      * <p>
3954      * The pre-processing is performed by {@code combiner}, a second method handle.
3955      * Of the arguments passed to the adapter, the first {@code N} arguments
3956      * are copied to the combiner, which is then called.
3957      * (Here, {@code N} is defined as the parameter count of the combiner.)
3958      * After this, control passes to the target, with any result
3959      * from the combiner inserted before the original {@code N} incoming
3960      * arguments.
3961      * <p>
3962      * If the combiner returns a value, the first parameter type of the target
3963      * must be identical with the return type of the combiner, and the next
3964      * {@code N} parameter types of the target must exactly match the parameters
3965      * of the combiner.
3966      * <p>
3967      * If the combiner has a void return, no result will be inserted,
3968      * and the first {@code N} parameter types of the target
3969      * must exactly match the parameters of the combiner.
3970      * <p>
3971      * The resulting adapter is the same type as the target, except that the
3972      * first parameter type is dropped,
3973      * if it corresponds to the result of the combiner.
3974      * <p>
3975      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
3976      * that either the combiner or the target does not wish to receive.
3977      * If some of the incoming arguments are destined only for the combiner,
3978      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
3979      * arguments will not need to be live on the stack on entry to the
3980      * target.)
3981      * <p><b>Example:</b>
3982      * <blockquote><pre>{@code
3983 import static java.lang.invoke.MethodHandles.*;
3984 import static java.lang.invoke.MethodType.*;
3985 ...
3986 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
3987   "println", methodType(void.class, String.class))
3988     .bindTo(System.out);
3989 MethodHandle cat = lookup().findVirtual(String.class,
3990   "concat", methodType(String.class, String.class));
3991 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
3992 MethodHandle catTrace = foldArguments(cat, trace);
3993 // also prints "boo":
3994 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
3995      * }</pre></blockquote>
3996      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3997      * represents the result type of the {@code target} and resulting adapter.
3998      * {@code V}/{@code v} represent the type and value of the parameter and argument
3999      * of {@code target} that precedes the folding position; {@code V} also is
4000      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4001      * types and values of the {@code N} parameters and arguments at the folding
4002      * position. {@code B}/{@code b} represent the types and values of the
4003      * {@code target} parameters and arguments that follow the folded parameters
4004      * and arguments.
4005      * <blockquote><pre>{@code
4006      * // there are N arguments in A...
4007      * T target(V, A[N]..., B...);
4008      * V combiner(A...);
4009      * T adapter(A... a, B... b) {
4010      *   V v = combiner(a...);
4011      *   return target(v, a..., b...);
4012      * }
4013      * // and if the combiner has a void return:
4014      * T target2(A[N]..., B...);
4015      * void combiner2(A...);
4016      * T adapter2(A... a, B... b) {
4017      *   combiner2(a...);
4018      *   return target2(a..., b...);
4019      * }
4020      * }</pre></blockquote>
4021      * <p>
4022      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4023      * variable-arity method handle}, even if the original target method handle was.
4024      * @param target the method handle to invoke after arguments are combined
4025      * @param combiner method handle to call initially on the incoming arguments
4026      * @return method handle which incorporates the specified argument folding logic
4027      * @throws NullPointerException if either argument is null
4028      * @throws IllegalArgumentException if {@code combiner}'s return type
4029      *          is non-void and not the same as the first argument type of
4030      *          the target, or if the initial {@code N} argument types
4031      *          of the target
4032      *          (skipping one matching the {@code combiner}'s return type)
4033      *          are not identical with the argument types of {@code combiner}
4034      */
4035     public static
4036     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
4037         return foldArguments(target, 0, combiner);
4038     }
4039 
4040     /**
4041      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
4042      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
4043      * before the folded arguments.
4044      * <p>
4045      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
4046      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
4047      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
4048      * 0.
4049      * <p>
4050      * @apiNote Example:
4051      * <blockquote><pre>{@code
4052     import static java.lang.invoke.MethodHandles.*;
4053     import static java.lang.invoke.MethodType.*;
4054     ...
4055     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4056     "println", methodType(void.class, String.class))
4057     .bindTo(System.out);
4058     MethodHandle cat = lookup().findVirtual(String.class,
4059     "concat", methodType(String.class, String.class));
4060     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4061     MethodHandle catTrace = foldArguments(cat, 1, trace);
4062     // also prints "jum":
4063     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4064      * }</pre></blockquote>
4065      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4066      * represents the result type of the {@code target} and resulting adapter.
4067      * {@code V}/{@code v} represent the type and value of the parameter and argument
4068      * of {@code target} that precedes the folding position; {@code V} also is
4069      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4070      * types and values of the {@code N} parameters and arguments at the folding
4071      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
4072      * and values of the {@code target} parameters and arguments that precede and
4073      * follow the folded parameters and arguments starting at {@code pos},
4074      * respectively.
4075      * <blockquote><pre>{@code
4076      * // there are N arguments in A...
4077      * T target(Z..., V, A[N]..., B...);
4078      * V combiner(A...);
4079      * T adapter(Z... z, A... a, B... b) {
4080      *   V v = combiner(a...);
4081      *   return target(z..., v, a..., b...);
4082      * }
4083      * // and if the combiner has a void return:
4084      * T target2(Z..., A[N]..., B...);
4085      * void combiner2(A...);
4086      * T adapter2(Z... z, A... a, B... b) {
4087      *   combiner2(a...);
4088      *   return target2(z..., a..., b...);
4089      * }
4090      * }</pre></blockquote>
4091      * <p>
4092      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4093      * variable-arity method handle}, even if the original target method handle was.
4094      *
4095      * @param target the method handle to invoke after arguments are combined
4096      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
4097      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
4098      * @param combiner method handle to call initially on the incoming arguments
4099      * @return method handle which incorporates the specified argument folding logic
4100      * @throws NullPointerException if either argument is null
4101      * @throws IllegalArgumentException if either of the following two conditions holds:
4102      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
4103      *              {@code pos} of the target signature;
4104      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
4105      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
4106      *
4107      * @see #foldArguments(MethodHandle, MethodHandle)
4108      * @since 9
4109      */
4110     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
4111         MethodType targetType = target.type();
4112         MethodType combinerType = combiner.type();
4113         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
4114         BoundMethodHandle result = target.rebind();
4115         boolean dropResult = rtype == void.class;
4116         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
4117         MethodType newType = targetType;
4118         if (!dropResult) {
4119             newType = newType.dropParameterTypes(pos, pos + 1);
4120         }
4121         result = result.copyWithExtendL(newType, lform, combiner);
4122         return result;
4123     }
4124 
4125     /**
4126      * As {@see foldArguments(MethodHandle, int, MethodHandle)}, but with the
4127      * added capability of selecting the arguments from the targets parameters
4128      * to call the combiner with. This allows us to avoid some simple cases of
4129      * permutations and padding the combiner with dropArguments to select the
4130      * right argument, which may ultimately produce fewer intermediaries.
4131      */
4132     static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner, int ... argPositions) {
4133         MethodType targetType = target.type();
4134         MethodType combinerType = combiner.type();
4135         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType, argPositions);
4136         BoundMethodHandle result = target.rebind();
4137         boolean dropResult = rtype == void.class;
4138         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType(), argPositions);
4139         MethodType newType = targetType;
4140         if (!dropResult) {
4141             newType = newType.dropParameterTypes(pos, pos + 1);
4142         }
4143         result = result.copyWithExtendL(newType, lform, combiner);
4144         return result;
4145     }
4146 
4147     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
4148         int foldArgs   = combinerType.parameterCount();
4149         Class<?> rtype = combinerType.returnType();
4150         int foldVals = rtype == void.class ? 0 : 1;
4151         int afterInsertPos = foldPos + foldVals;
4152         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
4153         if (ok) {
4154             for (int i = 0; i < foldArgs; i++) {
4155                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
4156                     ok = false;
4157                     break;
4158                 }
4159             }
4160         }
4161         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
4162             ok = false;
4163         if (!ok)
4164             throw misMatchedTypes("target and combiner types", targetType, combinerType);
4165         return rtype;
4166     }
4167 
4168     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType, int ... argPos) {
4169         int foldArgs = combinerType.parameterCount();
4170         if (argPos.length != foldArgs) {
4171             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
4172         }
4173         Class<?> rtype = combinerType.returnType();
4174         int foldVals = rtype == void.class ? 0 : 1;
4175         boolean ok = true;
4176         for (int i = 0; i < foldArgs; i++) {
4177             int arg = argPos[i];
4178             if (arg < 0 || arg > targetType.parameterCount()) {
4179                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
4180             }
4181             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
4182                 throw newIllegalArgumentException("target argument type at position " + arg
4183                         + " must match combiner argument type at index " + i + ": " + targetType
4184                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
4185             }
4186         }
4187         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos)) {
4188             ok = false;
4189         }
4190         if (!ok)
4191             throw misMatchedTypes("target and combiner types", targetType, combinerType);
4192         return rtype;
4193     }
4194 
4195     /**
4196      * Makes a method handle which adapts a target method handle,
4197      * by guarding it with a test, a boolean-valued method handle.
4198      * If the guard fails, a fallback handle is called instead.
4199      * All three method handles must have the same corresponding
4200      * argument and return types, except that the return type
4201      * of the test must be boolean, and the test is allowed
4202      * to have fewer arguments than the other two method handles.
4203      * <p>
4204      * Here is pseudocode for the resulting adapter. In the code, {@code T}
4205      * represents the uniform result type of the three involved handles;
4206      * {@code A}/{@code a}, the types and values of the {@code target}
4207      * parameters and arguments that are consumed by the {@code test}; and
4208      * {@code B}/{@code b}, those types and values of the {@code target}
4209      * parameters and arguments that are not consumed by the {@code test}.
4210      * <blockquote><pre>{@code
4211      * boolean test(A...);
4212      * T target(A...,B...);
4213      * T fallback(A...,B...);
4214      * T adapter(A... a,B... b) {
4215      *   if (test(a...))
4216      *     return target(a..., b...);
4217      *   else
4218      *     return fallback(a..., b...);
4219      * }
4220      * }</pre></blockquote>
4221      * Note that the test arguments ({@code a...} in the pseudocode) cannot
4222      * be modified by execution of the test, and so are passed unchanged
4223      * from the caller to the target or fallback as appropriate.
4224      * @param test method handle used for test, must return boolean
4225      * @param target method handle to call if test passes
4226      * @param fallback method handle to call if test fails
4227      * @return method handle which incorporates the specified if/then/else logic
4228      * @throws NullPointerException if any argument is null
4229      * @throws IllegalArgumentException if {@code test} does not return boolean,
4230      *          or if all three method types do not match (with the return
4231      *          type of {@code test} changed to match that of the target).
4232      */
4233     public static
4234     MethodHandle guardWithTest(MethodHandle test,
4235                                MethodHandle target,
4236                                MethodHandle fallback) {
4237         MethodType gtype = test.type();
4238         MethodType ttype = target.type();
4239         MethodType ftype = fallback.type();
4240         if (!ttype.equals(ftype))
4241             throw misMatchedTypes("target and fallback types", ttype, ftype);
4242         if (gtype.returnType() != boolean.class)
4243             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
4244         List<Class<?>> targs = ttype.parameterList();
4245         test = dropArgumentsToMatch(test, 0, targs, 0, true);
4246         if (test == null) {
4247             throw misMatchedTypes("target and test types", ttype, gtype);
4248         }
4249         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
4250     }
4251 
4252     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
4253         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
4254     }
4255 
4256     /**
4257      * Makes a method handle which adapts a target method handle,
4258      * by running it inside an exception handler.
4259      * If the target returns normally, the adapter returns that value.
4260      * If an exception matching the specified type is thrown, the fallback
4261      * handle is called instead on the exception, plus the original arguments.
4262      * <p>
4263      * The target and handler must have the same corresponding
4264      * argument and return types, except that handler may omit trailing arguments
4265      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
4266      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
4267      * <p>
4268      * Here is pseudocode for the resulting adapter. In the code, {@code T}
4269      * represents the return type of the {@code target} and {@code handler},
4270      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
4271      * the types and values of arguments to the resulting handle consumed by
4272      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
4273      * resulting handle discarded by {@code handler}.
4274      * <blockquote><pre>{@code
4275      * T target(A..., B...);
4276      * T handler(ExType, A...);
4277      * T adapter(A... a, B... b) {
4278      *   try {
4279      *     return target(a..., b...);
4280      *   } catch (ExType ex) {
4281      *     return handler(ex, a...);
4282      *   }
4283      * }
4284      * }</pre></blockquote>
4285      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
4286      * be modified by execution of the target, and so are passed unchanged
4287      * from the caller to the handler, if the handler is invoked.
4288      * <p>
4289      * The target and handler must return the same type, even if the handler
4290      * always throws.  (This might happen, for instance, because the handler
4291      * is simulating a {@code finally} clause).
4292      * To create such a throwing handler, compose the handler creation logic
4293      * with {@link #throwException throwException},
4294      * in order to create a method handle of the correct return type.
4295      * @param target method handle to call
4296      * @param exType the type of exception which the handler will catch
4297      * @param handler method handle to call if a matching exception is thrown
4298      * @return method handle which incorporates the specified try/catch logic
4299      * @throws NullPointerException if any argument is null
4300      * @throws IllegalArgumentException if {@code handler} does not accept
4301      *          the given exception type, or if the method handle types do
4302      *          not match in their return types and their
4303      *          corresponding parameters
4304      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
4305      */
4306     public static
4307     MethodHandle catchException(MethodHandle target,
4308                                 Class<? extends Throwable> exType,
4309                                 MethodHandle handler) {
4310         MethodType ttype = target.type();
4311         MethodType htype = handler.type();
4312         if (!Throwable.class.isAssignableFrom(exType))
4313             throw new ClassCastException(exType.getName());
4314         if (htype.parameterCount() < 1 ||
4315             !htype.parameterType(0).isAssignableFrom(exType))
4316             throw newIllegalArgumentException("handler does not accept exception type "+exType);
4317         if (htype.returnType() != ttype.returnType())
4318             throw misMatchedTypes("target and handler return types", ttype, htype);
4319         handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
4320         if (handler == null) {
4321             throw misMatchedTypes("target and handler types", ttype, htype);
4322         }
4323         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
4324     }
4325 
4326     /**
4327      * Produces a method handle which will throw exceptions of the given {@code exType}.
4328      * The method handle will accept a single argument of {@code exType},
4329      * and immediately throw it as an exception.
4330      * The method type will nominally specify a return of {@code returnType}.
4331      * The return type may be anything convenient:  It doesn't matter to the
4332      * method handle's behavior, since it will never return normally.
4333      * @param returnType the return type of the desired method handle
4334      * @param exType the parameter type of the desired method handle
4335      * @return method handle which can throw the given exceptions
4336      * @throws NullPointerException if either argument is null
4337      */
4338     public static
4339     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
4340         if (!Throwable.class.isAssignableFrom(exType))
4341             throw new ClassCastException(exType.getName());
4342         return MethodHandleImpl.throwException(methodType(returnType, exType));
4343     }
4344 
4345     /**
4346      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
4347      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
4348      * delivers the loop's result, which is the return value of the resulting handle.
4349      * <p>
4350      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
4351      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
4352      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
4353      * terms of method handles, each clause will specify up to four independent actions:<ul>
4354      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
4355      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
4356      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
4357      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
4358      * </ul>
4359      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
4360      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
4361      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
4362      * <p>
4363      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
4364      * this case. See below for a detailed description.
4365      * <p>
4366      * <em>Parameters optional everywhere:</em>
4367      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
4368      * As an exception, the init functions cannot take any {@code v} parameters,
4369      * because those values are not yet computed when the init functions are executed.
4370      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
4371      * In fact, any clause function may take no arguments at all.
4372      * <p>
4373      * <em>Loop parameters:</em>
4374      * A clause function may take all the iteration variable values it is entitled to, in which case
4375      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
4376      * with their types and values notated as {@code (A...)} and {@code (a...)}.
4377      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
4378      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
4379      * init function is automatically a loop parameter {@code a}.)
4380      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
4381      * These loop parameters act as loop-invariant values visible across the whole loop.
4382      * <p>
4383      * <em>Parameters visible everywhere:</em>
4384      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
4385      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
4386      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
4387      * Most clause functions will not need all of this information, but they will be formally connected to it
4388      * as if by {@link #dropArguments}.
4389      * <a name="astar"></a>
4390      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
4391      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
4392      * In that notation, the general form of an init function parameter list
4393      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
4394      * <p>
4395      * <em>Checking clause structure:</em>
4396      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
4397      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
4398      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
4399      * met by the inputs to the loop combinator.
4400      * <p>
4401      * <em>Effectively identical sequences:</em>
4402      * <a name="effid"></a>
4403      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
4404      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
4405      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
4406      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
4407      * that longest list.
4408      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
4409      * and the same is true if more sequences of the form {@code (V... A*)} are added.
4410      * <p>
4411      * <em>Step 0: Determine clause structure.</em><ol type="a">
4412      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
4413      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
4414      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
4415      * four. Padding takes place by appending elements to the array.
4416      * <li>Clauses with all {@code null}s are disregarded.
4417      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
4418      * </ol>
4419      * <p>
4420      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
4421      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
4422      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
4423      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
4424      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
4425      * iteration variable type.
4426      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
4427      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
4428      * </ol>
4429      * <p>
4430      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
4431      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
4432      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
4433      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
4434      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
4435      * (These types will checked in step 2, along with all the clause function types.)
4436      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
4437      * <li>All of the collected parameter lists must be effectively identical.
4438      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
4439      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
4440      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
4441      * the "internal parameter list".
4442      * </ul>
4443      * <p>
4444      * <em>Step 1C: Determine loop return type.</em><ol type="a">
4445      * <li>Examine fini function return types, disregarding omitted fini functions.
4446      * <li>If there are no fini functions, the loop return type is {@code void}.
4447      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
4448      * type.
4449      * </ol>
4450      * <p>
4451      * <em>Step 1D: Check other types.</em><ol type="a">
4452      * <li>There must be at least one non-omitted pred function.
4453      * <li>Every non-omitted pred function must have a {@code boolean} return type.
4454      * </ol>
4455      * <p>
4456      * <em>Step 2: Determine parameter lists.</em><ol type="a">
4457      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
4458      * <li>The parameter list for init functions will be adjusted to the external parameter list.
4459      * (Note that their parameter lists are already effectively identical to this list.)
4460      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
4461      * effectively identical to the internal parameter list {@code (V... A...)}.
4462      * </ol>
4463      * <p>
4464      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
4465      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
4466      * type.
4467      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
4468      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
4469      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
4470      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
4471      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
4472      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
4473      * loop return type.
4474      * </ol>
4475      * <p>
4476      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
4477      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
4478      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
4479      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
4480      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
4481      * pad out the end of the list.
4482      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch dropping unused trailing arguments}.
4483      * </ol>
4484      * <p>
4485      * <em>Final observations.</em><ol type="a">
4486      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
4487      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
4488      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
4489      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
4490      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
4491      * <li>Each pair of init and step functions agrees in their return type {@code V}.
4492      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
4493      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
4494      * </ol>
4495      * <p>
4496      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
4497      * <ul>
4498      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
4499      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
4500      * (Only one {@code Pn} has to be non-{@code null}.)
4501      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
4502      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
4503      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
4504      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
4505      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
4506      * the resulting loop handle's parameter types {@code (A...)}.
4507      * </ul>
4508      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
4509      * which is natural if most of the loop computation happens in the steps.  For some loops,
4510      * the burden of computation might be heaviest in the pred functions, and so the pred functions
4511      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
4512      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
4513      * where the init functions will need the extra parameters.  For such reasons, the rules for
4514      * determining these parameters are as symmetric as possible, across all clause parts.
4515      * In general, the loop parameters function as common invariant values across the whole
4516      * loop, while the iteration variables function as common variant values, or (if there is
4517      * no step function) as internal loop invariant temporaries.
4518      * <p>
4519      * <em>Loop execution.</em><ol type="a">
4520      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
4521      * every clause function. These locals are loop invariant.
4522      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
4523      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
4524      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
4525      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
4526      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
4527      * (in argument order).
4528      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
4529      * returns {@code false}.
4530      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
4531      * sequence {@code (v...)} of loop variables.
4532      * The updated value is immediately visible to all subsequent function calls.
4533      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
4534      * (of type {@code R}) is returned from the loop as a whole.
4535      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
4536      * except by throwing an exception.
4537      * </ol>
4538      * <p>
4539      * <em>Usage tips.</em>
4540      * <ul>
4541      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
4542      * sometimes a step function only needs to observe the current value of its own variable.
4543      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
4544      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
4545      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
4546      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
4547      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
4548      * <li>If some of the clause functions are virtual methods on an instance, the instance
4549      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
4550      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
4551      * will be the first iteration variable value, and it will be easy to use virtual
4552      * methods as clause parts, since all of them will take a leading instance reference matching that value.
4553      * </ul>
4554      * <p>
4555      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
4556      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
4557      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
4558      * <blockquote><pre>{@code
4559      * V... init...(A...);
4560      * boolean pred...(V..., A...);
4561      * V... step...(V..., A...);
4562      * R fini...(V..., A...);
4563      * R loop(A... a) {
4564      *   V... v... = init...(a...);
4565      *   for (;;) {
4566      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
4567      *       v = s(v..., a...);
4568      *       if (!p(v..., a...)) {
4569      *         return f(v..., a...);
4570      *       }
4571      *     }
4572      *   }
4573      * }
4574      * }</pre></blockquote>
4575      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
4576      * to their full length, even though individual clause functions may neglect to take them all.
4577      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch}.
4578      * <p>
4579      * @apiNote Example:
4580      * <blockquote><pre>{@code
4581      * // iterative implementation of the factorial function as a loop handle
4582      * static int one(int k) { return 1; }
4583      * static int inc(int i, int acc, int k) { return i + 1; }
4584      * static int mult(int i, int acc, int k) { return i * acc; }
4585      * static boolean pred(int i, int acc, int k) { return i < k; }
4586      * static int fin(int i, int acc, int k) { return acc; }
4587      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
4588      * // null initializer for counter, should initialize to 0
4589      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4590      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4591      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
4592      * assertEquals(120, loop.invoke(5));
4593      * }</pre></blockquote>
4594      * The same example, dropping arguments and using combinators:
4595      * <blockquote><pre>{@code
4596      * // simplified implementation of the factorial function as a loop handle
4597      * static int inc(int i) { return i + 1; } // drop acc, k
4598      * static int mult(int i, int acc) { return i * acc; } //drop k
4599      * static boolean cmp(int i, int k) { return i < k; }
4600      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
4601      * // null initializer for counter, should initialize to 0
4602      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
4603      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
4604      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
4605      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4606      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4607      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
4608      * assertEquals(720, loop.invoke(6));
4609      * }</pre></blockquote>
4610      * A similar example, using a helper object to hold a loop parameter:
4611      * <blockquote><pre>{@code
4612      * // instance-based implementation of the factorial function as a loop handle
4613      * static class FacLoop {
4614      *   final int k;
4615      *   FacLoop(int k) { this.k = k; }
4616      *   int inc(int i) { return i + 1; }
4617      *   int mult(int i, int acc) { return i * acc; }
4618      *   boolean pred(int i) { return i < k; }
4619      *   int fin(int i, int acc) { return acc; }
4620      * }
4621      * // assume MH_FacLoop is a handle to the constructor
4622      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
4623      * // null initializer for counter, should initialize to 0
4624      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
4625      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
4626      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4627      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4628      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
4629      * assertEquals(5040, loop.invoke(7));
4630      * }</pre></blockquote>
4631      *
4632      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
4633      *
4634      * @return a method handle embodying the looping behavior as defined by the arguments.
4635      *
4636      * @throws IllegalArgumentException in case any of the constraints described above is violated.
4637      *
4638      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
4639      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
4640      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
4641      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
4642      * @since 9
4643      */
4644     public static MethodHandle loop(MethodHandle[]... clauses) {
4645         // Step 0: determine clause structure.
4646         loopChecks0(clauses);
4647 
4648         List<MethodHandle> init = new ArrayList<>();
4649         List<MethodHandle> step = new ArrayList<>();
4650         List<MethodHandle> pred = new ArrayList<>();
4651         List<MethodHandle> fini = new ArrayList<>();
4652 
4653         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
4654             init.add(clause[0]); // all clauses have at least length 1
4655             step.add(clause.length <= 1 ? null : clause[1]);
4656             pred.add(clause.length <= 2 ? null : clause[2]);
4657             fini.add(clause.length <= 3 ? null : clause[3]);
4658         });
4659 
4660         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
4661         final int nclauses = init.size();
4662 
4663         // Step 1A: determine iteration variables (V...).
4664         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
4665         for (int i = 0; i < nclauses; ++i) {
4666             MethodHandle in = init.get(i);
4667             MethodHandle st = step.get(i);
4668             if (in == null && st == null) {
4669                 iterationVariableTypes.add(void.class);
4670             } else if (in != null && st != null) {
4671                 loopChecks1a(i, in, st);
4672                 iterationVariableTypes.add(in.type().returnType());
4673             } else {
4674                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
4675             }
4676         }
4677         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
4678                 collect(Collectors.toList());
4679 
4680         // Step 1B: determine loop parameters (A...).
4681         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
4682         loopChecks1b(init, commonSuffix);
4683 
4684         // Step 1C: determine loop return type.
4685         // Step 1D: check other types.
4686         final Class<?> loopReturnType = fini.stream().filter(Objects::nonNull).map(MethodHandle::type).
4687                 map(MethodType::returnType).findFirst().orElse(void.class);
4688         loopChecks1cd(pred, fini, loopReturnType);
4689 
4690         // Step 2: determine parameter lists.
4691         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
4692         commonParameterSequence.addAll(commonSuffix);
4693         loopChecks2(step, pred, fini, commonParameterSequence);
4694 
4695         // Step 3: fill in omitted functions.
4696         for (int i = 0; i < nclauses; ++i) {
4697             Class<?> t = iterationVariableTypes.get(i);
4698             if (init.get(i) == null) {
4699                 init.set(i, empty(methodType(t, commonSuffix)));
4700             }
4701             if (step.get(i) == null) {
4702                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
4703             }
4704             if (pred.get(i) == null) {
4705                 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
4706             }
4707             if (fini.get(i) == null) {
4708                 fini.set(i, empty(methodType(t, commonParameterSequence)));
4709             }
4710         }
4711 
4712         // Step 4: fill in missing parameter types.
4713         // Also convert all handles to fixed-arity handles.
4714         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
4715         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
4716         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
4717         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
4718 
4719         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
4720                 allMatch(pl -> pl.equals(commonSuffix));
4721         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
4722                 allMatch(pl -> pl.equals(commonParameterSequence));
4723 
4724         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
4725     }
4726 
4727     private static void loopChecks0(MethodHandle[][] clauses) {
4728         if (clauses == null || clauses.length == 0) {
4729             throw newIllegalArgumentException("null or no clauses passed");
4730         }
4731         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
4732             throw newIllegalArgumentException("null clauses are not allowed");
4733         }
4734         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
4735             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
4736         }
4737     }
4738 
4739     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
4740         if (in.type().returnType() != st.type().returnType()) {
4741             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
4742                     st.type().returnType());
4743         }
4744     }
4745 
4746     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
4747         final List<Class<?>> empty = List.of();
4748         final List<Class<?>> longest = mhs.filter(Objects::nonNull).
4749                 // take only those that can contribute to a common suffix because they are longer than the prefix
4750                         map(MethodHandle::type).
4751                         filter(t -> t.parameterCount() > skipSize).
4752                         map(MethodType::parameterList).
4753                         reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4754         return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
4755     }
4756 
4757     private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
4758         final List<Class<?>> empty = List.of();
4759         return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4760     }
4761 
4762     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
4763         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
4764         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
4765         return longestParameterList(Arrays.asList(longest1, longest2));
4766     }
4767 
4768     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
4769         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
4770                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
4771             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
4772                     " (common suffix: " + commonSuffix + ")");
4773         }
4774     }
4775 
4776     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
4777         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4778                 anyMatch(t -> t != loopReturnType)) {
4779             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
4780                     loopReturnType + ")");
4781         }
4782 
4783         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
4784             throw newIllegalArgumentException("no predicate found", pred);
4785         }
4786         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4787                 anyMatch(t -> t != boolean.class)) {
4788             throw newIllegalArgumentException("predicates must have boolean return type", pred);
4789         }
4790     }
4791 
4792     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
4793         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
4794                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
4795             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
4796                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
4797         }
4798     }
4799 
4800     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
4801         return hs.stream().map(h -> {
4802             int pc = h.type().parameterCount();
4803             int tpsize = targetParams.size();
4804             return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
4805         }).collect(Collectors.toList());
4806     }
4807 
4808     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
4809         return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
4810     }
4811 
4812     /**
4813      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
4814      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
4815      * <p>
4816      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
4817      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
4818      * evaluates to {@code true}).
4819      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
4820      * <p>
4821      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
4822      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
4823      * and updated with the value returned from its invocation. The result of loop execution will be
4824      * the final value of the additional loop-local variable (if present).
4825      * <p>
4826      * The following rules hold for these argument handles:<ul>
4827      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
4828      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
4829      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
4830      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
4831      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
4832      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
4833      * It will constrain the parameter lists of the other loop parts.
4834      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
4835      * list {@code (A...)} is called the <em>external parameter list</em>.
4836      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
4837      * additional state variable of the loop.
4838      * The body must both accept and return a value of this type {@code V}.
4839      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
4840      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
4841      * <a href="MethodHandles.html#effid">effectively identical</a>
4842      * to the external parameter list {@code (A...)}.
4843      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
4844      * {@linkplain #empty default value}.
4845      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
4846      * Its parameter list (either empty or of the form {@code (V A*)}) must be
4847      * effectively identical to the internal parameter list.
4848      * </ul>
4849      * <p>
4850      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
4851      * <li>The loop handle's result type is the result type {@code V} of the body.
4852      * <li>The loop handle's parameter types are the types {@code (A...)},
4853      * from the external parameter list.
4854      * </ul>
4855      * <p>
4856      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
4857      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
4858      * passed to the loop.
4859      * <blockquote><pre>{@code
4860      * V init(A...);
4861      * boolean pred(V, A...);
4862      * V body(V, A...);
4863      * V whileLoop(A... a...) {
4864      *   V v = init(a...);
4865      *   while (pred(v, a...)) {
4866      *     v = body(v, a...);
4867      *   }
4868      *   return v;
4869      * }
4870      * }</pre></blockquote>
4871      * <p>
4872      * @apiNote Example:
4873      * <blockquote><pre>{@code
4874      * // implement the zip function for lists as a loop handle
4875      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
4876      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
4877      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
4878      *   zip.add(a.next());
4879      *   zip.add(b.next());
4880      *   return zip;
4881      * }
4882      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
4883      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
4884      * List<String> a = Arrays.asList("a", "b", "c", "d");
4885      * List<String> b = Arrays.asList("e", "f", "g", "h");
4886      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
4887      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
4888      * }</pre></blockquote>
4889      *
4890      * <p>
4891      * @apiNote The implementation of this method can be expressed as follows:
4892      * <blockquote><pre>{@code
4893      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
4894      *     MethodHandle fini = (body.type().returnType() == void.class
4895      *                         ? null : identity(body.type().returnType()));
4896      *     MethodHandle[]
4897      *         checkExit = { null, null, pred, fini },
4898      *         varBody   = { init, body };
4899      *     return loop(checkExit, varBody);
4900      * }
4901      * }</pre></blockquote>
4902      *
4903      * @param init optional initializer, providing the initial value of the loop variable.
4904      *             May be {@code null}, implying a default initial value.  See above for other constraints.
4905      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
4906      *             above for other constraints.
4907      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
4908      *             See above for other constraints.
4909      *
4910      * @return a method handle implementing the {@code while} loop as described by the arguments.
4911      * @throws IllegalArgumentException if the rules for the arguments are violated.
4912      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
4913      *
4914      * @see #loop(MethodHandle[][])
4915      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
4916      * @since 9
4917      */
4918     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
4919         whileLoopChecks(init, pred, body);
4920         MethodHandle fini = identityOrVoid(body.type().returnType());
4921         MethodHandle[] checkExit = { null, null, pred, fini };
4922         MethodHandle[] varBody = { init, body };
4923         return loop(checkExit, varBody);
4924     }
4925 
4926     /**
4927      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
4928      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
4929      * <p>
4930      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
4931      * method will, in each iteration, first execute its body and then evaluate the predicate.
4932      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
4933      * <p>
4934      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
4935      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
4936      * and updated with the value returned from its invocation. The result of loop execution will be
4937      * the final value of the additional loop-local variable (if present).
4938      * <p>
4939      * The following rules hold for these argument handles:<ul>
4940      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
4941      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
4942      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
4943      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
4944      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
4945      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
4946      * It will constrain the parameter lists of the other loop parts.
4947      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
4948      * list {@code (A...)} is called the <em>external parameter list</em>.
4949      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
4950      * additional state variable of the loop.
4951      * The body must both accept and return a value of this type {@code V}.
4952      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
4953      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
4954      * <a href="MethodHandles.html#effid">effectively identical</a>
4955      * to the external parameter list {@code (A...)}.
4956      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
4957      * {@linkplain #empty default value}.
4958      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
4959      * Its parameter list (either empty or of the form {@code (V A*)}) must be
4960      * effectively identical to the internal parameter list.
4961      * </ul>
4962      * <p>
4963      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
4964      * <li>The loop handle's result type is the result type {@code V} of the body.
4965      * <li>The loop handle's parameter types are the types {@code (A...)},
4966      * from the external parameter list.
4967      * </ul>
4968      * <p>
4969      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
4970      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
4971      * passed to the loop.
4972      * <blockquote><pre>{@code
4973      * V init(A...);
4974      * boolean pred(V, A...);
4975      * V body(V, A...);
4976      * V doWhileLoop(A... a...) {
4977      *   V v = init(a...);
4978      *   do {
4979      *     v = body(v, a...);
4980      *   } while (pred(v, a...));
4981      *   return v;
4982      * }
4983      * }</pre></blockquote>
4984      * <p>
4985      * @apiNote Example:
4986      * <blockquote><pre>{@code
4987      * // int i = 0; while (i < limit) { ++i; } return i; => limit
4988      * static int zero(int limit) { return 0; }
4989      * static int step(int i, int limit) { return i + 1; }
4990      * static boolean pred(int i, int limit) { return i < limit; }
4991      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
4992      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
4993      * assertEquals(23, loop.invoke(23));
4994      * }</pre></blockquote>
4995      *
4996      * <p>
4997      * @apiNote The implementation of this method can be expressed as follows:
4998      * <blockquote><pre>{@code
4999      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
5000      *     MethodHandle fini = (body.type().returnType() == void.class
5001      *                         ? null : identity(body.type().returnType()));
5002      *     MethodHandle[] clause = { init, body, pred, fini };
5003      *     return loop(clause);
5004      * }
5005      * }</pre></blockquote>
5006      *
5007      * @param init optional initializer, providing the initial value of the loop variable.
5008      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5009      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5010      *             See above for other constraints.
5011      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5012      *             above for other constraints.
5013      *
5014      * @return a method handle implementing the {@code while} loop as described by the arguments.
5015      * @throws IllegalArgumentException if the rules for the arguments are violated.
5016      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5017      *
5018      * @see #loop(MethodHandle[][])
5019      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
5020      * @since 9
5021      */
5022     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
5023         whileLoopChecks(init, pred, body);
5024         MethodHandle fini = identityOrVoid(body.type().returnType());
5025         MethodHandle[] clause = {init, body, pred, fini };
5026         return loop(clause);
5027     }
5028 
5029     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
5030         Objects.requireNonNull(pred);
5031         Objects.requireNonNull(body);
5032         MethodType bodyType = body.type();
5033         Class<?> returnType = bodyType.returnType();
5034         List<Class<?>> innerList = bodyType.parameterList();
5035         List<Class<?>> outerList = innerList;
5036         if (returnType == void.class) {
5037             // OK
5038         } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
5039             // leading V argument missing => error
5040             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5041             throw misMatchedTypes("body function", bodyType, expected);
5042         } else {
5043             outerList = innerList.subList(1, innerList.size());
5044         }
5045         MethodType predType = pred.type();
5046         if (predType.returnType() != boolean.class ||
5047                 !predType.effectivelyIdenticalParameters(0, innerList)) {
5048             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
5049         }
5050         if (init != null) {
5051             MethodType initType = init.type();
5052             if (initType.returnType() != returnType ||
5053                     !initType.effectivelyIdenticalParameters(0, outerList)) {
5054                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5055             }
5056         }
5057     }
5058 
5059     /**
5060      * Constructs a loop that runs a given number of iterations.
5061      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5062      * <p>
5063      * The number of iterations is determined by the {@code iterations} handle evaluation result.
5064      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
5065      * It will be initialized to 0 and incremented by 1 in each iteration.
5066      * <p>
5067      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5068      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5069      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5070      * <p>
5071      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5072      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5073      * iteration variable.
5074      * The result of the loop handle execution will be the final {@code V} value of that variable
5075      * (or {@code void} if there is no {@code V} variable).
5076      * <p>
5077      * The following rules hold for the argument handles:<ul>
5078      * <li>The {@code iterations} handle must not be {@code null}, and must return
5079      * the type {@code int}, referred to here as {@code I} in parameter type lists.
5080      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5081      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
5082      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5083      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
5084      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
5085      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
5086      * of types called the <em>internal parameter list</em>.
5087      * It will constrain the parameter lists of the other loop parts.
5088      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
5089      * with no additional {@code A} types, then the internal parameter list is extended by
5090      * the argument types {@code A...} of the {@code iterations} handle.
5091      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
5092      * list {@code (A...)} is called the <em>external parameter list</em>.
5093      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5094      * additional state variable of the loop.
5095      * The body must both accept a leading parameter and return a value of this type {@code V}.
5096      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5097      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5098      * <a href="MethodHandles.html#effid">effectively identical</a>
5099      * to the external parameter list {@code (A...)}.
5100      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5101      * {@linkplain #empty default value}.
5102      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
5103      * effectively identical to the external parameter list {@code (A...)}.
5104      * </ul>
5105      * <p>
5106      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5107      * <li>The loop handle's result type is the result type {@code V} of the body.
5108      * <li>The loop handle's parameter types are the types {@code (A...)},
5109      * from the external parameter list.
5110      * </ul>
5111      * <p>
5112      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5113      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
5114      * arguments passed to the loop.
5115      * <blockquote><pre>{@code
5116      * int iterations(A...);
5117      * V init(A...);
5118      * V body(V, int, A...);
5119      * V countedLoop(A... a...) {
5120      *   int end = iterations(a...);
5121      *   V v = init(a...);
5122      *   for (int i = 0; i < end; ++i) {
5123      *     v = body(v, i, a...);
5124      *   }
5125      *   return v;
5126      * }
5127      * }</pre></blockquote>
5128      * <p>
5129      * @apiNote Example with a fully conformant body method:
5130      * <blockquote><pre>{@code
5131      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
5132      * // => a variation on a well known theme
5133      * static String step(String v, int counter, String init) { return "na " + v; }
5134      * // assume MH_step is a handle to the method above
5135      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
5136      * MethodHandle start = MethodHandles.identity(String.class);
5137      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
5138      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
5139      * }</pre></blockquote>
5140      * <p>
5141      * @apiNote Example with the simplest possible body method type,
5142      * and passing the number of iterations to the loop invocation:
5143      * <blockquote><pre>{@code
5144      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
5145      * // => a variation on a well known theme
5146      * static String step(String v, int counter ) { return "na " + v; }
5147      * // assume MH_step is a handle to the method above
5148      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
5149      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
5150      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
5151      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
5152      * }</pre></blockquote>
5153      * <p>
5154      * @apiNote Example that treats the number of iterations, string to append to, and string to append
5155      * as loop parameters:
5156      * <blockquote><pre>{@code
5157      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
5158      * // => a variation on a well known theme
5159      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
5160      * // assume MH_step is a handle to the method above
5161      * MethodHandle count = MethodHandles.identity(int.class);
5162      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
5163      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
5164      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
5165      * }</pre></blockquote>
5166      * <p>
5167      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
5168      * to enforce a loop type:
5169      * <blockquote><pre>{@code
5170      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
5171      * // => a variation on a well known theme
5172      * static String step(String v, int counter, String pre) { return pre + " " + v; }
5173      * // assume MH_step is a handle to the method above
5174      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
5175      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
5176      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
5177      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
5178      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
5179      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
5180      * }</pre></blockquote>
5181      * <p>
5182      * @apiNote The implementation of this method can be expressed as follows:
5183      * <blockquote><pre>{@code
5184      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
5185      *     return countedLoop(empty(iterations.type()), iterations, init, body);
5186      * }
5187      * }</pre></blockquote>
5188      *
5189      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
5190      *                   result type must be {@code int}. See above for other constraints.
5191      * @param init optional initializer, providing the initial value of the loop variable.
5192      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5193      * @param body body of the loop, which may not be {@code null}.
5194      *             It controls the loop parameters and result type in the standard case (see above for details).
5195      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
5196      *             and may accept any number of additional types.
5197      *             See above for other constraints.
5198      *
5199      * @return a method handle representing the loop.
5200      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
5201      * @throws IllegalArgumentException if any argument violates the rules formulated above.
5202      *
5203      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
5204      * @since 9
5205      */
5206     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
5207         return countedLoop(empty(iterations.type()), iterations, init, body);
5208     }
5209 
5210     /**
5211      * Constructs a loop that counts over a range of numbers.
5212      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5213      * <p>
5214      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
5215      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
5216      * values of the loop counter.
5217      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
5218      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
5219      * <p>
5220      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5221      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5222      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5223      * <p>
5224      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5225      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5226      * iteration variable.
5227      * The result of the loop handle execution will be the final {@code V} value of that variable
5228      * (or {@code void} if there is no {@code V} variable).
5229      * <p>
5230      * The following rules hold for the argument handles:<ul>
5231      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
5232      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
5233      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5234      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
5235      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5236      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
5237      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
5238      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
5239      * of types called the <em>internal parameter list</em>.
5240      * It will constrain the parameter lists of the other loop parts.
5241      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
5242      * with no additional {@code A} types, then the internal parameter list is extended by
5243      * the argument types {@code A...} of the {@code end} handle.
5244      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
5245      * list {@code (A...)} is called the <em>external parameter list</em>.
5246      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5247      * additional state variable of the loop.
5248      * The body must both accept a leading parameter and return a value of this type {@code V}.
5249      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5250      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5251      * <a href="MethodHandles.html#effid">effectively identical</a>
5252      * to the external parameter list {@code (A...)}.
5253      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5254      * {@linkplain #empty default value}.
5255      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
5256      * effectively identical to the external parameter list {@code (A...)}.
5257      * <li>Likewise, the parameter list of {@code end} must be effectively identical
5258      * to the external parameter list.
5259      * </ul>
5260      * <p>
5261      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5262      * <li>The loop handle's result type is the result type {@code V} of the body.
5263      * <li>The loop handle's parameter types are the types {@code (A...)},
5264      * from the external parameter list.
5265      * </ul>
5266      * <p>
5267      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5268      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
5269      * arguments passed to the loop.
5270      * <blockquote><pre>{@code
5271      * int start(A...);
5272      * int end(A...);
5273      * V init(A...);
5274      * V body(V, int, A...);
5275      * V countedLoop(A... a...) {
5276      *   int e = end(a...);
5277      *   int s = start(a...);
5278      *   V v = init(a...);
5279      *   for (int i = s; i < e; ++i) {
5280      *     v = body(v, i, a...);
5281      *   }
5282      *   return v;
5283      * }
5284      * }</pre></blockquote>
5285      *
5286      * <p>
5287      * @apiNote The implementation of this method can be expressed as follows:
5288      * <blockquote><pre>{@code
5289      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5290      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
5291      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
5292      *     // the following semantics:
5293      *     // MH_increment: (int limit, int counter) -> counter + 1
5294      *     // MH_predicate: (int limit, int counter) -> counter < limit
5295      *     Class<?> counterType = start.type().returnType();  // int
5296      *     Class<?> returnType = body.type().returnType();
5297      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
5298      *     if (returnType != void.class) {  // ignore the V variable
5299      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5300      *         pred = dropArguments(pred, 1, returnType);  // ditto
5301      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
5302      *     }
5303      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
5304      *     MethodHandle[]
5305      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5306      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
5307      *         indexVar   = { start, incr };           // i = start(); i = i + 1
5308      *     return loop(loopLimit, bodyClause, indexVar);
5309      * }
5310      * }</pre></blockquote>
5311      *
5312      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
5313      *              See above for other constraints.
5314      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
5315      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
5316      * @param init optional initializer, providing the initial value of the loop variable.
5317      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5318      * @param body body of the loop, which may not be {@code null}.
5319      *             It controls the loop parameters and result type in the standard case (see above for details).
5320      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
5321      *             and may accept any number of additional types.
5322      *             See above for other constraints.
5323      *
5324      * @return a method handle representing the loop.
5325      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
5326      * @throws IllegalArgumentException if any argument violates the rules formulated above.
5327      *
5328      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
5329      * @since 9
5330      */
5331     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5332         countedLoopChecks(start, end, init, body);
5333         Class<?> counterType = start.type().returnType();  // int, but who's counting?
5334         Class<?> limitType   = end.type().returnType();    // yes, int again
5335         Class<?> returnType  = body.type().returnType();
5336         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
5337         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
5338         MethodHandle retv = null;
5339         if (returnType != void.class) {
5340             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5341             pred = dropArguments(pred, 1, returnType);  // ditto
5342             retv = dropArguments(identity(returnType), 0, counterType);
5343         }
5344         body = dropArguments(body, 0, counterType);  // ignore the limit variable
5345         MethodHandle[]
5346             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5347             bodyClause = { init, body },            // v = init(); v = body(v, i)
5348             indexVar   = { start, incr };           // i = start(); i = i + 1
5349         return loop(loopLimit, bodyClause, indexVar);
5350     }
5351 
5352     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5353         Objects.requireNonNull(start);
5354         Objects.requireNonNull(end);
5355         Objects.requireNonNull(body);
5356         Class<?> counterType = start.type().returnType();
5357         if (counterType != int.class) {
5358             MethodType expected = start.type().changeReturnType(int.class);
5359             throw misMatchedTypes("start function", start.type(), expected);
5360         } else if (end.type().returnType() != counterType) {
5361             MethodType expected = end.type().changeReturnType(counterType);
5362             throw misMatchedTypes("end function", end.type(), expected);
5363         }
5364         MethodType bodyType = body.type();
5365         Class<?> returnType = bodyType.returnType();
5366         List<Class<?>> innerList = bodyType.parameterList();
5367         // strip leading V value if present
5368         int vsize = (returnType == void.class ? 0 : 1);
5369         if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
5370             // argument list has no "V" => error
5371             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5372             throw misMatchedTypes("body function", bodyType, expected);
5373         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
5374             // missing I type => error
5375             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
5376             throw misMatchedTypes("body function", bodyType, expected);
5377         }
5378         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
5379         if (outerList.isEmpty()) {
5380             // special case; take lists from end handle
5381             outerList = end.type().parameterList();
5382             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
5383         }
5384         MethodType expected = methodType(counterType, outerList);
5385         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
5386             throw misMatchedTypes("start parameter types", start.type(), expected);
5387         }
5388         if (end.type() != start.type() &&
5389             !end.type().effectivelyIdenticalParameters(0, outerList)) {
5390             throw misMatchedTypes("end parameter types", end.type(), expected);
5391         }
5392         if (init != null) {
5393             MethodType initType = init.type();
5394             if (initType.returnType() != returnType ||
5395                 !initType.effectivelyIdenticalParameters(0, outerList)) {
5396                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5397             }
5398         }
5399     }
5400 
5401     /**
5402      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
5403      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5404      * <p>
5405      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
5406      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
5407      * <p>
5408      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5409      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5410      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5411      * <p>
5412      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5413      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5414      * iteration variable.
5415      * The result of the loop handle execution will be the final {@code V} value of that variable
5416      * (or {@code void} if there is no {@code V} variable).
5417      * <p>
5418      * The following rules hold for the argument handles:<ul>
5419      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5420      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
5421      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5422      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
5423      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
5424      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
5425      * of types called the <em>internal parameter list</em>.
5426      * It will constrain the parameter lists of the other loop parts.
5427      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
5428      * with no additional {@code A} types, then the internal parameter list is extended by
5429      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
5430      * single type {@code Iterable} is added and constitutes the {@code A...} list.
5431      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
5432      * list {@code (A...)} is called the <em>external parameter list</em>.
5433      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5434      * additional state variable of the loop.
5435      * The body must both accept a leading parameter and return a value of this type {@code V}.
5436      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5437      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5438      * <a href="MethodHandles.html#effid">effectively identical</a>
5439      * to the external parameter list {@code (A...)}.
5440      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5441      * {@linkplain #empty default value}.
5442      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
5443      * type {@code java.util.Iterator} or a subtype thereof.
5444      * The iterator it produces when the loop is executed will be assumed
5445      * to yield values which can be converted to type {@code T}.
5446      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
5447      * effectively identical to the external parameter list {@code (A...)}.
5448      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
5449      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
5450      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
5451      * handle parameter is adjusted to accept the leading {@code A} type, as if by
5452      * the {@link MethodHandle#asType asType} conversion method.
5453      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
5454      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
5455      * </ul>
5456      * <p>
5457      * The type {@code T} may be either a primitive or reference.
5458      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
5459      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
5460      * as if by the {@link MethodHandle#asType asType} conversion method.
5461      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
5462      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
5463      * <p>
5464      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5465      * <li>The loop handle's result type is the result type {@code V} of the body.
5466      * <li>The loop handle's parameter types are the types {@code (A...)},
5467      * from the external parameter list.
5468      * </ul>
5469      * <p>
5470      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5471      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
5472      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
5473      * <blockquote><pre>{@code
5474      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
5475      * V init(A...);
5476      * V body(V,T,A...);
5477      * V iteratedLoop(A... a...) {
5478      *   Iterator<T> it = iterator(a...);
5479      *   V v = init(a...);
5480      *   while (it.hasNext()) {
5481      *     T t = it.next();
5482      *     v = body(v, t, a...);
5483      *   }
5484      *   return v;
5485      * }
5486      * }</pre></blockquote>
5487      * <p>
5488      * @apiNote Example:
5489      * <blockquote><pre>{@code
5490      * // get an iterator from a list
5491      * static List<String> reverseStep(List<String> r, String e) {
5492      *   r.add(0, e);
5493      *   return r;
5494      * }
5495      * static List<String> newArrayList() { return new ArrayList<>(); }
5496      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
5497      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
5498      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
5499      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
5500      * assertEquals(reversedList, (List<String>) loop.invoke(list));
5501      * }</pre></blockquote>
5502      * <p>
5503      * @apiNote The implementation of this method can be expressed approximately as follows:
5504      * <blockquote><pre>{@code
5505      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5506      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
5507      *     Class<?> returnType = body.type().returnType();
5508      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
5509      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
5510      *     MethodHandle retv = null, step = body, startIter = iterator;
5511      *     if (returnType != void.class) {
5512      *         // the simple thing first:  in (I V A...), drop the I to get V
5513      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
5514      *         // body type signature (V T A...), internal loop types (I V A...)
5515      *         step = swapArguments(body, 0, 1);  // swap V <-> T
5516      *     }
5517      *     if (startIter == null)  startIter = MH_getIter;
5518      *     MethodHandle[]
5519      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
5520      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
5521      *     return loop(iterVar, bodyClause);
5522      * }
5523      * }</pre></blockquote>
5524      *
5525      * @param iterator an optional handle to return the iterator to start the loop.
5526      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
5527      *                 See above for other constraints.
5528      * @param init optional initializer, providing the initial value of the loop variable.
5529      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5530      * @param body body of the loop, which may not be {@code null}.
5531      *             It controls the loop parameters and result type in the standard case (see above for details).
5532      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
5533      *             and may accept any number of additional types.
5534      *             See above for other constraints.
5535      *
5536      * @return a method handle embodying the iteration loop functionality.
5537      * @throws NullPointerException if the {@code body} handle is {@code null}.
5538      * @throws IllegalArgumentException if any argument violates the above requirements.
5539      *
5540      * @since 9
5541      */
5542     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5543         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
5544         Class<?> returnType = body.type().returnType();
5545         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
5546         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
5547         MethodHandle startIter;
5548         MethodHandle nextVal;
5549         {
5550             MethodType iteratorType;
5551             if (iterator == null) {
5552                 // derive argument type from body, if available, else use Iterable
5553                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
5554                 iteratorType = startIter.type().changeParameterType(0, iterableType);
5555             } else {
5556                 // force return type to the internal iterator class
5557                 iteratorType = iterator.type().changeReturnType(Iterator.class);
5558                 startIter = iterator;
5559             }
5560             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
5561             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
5562 
5563             // perform the asType transforms under an exception transformer, as per spec.:
5564             try {
5565                 startIter = startIter.asType(iteratorType);
5566                 nextVal = nextRaw.asType(nextValType);
5567             } catch (WrongMethodTypeException ex) {
5568                 throw new IllegalArgumentException(ex);
5569             }
5570         }
5571 
5572         MethodHandle retv = null, step = body;
5573         if (returnType != void.class) {
5574             // the simple thing first:  in (I V A...), drop the I to get V
5575             retv = dropArguments(identity(returnType), 0, Iterator.class);
5576             // body type signature (V T A...), internal loop types (I V A...)
5577             step = swapArguments(body, 0, 1);  // swap V <-> T
5578         }
5579 
5580         MethodHandle[]
5581             iterVar    = { startIter, null, hasNext, retv },
5582             bodyClause = { init, filterArgument(step, 0, nextVal) };
5583         return loop(iterVar, bodyClause);
5584     }
5585 
5586     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5587         Objects.requireNonNull(body);
5588         MethodType bodyType = body.type();
5589         Class<?> returnType = bodyType.returnType();
5590         List<Class<?>> internalParamList = bodyType.parameterList();
5591         // strip leading V value if present
5592         int vsize = (returnType == void.class ? 0 : 1);
5593         if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
5594             // argument list has no "V" => error
5595             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5596             throw misMatchedTypes("body function", bodyType, expected);
5597         } else if (internalParamList.size() <= vsize) {
5598             // missing T type => error
5599             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
5600             throw misMatchedTypes("body function", bodyType, expected);
5601         }
5602         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
5603         Class<?> iterableType = null;
5604         if (iterator != null) {
5605             // special case; if the body handle only declares V and T then
5606             // the external parameter list is obtained from iterator handle
5607             if (externalParamList.isEmpty()) {
5608                 externalParamList = iterator.type().parameterList();
5609             }
5610             MethodType itype = iterator.type();
5611             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
5612                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
5613             }
5614             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
5615                 MethodType expected = methodType(itype.returnType(), externalParamList);
5616                 throw misMatchedTypes("iterator parameters", itype, expected);
5617             }
5618         } else {
5619             if (externalParamList.isEmpty()) {
5620                 // special case; if the iterator handle is null and the body handle
5621                 // only declares V and T then the external parameter list consists
5622                 // of Iterable
5623                 externalParamList = Arrays.asList(Iterable.class);
5624                 iterableType = Iterable.class;
5625             } else {
5626                 // special case; if the iterator handle is null and the external
5627                 // parameter list is not empty then the first parameter must be
5628                 // assignable to Iterable
5629                 iterableType = externalParamList.get(0);
5630                 if (!Iterable.class.isAssignableFrom(iterableType)) {
5631                     throw newIllegalArgumentException(
5632                             "inferred first loop argument must inherit from Iterable: " + iterableType);
5633                 }
5634             }
5635         }
5636         if (init != null) {
5637             MethodType initType = init.type();
5638             if (initType.returnType() != returnType ||
5639                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
5640                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
5641             }
5642         }
5643         return iterableType;  // help the caller a bit
5644     }
5645 
5646     /*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
5647         // there should be a better way to uncross my wires
5648         int arity = mh.type().parameterCount();
5649         int[] order = new int[arity];
5650         for (int k = 0; k < arity; k++)  order[k] = k;
5651         order[i] = j; order[j] = i;
5652         Class<?>[] types = mh.type().parameterArray();
5653         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
5654         MethodType swapType = methodType(mh.type().returnType(), types);
5655         return permuteArguments(mh, swapType, order);
5656     }
5657 
5658     /**
5659      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
5660      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
5661      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
5662      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
5663      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
5664      * {@code try-finally} handle.
5665      * <p>
5666      * The {@code cleanup} handle will be passed one or two additional leading arguments.
5667      * The first is the exception thrown during the
5668      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
5669      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
5670      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
5671      * The second argument is not present if the {@code target} handle has a {@code void} return type.
5672      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
5673      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
5674      * <p>
5675      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
5676      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
5677      * two extra leading parameters:<ul>
5678      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
5679      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
5680      * the result from the execution of the {@code target} handle.
5681      * This parameter is not present if the {@code target} returns {@code void}.
5682      * </ul>
5683      * <p>
5684      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
5685      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
5686      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
5687      * the cleanup.
5688      * <blockquote><pre>{@code
5689      * V target(A..., B...);
5690      * V cleanup(Throwable, V, A...);
5691      * V adapter(A... a, B... b) {
5692      *   V result = (zero value for V);
5693      *   Throwable throwable = null;
5694      *   try {
5695      *     result = target(a..., b...);
5696      *   } catch (Throwable t) {
5697      *     throwable = t;
5698      *     throw t;
5699      *   } finally {
5700      *     result = cleanup(throwable, result, a...);
5701      *   }
5702      *   return result;
5703      * }
5704      * }</pre></blockquote>
5705      * <p>
5706      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
5707      * be modified by execution of the target, and so are passed unchanged
5708      * from the caller to the cleanup, if it is invoked.
5709      * <p>
5710      * The target and cleanup must return the same type, even if the cleanup
5711      * always throws.
5712      * To create such a throwing cleanup, compose the cleanup logic
5713      * with {@link #throwException throwException},
5714      * in order to create a method handle of the correct return type.
5715      * <p>
5716      * Note that {@code tryFinally} never converts exceptions into normal returns.
5717      * In rare cases where exceptions must be converted in that way, first wrap
5718      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
5719      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
5720      *
5721      * @param target the handle whose execution is to be wrapped in a {@code try} block.
5722      * @param cleanup the handle that is invoked in the finally block.
5723      *
5724      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
5725      * @throws NullPointerException if any argument is null
5726      * @throws IllegalArgumentException if {@code cleanup} does not accept
5727      *          the required leading arguments, or if the method handle types do
5728      *          not match in their return types and their
5729      *          corresponding trailing parameters
5730      *
5731      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
5732      * @since 9
5733      */
5734     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
5735         List<Class<?>> targetParamTypes = target.type().parameterList();
5736         List<Class<?>> cleanupParamTypes = cleanup.type().parameterList();
5737         Class<?> rtype = target.type().returnType();
5738 
5739         tryFinallyChecks(target, cleanup);
5740 
5741         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
5742         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
5743         // target parameter list.
5744         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
5745 
5746         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
5747         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
5748     }
5749 
5750     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
5751         Class<?> rtype = target.type().returnType();
5752         if (rtype != cleanup.type().returnType()) {
5753             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
5754         }
5755         MethodType cleanupType = cleanup.type();
5756         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
5757             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
5758         }
5759         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
5760             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
5761         }
5762         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
5763         // target parameter list.
5764         int cleanupArgIndex = rtype == void.class ? 1 : 2;
5765         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
5766             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
5767                     cleanup.type(), target.type());
5768         }
5769     }
5770 
5771 }