1 /*
   2  * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.reflect.CallerSensitive;
  29 import jdk.internal.reflect.Reflection;
  30 import jdk.internal.vm.annotation.ForceInline;
  31 import sun.invoke.util.ValueConversions;
  32 import sun.invoke.util.VerifyAccess;
  33 import sun.invoke.util.Wrapper;
  34 import sun.reflect.misc.ReflectUtil;
  35 import sun.security.util.SecurityConstants;
  36 
  37 import java.lang.invoke.LambdaForm.BasicType;
  38 import java.lang.reflect.Constructor;
  39 import java.lang.reflect.Field;
  40 import java.lang.reflect.Member;
  41 import java.lang.reflect.Method;
  42 import java.lang.reflect.Modifier;
  43 import java.lang.reflect.Module;
  44 import java.lang.reflect.ReflectPermission;
  45 import java.nio.ByteOrder;
  46 import java.util.ArrayList;
  47 import java.util.Arrays;
  48 import java.util.BitSet;
  49 import java.util.Iterator;
  50 import java.util.List;
  51 import java.util.Objects;
  52 import java.util.concurrent.ConcurrentHashMap;
  53 import java.util.stream.Collectors;
  54 import java.util.stream.Stream;
  55 
  56 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
  57 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  58 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  59 import static java.lang.invoke.MethodType.methodType;
  60 
  61 /**
  62  * This class consists exclusively of static methods that operate on or return
  63  * method handles. They fall into several categories:
  64  * <ul>
  65  * <li>Lookup methods which help create method handles for methods and fields.
  66  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  67  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  68  * </ul>
  69  *
  70  * @author John Rose, JSR 292 EG
  71  * @since 1.7
  72  */
  73 public class MethodHandles {
  74 
  75     private MethodHandles() { }  // do not instantiate
  76 
  77     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  78 
  79     // See IMPL_LOOKUP below.
  80 
  81     //// Method handle creation from ordinary methods.
  82 
  83     /**
  84      * Returns a {@link Lookup lookup object} with
  85      * full capabilities to emulate all supported bytecode behaviors of the caller.
  86      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
  87      * Factory methods on the lookup object can create
  88      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  89      * for any member that the caller has access to via bytecodes,
  90      * including protected and private fields and methods.
  91      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
  92      * Do not store it in place where untrusted code can access it.
  93      * <p>
  94      * This method is caller sensitive, which means that it may return different
  95      * values to different callers.
  96      * <p>
  97      * For any given caller class {@code C}, the lookup object returned by this call
  98      * has equivalent capabilities to any lookup object
  99      * supplied by the JVM to the bootstrap method of an
 100      * <a href="package-summary.html#indyinsn">invokedynamic instruction</a>
 101      * executing in the same caller class {@code C}.
 102      * @return a lookup object for the caller of this method, with private access
 103      */
 104     @CallerSensitive
 105     @ForceInline // to ensure Reflection.getCallerClass optimization
 106     public static Lookup lookup() {
 107         return new Lookup(Reflection.getCallerClass());
 108     }
 109 
 110     /**
 111      * Returns a {@link Lookup lookup object} which is trusted minimally.
 112      * The lookup has the {@code PUBLIC} and {@code UNCONDITIONAL} modes.
 113      * It can only be used to create method handles to public members of
 114      * public classes in packages that are exported unconditionally.
 115      * <p>
 116      * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
 117      * of this lookup object will be {@link java.lang.Object}.
 118      *
 119      * @apiNote The use of Object is conventional, and because the lookup modes are
 120      * limited, there is no special access provided to the internals of Object, its package
 121      * or its module. Consequently, the lookup context of this lookup object will be the
 122      * bootstrap class loader, which means it cannot find user classes.
 123      *
 124      * <p style="font-size:smaller;">
 125      * <em>Discussion:</em>
 126      * The lookup class can be changed to any other class {@code C} using an expression of the form
 127      * {@link Lookup#in publicLookup().in(C.class)}.
 128      * but may change the lookup context by virtue of changing the class loader.
 129      * A public lookup object is always subject to
 130      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 131      * Also, it cannot access
 132      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 133      * @return a lookup object which is trusted minimally
 134      *
 135      * @revised 9
 136      * @spec JPMS
 137      */
 138     public static Lookup publicLookup() {
 139         return Lookup.PUBLIC_LOOKUP;
 140     }
 141 
 142     /**
 143      * Returns a {@link Lookup lookup object} with full capabilities to emulate all
 144      * supported bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">
 145      * private access</a>, on a target class.
 146      * This method checks that a caller, specified as a {@code Lookup} object, is allowed to
 147      * do <em>deep reflection</em> on the target class. If {@code m1} is the module containing
 148      * the {@link Lookup#lookupClass() lookup class}, and {@code m2} is the module containing
 149      * the target class, then this check ensures that
 150      * <ul>
 151      *     <li>{@code m1} {@link Module#canRead reads} {@code m2}.</li>
 152      *     <li>{@code m2} {@link Module#isOpen(String,Module) opens} the package containing
 153      *     the target class to at least {@code m1}.</li>
 154      *     <li>The lookup has the {@link Lookup#MODULE MODULE} lookup mode.</li>
 155      * </ul>
 156      * <p>
 157      * If there is a security manager, its {@code checkPermission} method is called to
 158      * check {@code ReflectPermission("suppressAccessChecks")}.
 159      * @apiNote The {@code MODULE} lookup mode serves to authenticate that the lookup object
 160      * was created by code in the caller module (or derived from a lookup object originally
 161      * created by the caller). A lookup object with the {@code MODULE} lookup mode can be
 162      * shared with trusted parties without giving away {@code PRIVATE} and {@code PACKAGE}
 163      * access to the caller.
 164      * @param targetClass the target class
 165      * @param lookup the caller lookup object
 166      * @return a lookup object for the target class, with private access
 167      * @throws IllegalArgumentException if {@code targetClass} is a primitve type or array class
 168      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
 169      * @throws IllegalAccessException if the access check specified above fails
 170      * @throws SecurityException if denied by the security manager
 171      * @since 9
 172      * @spec JPMS
 173      * @see Lookup#dropLookupMode
 174      */
 175     public static Lookup privateLookupIn(Class<?> targetClass, Lookup lookup) throws IllegalAccessException {
 176         SecurityManager sm = System.getSecurityManager();
 177         if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
 178         if (targetClass.isPrimitive())
 179             throw new IllegalArgumentException(targetClass + " is a primitive class");
 180         if (targetClass.isArray())
 181             throw new IllegalArgumentException(targetClass + " is an array class");
 182         Module targetModule = targetClass.getModule();
 183         Module callerModule = lookup.lookupClass().getModule();
 184         if (!callerModule.canRead(targetModule))
 185             throw new IllegalAccessException(callerModule + " does not read " + targetModule);
 186         if (targetModule.isNamed()) {
 187             String pn = targetClass.getPackageName();
 188             assert pn.length() > 0 : "unnamed package cannot be in named module";
 189             if (!targetModule.isOpen(pn, callerModule))
 190                 throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
 191         }
 192         if ((lookup.lookupModes() & Lookup.MODULE) == 0)
 193             throw new IllegalAccessException("lookup does not have MODULE lookup mode");
 194         return new Lookup(targetClass);
 195     }
 196 
 197     /**
 198      * Performs an unchecked "crack" of a
 199      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 200      * The result is as if the user had obtained a lookup object capable enough
 201      * to crack the target method handle, called
 202      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 203      * on the target to obtain its symbolic reference, and then called
 204      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 205      * to resolve the symbolic reference to a member.
 206      * <p>
 207      * If there is a security manager, its {@code checkPermission} method
 208      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 209      * @param <T> the desired type of the result, either {@link Member} or a subtype
 210      * @param target a direct method handle to crack into symbolic reference components
 211      * @param expected a class object representing the desired result type {@code T}
 212      * @return a reference to the method, constructor, or field object
 213      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
 214      * @exception NullPointerException if either argument is {@code null}
 215      * @exception IllegalArgumentException if the target is not a direct method handle
 216      * @exception ClassCastException if the member is not of the expected type
 217      * @since 1.8
 218      */
 219     public static <T extends Member> T
 220     reflectAs(Class<T> expected, MethodHandle target) {
 221         SecurityManager smgr = System.getSecurityManager();
 222         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 223         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 224         return lookup.revealDirect(target).reflectAs(expected, lookup);
 225     }
 226     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 227     private static final java.security.Permission ACCESS_PERMISSION =
 228         new ReflectPermission("suppressAccessChecks");
 229 
 230     /**
 231      * A <em>lookup object</em> is a factory for creating method handles,
 232      * when the creation requires access checking.
 233      * Method handles do not perform
 234      * access checks when they are called, but rather when they are created.
 235      * Therefore, method handle access
 236      * restrictions must be enforced when a method handle is created.
 237      * The caller class against which those restrictions are enforced
 238      * is known as the {@linkplain #lookupClass lookup class}.
 239      * <p>
 240      * A lookup class which needs to create method handles will call
 241      * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself.
 242      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 243      * determined, and securely stored in the {@code Lookup} object.
 244      * The lookup class (or its delegates) may then use factory methods
 245      * on the {@code Lookup} object to create method handles for access-checked members.
 246      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 247      * even private ones.
 248      *
 249      * <h1><a name="lookups"></a>Lookup Factory Methods</h1>
 250      * The factory methods on a {@code Lookup} object correspond to all major
 251      * use cases for methods, constructors, and fields.
 252      * Each method handle created by a factory method is the functional
 253      * equivalent of a particular <em>bytecode behavior</em>.
 254      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
 255      * Here is a summary of the correspondence between these factory methods and
 256      * the behavior of the resulting method handles:
 257      * <table border=1 cellpadding=5 summary="lookup method behaviors">
 258      * <tr>
 259      *     <th><a name="equiv"></a>lookup expression</th>
 260      *     <th>member</th>
 261      *     <th>bytecode behavior</th>
 262      * </tr>
 263      * <tr>
 264      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
 265      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 266      * </tr>
 267      * <tr>
 268      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
 269      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
 270      * </tr>
 271      * <tr>
 272      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
 273      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 274      * </tr>
 275      * <tr>
 276      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
 277      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 278      * </tr>
 279      * <tr>
 280      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
 281      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 282      * </tr>
 283      * <tr>
 284      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
 285      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 286      * </tr>
 287      * <tr>
 288      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
 289      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 290      * </tr>
 291      * <tr>
 292      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
 293      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 294      * </tr>
 295      * <tr>
 296      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
 297      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 298      * </tr>
 299      * <tr>
 300      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
 301      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 302      * </tr>
 303      * <tr>
 304      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
 305      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 306      * </tr>
 307      * <tr>
 308      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
 309      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 310      * </tr>
 311      * <tr>
 312      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
 313      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 314      * </tr>
 315      * <tr>
 316      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</td>
 317      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 318      * </tr>
 319      * </table>
 320      *
 321      * Here, the type {@code C} is the class or interface being searched for a member,
 322      * documented as a parameter named {@code refc} in the lookup methods.
 323      * The method type {@code MT} is composed from the return type {@code T}
 324      * and the sequence of argument types {@code A*}.
 325      * The constructor also has a sequence of argument types {@code A*} and
 326      * is deemed to return the newly-created object of type {@code C}.
 327      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 328      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 329      * if it is present, it is always the leading argument to the method handle invocation.
 330      * (In the case of some {@code protected} members, {@code this} may be
 331      * restricted in type to the lookup class; see below.)
 332      * The name {@code arg} stands for all the other method handle arguments.
 333      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 334      * stands for a null reference if the accessed method or field is static,
 335      * and {@code this} otherwise.
 336      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 337      * for reflective objects corresponding to the given members.
 338      * <p>
 339      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 340      * as if by {@code ldc CONSTANT_Class}.
 341      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 342      * <p>
 343      * In cases where the given member is of variable arity (i.e., a method or constructor)
 344      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 345      * In all other cases, the returned method handle will be of fixed arity.
 346      * <p style="font-size:smaller;">
 347      * <em>Discussion:</em>
 348      * The equivalence between looked-up method handles and underlying
 349      * class members and bytecode behaviors
 350      * can break down in a few ways:
 351      * <ul style="font-size:smaller;">
 352      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 353      * the lookup can still succeed, even when there is no equivalent
 354      * Java expression or bytecoded constant.
 355      * <li>Likewise, if {@code T} or {@code MT}
 356      * is not symbolically accessible from the lookup class's loader,
 357      * the lookup can still succeed.
 358      * For example, lookups for {@code MethodHandle.invokeExact} and
 359      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 360      * <li>If there is a security manager installed, it can forbid the lookup
 361      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 362      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 363      * constant is not subject to security manager checks.
 364      * <li>If the looked-up method has a
 365      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 366      * the method handle creation may fail, due to the method handle
 367      * type having too many parameters.
 368      * </ul>
 369      *
 370      * <h1><a name="access"></a>Access checking</h1>
 371      * Access checks are applied in the factory methods of {@code Lookup},
 372      * when a method handle is created.
 373      * This is a key difference from the Core Reflection API, since
 374      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 375      * performs access checking against every caller, on every call.
 376      * <p>
 377      * All access checks start from a {@code Lookup} object, which
 378      * compares its recorded lookup class against all requests to
 379      * create method handles.
 380      * A single {@code Lookup} object can be used to create any number
 381      * of access-checked method handles, all checked against a single
 382      * lookup class.
 383      * <p>
 384      * A {@code Lookup} object can be shared with other trusted code,
 385      * such as a metaobject protocol.
 386      * A shared {@code Lookup} object delegates the capability
 387      * to create method handles on private members of the lookup class.
 388      * Even if privileged code uses the {@code Lookup} object,
 389      * the access checking is confined to the privileges of the
 390      * original lookup class.
 391      * <p>
 392      * A lookup can fail, because
 393      * the containing class is not accessible to the lookup class, or
 394      * because the desired class member is missing, or because the
 395      * desired class member is not accessible to the lookup class, or
 396      * because the lookup object is not trusted enough to access the member.
 397      * In any of these cases, a {@code ReflectiveOperationException} will be
 398      * thrown from the attempted lookup.  The exact class will be one of
 399      * the following:
 400      * <ul>
 401      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 402      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 403      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 404      * </ul>
 405      * <p>
 406      * In general, the conditions under which a method handle may be
 407      * looked up for a method {@code M} are no more restrictive than the conditions
 408      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 409      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 410      * a method handle lookup will generally raise a corresponding
 411      * checked exception, such as {@code NoSuchMethodException}.
 412      * And the effect of invoking the method handle resulting from the lookup
 413      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 414      * to executing the compiled, verified, and resolved call to {@code M}.
 415      * The same point is true of fields and constructors.
 416      * <p style="font-size:smaller;">
 417      * <em>Discussion:</em>
 418      * Access checks only apply to named and reflected methods,
 419      * constructors, and fields.
 420      * Other method handle creation methods, such as
 421      * {@link MethodHandle#asType MethodHandle.asType},
 422      * do not require any access checks, and are used
 423      * independently of any {@code Lookup} object.
 424      * <p>
 425      * If the desired member is {@code protected}, the usual JVM rules apply,
 426      * including the requirement that the lookup class must be either be in the
 427      * same package as the desired member, or must inherit that member.
 428      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
 429      * In addition, if the desired member is a non-static field or method
 430      * in a different package, the resulting method handle may only be applied
 431      * to objects of the lookup class or one of its subclasses.
 432      * This requirement is enforced by narrowing the type of the leading
 433      * {@code this} parameter from {@code C}
 434      * (which will necessarily be a superclass of the lookup class)
 435      * to the lookup class itself.
 436      * <p>
 437      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 438      * that the receiver argument must match both the resolved method <em>and</em>
 439      * the current class.  Again, this requirement is enforced by narrowing the
 440      * type of the leading parameter to the resulting method handle.
 441      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
 442      * <p>
 443      * The JVM represents constructors and static initializer blocks as internal methods
 444      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 445      * The internal syntax of invocation instructions allows them to refer to such internal
 446      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 447      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 448      * <p>
 449      * In some cases, access between nested classes is obtained by the Java compiler by creating
 450      * an wrapper method to access a private method of another class
 451      * in the same top-level declaration.
 452      * For example, a nested class {@code C.D}
 453      * can access private members within other related classes such as
 454      * {@code C}, {@code C.D.E}, or {@code C.B},
 455      * but the Java compiler may need to generate wrapper methods in
 456      * those related classes.  In such cases, a {@code Lookup} object on
 457      * {@code C.E} would be unable to those private members.
 458      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 459      * which can transform a lookup on {@code C.E} into one on any of those other
 460      * classes, without special elevation of privilege.
 461      * <p>
 462      * The accesses permitted to a given lookup object may be limited,
 463      * according to its set of {@link #lookupModes lookupModes},
 464      * to a subset of members normally accessible to the lookup class.
 465      * For example, the {@link MethodHandles#publicLookup publicLookup}
 466      * method produces a lookup object which is only allowed to access
 467      * public members in public classes of exported packages.
 468      * The caller sensitive method {@link MethodHandles#lookup lookup}
 469      * produces a lookup object with full capabilities relative to
 470      * its caller class, to emulate all supported bytecode behaviors.
 471      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 472      * with fewer access modes than the original lookup object.
 473      *
 474      * <p style="font-size:smaller;">
 475      * <a name="privacc"></a>
 476      * <em>Discussion of private access:</em>
 477      * We say that a lookup has <em>private access</em>
 478      * if its {@linkplain #lookupModes lookup modes}
 479      * include the possibility of accessing {@code private} members.
 480      * As documented in the relevant methods elsewhere,
 481      * only lookups with private access possess the following capabilities:
 482      * <ul style="font-size:smaller;">
 483      * <li>access private fields, methods, and constructors of the lookup class
 484      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 485      *     such as {@code Class.forName}
 486      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 487      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 488      *     for classes accessible to the lookup class
 489      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 490      *     within the same package member
 491      * </ul>
 492      * <p style="font-size:smaller;">
 493      * Each of these permissions is a consequence of the fact that a lookup object
 494      * with private access can be securely traced back to an originating class,
 495      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 496      * can be reliably determined and emulated by method handles.
 497      *
 498      * <h1><a name="secmgr"></a>Security manager interactions</h1>
 499      * Although bytecode instructions can only refer to classes in
 500      * a related class loader, this API can search for methods in any
 501      * class, as long as a reference to its {@code Class} object is
 502      * available.  Such cross-loader references are also possible with the
 503      * Core Reflection API, and are impossible to bytecode instructions
 504      * such as {@code invokestatic} or {@code getfield}.
 505      * There is a {@linkplain java.lang.SecurityManager security manager API}
 506      * to allow applications to check such cross-loader references.
 507      * These checks apply to both the {@code MethodHandles.Lookup} API
 508      * and the Core Reflection API
 509      * (as found on {@link java.lang.Class Class}).
 510      * <p>
 511      * If a security manager is present, member and class lookups are subject to
 512      * additional checks.
 513      * From one to three calls are made to the security manager.
 514      * Any of these calls can refuse access by throwing a
 515      * {@link java.lang.SecurityException SecurityException}.
 516      * Define {@code smgr} as the security manager,
 517      * {@code lookc} as the lookup class of the current lookup object,
 518      * {@code refc} as the containing class in which the member
 519      * is being sought, and {@code defc} as the class in which the
 520      * member is actually defined.
 521      * (If a class or other type is being accessed,
 522      * the {@code refc} and {@code defc} values are the class itself.)
 523      * The value {@code lookc} is defined as <em>not present</em>
 524      * if the current lookup object does not have
 525      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
 526      * The calls are made according to the following rules:
 527      * <ul>
 528      * <li><b>Step 1:</b>
 529      *     If {@code lookc} is not present, or if its class loader is not
 530      *     the same as or an ancestor of the class loader of {@code refc},
 531      *     then {@link SecurityManager#checkPackageAccess
 532      *     smgr.checkPackageAccess(refcPkg)} is called,
 533      *     where {@code refcPkg} is the package of {@code refc}.
 534      * <li><b>Step 2a:</b>
 535      *     If the retrieved member is not public and
 536      *     {@code lookc} is not present, then
 537      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 538      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
 539      * <li><b>Step 2b:</b>
 540      *     If the retrieved class has a {@code null} class loader,
 541      *     and {@code lookc} is not present, then
 542      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 543      *     with {@code RuntimePermission("getClassLoader")} is called.
 544      * <li><b>Step 3:</b>
 545      *     If the retrieved member is not public,
 546      *     and if {@code lookc} is not present,
 547      *     and if {@code defc} and {@code refc} are different,
 548      *     then {@link SecurityManager#checkPackageAccess
 549      *     smgr.checkPackageAccess(defcPkg)} is called,
 550      *     where {@code defcPkg} is the package of {@code defc}.
 551      * </ul>
 552      * Security checks are performed after other access checks have passed.
 553      * Therefore, the above rules presuppose a member or class that is public,
 554      * or else that is being accessed from a lookup class that has
 555      * rights to access the member or class.
 556      *
 557      * <h1><a name="callsens"></a>Caller sensitive methods</h1>
 558      * A small number of Java methods have a special property called caller sensitivity.
 559      * A <em>caller-sensitive</em> method can behave differently depending on the
 560      * identity of its immediate caller.
 561      * <p>
 562      * If a method handle for a caller-sensitive method is requested,
 563      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
 564      * but they take account of the lookup class in a special way.
 565      * The resulting method handle behaves as if it were called
 566      * from an instruction contained in the lookup class,
 567      * so that the caller-sensitive method detects the lookup class.
 568      * (By contrast, the invoker of the method handle is disregarded.)
 569      * Thus, in the case of caller-sensitive methods,
 570      * different lookup classes may give rise to
 571      * differently behaving method handles.
 572      * <p>
 573      * In cases where the lookup object is
 574      * {@link MethodHandles#publicLookup() publicLookup()},
 575      * or some other lookup object without
 576      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
 577      * the lookup class is disregarded.
 578      * In such cases, no caller-sensitive method handle can be created,
 579      * access is forbidden, and the lookup fails with an
 580      * {@code IllegalAccessException}.
 581      * <p style="font-size:smaller;">
 582      * <em>Discussion:</em>
 583      * For example, the caller-sensitive method
 584      * {@link java.lang.Class#forName(String) Class.forName(x)}
 585      * can return varying classes or throw varying exceptions,
 586      * depending on the class loader of the class that calls it.
 587      * A public lookup of {@code Class.forName} will fail, because
 588      * there is no reasonable way to determine its bytecode behavior.
 589      * <p style="font-size:smaller;">
 590      * If an application caches method handles for broad sharing,
 591      * it should use {@code publicLookup()} to create them.
 592      * If there is a lookup of {@code Class.forName}, it will fail,
 593      * and the application must take appropriate action in that case.
 594      * It may be that a later lookup, perhaps during the invocation of a
 595      * bootstrap method, can incorporate the specific identity
 596      * of the caller, making the method accessible.
 597      * <p style="font-size:smaller;">
 598      * The function {@code MethodHandles.lookup} is caller sensitive
 599      * so that there can be a secure foundation for lookups.
 600      * Nearly all other methods in the JSR 292 API rely on lookup
 601      * objects to check access requests.
 602      *
 603      * @revised 9
 604      */
 605     public static final
 606     class Lookup {
 607         /** The class on behalf of whom the lookup is being performed. */
 608         private final Class<?> lookupClass;
 609 
 610         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
 611         private final int allowedModes;
 612 
 613         /** A single-bit mask representing {@code public} access,
 614          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 615          *  The value, {@code 0x01}, happens to be the same as the value of the
 616          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
 617          */
 618         public static final int PUBLIC = Modifier.PUBLIC;
 619 
 620         /** A single-bit mask representing {@code private} access,
 621          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 622          *  The value, {@code 0x02}, happens to be the same as the value of the
 623          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
 624          */
 625         public static final int PRIVATE = Modifier.PRIVATE;
 626 
 627         /** A single-bit mask representing {@code protected} access,
 628          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 629          *  The value, {@code 0x04}, happens to be the same as the value of the
 630          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
 631          */
 632         public static final int PROTECTED = Modifier.PROTECTED;
 633 
 634         /** A single-bit mask representing {@code package} access (default access),
 635          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 636          *  The value is {@code 0x08}, which does not correspond meaningfully to
 637          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 638          */
 639         public static final int PACKAGE = Modifier.STATIC;
 640 
 641         /** A single-bit mask representing {@code module} access (default access),
 642          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 643          *  The value is {@code 0x10}, which does not correspond meaningfully to
 644          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 645          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
 646          *  with this lookup mode can access all public types in the module of the
 647          *  lookup class and public types in packages exported by other modules
 648          *  to the module of the lookup class.
 649          *  @since 9
 650          *  @spec JPMS
 651          */
 652         public static final int MODULE = PACKAGE << 1;
 653 
 654         /** A single-bit mask representing {@code unconditional} access
 655          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 656          *  The value is {@code 0x20}, which does not correspond meaningfully to
 657          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 658          *  A {@code Lookup} with this lookup mode assumes {@linkplain
 659          *  java.lang.reflect.Module#canRead(java.lang.reflect.Module) readability}.
 660          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
 661          *  with this lookup mode can access all public members of public types
 662          *  of all modules where the type is in a package that is {@link
 663          *  java.lang.reflect.Module#isExported(String) exported unconditionally}.
 664          *  @see #publicLookup()
 665          *  @since 9
 666          */
 667         public static final int UNCONDITIONAL = PACKAGE << 2;
 668 
 669         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL);
 670         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);
 671         private static final int TRUSTED   = -1;
 672 
 673         private static int fixmods(int mods) {
 674             mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL);
 675             return (mods != 0) ? mods : (PACKAGE | MODULE | UNCONDITIONAL);
 676         }
 677 
 678         /** Tells which class is performing the lookup.  It is this class against
 679          *  which checks are performed for visibility and access permissions.
 680          *  <p>
 681          *  The class implies a maximum level of access permission,
 682          *  but the permissions may be additionally limited by the bitmask
 683          *  {@link #lookupModes lookupModes}, which controls whether non-public members
 684          *  can be accessed.
 685          *  @return the lookup class, on behalf of which this lookup object finds members
 686          */
 687         public Class<?> lookupClass() {
 688             return lookupClass;
 689         }
 690 
 691         // This is just for calling out to MethodHandleImpl.
 692         private Class<?> lookupClassOrNull() {
 693             return (allowedModes == TRUSTED) ? null : lookupClass;
 694         }
 695 
 696         /** Tells which access-protection classes of members this lookup object can produce.
 697          *  The result is a bit-mask of the bits
 698          *  {@linkplain #PUBLIC PUBLIC (0x01)},
 699          *  {@linkplain #PRIVATE PRIVATE (0x02)},
 700          *  {@linkplain #PROTECTED PROTECTED (0x04)},
 701          *  {@linkplain #PACKAGE PACKAGE (0x08)},
 702          *  {@linkplain #MODULE MODULE (0x10)},
 703          *  and {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}.
 704          *  <p>
 705          *  A freshly-created lookup object
 706          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
 707          *  all possible bits set, except {@code UNCONDITIONAL}. The lookup can be used to
 708          *  access all members of the caller's class, all public types in the caller's module,
 709          *  and all public types in packages exported by other modules to the caller's module.
 710          *  A lookup object on a new lookup class
 711          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
 712          *  may have some mode bits set to zero.
 713          *  Mode bits can also be
 714          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
 715          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
 716          *  The purpose of this is to restrict access via the new lookup object,
 717          *  so that it can access only names which can be reached by the original
 718          *  lookup object, and also by the new lookup class.
 719          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
 720          *  @see #in
 721          *  @see #dropLookupMode
 722          *
 723          *  @revised 9
 724          *  @spec JPMS
 725          */
 726         public int lookupModes() {
 727             return allowedModes & ALL_MODES;
 728         }
 729 
 730         /** Embody the current class (the lookupClass) as a lookup class
 731          * for method handle creation.
 732          * Must be called by from a method in this package,
 733          * which in turn is called by a method not in this package.
 734          */
 735         Lookup(Class<?> lookupClass) {
 736             this(lookupClass, FULL_POWER_MODES);
 737             // make sure we haven't accidentally picked up a privileged class:
 738             checkUnprivilegedlookupClass(lookupClass, FULL_POWER_MODES);
 739         }
 740 
 741         private Lookup(Class<?> lookupClass, int allowedModes) {
 742             this.lookupClass = lookupClass;
 743             this.allowedModes = allowedModes;
 744         }
 745 
 746         /**
 747          * Creates a lookup on the specified new lookup class.
 748          * The resulting object will report the specified
 749          * class as its own {@link #lookupClass lookupClass}.
 750          * <p>
 751          * However, the resulting {@code Lookup} object is guaranteed
 752          * to have no more access capabilities than the original.
 753          * In particular, access capabilities can be lost as follows:<ul>
 754          * <li>If the old lookup class is in a {@link Module#isNamed() named} module, and
 755          * the new lookup class is in a different module {@code M}, then no members, not
 756          * even public members in {@code M}'s exported packages, will be accessible.
 757          * The exception to this is when this lookup is {@link #publicLookup()
 758          * publicLookup}, in which case {@code PUBLIC} access is not lost.
 759          * <li>If the old lookup class is in an unnamed module, and the new lookup class
 760          * is a different module then {@link #MODULE MODULE} access is lost.
 761          * <li>If the new lookup class differs from the old one then {@code UNCONDITIONAL} is lost.
 762          * <li>If the new lookup class is in a different package
 763          * than the old one, protected and default (package) members will not be accessible.
 764          * <li>If the new lookup class is not within the same package member
 765          * as the old one, private members will not be accessible, and protected members
 766          * will not be accessible by virtue of inheritance.
 767          * (Protected members may continue to be accessible because of package sharing.)
 768          * <li>If the new lookup class is not accessible to the old lookup class,
 769          * then no members, not even public members, will be accessible.
 770          * (In all other cases, public members will continue to be accessible.)
 771          * </ul>
 772          * <p>
 773          * The resulting lookup's capabilities for loading classes
 774          * (used during {@link #findClass} invocations)
 775          * are determined by the lookup class' loader,
 776          * which may change due to this operation.
 777          *
 778          * @param requestedLookupClass the desired lookup class for the new lookup object
 779          * @return a lookup object which reports the desired lookup class, or the same object
 780          * if there is no change
 781          * @throws NullPointerException if the argument is null
 782          *
 783          * @revised 9
 784          * @spec JPMS
 785          */
 786         public Lookup in(Class<?> requestedLookupClass) {
 787             Objects.requireNonNull(requestedLookupClass);
 788             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
 789                 return new Lookup(requestedLookupClass, FULL_POWER_MODES);
 790             if (requestedLookupClass == this.lookupClass)
 791                 return this;  // keep same capabilities
 792             int newModes = (allowedModes & FULL_POWER_MODES);
 793             if (!VerifyAccess.isSameModule(this.lookupClass, requestedLookupClass)) {
 794                 // Need to drop all access when teleporting from a named module to another
 795                 // module. The exception is publicLookup where PUBLIC is not lost.
 796                 if (this.lookupClass.getModule().isNamed()
 797                     && (this.allowedModes & UNCONDITIONAL) == 0)
 798                     newModes = 0;
 799                 else
 800                     newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
 801             }
 802             if ((newModes & PACKAGE) != 0
 803                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
 804                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
 805             }
 806             // Allow nestmate lookups to be created without special privilege:
 807             if ((newModes & PRIVATE) != 0
 808                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
 809                 newModes &= ~(PRIVATE|PROTECTED);
 810             }
 811             if ((newModes & PUBLIC) != 0
 812                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
 813                 // The requested class it not accessible from the lookup class.
 814                 // No permissions.
 815                 newModes = 0;
 816             }
 817 
 818             checkUnprivilegedlookupClass(requestedLookupClass, newModes);
 819             return new Lookup(requestedLookupClass, newModes);
 820         }
 821 
 822 
 823         /**
 824          * Creates a lookup on the same lookup class which this lookup object
 825          * finds members, but with a lookup mode that has lost the given lookup mode.
 826          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
 827          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED} or {@link #PRIVATE PRIVATE}.
 828          * {@link #PROTECTED PROTECTED} and {@link #UNCONDITIONAL UNCONDITIONAL} are always
 829          * dropped and so the resulting lookup mode will never have these access capabilities.
 830          * When dropping {@code PACKAGE} then the resulting lookup will not have {@code PACKAGE}
 831          * or {@code PRIVATE} access. When dropping {@code MODULE} then the resulting lookup will
 832          * not have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. If {@code PUBLIC}
 833          * is dropped then the resulting lookup has no access.
 834          * @param modeToDrop the lookup mode to drop
 835          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
 836          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
 837          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL}
 838          * @see MethodHandles#privateLookupIn
 839          * @since 9
 840          */
 841         public Lookup dropLookupMode(int modeToDrop) {
 842             int oldModes = lookupModes();
 843             int newModes = oldModes & ~(modeToDrop | PROTECTED | UNCONDITIONAL);
 844             switch (modeToDrop) {
 845                 case PUBLIC: newModes &= ~(ALL_MODES); break;
 846                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
 847                 case PACKAGE: newModes &= ~(PRIVATE); break;
 848                 case PROTECTED:
 849                 case PRIVATE:
 850                 case UNCONDITIONAL: break;
 851                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
 852             }
 853             if (newModes == oldModes) return this;  // return self if no change
 854             return new Lookup(lookupClass(), newModes);
 855         }
 856 
 857         // Make sure outer class is initialized first.
 858         static { IMPL_NAMES.getClass(); }
 859 
 860         /** Package-private version of lookup which is trusted. */
 861         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
 862 
 863         /** Version of lookup which is trusted minimally.
 864          *  It can only be used to create method handles to publicly accessible
 865          *  members in packages that are exported unconditionally.
 866          */
 867         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, (PUBLIC|UNCONDITIONAL));
 868 
 869         private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) {
 870             String name = lookupClass.getName();
 871             if (name.startsWith("java.lang.invoke."))
 872                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
 873 
 874             // For caller-sensitive MethodHandles.lookup() disallow lookup from
 875             // restricted packages.  This a fragile and blunt approach.
 876             // TODO replace with a more formal and less fragile mechanism
 877             // that does not bluntly restrict classes under packages within
 878             // java.base from looking up MethodHandles or VarHandles.
 879             if (allowedModes == FULL_POWER_MODES && lookupClass.getClassLoader() == null) {
 880                 if ((name.startsWith("java.") &&
 881                      !name.equals("java.lang.Thread") &&
 882                      !name.startsWith("java.util.concurrent.")) ||
 883                     (name.startsWith("sun.") &&
 884                      !name.startsWith("sun.invoke."))) {
 885                     throw newIllegalArgumentException("illegal lookupClass: " + lookupClass);
 886                 }
 887             }
 888         }
 889 
 890         /**
 891          * Displays the name of the class from which lookups are to be made.
 892          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
 893          * If there are restrictions on the access permitted to this lookup,
 894          * this is indicated by adding a suffix to the class name, consisting
 895          * of a slash and a keyword.  The keyword represents the strongest
 896          * allowed access, and is chosen as follows:
 897          * <ul>
 898          * <li>If no access is allowed, the suffix is "/noaccess".
 899          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
 900          * <li>If only public access and unconditional access are allowed, the suffix is "/publicLookup".
 901          * <li>If only public and module access are allowed, the suffix is "/module".
 902          * <li>If only public, module and package access are allowed, the suffix is "/package".
 903          * <li>If only public, module, package, and private access are allowed, the suffix is "/private".
 904          * </ul>
 905          * If none of the above cases apply, it is the case that full
 906          * access (public, module, package, private, and protected) is allowed.
 907          * In this case, no suffix is added.
 908          * This is true only of an object obtained originally from
 909          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
 910          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
 911          * always have restricted access, and will display a suffix.
 912          * <p>
 913          * (It may seem strange that protected access should be
 914          * stronger than private access.  Viewed independently from
 915          * package access, protected access is the first to be lost,
 916          * because it requires a direct subclass relationship between
 917          * caller and callee.)
 918          * @see #in
 919          *
 920          * @revised 9
 921          * @spec JPMS
 922          */
 923         @Override
 924         public String toString() {
 925             String cname = lookupClass.getName();
 926             switch (allowedModes) {
 927             case 0:  // no privileges
 928                 return cname + "/noaccess";
 929             case PUBLIC:
 930                 return cname + "/public";
 931             case PUBLIC|UNCONDITIONAL:
 932                 return cname  + "/publicLookup";
 933             case PUBLIC|MODULE:
 934                 return cname + "/module";
 935             case PUBLIC|MODULE|PACKAGE:
 936                 return cname + "/package";
 937             case FULL_POWER_MODES & ~PROTECTED:
 938                 return cname + "/private";
 939             case FULL_POWER_MODES:
 940                 return cname;
 941             case TRUSTED:
 942                 return "/trusted";  // internal only; not exported
 943             default:  // Should not happen, but it's a bitfield...
 944                 cname = cname + "/" + Integer.toHexString(allowedModes);
 945                 assert(false) : cname;
 946                 return cname;
 947             }
 948         }
 949 
 950         /**
 951          * Produces a method handle for a static method.
 952          * The type of the method handle will be that of the method.
 953          * (Since static methods do not take receivers, there is no
 954          * additional receiver argument inserted into the method handle type,
 955          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
 956          * The method and all its argument types must be accessible to the lookup object.
 957          * <p>
 958          * The returned method handle will have
 959          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 960          * the method's variable arity modifier bit ({@code 0x0080}) is set.
 961          * <p>
 962          * If the returned method handle is invoked, the method's class will
 963          * be initialized, if it has not already been initialized.
 964          * <p><b>Example:</b>
 965          * <blockquote><pre>{@code
 966 import static java.lang.invoke.MethodHandles.*;
 967 import static java.lang.invoke.MethodType.*;
 968 ...
 969 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
 970   "asList", methodType(List.class, Object[].class));
 971 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
 972          * }</pre></blockquote>
 973          * @param refc the class from which the method is accessed
 974          * @param name the name of the method
 975          * @param type the type of the method
 976          * @return the desired method handle
 977          * @throws NoSuchMethodException if the method does not exist
 978          * @throws IllegalAccessException if access checking fails,
 979          *                                or if the method is not {@code static},
 980          *                                or if the method's variable arity modifier bit
 981          *                                is set and {@code asVarargsCollector} fails
 982          * @exception SecurityException if a security manager is present and it
 983          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
 984          * @throws NullPointerException if any argument is null
 985          */
 986         public
 987         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
 988             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
 989             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
 990         }
 991 
 992         /**
 993          * Produces a method handle for a virtual method.
 994          * The type of the method handle will be that of the method,
 995          * with the receiver type (usually {@code refc}) prepended.
 996          * The method and all its argument types must be accessible to the lookup object.
 997          * <p>
 998          * When called, the handle will treat the first argument as a receiver
 999          * and dispatch on the receiver's type to determine which method
1000          * implementation to enter.
1001          * (The dispatching action is identical with that performed by an
1002          * {@code invokevirtual} or {@code invokeinterface} instruction.)
1003          * <p>
1004          * The first argument will be of type {@code refc} if the lookup
1005          * class has full privileges to access the member.  Otherwise
1006          * the member must be {@code protected} and the first argument
1007          * will be restricted in type to the lookup class.
1008          * <p>
1009          * The returned method handle will have
1010          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1011          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1012          * <p>
1013          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
1014          * instructions and method handles produced by {@code findVirtual},
1015          * if the class is {@code MethodHandle} and the name string is
1016          * {@code invokeExact} or {@code invoke}, the resulting
1017          * method handle is equivalent to one produced by
1018          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
1019          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
1020          * with the same {@code type} argument.
1021          * <p>
1022          * If the class is {@code VarHandle} and the name string corresponds to
1023          * the name of a signature-polymorphic access mode method, the resulting
1024          * method handle is equivalent to one produced by
1025          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
1026          * the access mode corresponding to the name string and with the same
1027          * {@code type} arguments.
1028          * <p>
1029          * <b>Example:</b>
1030          * <blockquote><pre>{@code
1031 import static java.lang.invoke.MethodHandles.*;
1032 import static java.lang.invoke.MethodType.*;
1033 ...
1034 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
1035   "concat", methodType(String.class, String.class));
1036 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
1037   "hashCode", methodType(int.class));
1038 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
1039   "hashCode", methodType(int.class));
1040 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
1041 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
1042 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
1043 // interface method:
1044 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
1045   "subSequence", methodType(CharSequence.class, int.class, int.class));
1046 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
1047 // constructor "internal method" must be accessed differently:
1048 MethodType MT_newString = methodType(void.class); //()V for new String()
1049 try { assertEquals("impossible", lookup()
1050         .findVirtual(String.class, "<init>", MT_newString));
1051  } catch (NoSuchMethodException ex) { } // OK
1052 MethodHandle MH_newString = publicLookup()
1053   .findConstructor(String.class, MT_newString);
1054 assertEquals("", (String) MH_newString.invokeExact());
1055          * }</pre></blockquote>
1056          *
1057          * @param refc the class or interface from which the method is accessed
1058          * @param name the name of the method
1059          * @param type the type of the method, with the receiver argument omitted
1060          * @return the desired method handle
1061          * @throws NoSuchMethodException if the method does not exist
1062          * @throws IllegalAccessException if access checking fails,
1063          *                                or if the method is {@code static},
1064          *                                or if the method is {@code private} method of interface,
1065          *                                or if the method's variable arity modifier bit
1066          *                                is set and {@code asVarargsCollector} fails
1067          * @exception SecurityException if a security manager is present and it
1068          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1069          * @throws NullPointerException if any argument is null
1070          */
1071         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1072             if (refc == MethodHandle.class) {
1073                 MethodHandle mh = findVirtualForMH(name, type);
1074                 if (mh != null)  return mh;
1075             } else if (refc == VarHandle.class) {
1076                 MethodHandle mh = findVirtualForVH(name, type);
1077                 if (mh != null)  return mh;
1078             }
1079             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
1080             MemberName method = resolveOrFail(refKind, refc, name, type);
1081             return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
1082         }
1083         private MethodHandle findVirtualForMH(String name, MethodType type) {
1084             // these names require special lookups because of the implicit MethodType argument
1085             if ("invoke".equals(name))
1086                 return invoker(type);
1087             if ("invokeExact".equals(name))
1088                 return exactInvoker(type);
1089             assert(!MemberName.isMethodHandleInvokeName(name));
1090             return null;
1091         }
1092         private MethodHandle findVirtualForVH(String name, MethodType type) {
1093             try {
1094                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
1095             } catch (IllegalArgumentException e) {
1096                 return null;
1097             }
1098         }
1099 
1100         /**
1101          * Produces a method handle which creates an object and initializes it, using
1102          * the constructor of the specified type.
1103          * The parameter types of the method handle will be those of the constructor,
1104          * while the return type will be a reference to the constructor's class.
1105          * The constructor and all its argument types must be accessible to the lookup object.
1106          * <p>
1107          * The requested type must have a return type of {@code void}.
1108          * (This is consistent with the JVM's treatment of constructor type descriptors.)
1109          * <p>
1110          * The returned method handle will have
1111          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1112          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1113          * <p>
1114          * If the returned method handle is invoked, the constructor's class will
1115          * be initialized, if it has not already been initialized.
1116          * <p><b>Example:</b>
1117          * <blockquote><pre>{@code
1118 import static java.lang.invoke.MethodHandles.*;
1119 import static java.lang.invoke.MethodType.*;
1120 ...
1121 MethodHandle MH_newArrayList = publicLookup().findConstructor(
1122   ArrayList.class, methodType(void.class, Collection.class));
1123 Collection orig = Arrays.asList("x", "y");
1124 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
1125 assert(orig != copy);
1126 assertEquals(orig, copy);
1127 // a variable-arity constructor:
1128 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
1129   ProcessBuilder.class, methodType(void.class, String[].class));
1130 ProcessBuilder pb = (ProcessBuilder)
1131   MH_newProcessBuilder.invoke("x", "y", "z");
1132 assertEquals("[x, y, z]", pb.command().toString());
1133          * }</pre></blockquote>
1134          * @param refc the class or interface from which the method is accessed
1135          * @param type the type of the method, with the receiver argument omitted, and a void return type
1136          * @return the desired method handle
1137          * @throws NoSuchMethodException if the constructor does not exist
1138          * @throws IllegalAccessException if access checking fails
1139          *                                or if the method's variable arity modifier bit
1140          *                                is set and {@code asVarargsCollector} fails
1141          * @exception SecurityException if a security manager is present and it
1142          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1143          * @throws NullPointerException if any argument is null
1144          */
1145         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1146             if (refc.isArray()) {
1147                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
1148             }
1149             String name = "<init>";
1150             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
1151             return getDirectConstructor(refc, ctor);
1152         }
1153 
1154         /**
1155          * Looks up a class by name from the lookup context defined by this {@code Lookup} object. The static
1156          * initializer of the class is not run.
1157          * <p>
1158          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, its class
1159          * loader, and the {@linkplain #lookupModes() lookup modes}. In particular, the method first attempts to
1160          * load the requested class, and then determines whether the class is accessible to this lookup object.
1161          *
1162          * @param targetName the fully qualified name of the class to be looked up.
1163          * @return the requested class.
1164          * @exception SecurityException if a security manager is present and it
1165          *            <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1166          * @throws LinkageError if the linkage fails
1167          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
1168          * @throws IllegalAccessException if the class is not accessible, using the allowed access
1169          * modes.
1170          * @exception SecurityException if a security manager is present and it
1171          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1172          * @since 9
1173          */
1174         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
1175             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
1176             return accessClass(targetClass);
1177         }
1178 
1179         /**
1180          * Determines if a class can be accessed from the lookup context defined by this {@code Lookup} object. The
1181          * static initializer of the class is not run.
1182          * <p>
1183          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class} and the
1184          * {@linkplain #lookupModes() lookup modes}.
1185          *
1186          * @param targetClass the class to be access-checked
1187          *
1188          * @return the class that has been access-checked
1189          *
1190          * @throws IllegalAccessException if the class is not accessible from the lookup class, using the allowed access
1191          * modes.
1192          * @exception SecurityException if a security manager is present and it
1193          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1194          * @since 9
1195          */
1196         public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
1197             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, allowedModes)) {
1198                 throw new MemberName(targetClass).makeAccessException("access violation", this);
1199             }
1200             checkSecurityManager(targetClass, null);
1201             return targetClass;
1202         }
1203 
1204         /**
1205          * Produces an early-bound method handle for a virtual method.
1206          * It will bypass checks for overriding methods on the receiver,
1207          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1208          * instruction from within the explicitly specified {@code specialCaller}.
1209          * The type of the method handle will be that of the method,
1210          * with a suitably restricted receiver type prepended.
1211          * (The receiver type will be {@code specialCaller} or a subtype.)
1212          * The method and all its argument types must be accessible
1213          * to the lookup object.
1214          * <p>
1215          * Before method resolution,
1216          * if the explicitly specified caller class is not identical with the
1217          * lookup class, or if this lookup object does not have
1218          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1219          * privileges, the access fails.
1220          * <p>
1221          * The returned method handle will have
1222          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1223          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1224          * <p style="font-size:smaller;">
1225          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
1226          * even though the {@code invokespecial} instruction can refer to them
1227          * in special circumstances.  Use {@link #findConstructor findConstructor}
1228          * to access instance initialization methods in a safe manner.)</em>
1229          * <p><b>Example:</b>
1230          * <blockquote><pre>{@code
1231 import static java.lang.invoke.MethodHandles.*;
1232 import static java.lang.invoke.MethodType.*;
1233 ...
1234 static class Listie extends ArrayList {
1235   public String toString() { return "[wee Listie]"; }
1236   static Lookup lookup() { return MethodHandles.lookup(); }
1237 }
1238 ...
1239 // no access to constructor via invokeSpecial:
1240 MethodHandle MH_newListie = Listie.lookup()
1241   .findConstructor(Listie.class, methodType(void.class));
1242 Listie l = (Listie) MH_newListie.invokeExact();
1243 try { assertEquals("impossible", Listie.lookup().findSpecial(
1244         Listie.class, "<init>", methodType(void.class), Listie.class));
1245  } catch (NoSuchMethodException ex) { } // OK
1246 // access to super and self methods via invokeSpecial:
1247 MethodHandle MH_super = Listie.lookup().findSpecial(
1248   ArrayList.class, "toString" , methodType(String.class), Listie.class);
1249 MethodHandle MH_this = Listie.lookup().findSpecial(
1250   Listie.class, "toString" , methodType(String.class), Listie.class);
1251 MethodHandle MH_duper = Listie.lookup().findSpecial(
1252   Object.class, "toString" , methodType(String.class), Listie.class);
1253 assertEquals("[]", (String) MH_super.invokeExact(l));
1254 assertEquals(""+l, (String) MH_this.invokeExact(l));
1255 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
1256 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
1257         String.class, "toString", methodType(String.class), Listie.class));
1258  } catch (IllegalAccessException ex) { } // OK
1259 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
1260 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
1261          * }</pre></blockquote>
1262          *
1263          * @param refc the class or interface from which the method is accessed
1264          * @param name the name of the method (which must not be "&lt;init&gt;")
1265          * @param type the type of the method, with the receiver argument omitted
1266          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
1267          * @return the desired method handle
1268          * @throws NoSuchMethodException if the method does not exist
1269          * @throws IllegalAccessException if access checking fails,
1270          *                                or if the method is {@code static},
1271          *                                or if the method's variable arity modifier bit
1272          *                                is set and {@code asVarargsCollector} fails
1273          * @exception SecurityException if a security manager is present and it
1274          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1275          * @throws NullPointerException if any argument is null
1276          */
1277         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
1278                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
1279             checkSpecialCaller(specialCaller, refc);
1280             Lookup specialLookup = this.in(specialCaller);
1281             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
1282             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1283         }
1284 
1285         /**
1286          * Produces a method handle giving read access to a non-static field.
1287          * The type of the method handle will have a return type of the field's
1288          * value type.
1289          * The method handle's single argument will be the instance containing
1290          * the field.
1291          * Access checking is performed immediately on behalf of the lookup class.
1292          * @param refc the class or interface from which the method is accessed
1293          * @param name the field's name
1294          * @param type the field's type
1295          * @return a method handle which can load values from the field
1296          * @throws NoSuchFieldException if the field does not exist
1297          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1298          * @exception SecurityException if a security manager is present and it
1299          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1300          * @throws NullPointerException if any argument is null
1301          * @see #findVarHandle(Class, String, Class)
1302          */
1303         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1304             MemberName field = resolveOrFail(REF_getField, refc, name, type);
1305             return getDirectField(REF_getField, refc, field);
1306         }
1307 
1308         /**
1309          * Produces a method handle giving write access to a non-static field.
1310          * The type of the method handle will have a void return type.
1311          * The method handle will take two arguments, the instance containing
1312          * the field, and the value to be stored.
1313          * The second argument will be of the field's value type.
1314          * Access checking is performed immediately on behalf of the lookup class.
1315          * @param refc the class or interface from which the method is accessed
1316          * @param name the field's name
1317          * @param type the field's type
1318          * @return a method handle which can store values into the field
1319          * @throws NoSuchFieldException if the field does not exist
1320          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1321          * @exception SecurityException if a security manager is present and it
1322          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1323          * @throws NullPointerException if any argument is null
1324          * @see #findVarHandle(Class, String, Class)
1325          */
1326         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1327             MemberName field = resolveOrFail(REF_putField, refc, name, type);
1328             return getDirectField(REF_putField, refc, field);
1329         }
1330 
1331         /**
1332          * Produces a VarHandle giving access to non-static fields of type
1333          * {@code T} declared by a receiver class of type {@code R}, supporting
1334          * shape {@code (R : T)}.
1335          * <p>
1336          * Access checking is performed immediately on behalf of the lookup
1337          * class.
1338          * <p>
1339          * Certain access modes of the returned VarHandle are unsupported under
1340          * the following conditions:
1341          * <ul>
1342          * <li>if the field is declared {@code final}, then the write, atomic
1343          *     update, numeric atomic update, and bitwise atomic update access
1344          *     modes are unsupported.
1345          * <li>if the field type is anything other than {@code byte},
1346          *     {@code short}, {@code char}, {@code int}, {@code long},
1347          *     {@code float}, or {@code double} then numeric atomic update
1348          *     access modes are unsupported.
1349          * <li>if the field type is anything other than {@code boolean},
1350          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1351          *     {@code long} then bitwise atomic update access modes are
1352          *     unsupported.
1353          * </ul>
1354          * <p>
1355          * If the field is declared {@code volatile} then the returned VarHandle
1356          * will override access to the field (effectively ignore the
1357          * {@code volatile} declaration) in accordance to it's specified
1358          * access modes.
1359          * <p>
1360          * If the field type is {@code float} or {@code double} then numeric
1361          * and atomic update access modes compare values using their bitwise
1362          * representation (see {@link Float#floatToRawIntBits} and
1363          * {@link Double#doubleToRawLongBits}, respectively).
1364          * @apiNote
1365          * Bitwise comparison of {@code float} values or {@code double} values,
1366          * as performed by the numeric and atomic update access modes, differ
1367          * from the primitive {@code ==} operator and the {@link Float#equals}
1368          * and {@link Double#equals} methods, specifically with respect to
1369          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1370          * Care should be taken when performing a compare and set or a compare
1371          * and exchange operation with such values since the operation may
1372          * unexpectedly fail.
1373          * There are many possible NaN values that are considered to be
1374          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1375          * provided by Java can distinguish between them.  Operation failure can
1376          * occur if the expected or witness value is a NaN value and it is
1377          * transformed (perhaps in a platform specific manner) into another NaN
1378          * value, and thus has a different bitwise representation (see
1379          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1380          * details).
1381          * The values {@code -0.0} and {@code +0.0} have different bitwise
1382          * representations but are considered equal when using the primitive
1383          * {@code ==} operator.  Operation failure can occur if, for example, a
1384          * numeric algorithm computes an expected value to be say {@code -0.0}
1385          * and previously computed the witness value to be say {@code +0.0}.
1386          * @param recv the receiver class, of type {@code R}, that declares the
1387          * non-static field
1388          * @param name the field's name
1389          * @param type the field's type, of type {@code T}
1390          * @return a VarHandle giving access to non-static fields.
1391          * @throws NoSuchFieldException if the field does not exist
1392          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1393          * @exception SecurityException if a security manager is present and it
1394          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1395          * @throws NullPointerException if any argument is null
1396          * @since 9
1397          */
1398         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1399             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
1400             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
1401             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
1402         }
1403 
1404         /**
1405          * Produces a method handle giving read access to a static field.
1406          * The type of the method handle will have a return type of the field's
1407          * value type.
1408          * The method handle will take no arguments.
1409          * Access checking is performed immediately on behalf of the lookup class.
1410          * <p>
1411          * If the returned method handle is invoked, the field's class will
1412          * be initialized, if it has not already been initialized.
1413          * @param refc the class or interface from which the method is accessed
1414          * @param name the field's name
1415          * @param type the field's type
1416          * @return a method handle which can load values from the field
1417          * @throws NoSuchFieldException if the field does not exist
1418          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1419          * @exception SecurityException if a security manager is present and it
1420          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1421          * @throws NullPointerException if any argument is null
1422          */
1423         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1424             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
1425             return getDirectField(REF_getStatic, refc, field);
1426         }
1427 
1428         /**
1429          * Produces a method handle giving write access to a static field.
1430          * The type of the method handle will have a void return type.
1431          * The method handle will take a single
1432          * argument, of the field's value type, the value to be stored.
1433          * Access checking is performed immediately on behalf of the lookup class.
1434          * <p>
1435          * If the returned method handle is invoked, the field's class will
1436          * be initialized, if it has not already been initialized.
1437          * @param refc the class or interface from which the method is accessed
1438          * @param name the field's name
1439          * @param type the field's type
1440          * @return a method handle which can store values into the field
1441          * @throws NoSuchFieldException if the field does not exist
1442          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1443          * @exception SecurityException if a security manager is present and it
1444          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1445          * @throws NullPointerException if any argument is null
1446          */
1447         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1448             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
1449             return getDirectField(REF_putStatic, refc, field);
1450         }
1451 
1452         /**
1453          * Produces a VarHandle giving access to a static field of type
1454          * {@code T} declared by a given declaring class, supporting shape
1455          * {@code ((empty) : T)}.
1456          * <p>
1457          * Access checking is performed immediately on behalf of the lookup
1458          * class.
1459          * <p>
1460          * If the returned VarHandle is operated on, the declaring class will be
1461          * initialized, if it has not already been initialized.
1462          * <p>
1463          * Certain access modes of the returned VarHandle are unsupported under
1464          * the following conditions:
1465          * <ul>
1466          * <li>if the field is declared {@code final}, then the write, atomic
1467          *     update, numeric atomic update, and bitwise atomic update access
1468          *     modes are unsupported.
1469          * <li>if the field type is anything other than {@code byte},
1470          *     {@code short}, {@code char}, {@code int}, {@code long},
1471          *     {@code float}, or {@code double}, then numeric atomic update
1472          *     access modes are unsupported.
1473          * <li>if the field type is anything other than {@code boolean},
1474          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1475          *     {@code long} then bitwise atomic update access modes are
1476          *     unsupported.
1477          * </ul>
1478          * <p>
1479          * If the field is declared {@code volatile} then the returned VarHandle
1480          * will override access to the field (effectively ignore the
1481          * {@code volatile} declaration) in accordance to it's specified
1482          * access modes.
1483          * <p>
1484          * If the field type is {@code float} or {@code double} then numeric
1485          * and atomic update access modes compare values using their bitwise
1486          * representation (see {@link Float#floatToRawIntBits} and
1487          * {@link Double#doubleToRawLongBits}, respectively).
1488          * @apiNote
1489          * Bitwise comparison of {@code float} values or {@code double} values,
1490          * as performed by the numeric and atomic update access modes, differ
1491          * from the primitive {@code ==} operator and the {@link Float#equals}
1492          * and {@link Double#equals} methods, specifically with respect to
1493          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1494          * Care should be taken when performing a compare and set or a compare
1495          * and exchange operation with such values since the operation may
1496          * unexpectedly fail.
1497          * There are many possible NaN values that are considered to be
1498          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1499          * provided by Java can distinguish between them.  Operation failure can
1500          * occur if the expected or witness value is a NaN value and it is
1501          * transformed (perhaps in a platform specific manner) into another NaN
1502          * value, and thus has a different bitwise representation (see
1503          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1504          * details).
1505          * The values {@code -0.0} and {@code +0.0} have different bitwise
1506          * representations but are considered equal when using the primitive
1507          * {@code ==} operator.  Operation failure can occur if, for example, a
1508          * numeric algorithm computes an expected value to be say {@code -0.0}
1509          * and previously computed the witness value to be say {@code +0.0}.
1510          * @param decl the class that declares the static field
1511          * @param name the field's name
1512          * @param type the field's type, of type {@code T}
1513          * @return a VarHandle giving access to a static field
1514          * @throws NoSuchFieldException if the field does not exist
1515          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1516          * @exception SecurityException if a security manager is present and it
1517          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1518          * @throws NullPointerException if any argument is null
1519          * @since 9
1520          */
1521         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1522             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
1523             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
1524             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
1525         }
1526 
1527         /**
1528          * Produces an early-bound method handle for a non-static method.
1529          * The receiver must have a supertype {@code defc} in which a method
1530          * of the given name and type is accessible to the lookup class.
1531          * The method and all its argument types must be accessible to the lookup object.
1532          * The type of the method handle will be that of the method,
1533          * without any insertion of an additional receiver parameter.
1534          * The given receiver will be bound into the method handle,
1535          * so that every call to the method handle will invoke the
1536          * requested method on the given receiver.
1537          * <p>
1538          * The returned method handle will have
1539          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1540          * the method's variable arity modifier bit ({@code 0x0080}) is set
1541          * <em>and</em> the trailing array argument is not the only argument.
1542          * (If the trailing array argument is the only argument,
1543          * the given receiver value will be bound to it.)
1544          * <p>
1545          * This is equivalent to the following code:
1546          * <blockquote><pre>{@code
1547 import static java.lang.invoke.MethodHandles.*;
1548 import static java.lang.invoke.MethodType.*;
1549 ...
1550 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
1551 MethodHandle mh1 = mh0.bindTo(receiver);
1552 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
1553 return mh1;
1554          * }</pre></blockquote>
1555          * where {@code defc} is either {@code receiver.getClass()} or a super
1556          * type of that class, in which the requested method is accessible
1557          * to the lookup class.
1558          * (Note that {@code bindTo} does not preserve variable arity.)
1559          * @param receiver the object from which the method is accessed
1560          * @param name the name of the method
1561          * @param type the type of the method, with the receiver argument omitted
1562          * @return the desired method handle
1563          * @throws NoSuchMethodException if the method does not exist
1564          * @throws IllegalAccessException if access checking fails
1565          *                                or if the method's variable arity modifier bit
1566          *                                is set and {@code asVarargsCollector} fails
1567          * @exception SecurityException if a security manager is present and it
1568          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1569          * @throws NullPointerException if any argument is null
1570          * @see MethodHandle#bindTo
1571          * @see #findVirtual
1572          */
1573         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1574             Class<? extends Object> refc = receiver.getClass(); // may get NPE
1575             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
1576             MethodHandle mh = getDirectMethodNoRestrict(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1577             return mh.bindArgumentL(0, receiver).setVarargs(method);
1578         }
1579 
1580         /**
1581          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1582          * to <i>m</i>, if the lookup class has permission.
1583          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
1584          * If <i>m</i> is virtual, overriding is respected on every call.
1585          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
1586          * The type of the method handle will be that of the method,
1587          * with the receiver type prepended (but only if it is non-static).
1588          * If the method's {@code accessible} flag is not set,
1589          * access checking is performed immediately on behalf of the lookup class.
1590          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
1591          * <p>
1592          * The returned method handle will have
1593          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1594          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1595          * <p>
1596          * If <i>m</i> is static, and
1597          * if the returned method handle is invoked, the method's class will
1598          * be initialized, if it has not already been initialized.
1599          * @param m the reflected method
1600          * @return a method handle which can invoke the reflected method
1601          * @throws IllegalAccessException if access checking fails
1602          *                                or if the method's variable arity modifier bit
1603          *                                is set and {@code asVarargsCollector} fails
1604          * @throws NullPointerException if the argument is null
1605          */
1606         public MethodHandle unreflect(Method m) throws IllegalAccessException {
1607             if (m.getDeclaringClass() == MethodHandle.class) {
1608                 MethodHandle mh = unreflectForMH(m);
1609                 if (mh != null)  return mh;
1610             }
1611             if (m.getDeclaringClass() == VarHandle.class) {
1612                 MethodHandle mh = unreflectForVH(m);
1613                 if (mh != null)  return mh;
1614             }
1615             MemberName method = new MemberName(m);
1616             byte refKind = method.getReferenceKind();
1617             if (refKind == REF_invokeSpecial)
1618                 refKind = REF_invokeVirtual;
1619             assert(method.isMethod());
1620             @SuppressWarnings("deprecation")
1621             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
1622             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
1623         }
1624         private MethodHandle unreflectForMH(Method m) {
1625             // these names require special lookups because they throw UnsupportedOperationException
1626             if (MemberName.isMethodHandleInvokeName(m.getName()))
1627                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
1628             return null;
1629         }
1630         private MethodHandle unreflectForVH(Method m) {
1631             // these names require special lookups because they throw UnsupportedOperationException
1632             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
1633                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
1634             return null;
1635         }
1636 
1637         /**
1638          * Produces a method handle for a reflected method.
1639          * It will bypass checks for overriding methods on the receiver,
1640          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1641          * instruction from within the explicitly specified {@code specialCaller}.
1642          * The type of the method handle will be that of the method,
1643          * with a suitably restricted receiver type prepended.
1644          * (The receiver type will be {@code specialCaller} or a subtype.)
1645          * If the method's {@code accessible} flag is not set,
1646          * access checking is performed immediately on behalf of the lookup class,
1647          * as if {@code invokespecial} instruction were being linked.
1648          * <p>
1649          * Before method resolution,
1650          * if the explicitly specified caller class is not identical with the
1651          * lookup class, or if this lookup object does not have
1652          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1653          * privileges, the access fails.
1654          * <p>
1655          * The returned method handle will have
1656          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1657          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1658          * @param m the reflected method
1659          * @param specialCaller the class nominally calling the method
1660          * @return a method handle which can invoke the reflected method
1661          * @throws IllegalAccessException if access checking fails,
1662          *                                or if the method is {@code static},
1663          *                                or if the method's variable arity modifier bit
1664          *                                is set and {@code asVarargsCollector} fails
1665          * @throws NullPointerException if any argument is null
1666          */
1667         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
1668             checkSpecialCaller(specialCaller, null);
1669             Lookup specialLookup = this.in(specialCaller);
1670             MemberName method = new MemberName(m, true);
1671             assert(method.isMethod());
1672             // ignore m.isAccessible:  this is a new kind of access
1673             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
1674         }
1675 
1676         /**
1677          * Produces a method handle for a reflected constructor.
1678          * The type of the method handle will be that of the constructor,
1679          * with the return type changed to the declaring class.
1680          * The method handle will perform a {@code newInstance} operation,
1681          * creating a new instance of the constructor's class on the
1682          * arguments passed to the method handle.
1683          * <p>
1684          * If the constructor's {@code accessible} flag is not set,
1685          * access checking is performed immediately on behalf of the lookup class.
1686          * <p>
1687          * The returned method handle will have
1688          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1689          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1690          * <p>
1691          * If the returned method handle is invoked, the constructor's class will
1692          * be initialized, if it has not already been initialized.
1693          * @param c the reflected constructor
1694          * @return a method handle which can invoke the reflected constructor
1695          * @throws IllegalAccessException if access checking fails
1696          *                                or if the method's variable arity modifier bit
1697          *                                is set and {@code asVarargsCollector} fails
1698          * @throws NullPointerException if the argument is null
1699          */
1700         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
1701             MemberName ctor = new MemberName(c);
1702             assert(ctor.isConstructor());
1703             @SuppressWarnings("deprecation")
1704             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
1705             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
1706         }
1707 
1708         /**
1709          * Produces a method handle giving read access to a reflected field.
1710          * The type of the method handle will have a return type of the field's
1711          * value type.
1712          * If the field is static, the method handle will take no arguments.
1713          * Otherwise, its single argument will be the instance containing
1714          * the field.
1715          * If the field's {@code accessible} flag is not set,
1716          * access checking is performed immediately on behalf of the lookup class.
1717          * <p>
1718          * If the field is static, and
1719          * if the returned method handle is invoked, the field's class will
1720          * be initialized, if it has not already been initialized.
1721          * @param f the reflected field
1722          * @return a method handle which can load values from the reflected field
1723          * @throws IllegalAccessException if access checking fails
1724          * @throws NullPointerException if the argument is null
1725          */
1726         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
1727             return unreflectField(f, false);
1728         }
1729         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
1730             MemberName field = new MemberName(f, isSetter);
1731             assert(isSetter
1732                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
1733                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
1734             @SuppressWarnings("deprecation")
1735             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
1736             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
1737         }
1738 
1739         /**
1740          * Produces a method handle giving write access to a reflected field.
1741          * The type of the method handle will have a void return type.
1742          * If the field is static, the method handle will take a single
1743          * argument, of the field's value type, the value to be stored.
1744          * Otherwise, the two arguments will be the instance containing
1745          * the field, and the value to be stored.
1746          * If the field's {@code accessible} flag is not set,
1747          * access checking is performed immediately on behalf of the lookup class.
1748          * <p>
1749          * If the field is static, and
1750          * if the returned method handle is invoked, the field's class will
1751          * be initialized, if it has not already been initialized.
1752          * @param f the reflected field
1753          * @return a method handle which can store values into the reflected field
1754          * @throws IllegalAccessException if access checking fails
1755          * @throws NullPointerException if the argument is null
1756          */
1757         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1758             return unreflectField(f, true);
1759         }
1760 
1761         /**
1762          * Produces a VarHandle that accesses fields of type {@code T} declared
1763          * by a class of type {@code R}, as described by the given reflected
1764          * field.
1765          * If the field is non-static the VarHandle supports a shape of
1766          * {@code (R : T)}, otherwise supports a shape of {@code ((empty) : T)}.
1767          * <p>
1768          * Access checking is performed immediately on behalf of the lookup
1769          * class, regardless of the value of the field's {@code accessible}
1770          * flag.
1771          * <p>
1772          * If the field is static, and if the returned VarHandle is operated
1773          * on, the field's declaring class will be initialized, if it has not
1774          * already been initialized.
1775          * <p>
1776          * Certain access modes of the returned VarHandle are unsupported under
1777          * the following conditions:
1778          * <ul>
1779          * <li>if the field is declared {@code final}, then the write, atomic
1780          *     update, numeric atomic update, and bitwise atomic update access
1781          *     modes are unsupported.
1782          * <li>if the field type is anything other than {@code byte},
1783          *     {@code short}, {@code char}, {@code int}, {@code long},
1784          *     {@code float}, or {@code double} then numeric atomic update
1785          *     access modes are unsupported.
1786          * <li>if the field type is anything other than {@code boolean},
1787          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1788          *     {@code long} then bitwise atomic update access modes are
1789          *     unsupported.
1790          * </ul>
1791          * <p>
1792          * If the field is declared {@code volatile} then the returned VarHandle
1793          * will override access to the field (effectively ignore the
1794          * {@code volatile} declaration) in accordance to it's specified
1795          * access modes.
1796          * <p>
1797          * If the field type is {@code float} or {@code double} then numeric
1798          * and atomic update access modes compare values using their bitwise
1799          * representation (see {@link Float#floatToRawIntBits} and
1800          * {@link Double#doubleToRawLongBits}, respectively).
1801          * @apiNote
1802          * Bitwise comparison of {@code float} values or {@code double} values,
1803          * as performed by the numeric and atomic update access modes, differ
1804          * from the primitive {@code ==} operator and the {@link Float#equals}
1805          * and {@link Double#equals} methods, specifically with respect to
1806          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1807          * Care should be taken when performing a compare and set or a compare
1808          * and exchange operation with such values since the operation may
1809          * unexpectedly fail.
1810          * There are many possible NaN values that are considered to be
1811          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1812          * provided by Java can distinguish between them.  Operation failure can
1813          * occur if the expected or witness value is a NaN value and it is
1814          * transformed (perhaps in a platform specific manner) into another NaN
1815          * value, and thus has a different bitwise representation (see
1816          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1817          * details).
1818          * The values {@code -0.0} and {@code +0.0} have different bitwise
1819          * representations but are considered equal when using the primitive
1820          * {@code ==} operator.  Operation failure can occur if, for example, a
1821          * numeric algorithm computes an expected value to be say {@code -0.0}
1822          * and previously computed the witness value to be say {@code +0.0}.
1823          * @param f the reflected field, with a field of type {@code T}, and
1824          * a declaring class of type {@code R}
1825          * @return a VarHandle giving access to non-static fields or a static
1826          * field
1827          * @throws IllegalAccessException if access checking fails
1828          * @throws NullPointerException if the argument is null
1829          * @since 9
1830          */
1831         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
1832             MemberName getField = new MemberName(f, false);
1833             MemberName putField = new MemberName(f, true);
1834             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
1835                                                       f.getDeclaringClass(), getField, putField);
1836         }
1837 
1838         /**
1839          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1840          * created by this lookup object or a similar one.
1841          * Security and access checks are performed to ensure that this lookup object
1842          * is capable of reproducing the target method handle.
1843          * This means that the cracking may fail if target is a direct method handle
1844          * but was created by an unrelated lookup object.
1845          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
1846          * and was created by a lookup object for a different class.
1847          * @param target a direct method handle to crack into symbolic reference components
1848          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
1849          * @exception SecurityException if a security manager is present and it
1850          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1851          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
1852          * @exception NullPointerException if the target is {@code null}
1853          * @see MethodHandleInfo
1854          * @since 1.8
1855          */
1856         public MethodHandleInfo revealDirect(MethodHandle target) {
1857             MemberName member = target.internalMemberName();
1858             if (member == null || (!member.isResolved() &&
1859                                    !member.isMethodHandleInvoke() &&
1860                                    !member.isVarHandleMethodInvoke()))
1861                 throw newIllegalArgumentException("not a direct method handle");
1862             Class<?> defc = member.getDeclaringClass();
1863             byte refKind = member.getReferenceKind();
1864             assert(MethodHandleNatives.refKindIsValid(refKind));
1865             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
1866                 // Devirtualized method invocation is usually formally virtual.
1867                 // To avoid creating extra MemberName objects for this common case,
1868                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
1869                 refKind = REF_invokeVirtual;
1870             if (refKind == REF_invokeVirtual && defc.isInterface())
1871                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
1872                 refKind = REF_invokeInterface;
1873             // Check SM permissions and member access before cracking.
1874             try {
1875                 checkAccess(refKind, defc, member);
1876                 checkSecurityManager(defc, member);
1877             } catch (IllegalAccessException ex) {
1878                 throw new IllegalArgumentException(ex);
1879             }
1880             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
1881                 Class<?> callerClass = target.internalCallerClass();
1882                 if (!hasPrivateAccess() || callerClass != lookupClass())
1883                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
1884             }
1885             // Produce the handle to the results.
1886             return new InfoFromMemberName(this, member, refKind);
1887         }
1888 
1889         /// Helper methods, all package-private.
1890 
1891         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1892             checkSymbolicClass(refc);  // do this before attempting to resolve
1893             Objects.requireNonNull(name);
1894             Objects.requireNonNull(type);
1895             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1896                                             NoSuchFieldException.class);
1897         }
1898 
1899         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1900             checkSymbolicClass(refc);  // do this before attempting to resolve
1901             Objects.requireNonNull(name);
1902             Objects.requireNonNull(type);
1903             checkMethodName(refKind, name);  // NPE check on name
1904             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1905                                             NoSuchMethodException.class);
1906         }
1907 
1908         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
1909             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
1910             Objects.requireNonNull(member.getName());
1911             Objects.requireNonNull(member.getType());
1912             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
1913                                             ReflectiveOperationException.class);
1914         }
1915 
1916         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
1917             Objects.requireNonNull(refc);
1918             Class<?> caller = lookupClassOrNull();
1919             if (caller != null && !VerifyAccess.isClassAccessible(refc, caller, allowedModes))
1920                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
1921         }
1922 
1923         /** Check name for an illegal leading "&lt;" character. */
1924         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
1925             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
1926                 throw new NoSuchMethodException("illegal method name: "+name);
1927         }
1928 
1929 
1930         /**
1931          * Find my trustable caller class if m is a caller sensitive method.
1932          * If this lookup object has private access, then the caller class is the lookupClass.
1933          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
1934          */
1935         Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
1936             Class<?> callerClass = null;
1937             if (MethodHandleNatives.isCallerSensitive(m)) {
1938                 // Only lookups with private access are allowed to resolve caller-sensitive methods
1939                 if (hasPrivateAccess()) {
1940                     callerClass = lookupClass;
1941                 } else {
1942                     throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
1943                 }
1944             }
1945             return callerClass;
1946         }
1947 
1948         /**
1949          * Returns {@code true} if this lookup has {@code PRIVATE} access.
1950          * @return {@code true} if this lookup has {@code PRIVATE} acesss.
1951          * @since 9
1952          */
1953         public boolean hasPrivateAccess() {
1954             return (allowedModes & PRIVATE) != 0;
1955         }
1956 
1957         /**
1958          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
1959          * Determines a trustable caller class to compare with refc, the symbolic reference class.
1960          * If this lookup object has private access, then the caller class is the lookupClass.
1961          */
1962         void checkSecurityManager(Class<?> refc, MemberName m) {
1963             SecurityManager smgr = System.getSecurityManager();
1964             if (smgr == null)  return;
1965             if (allowedModes == TRUSTED)  return;
1966 
1967             // Step 1:
1968             boolean fullPowerLookup = hasPrivateAccess();
1969             if (!fullPowerLookup ||
1970                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
1971                 ReflectUtil.checkPackageAccess(refc);
1972             }
1973 
1974             if (m == null) {  // findClass or accessClass
1975                 // Step 2b:
1976                 if (!fullPowerLookup) {
1977                     smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
1978                 }
1979                 return;
1980             }
1981 
1982             // Step 2a:
1983             if (m.isPublic()) return;
1984             if (!fullPowerLookup) {
1985                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
1986             }
1987 
1988             // Step 3:
1989             Class<?> defc = m.getDeclaringClass();
1990             if (!fullPowerLookup && defc != refc) {
1991                 ReflectUtil.checkPackageAccess(defc);
1992             }
1993         }
1994 
1995         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
1996             boolean wantStatic = (refKind == REF_invokeStatic);
1997             String message;
1998             if (m.isConstructor())
1999                 message = "expected a method, not a constructor";
2000             else if (!m.isMethod())
2001                 message = "expected a method";
2002             else if (wantStatic != m.isStatic())
2003                 message = wantStatic ? "expected a static method" : "expected a non-static method";
2004             else
2005                 { checkAccess(refKind, refc, m); return; }
2006             throw m.makeAccessException(message, this);
2007         }
2008 
2009         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2010             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
2011             String message;
2012             if (wantStatic != m.isStatic())
2013                 message = wantStatic ? "expected a static field" : "expected a non-static field";
2014             else
2015                 { checkAccess(refKind, refc, m); return; }
2016             throw m.makeAccessException(message, this);
2017         }
2018 
2019         /** Check public/protected/private bits on the symbolic reference class and its member. */
2020         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2021             assert(m.referenceKindIsConsistentWith(refKind) &&
2022                    MethodHandleNatives.refKindIsValid(refKind) &&
2023                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
2024             int allowedModes = this.allowedModes;
2025             if (allowedModes == TRUSTED)  return;
2026             int mods = m.getModifiers();
2027             if (Modifier.isProtected(mods) &&
2028                     refKind == REF_invokeVirtual &&
2029                     m.getDeclaringClass() == Object.class &&
2030                     m.getName().equals("clone") &&
2031                     refc.isArray()) {
2032                 // The JVM does this hack also.
2033                 // (See ClassVerifier::verify_invoke_instructions
2034                 // and LinkResolver::check_method_accessability.)
2035                 // Because the JVM does not allow separate methods on array types,
2036                 // there is no separate method for int[].clone.
2037                 // All arrays simply inherit Object.clone.
2038                 // But for access checking logic, we make Object.clone
2039                 // (normally protected) appear to be public.
2040                 // Later on, when the DirectMethodHandle is created,
2041                 // its leading argument will be restricted to the
2042                 // requested array type.
2043                 // N.B. The return type is not adjusted, because
2044                 // that is *not* the bytecode behavior.
2045                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
2046             }
2047             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
2048                 // cannot "new" a protected ctor in a different package
2049                 mods ^= Modifier.PROTECTED;
2050             }
2051             if (Modifier.isFinal(mods) &&
2052                     MethodHandleNatives.refKindIsSetter(refKind))
2053                 throw m.makeAccessException("unexpected set of a final field", this);
2054             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
2055             if ((requestedModes & allowedModes) != 0) {
2056                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
2057                                                     mods, lookupClass(), allowedModes))
2058                     return;
2059             } else {
2060                 // Protected members can also be checked as if they were package-private.
2061                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
2062                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
2063                     return;
2064             }
2065             throw m.makeAccessException(accessFailedMessage(refc, m), this);
2066         }
2067 
2068         String accessFailedMessage(Class<?> refc, MemberName m) {
2069             Class<?> defc = m.getDeclaringClass();
2070             int mods = m.getModifiers();
2071             // check the class first:
2072             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
2073                                (defc == refc ||
2074                                 Modifier.isPublic(refc.getModifiers())));
2075             if (!classOK && (allowedModes & PACKAGE) != 0) {
2076                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), FULL_POWER_MODES) &&
2077                            (defc == refc ||
2078                             VerifyAccess.isClassAccessible(refc, lookupClass(), FULL_POWER_MODES)));
2079             }
2080             if (!classOK)
2081                 return "class is not public";
2082             if (Modifier.isPublic(mods))
2083                 return "access to public member failed";  // (how?, module not readable?)
2084             if (Modifier.isPrivate(mods))
2085                 return "member is private";
2086             if (Modifier.isProtected(mods))
2087                 return "member is protected";
2088             return "member is private to package";
2089         }
2090 
2091         private static final boolean ALLOW_NESTMATE_ACCESS = false;
2092 
2093         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
2094             int allowedModes = this.allowedModes;
2095             if (allowedModes == TRUSTED)  return;
2096             if (!hasPrivateAccess()
2097                 || (specialCaller != lookupClass()
2098                        // ensure non-abstract methods in superinterfaces can be special-invoked
2099                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))
2100                     && !(ALLOW_NESTMATE_ACCESS &&
2101                          VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
2102                 throw new MemberName(specialCaller).
2103                     makeAccessException("no private access for invokespecial", this);
2104         }
2105 
2106         private boolean restrictProtectedReceiver(MemberName method) {
2107             // The accessing class only has the right to use a protected member
2108             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
2109             if (!method.isProtected() || method.isStatic()
2110                 || allowedModes == TRUSTED
2111                 || method.getDeclaringClass() == lookupClass()
2112                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())
2113                 || (ALLOW_NESTMATE_ACCESS &&
2114                     VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
2115                 return false;
2116             return true;
2117         }
2118         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
2119             assert(!method.isStatic());
2120             // receiver type of mh is too wide; narrow to caller
2121             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
2122                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
2123             }
2124             MethodType rawType = mh.type();
2125             if (rawType.parameterType(0) == caller)  return mh;
2126             MethodType narrowType = rawType.changeParameterType(0, caller);
2127             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
2128             assert(mh.viewAsTypeChecks(narrowType, true));
2129             return mh.copyWith(narrowType, mh.form);
2130         }
2131 
2132         /** Check access and get the requested method. */
2133         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
2134             final boolean doRestrict    = true;
2135             final boolean checkSecurity = true;
2136             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
2137         }
2138         /** Check access and get the requested method, eliding receiver narrowing rules. */
2139         private MethodHandle getDirectMethodNoRestrict(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
2140             final boolean doRestrict    = false;
2141             final boolean checkSecurity = true;
2142             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
2143         }
2144         /** Check access and get the requested method, eliding security manager checks. */
2145         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
2146             final boolean doRestrict    = true;
2147             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2148             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
2149         }
2150         /** Common code for all methods; do not call directly except from immediately above. */
2151         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
2152                                                    boolean checkSecurity,
2153                                                    boolean doRestrict, Class<?> callerClass) throws IllegalAccessException {
2154             checkMethod(refKind, refc, method);
2155             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2156             if (checkSecurity)
2157                 checkSecurityManager(refc, method);
2158             assert(!method.isMethodHandleInvoke());
2159 
2160             if (refKind == REF_invokeSpecial &&
2161                 refc != lookupClass() &&
2162                 !refc.isInterface() &&
2163                 refc != lookupClass().getSuperclass() &&
2164                 refc.isAssignableFrom(lookupClass())) {
2165                 assert(!method.getName().equals("<init>"));  // not this code path
2166                 // Per JVMS 6.5, desc. of invokespecial instruction:
2167                 // If the method is in a superclass of the LC,
2168                 // and if our original search was above LC.super,
2169                 // repeat the search (symbolic lookup) from LC.super
2170                 // and continue with the direct superclass of that class,
2171                 // and so forth, until a match is found or no further superclasses exist.
2172                 // FIXME: MemberName.resolve should handle this instead.
2173                 Class<?> refcAsSuper = lookupClass();
2174                 MemberName m2;
2175                 do {
2176                     refcAsSuper = refcAsSuper.getSuperclass();
2177                     m2 = new MemberName(refcAsSuper,
2178                                         method.getName(),
2179                                         method.getMethodType(),
2180                                         REF_invokeSpecial);
2181                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
2182                 } while (m2 == null &&         // no method is found yet
2183                          refc != refcAsSuper); // search up to refc
2184                 if (m2 == null)  throw new InternalError(method.toString());
2185                 method = m2;
2186                 refc = refcAsSuper;
2187                 // redo basic checks
2188                 checkMethod(refKind, refc, method);
2189             }
2190 
2191             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method);
2192             MethodHandle mh = dmh;
2193             // Optionally narrow the receiver argument to refc using restrictReceiver.
2194             if (doRestrict &&
2195                    (refKind == REF_invokeSpecial ||
2196                        (MethodHandleNatives.refKindHasReceiver(refKind) &&
2197                            restrictProtectedReceiver(method)))) {
2198                 mh = restrictReceiver(method, dmh, lookupClass());
2199             }
2200             mh = maybeBindCaller(method, mh, callerClass);
2201             mh = mh.setVarargs(method);
2202             return mh;
2203         }
2204         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
2205                                              Class<?> callerClass)
2206                                              throws IllegalAccessException {
2207             if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
2208                 return mh;
2209             Class<?> hostClass = lookupClass;
2210             if (!hasPrivateAccess())  // caller must have private access
2211                 hostClass = callerClass;  // callerClass came from a security manager style stack walk
2212             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
2213             // Note: caller will apply varargs after this step happens.
2214             return cbmh;
2215         }
2216         /** Check access and get the requested field. */
2217         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
2218             final boolean checkSecurity = true;
2219             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
2220         }
2221         /** Check access and get the requested field, eliding security manager checks. */
2222         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
2223             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2224             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
2225         }
2226         /** Common code for all fields; do not call directly except from immediately above. */
2227         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
2228                                                   boolean checkSecurity) throws IllegalAccessException {
2229             checkField(refKind, refc, field);
2230             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2231             if (checkSecurity)
2232                 checkSecurityManager(refc, field);
2233             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
2234             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
2235                                     restrictProtectedReceiver(field));
2236             if (doRestrict)
2237                 return restrictReceiver(field, dmh, lookupClass());
2238             return dmh;
2239         }
2240         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
2241                                             Class<?> refc, MemberName getField, MemberName putField)
2242                 throws IllegalAccessException {
2243             final boolean checkSecurity = true;
2244             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2245         }
2246         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
2247                                                              Class<?> refc, MemberName getField, MemberName putField)
2248                 throws IllegalAccessException {
2249             final boolean checkSecurity = false;
2250             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2251         }
2252         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
2253                                                   Class<?> refc, MemberName getField, MemberName putField,
2254                                                   boolean checkSecurity) throws IllegalAccessException {
2255             assert getField.isStatic() == putField.isStatic();
2256             assert getField.isGetter() && putField.isSetter();
2257             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
2258             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
2259 
2260             checkField(getRefKind, refc, getField);
2261             if (checkSecurity)
2262                 checkSecurityManager(refc, getField);
2263 
2264             if (!putField.isFinal()) {
2265                 // A VarHandle does not support updates to final fields, any
2266                 // such VarHandle to a final field will be read-only and
2267                 // therefore the following write-based accessibility checks are
2268                 // only required for non-final fields
2269                 checkField(putRefKind, refc, putField);
2270                 if (checkSecurity)
2271                     checkSecurityManager(refc, putField);
2272             }
2273 
2274             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
2275                                   restrictProtectedReceiver(getField));
2276             if (doRestrict) {
2277                 assert !getField.isStatic();
2278                 // receiver type of VarHandle is too wide; narrow to caller
2279                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
2280                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
2281                 }
2282                 refc = lookupClass();
2283             }
2284             return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED);
2285         }
2286         /** Check access and get the requested constructor. */
2287         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2288             final boolean checkSecurity = true;
2289             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2290         }
2291         /** Check access and get the requested constructor, eliding security manager checks. */
2292         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2293             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2294             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2295         }
2296         /** Common code for all constructors; do not call directly except from immediately above. */
2297         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
2298                                                   boolean checkSecurity) throws IllegalAccessException {
2299             assert(ctor.isConstructor());
2300             checkAccess(REF_newInvokeSpecial, refc, ctor);
2301             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2302             if (checkSecurity)
2303                 checkSecurityManager(refc, ctor);
2304             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
2305             return DirectMethodHandle.make(ctor).setVarargs(ctor);
2306         }
2307 
2308         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
2309          */
2310         /*non-public*/
2311         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
2312             if (!(type instanceof Class || type instanceof MethodType))
2313                 throw new InternalError("unresolved MemberName");
2314             MemberName member = new MemberName(refKind, defc, name, type);
2315             MethodHandle mh = LOOKASIDE_TABLE.get(member);
2316             if (mh != null) {
2317                 checkSymbolicClass(defc);
2318                 return mh;
2319             }
2320             // Treat MethodHandle.invoke and invokeExact specially.
2321             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
2322                 mh = findVirtualForMH(member.getName(), member.getMethodType());
2323                 if (mh != null) {
2324                     return mh;
2325                 }
2326             }
2327             MemberName resolved = resolveOrFail(refKind, member);
2328             mh = getDirectMethodForConstant(refKind, defc, resolved);
2329             if (mh instanceof DirectMethodHandle
2330                     && canBeCached(refKind, defc, resolved)) {
2331                 MemberName key = mh.internalMemberName();
2332                 if (key != null) {
2333                     key = key.asNormalOriginal();
2334                 }
2335                 if (member.equals(key)) {  // better safe than sorry
2336                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
2337                 }
2338             }
2339             return mh;
2340         }
2341         private
2342         boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
2343             if (refKind == REF_invokeSpecial) {
2344                 return false;
2345             }
2346             if (!Modifier.isPublic(defc.getModifiers()) ||
2347                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
2348                     !member.isPublic() ||
2349                     member.isCallerSensitive()) {
2350                 return false;
2351             }
2352             ClassLoader loader = defc.getClassLoader();
2353             if (!jdk.internal.misc.VM.isSystemDomainLoader(loader)) {
2354                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
2355                 boolean found = false;
2356                 while (sysl != null) {
2357                     if (loader == sysl) { found = true; break; }
2358                     sysl = sysl.getParent();
2359                 }
2360                 if (!found) {
2361                     return false;
2362                 }
2363             }
2364             try {
2365                 MemberName resolved2 = publicLookup().resolveOrFail(refKind,
2366                     new MemberName(refKind, defc, member.getName(), member.getType()));
2367                 checkSecurityManager(defc, resolved2);
2368             } catch (ReflectiveOperationException | SecurityException ex) {
2369                 return false;
2370             }
2371             return true;
2372         }
2373         private
2374         MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
2375                 throws ReflectiveOperationException {
2376             if (MethodHandleNatives.refKindIsField(refKind)) {
2377                 return getDirectFieldNoSecurityManager(refKind, defc, member);
2378             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
2379                 return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
2380             } else if (refKind == REF_newInvokeSpecial) {
2381                 return getDirectConstructorNoSecurityManager(defc, member);
2382             }
2383             // oops
2384             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
2385         }
2386 
2387         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
2388     }
2389 
2390     /**
2391      * Produces a method handle constructing arrays of a desired type.
2392      * The return type of the method handle will be the array type.
2393      * The type of its sole argument will be {@code int}, which specifies the size of the array.
2394      * @param arrayClass an array type
2395      * @return a method handle which can create arrays of the given type
2396      * @throws NullPointerException if the argument is {@code null}
2397      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
2398      * @see java.lang.reflect.Array#newInstance(Class, int)
2399      * @since 9
2400      */
2401     public static
2402     MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
2403         if (!arrayClass.isArray()) {
2404             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
2405         }
2406         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
2407                 bindTo(arrayClass.getComponentType());
2408         return ani.asType(ani.type().changeReturnType(arrayClass));
2409     }
2410 
2411     /**
2412      * Produces a method handle returning the length of an array.
2413      * The type of the method handle will have {@code int} as return type,
2414      * and its sole argument will be the array type.
2415      * @param arrayClass an array type
2416      * @return a method handle which can retrieve the length of an array of the given array type
2417      * @throws NullPointerException if the argument is {@code null}
2418      * @throws IllegalArgumentException if arrayClass is not an array type
2419      * @since 9
2420      */
2421     public static
2422     MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
2423         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
2424     }
2425 
2426     /**
2427      * Produces a method handle giving read access to elements of an array.
2428      * The type of the method handle will have a return type of the array's
2429      * element type.  Its first argument will be the array type,
2430      * and the second will be {@code int}.
2431      * @param arrayClass an array type
2432      * @return a method handle which can load values from the given array type
2433      * @throws NullPointerException if the argument is null
2434      * @throws  IllegalArgumentException if arrayClass is not an array type
2435      */
2436     public static
2437     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
2438         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
2439     }
2440 
2441     /**
2442      * Produces a method handle giving write access to elements of an array.
2443      * The type of the method handle will have a void return type.
2444      * Its last argument will be the array's element type.
2445      * The first and second arguments will be the array type and int.
2446      * @param arrayClass the class of an array
2447      * @return a method handle which can store values into the array type
2448      * @throws NullPointerException if the argument is null
2449      * @throws IllegalArgumentException if arrayClass is not an array type
2450      */
2451     public static
2452     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
2453         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
2454     }
2455 
2456     /**
2457      *
2458      * Produces a VarHandle giving access to elements of an array type
2459      * {@code T[]}, supporting shape {@code (T[], int : T)}.
2460      * <p>
2461      * Certain access modes of the returned VarHandle are unsupported under
2462      * the following conditions:
2463      * <ul>
2464      * <li>if the component type is anything other than {@code byte},
2465      *     {@code short}, {@code char}, {@code int}, {@code long},
2466      *     {@code float}, or {@code double} then numeric atomic update access
2467      *     modes are unsupported.
2468      * <li>if the field type is anything other than {@code boolean},
2469      *     {@code byte}, {@code short}, {@code char}, {@code int} or
2470      *     {@code long} then bitwise atomic update access modes are
2471      *     unsupported.
2472      * </ul>
2473      * <p>
2474      * If the component type is {@code float} or {@code double} then numeric
2475      * and atomic update access modes compare values using their bitwise
2476      * representation (see {@link Float#floatToRawIntBits} and
2477      * {@link Double#doubleToRawLongBits}, respectively).
2478      * @apiNote
2479      * Bitwise comparison of {@code float} values or {@code double} values,
2480      * as performed by the numeric and atomic update access modes, differ
2481      * from the primitive {@code ==} operator and the {@link Float#equals}
2482      * and {@link Double#equals} methods, specifically with respect to
2483      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2484      * Care should be taken when performing a compare and set or a compare
2485      * and exchange operation with such values since the operation may
2486      * unexpectedly fail.
2487      * There are many possible NaN values that are considered to be
2488      * {@code NaN} in Java, although no IEEE 754 floating-point operation
2489      * provided by Java can distinguish between them.  Operation failure can
2490      * occur if the expected or witness value is a NaN value and it is
2491      * transformed (perhaps in a platform specific manner) into another NaN
2492      * value, and thus has a different bitwise representation (see
2493      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2494      * details).
2495      * The values {@code -0.0} and {@code +0.0} have different bitwise
2496      * representations but are considered equal when using the primitive
2497      * {@code ==} operator.  Operation failure can occur if, for example, a
2498      * numeric algorithm computes an expected value to be say {@code -0.0}
2499      * and previously computed the witness value to be say {@code +0.0}.
2500      * @param arrayClass the class of an array, of type {@code T[]}
2501      * @return a VarHandle giving access to elements of an array
2502      * @throws NullPointerException if the arrayClass is null
2503      * @throws IllegalArgumentException if arrayClass is not an array type
2504      * @since 9
2505      */
2506     public static
2507     VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
2508         return VarHandles.makeArrayElementHandle(arrayClass);
2509     }
2510 
2511     /**
2512      * Produces a VarHandle giving access to elements of a {@code byte[]} array
2513      * viewed as if it were a different primitive array type, such as
2514      * {@code int[]} or {@code long[]}.  The shape of the resulting VarHandle is
2515      * {@code (byte[], int : T)}, where the {@code int} coordinate type
2516      * corresponds to an argument that is an index in a {@code byte[]} array,
2517      * and {@code T} is the component type of the given view array class.  The
2518      * returned VarHandle accesses bytes at an index in a {@code byte[]} array,
2519      * composing bytes to or from a value of {@code T} according to the given
2520      * endianness.
2521      * <p>
2522      * The supported component types (variables types) are {@code short},
2523      * {@code char}, {@code int}, {@code long}, {@code float} and
2524      * {@code double}.
2525      * <p>
2526      * Access of bytes at a given index will result in an
2527      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2528      * or greater than the {@code byte[]} array length minus the size (in bytes)
2529      * of {@code T}.
2530      * <p>
2531      * Access of bytes at an index may be aligned or misaligned for {@code T},
2532      * with respect to the underlying memory address, {@code A} say, associated
2533      * with the array and index.
2534      * If access is misaligned then access for anything other than the
2535      * {@code get} and {@code set} access modes will result in an
2536      * {@code IllegalStateException}.  In such cases atomic access is only
2537      * guaranteed with respect to the largest power of two that divides the GCD
2538      * of {@code A} and the size (in bytes) of {@code T}.
2539      * If access is aligned then following access modes are supported and are
2540      * guaranteed to support atomic access:
2541      * <ul>
2542      * <li>read write access modes for all {@code T}, with the exception of
2543      *     access modes {@code get} and {@code set} for {@code long} and
2544      *     {@code double} on 32-bit platforms.
2545      * <li>atomic update access modes for {@code int}, {@code long},
2546      *     {@code float} or {@code double}.
2547      *     (Future major platform releases of the JDK may support additional
2548      *     types for certain currently unsupported access modes.)
2549      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2550      *     (Future major platform releases of the JDK may support additional
2551      *     numeric types for certain currently unsupported access modes.)
2552      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
2553      *     (Future major platform releases of the JDK may support additional
2554      *     numeric types for certain currently unsupported access modes.)
2555      * </ul>
2556      * <p>
2557      * Misaligned access, and therefore atomicity guarantees, may be determined
2558      * for {@code byte[]} arrays without operating on a specific array.  Given
2559      * an {@code index}, {@code T} and it's corresponding boxed type,
2560      * {@code T_BOX}, misalignment may be determined as follows:
2561      * <pre>{@code
2562      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2563      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
2564      *     alignmentOffset(0, sizeOfT);
2565      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
2566      * boolean isMisaligned = misalignedAtIndex != 0;
2567      * }</pre>
2568      * <p>
2569      * If the variable type is {@code float} or {@code double} then atomic
2570      * update access modes compare values using their bitwise representation
2571      * (see {@link Float#floatToRawIntBits} and
2572      * {@link Double#doubleToRawLongBits}, respectively).
2573      * @param viewArrayClass the view array class, with a component type of
2574      * type {@code T}
2575      * @param byteOrder the endianness of the view array elements, as
2576      * stored in the underlying {@code byte} array
2577      * @return a VarHandle giving access to elements of a {@code byte[]} array
2578      * viewed as if elements corresponding to the components type of the view
2579      * array class
2580      * @throws NullPointerException if viewArrayClass or byteOrder is null
2581      * @throws IllegalArgumentException if viewArrayClass is not an array type
2582      * @throws UnsupportedOperationException if the component type of
2583      * viewArrayClass is not supported as a variable type
2584      * @since 9
2585      */
2586     public static
2587     VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
2588                                      ByteOrder byteOrder) throws IllegalArgumentException {
2589         Objects.requireNonNull(byteOrder);
2590         return VarHandles.byteArrayViewHandle(viewArrayClass,
2591                                               byteOrder == ByteOrder.BIG_ENDIAN);
2592     }
2593 
2594     /**
2595      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
2596      * viewed as if it were an array of elements of a different primitive
2597      * component type to that of {@code byte}, such as {@code int[]} or
2598      * {@code long[]}.  The shape of the resulting VarHandle is
2599      * {@code (ByteBuffer, int : T)}, where the {@code int} coordinate type
2600      * corresponds to an argument that is an index in a {@code ByteBuffer}, and
2601      * {@code T} is the component type of the given view array class.  The
2602      * returned VarHandle accesses bytes at an index in a {@code ByteBuffer},
2603      * composing bytes to or from a value of {@code T} according to the given
2604      * endianness.
2605      * <p>
2606      * The supported component types (variables types) are {@code short},
2607      * {@code char}, {@code int}, {@code long}, {@code float} and
2608      * {@code double}.
2609      * <p>
2610      * Access will result in a {@code ReadOnlyBufferException} for anything
2611      * other than the read access modes if the {@code ByteBuffer} is read-only.
2612      * <p>
2613      * Access of bytes at a given index will result in an
2614      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2615      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
2616      * {@code T}.
2617      * <p>
2618      * Access of bytes at an index may be aligned or misaligned for {@code T},
2619      * with respect to the underlying memory address, {@code A} say, associated
2620      * with the {@code ByteBuffer} and index.
2621      * If access is misaligned then access for anything other than the
2622      * {@code get} and {@code set} access modes will result in an
2623      * {@code IllegalStateException}.  In such cases atomic access is only
2624      * guaranteed with respect to the largest power of two that divides the GCD
2625      * of {@code A} and the size (in bytes) of {@code T}.
2626      * If access is aligned then following access modes are supported and are
2627      * guaranteed to support atomic access:
2628      * <ul>
2629      * <li>read write access modes for all {@code T}, with the exception of
2630      *     access modes {@code get} and {@code set} for {@code long} and
2631      *     {@code double} on 32-bit platforms.
2632      * <li>atomic update access modes for {@code int}, {@code long},
2633      *     {@code float} or {@code double}.
2634      *     (Future major platform releases of the JDK may support additional
2635      *     types for certain currently unsupported access modes.)
2636      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2637      *     (Future major platform releases of the JDK may support additional
2638      *     numeric types for certain currently unsupported access modes.)
2639      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
2640      *     (Future major platform releases of the JDK may support additional
2641      *     numeric types for certain currently unsupported access modes.)
2642      * </ul>
2643      * <p>
2644      * Misaligned access, and therefore atomicity guarantees, may be determined
2645      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
2646      * {@code index}, {@code T} and it's corresponding boxed type,
2647      * {@code T_BOX}, as follows:
2648      * <pre>{@code
2649      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2650      * ByteBuffer bb = ...
2651      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
2652      * boolean isMisaligned = misalignedAtIndex != 0;
2653      * }</pre>
2654      * <p>
2655      * If the variable type is {@code float} or {@code double} then atomic
2656      * update access modes compare values using their bitwise representation
2657      * (see {@link Float#floatToRawIntBits} and
2658      * {@link Double#doubleToRawLongBits}, respectively).
2659      * @param viewArrayClass the view array class, with a component type of
2660      * type {@code T}
2661      * @param byteOrder the endianness of the view array elements, as
2662      * stored in the underlying {@code ByteBuffer} (Note this overrides the
2663      * endianness of a {@code ByteBuffer})
2664      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
2665      * viewed as if elements corresponding to the components type of the view
2666      * array class
2667      * @throws NullPointerException if viewArrayClass or byteOrder is null
2668      * @throws IllegalArgumentException if viewArrayClass is not an array type
2669      * @throws UnsupportedOperationException if the component type of
2670      * viewArrayClass is not supported as a variable type
2671      * @since 9
2672      */
2673     public static
2674     VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
2675                                       ByteOrder byteOrder) throws IllegalArgumentException {
2676         Objects.requireNonNull(byteOrder);
2677         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
2678                                                    byteOrder == ByteOrder.BIG_ENDIAN);
2679     }
2680 
2681 
2682     /// method handle invocation (reflective style)
2683 
2684     /**
2685      * Produces a method handle which will invoke any method handle of the
2686      * given {@code type}, with a given number of trailing arguments replaced by
2687      * a single trailing {@code Object[]} array.
2688      * The resulting invoker will be a method handle with the following
2689      * arguments:
2690      * <ul>
2691      * <li>a single {@code MethodHandle} target
2692      * <li>zero or more leading values (counted by {@code leadingArgCount})
2693      * <li>an {@code Object[]} array containing trailing arguments
2694      * </ul>
2695      * <p>
2696      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
2697      * the indicated {@code type}.
2698      * That is, if the target is exactly of the given {@code type}, it will behave
2699      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
2700      * is used to convert the target to the required {@code type}.
2701      * <p>
2702      * The type of the returned invoker will not be the given {@code type}, but rather
2703      * will have all parameters except the first {@code leadingArgCount}
2704      * replaced by a single array of type {@code Object[]}, which will be
2705      * the final parameter.
2706      * <p>
2707      * Before invoking its target, the invoker will spread the final array, apply
2708      * reference casts as necessary, and unbox and widen primitive arguments.
2709      * If, when the invoker is called, the supplied array argument does
2710      * not have the correct number of elements, the invoker will throw
2711      * an {@link IllegalArgumentException} instead of invoking the target.
2712      * <p>
2713      * This method is equivalent to the following code (though it may be more efficient):
2714      * <blockquote><pre>{@code
2715 MethodHandle invoker = MethodHandles.invoker(type);
2716 int spreadArgCount = type.parameterCount() - leadingArgCount;
2717 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
2718 return invoker;
2719      * }</pre></blockquote>
2720      * This method throws no reflective or security exceptions.
2721      * @param type the desired target type
2722      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
2723      * @return a method handle suitable for invoking any method handle of the given type
2724      * @throws NullPointerException if {@code type} is null
2725      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
2726      *                  the range from 0 to {@code type.parameterCount()} inclusive,
2727      *                  or if the resulting method handle's type would have
2728      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2729      */
2730     public static
2731     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
2732         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
2733             throw newIllegalArgumentException("bad argument count", leadingArgCount);
2734         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
2735         return type.invokers().spreadInvoker(leadingArgCount);
2736     }
2737 
2738     /**
2739      * Produces a special <em>invoker method handle</em> which can be used to
2740      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
2741      * The resulting invoker will have a type which is
2742      * exactly equal to the desired type, except that it will accept
2743      * an additional leading argument of type {@code MethodHandle}.
2744      * <p>
2745      * This method is equivalent to the following code (though it may be more efficient):
2746      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
2747      *
2748      * <p style="font-size:smaller;">
2749      * <em>Discussion:</em>
2750      * Invoker method handles can be useful when working with variable method handles
2751      * of unknown types.
2752      * For example, to emulate an {@code invokeExact} call to a variable method
2753      * handle {@code M}, extract its type {@code T},
2754      * look up the invoker method {@code X} for {@code T},
2755      * and call the invoker method, as {@code X.invoke(T, A...)}.
2756      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
2757      * is unknown.)
2758      * If spreading, collecting, or other argument transformations are required,
2759      * they can be applied once to the invoker {@code X} and reused on many {@code M}
2760      * method handle values, as long as they are compatible with the type of {@code X}.
2761      * <p style="font-size:smaller;">
2762      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2763      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2764      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2765      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2766      * <p>
2767      * This method throws no reflective or security exceptions.
2768      * @param type the desired target type
2769      * @return a method handle suitable for invoking any method handle of the given type
2770      * @throws IllegalArgumentException if the resulting method handle's type would have
2771      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2772      */
2773     public static
2774     MethodHandle exactInvoker(MethodType type) {
2775         return type.invokers().exactInvoker();
2776     }
2777 
2778     /**
2779      * Produces a special <em>invoker method handle</em> which can be used to
2780      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
2781      * The resulting invoker will have a type which is
2782      * exactly equal to the desired type, except that it will accept
2783      * an additional leading argument of type {@code MethodHandle}.
2784      * <p>
2785      * Before invoking its target, if the target differs from the expected type,
2786      * the invoker will apply reference casts as
2787      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
2788      * Similarly, the return value will be converted as necessary.
2789      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
2790      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
2791      * <p>
2792      * This method is equivalent to the following code (though it may be more efficient):
2793      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
2794      * <p style="font-size:smaller;">
2795      * <em>Discussion:</em>
2796      * A {@linkplain MethodType#genericMethodType general method type} is one which
2797      * mentions only {@code Object} arguments and return values.
2798      * An invoker for such a type is capable of calling any method handle
2799      * of the same arity as the general type.
2800      * <p style="font-size:smaller;">
2801      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2802      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2803      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2804      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2805      * <p>
2806      * This method throws no reflective or security exceptions.
2807      * @param type the desired target type
2808      * @return a method handle suitable for invoking any method handle convertible to the given type
2809      * @throws IllegalArgumentException if the resulting method handle's type would have
2810      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2811      */
2812     public static
2813     MethodHandle invoker(MethodType type) {
2814         return type.invokers().genericInvoker();
2815     }
2816 
2817     /**
2818      * Produces a special <em>invoker method handle</em> which can be used to
2819      * invoke a signature-polymorphic access mode method on any VarHandle whose
2820      * associated access mode type is compatible with the given type.
2821      * The resulting invoker will have a type which is exactly equal to the
2822      * desired given type, except that it will accept an additional leading
2823      * argument of type {@code VarHandle}.
2824      *
2825      * @param accessMode the VarHandle access mode
2826      * @param type the desired target type
2827      * @return a method handle suitable for invoking an access mode method of
2828      *         any VarHandle whose access mode type is of the given type.
2829      * @since 9
2830      */
2831     static public
2832     MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
2833         return type.invokers().varHandleMethodExactInvoker(accessMode);
2834     }
2835 
2836     /**
2837      * Produces a special <em>invoker method handle</em> which can be used to
2838      * invoke a signature-polymorphic access mode method on any VarHandle whose
2839      * associated access mode type is compatible with the given type.
2840      * The resulting invoker will have a type which is exactly equal to the
2841      * desired given type, except that it will accept an additional leading
2842      * argument of type {@code VarHandle}.
2843      * <p>
2844      * Before invoking its target, if the access mode type differs from the
2845      * desired given type, the invoker will apply reference casts as necessary
2846      * and box, unbox, or widen primitive values, as if by
2847      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
2848      * converted as necessary.
2849      * <p>
2850      * This method is equivalent to the following code (though it may be more
2851      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
2852      *
2853      * @param accessMode the VarHandle access mode
2854      * @param type the desired target type
2855      * @return a method handle suitable for invoking an access mode method of
2856      *         any VarHandle whose access mode type is convertible to the given
2857      *         type.
2858      * @since 9
2859      */
2860     static public
2861     MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
2862         return type.invokers().varHandleMethodInvoker(accessMode);
2863     }
2864 
2865     static /*non-public*/
2866     MethodHandle basicInvoker(MethodType type) {
2867         return type.invokers().basicInvoker();
2868     }
2869 
2870      /// method handle modification (creation from other method handles)
2871 
2872     /**
2873      * Produces a method handle which adapts the type of the
2874      * given method handle to a new type by pairwise argument and return type conversion.
2875      * The original type and new type must have the same number of arguments.
2876      * The resulting method handle is guaranteed to report a type
2877      * which is equal to the desired new type.
2878      * <p>
2879      * If the original type and new type are equal, returns target.
2880      * <p>
2881      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
2882      * and some additional conversions are also applied if those conversions fail.
2883      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
2884      * if possible, before or instead of any conversions done by {@code asType}:
2885      * <ul>
2886      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
2887      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
2888      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
2889      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
2890      *     the boolean is converted to a byte value, 1 for true, 0 for false.
2891      *     (This treatment follows the usage of the bytecode verifier.)
2892      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
2893      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
2894      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
2895      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
2896      *     then a Java casting conversion (JLS 5.5) is applied.
2897      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
2898      *     widening and/or narrowing.)
2899      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
2900      *     conversion will be applied at runtime, possibly followed
2901      *     by a Java casting conversion (JLS 5.5) on the primitive value,
2902      *     possibly followed by a conversion from byte to boolean by testing
2903      *     the low-order bit.
2904      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
2905      *     and if the reference is null at runtime, a zero value is introduced.
2906      * </ul>
2907      * @param target the method handle to invoke after arguments are retyped
2908      * @param newType the expected type of the new method handle
2909      * @return a method handle which delegates to the target after performing
2910      *           any necessary argument conversions, and arranges for any
2911      *           necessary return value conversions
2912      * @throws NullPointerException if either argument is null
2913      * @throws WrongMethodTypeException if the conversion cannot be made
2914      * @see MethodHandle#asType
2915      */
2916     public static
2917     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
2918         explicitCastArgumentsChecks(target, newType);
2919         // use the asTypeCache when possible:
2920         MethodType oldType = target.type();
2921         if (oldType == newType)  return target;
2922         if (oldType.explicitCastEquivalentToAsType(newType)) {
2923             return target.asFixedArity().asType(newType);
2924         }
2925         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
2926     }
2927 
2928     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
2929         if (target.type().parameterCount() != newType.parameterCount()) {
2930             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
2931         }
2932     }
2933 
2934     /**
2935      * Produces a method handle which adapts the calling sequence of the
2936      * given method handle to a new type, by reordering the arguments.
2937      * The resulting method handle is guaranteed to report a type
2938      * which is equal to the desired new type.
2939      * <p>
2940      * The given array controls the reordering.
2941      * Call {@code #I} the number of incoming parameters (the value
2942      * {@code newType.parameterCount()}, and call {@code #O} the number
2943      * of outgoing parameters (the value {@code target.type().parameterCount()}).
2944      * Then the length of the reordering array must be {@code #O},
2945      * and each element must be a non-negative number less than {@code #I}.
2946      * For every {@code N} less than {@code #O}, the {@code N}-th
2947      * outgoing argument will be taken from the {@code I}-th incoming
2948      * argument, where {@code I} is {@code reorder[N]}.
2949      * <p>
2950      * No argument or return value conversions are applied.
2951      * The type of each incoming argument, as determined by {@code newType},
2952      * must be identical to the type of the corresponding outgoing parameter
2953      * or parameters in the target method handle.
2954      * The return type of {@code newType} must be identical to the return
2955      * type of the original target.
2956      * <p>
2957      * The reordering array need not specify an actual permutation.
2958      * An incoming argument will be duplicated if its index appears
2959      * more than once in the array, and an incoming argument will be dropped
2960      * if its index does not appear in the array.
2961      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
2962      * incoming arguments which are not mentioned in the reordering array
2963      * may be of any type, as determined only by {@code newType}.
2964      * <blockquote><pre>{@code
2965 import static java.lang.invoke.MethodHandles.*;
2966 import static java.lang.invoke.MethodType.*;
2967 ...
2968 MethodType intfn1 = methodType(int.class, int.class);
2969 MethodType intfn2 = methodType(int.class, int.class, int.class);
2970 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
2971 assert(sub.type().equals(intfn2));
2972 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
2973 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
2974 assert((int)rsub.invokeExact(1, 100) == 99);
2975 MethodHandle add = ... (int x, int y) -> (x+y) ...;
2976 assert(add.type().equals(intfn2));
2977 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
2978 assert(twice.type().equals(intfn1));
2979 assert((int)twice.invokeExact(21) == 42);
2980      * }</pre></blockquote>
2981      * <p>
2982      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
2983      * variable-arity method handle}, even if the original target method handle was.
2984      * @param target the method handle to invoke after arguments are reordered
2985      * @param newType the expected type of the new method handle
2986      * @param reorder an index array which controls the reordering
2987      * @return a method handle which delegates to the target after it
2988      *           drops unused arguments and moves and/or duplicates the other arguments
2989      * @throws NullPointerException if any argument is null
2990      * @throws IllegalArgumentException if the index array length is not equal to
2991      *                  the arity of the target, or if any index array element
2992      *                  not a valid index for a parameter of {@code newType},
2993      *                  or if two corresponding parameter types in
2994      *                  {@code target.type()} and {@code newType} are not identical,
2995      */
2996     public static
2997     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
2998         reorder = reorder.clone();  // get a private copy
2999         MethodType oldType = target.type();
3000         permuteArgumentChecks(reorder, newType, oldType);
3001         // first detect dropped arguments and handle them separately
3002         int[] originalReorder = reorder;
3003         BoundMethodHandle result = target.rebind();
3004         LambdaForm form = result.form;
3005         int newArity = newType.parameterCount();
3006         // Normalize the reordering into a real permutation,
3007         // by removing duplicates and adding dropped elements.
3008         // This somewhat improves lambda form caching, as well
3009         // as simplifying the transform by breaking it up into steps.
3010         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
3011             if (ddIdx > 0) {
3012                 // We found a duplicated entry at reorder[ddIdx].
3013                 // Example:  (x,y,z)->asList(x,y,z)
3014                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
3015                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
3016                 // The starred element corresponds to the argument
3017                 // deleted by the dupArgumentForm transform.
3018                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
3019                 boolean killFirst = false;
3020                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
3021                     // Set killFirst if the dup is larger than an intervening position.
3022                     // This will remove at least one inversion from the permutation.
3023                     if (dupVal > val) killFirst = true;
3024                 }
3025                 if (!killFirst) {
3026                     srcPos = dstPos;
3027                     dstPos = ddIdx;
3028                 }
3029                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
3030                 assert (reorder[srcPos] == reorder[dstPos]);
3031                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
3032                 // contract the reordering by removing the element at dstPos
3033                 int tailPos = dstPos + 1;
3034                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
3035                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
3036             } else {
3037                 int dropVal = ~ddIdx, insPos = 0;
3038                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
3039                     // Find first element of reorder larger than dropVal.
3040                     // This is where we will insert the dropVal.
3041                     insPos += 1;
3042                 }
3043                 Class<?> ptype = newType.parameterType(dropVal);
3044                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
3045                 oldType = oldType.insertParameterTypes(insPos, ptype);
3046                 // expand the reordering by inserting an element at insPos
3047                 int tailPos = insPos + 1;
3048                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
3049                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
3050                 reorder[insPos] = dropVal;
3051             }
3052             assert (permuteArgumentChecks(reorder, newType, oldType));
3053         }
3054         assert (reorder.length == newArity);  // a perfect permutation
3055         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
3056         form = form.editor().permuteArgumentsForm(1, reorder);
3057         if (newType == result.type() && form == result.internalForm())
3058             return result;
3059         return result.copyWith(newType, form);
3060     }
3061 
3062     /**
3063      * Return an indication of any duplicate or omission in reorder.
3064      * If the reorder contains a duplicate entry, return the index of the second occurrence.
3065      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
3066      * Otherwise, return zero.
3067      * If an element not in [0..newArity-1] is encountered, return reorder.length.
3068      */
3069     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
3070         final int BIT_LIMIT = 63;  // max number of bits in bit mask
3071         if (newArity < BIT_LIMIT) {
3072             long mask = 0;
3073             for (int i = 0; i < reorder.length; i++) {
3074                 int arg = reorder[i];
3075                 if (arg >= newArity) {
3076                     return reorder.length;
3077                 }
3078                 long bit = 1L << arg;
3079                 if ((mask & bit) != 0) {
3080                     return i;  // >0 indicates a dup
3081                 }
3082                 mask |= bit;
3083             }
3084             if (mask == (1L << newArity) - 1) {
3085                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
3086                 return 0;
3087             }
3088             // find first zero
3089             long zeroBit = Long.lowestOneBit(~mask);
3090             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
3091             assert(zeroPos <= newArity);
3092             if (zeroPos == newArity) {
3093                 return 0;
3094             }
3095             return ~zeroPos;
3096         } else {
3097             // same algorithm, different bit set
3098             BitSet mask = new BitSet(newArity);
3099             for (int i = 0; i < reorder.length; i++) {
3100                 int arg = reorder[i];
3101                 if (arg >= newArity) {
3102                     return reorder.length;
3103                 }
3104                 if (mask.get(arg)) {
3105                     return i;  // >0 indicates a dup
3106                 }
3107                 mask.set(arg);
3108             }
3109             int zeroPos = mask.nextClearBit(0);
3110             assert(zeroPos <= newArity);
3111             if (zeroPos == newArity) {
3112                 return 0;
3113             }
3114             return ~zeroPos;
3115         }
3116     }
3117 
3118     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
3119         if (newType.returnType() != oldType.returnType())
3120             throw newIllegalArgumentException("return types do not match",
3121                     oldType, newType);
3122         if (reorder.length == oldType.parameterCount()) {
3123             int limit = newType.parameterCount();
3124             boolean bad = false;
3125             for (int j = 0; j < reorder.length; j++) {
3126                 int i = reorder[j];
3127                 if (i < 0 || i >= limit) {
3128                     bad = true; break;
3129                 }
3130                 Class<?> src = newType.parameterType(i);
3131                 Class<?> dst = oldType.parameterType(j);
3132                 if (src != dst)
3133                     throw newIllegalArgumentException("parameter types do not match after reorder",
3134                             oldType, newType);
3135             }
3136             if (!bad)  return true;
3137         }
3138         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
3139     }
3140 
3141     /**
3142      * Produces a method handle of the requested return type which returns the given
3143      * constant value every time it is invoked.
3144      * <p>
3145      * Before the method handle is returned, the passed-in value is converted to the requested type.
3146      * If the requested type is primitive, widening primitive conversions are attempted,
3147      * else reference conversions are attempted.
3148      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
3149      * @param type the return type of the desired method handle
3150      * @param value the value to return
3151      * @return a method handle of the given return type and no arguments, which always returns the given value
3152      * @throws NullPointerException if the {@code type} argument is null
3153      * @throws ClassCastException if the value cannot be converted to the required return type
3154      * @throws IllegalArgumentException if the given type is {@code void.class}
3155      */
3156     public static
3157     MethodHandle constant(Class<?> type, Object value) {
3158         if (type.isPrimitive()) {
3159             if (type == void.class)
3160                 throw newIllegalArgumentException("void type");
3161             Wrapper w = Wrapper.forPrimitiveType(type);
3162             value = w.convert(value, type);
3163             if (w.zero().equals(value))
3164                 return zero(w, type);
3165             return insertArguments(identity(type), 0, value);
3166         } else {
3167             if (value == null)
3168                 return zero(Wrapper.OBJECT, type);
3169             return identity(type).bindTo(value);
3170         }
3171     }
3172 
3173     /**
3174      * Produces a method handle which returns its sole argument when invoked.
3175      * @param type the type of the sole parameter and return value of the desired method handle
3176      * @return a unary method handle which accepts and returns the given type
3177      * @throws NullPointerException if the argument is null
3178      * @throws IllegalArgumentException if the given type is {@code void.class}
3179      */
3180     public static
3181     MethodHandle identity(Class<?> type) {
3182         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
3183         int pos = btw.ordinal();
3184         MethodHandle ident = IDENTITY_MHS[pos];
3185         if (ident == null) {
3186             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
3187         }
3188         if (ident.type().returnType() == type)
3189             return ident;
3190         // something like identity(Foo.class); do not bother to intern these
3191         assert (btw == Wrapper.OBJECT);
3192         return makeIdentity(type);
3193     }
3194 
3195     /**
3196      * Produces a constant method handle of the requested return type which
3197      * returns the default value for that type every time it is invoked.
3198      * The resulting constant method handle will have no side effects.
3199      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
3200      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
3201      * since {@code explicitCastArguments} converts {@code null} to default values.
3202      * @param type the expected return type of the desired method handle
3203      * @return a constant method handle that takes no arguments
3204      *         and returns the default value of the given type (or void, if the type is void)
3205      * @throws NullPointerException if the argument is null
3206      * @see MethodHandles#constant
3207      * @see MethodHandles#empty
3208      * @see MethodHandles#explicitCastArguments
3209      * @since 9
3210      */
3211     public static MethodHandle zero(Class<?> type) {
3212         Objects.requireNonNull(type);
3213         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
3214     }
3215 
3216     private static MethodHandle identityOrVoid(Class<?> type) {
3217         return type == void.class ? zero(type) : identity(type);
3218     }
3219 
3220     /**
3221      * Produces a method handle of the requested type which ignores any arguments, does nothing,
3222      * and returns a suitable default depending on the return type.
3223      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
3224      * <p>The returned method handle is equivalent to
3225      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
3226      * <p>
3227      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
3228      * {@code guardWithTest(pred, target, empty(target.type())}.
3229      * @param type the type of the desired method handle
3230      * @return a constant method handle of the given type, which returns a default value of the given return type
3231      * @throws NullPointerException if the argument is null
3232      * @see MethodHandles#zero
3233      * @see MethodHandles#constant
3234      * @since 9
3235      */
3236     public static  MethodHandle empty(MethodType type) {
3237         Objects.requireNonNull(type);
3238         return dropArguments(zero(type.returnType()), 0, type.parameterList());
3239     }
3240 
3241     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
3242     private static MethodHandle makeIdentity(Class<?> ptype) {
3243         MethodType mtype = methodType(ptype, ptype);
3244         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
3245         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
3246     }
3247 
3248     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
3249         int pos = btw.ordinal();
3250         MethodHandle zero = ZERO_MHS[pos];
3251         if (zero == null) {
3252             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
3253         }
3254         if (zero.type().returnType() == rtype)
3255             return zero;
3256         assert(btw == Wrapper.OBJECT);
3257         return makeZero(rtype);
3258     }
3259     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
3260     private static MethodHandle makeZero(Class<?> rtype) {
3261         MethodType mtype = methodType(rtype);
3262         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
3263         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
3264     }
3265 
3266     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
3267         // Simulate a CAS, to avoid racy duplication of results.
3268         MethodHandle prev = cache[pos];
3269         if (prev != null) return prev;
3270         return cache[pos] = value;
3271     }
3272 
3273     /**
3274      * Provides a target method handle with one or more <em>bound arguments</em>
3275      * in advance of the method handle's invocation.
3276      * The formal parameters to the target corresponding to the bound
3277      * arguments are called <em>bound parameters</em>.
3278      * Returns a new method handle which saves away the bound arguments.
3279      * When it is invoked, it receives arguments for any non-bound parameters,
3280      * binds the saved arguments to their corresponding parameters,
3281      * and calls the original target.
3282      * <p>
3283      * The type of the new method handle will drop the types for the bound
3284      * parameters from the original target type, since the new method handle
3285      * will no longer require those arguments to be supplied by its callers.
3286      * <p>
3287      * Each given argument object must match the corresponding bound parameter type.
3288      * If a bound parameter type is a primitive, the argument object
3289      * must be a wrapper, and will be unboxed to produce the primitive value.
3290      * <p>
3291      * The {@code pos} argument selects which parameters are to be bound.
3292      * It may range between zero and <i>N-L</i> (inclusively),
3293      * where <i>N</i> is the arity of the target method handle
3294      * and <i>L</i> is the length of the values array.
3295      * <p>
3296      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3297      * variable-arity method handle}, even if the original target method handle was.
3298      * @param target the method handle to invoke after the argument is inserted
3299      * @param pos where to insert the argument (zero for the first)
3300      * @param values the series of arguments to insert
3301      * @return a method handle which inserts an additional argument,
3302      *         before calling the original method handle
3303      * @throws NullPointerException if the target or the {@code values} array is null
3304      * @see MethodHandle#bindTo
3305      */
3306     public static
3307     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
3308         int insCount = values.length;
3309         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
3310         if (insCount == 0)  return target;
3311         BoundMethodHandle result = target.rebind();
3312         for (int i = 0; i < insCount; i++) {
3313             Object value = values[i];
3314             Class<?> ptype = ptypes[pos+i];
3315             if (ptype.isPrimitive()) {
3316                 result = insertArgumentPrimitive(result, pos, ptype, value);
3317             } else {
3318                 value = ptype.cast(value);  // throw CCE if needed
3319                 result = result.bindArgumentL(pos, value);
3320             }
3321         }
3322         return result;
3323     }
3324 
3325     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
3326                                                              Class<?> ptype, Object value) {
3327         Wrapper w = Wrapper.forPrimitiveType(ptype);
3328         // perform unboxing and/or primitive conversion
3329         value = w.convert(value, ptype);
3330         switch (w) {
3331         case INT:     return result.bindArgumentI(pos, (int)value);
3332         case LONG:    return result.bindArgumentJ(pos, (long)value);
3333         case FLOAT:   return result.bindArgumentF(pos, (float)value);
3334         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
3335         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
3336         }
3337     }
3338 
3339     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
3340         MethodType oldType = target.type();
3341         int outargs = oldType.parameterCount();
3342         int inargs  = outargs - insCount;
3343         if (inargs < 0)
3344             throw newIllegalArgumentException("too many values to insert");
3345         if (pos < 0 || pos > inargs)
3346             throw newIllegalArgumentException("no argument type to append");
3347         return oldType.ptypes();
3348     }
3349 
3350     /**
3351      * Produces a method handle which will discard some dummy arguments
3352      * before calling some other specified <i>target</i> method handle.
3353      * The type of the new method handle will be the same as the target's type,
3354      * except it will also include the dummy argument types,
3355      * at some given position.
3356      * <p>
3357      * The {@code pos} argument may range between zero and <i>N</i>,
3358      * where <i>N</i> is the arity of the target.
3359      * If {@code pos} is zero, the dummy arguments will precede
3360      * the target's real arguments; if {@code pos} is <i>N</i>
3361      * they will come after.
3362      * <p>
3363      * <b>Example:</b>
3364      * <blockquote><pre>{@code
3365 import static java.lang.invoke.MethodHandles.*;
3366 import static java.lang.invoke.MethodType.*;
3367 ...
3368 MethodHandle cat = lookup().findVirtual(String.class,
3369   "concat", methodType(String.class, String.class));
3370 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3371 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
3372 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
3373 assertEquals(bigType, d0.type());
3374 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
3375      * }</pre></blockquote>
3376      * <p>
3377      * This method is also equivalent to the following code:
3378      * <blockquote><pre>
3379      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
3380      * </pre></blockquote>
3381      * @param target the method handle to invoke after the arguments are dropped
3382      * @param valueTypes the type(s) of the argument(s) to drop
3383      * @param pos position of first argument to drop (zero for the leftmost)
3384      * @return a method handle which drops arguments of the given types,
3385      *         before calling the original method handle
3386      * @throws NullPointerException if the target is null,
3387      *                              or if the {@code valueTypes} list or any of its elements is null
3388      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3389      *                  or if {@code pos} is negative or greater than the arity of the target,
3390      *                  or if the new method handle's type would have too many parameters
3391      */
3392     public static
3393     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3394         return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
3395     }
3396 
3397     private static List<Class<?>> copyTypes(Object[] array) {
3398         return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
3399     }
3400 
3401     private static
3402     MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3403         MethodType oldType = target.type();  // get NPE
3404         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
3405         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
3406         if (dropped == 0)  return target;
3407         BoundMethodHandle result = target.rebind();
3408         LambdaForm lform = result.form;
3409         int insertFormArg = 1 + pos;
3410         for (Class<?> ptype : valueTypes) {
3411             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
3412         }
3413         result = result.copyWith(newType, lform);
3414         return result;
3415     }
3416 
3417     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
3418         int dropped = valueTypes.size();
3419         MethodType.checkSlotCount(dropped);
3420         int outargs = oldType.parameterCount();
3421         int inargs  = outargs + dropped;
3422         if (pos < 0 || pos > outargs)
3423             throw newIllegalArgumentException("no argument type to remove"
3424                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
3425                     );
3426         return dropped;
3427     }
3428 
3429     /**
3430      * Produces a method handle which will discard some dummy arguments
3431      * before calling some other specified <i>target</i> method handle.
3432      * The type of the new method handle will be the same as the target's type,
3433      * except it will also include the dummy argument types,
3434      * at some given position.
3435      * <p>
3436      * The {@code pos} argument may range between zero and <i>N</i>,
3437      * where <i>N</i> is the arity of the target.
3438      * If {@code pos} is zero, the dummy arguments will precede
3439      * the target's real arguments; if {@code pos} is <i>N</i>
3440      * they will come after.
3441      * @apiNote
3442      * <blockquote><pre>{@code
3443 import static java.lang.invoke.MethodHandles.*;
3444 import static java.lang.invoke.MethodType.*;
3445 ...
3446 MethodHandle cat = lookup().findVirtual(String.class,
3447   "concat", methodType(String.class, String.class));
3448 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3449 MethodHandle d0 = dropArguments(cat, 0, String.class);
3450 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
3451 MethodHandle d1 = dropArguments(cat, 1, String.class);
3452 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
3453 MethodHandle d2 = dropArguments(cat, 2, String.class);
3454 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
3455 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
3456 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
3457      * }</pre></blockquote>
3458      * <p>
3459      * This method is also equivalent to the following code:
3460      * <blockquote><pre>
3461      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
3462      * </pre></blockquote>
3463      * @param target the method handle to invoke after the arguments are dropped
3464      * @param valueTypes the type(s) of the argument(s) to drop
3465      * @param pos position of first argument to drop (zero for the leftmost)
3466      * @return a method handle which drops arguments of the given types,
3467      *         before calling the original method handle
3468      * @throws NullPointerException if the target is null,
3469      *                              or if the {@code valueTypes} array or any of its elements is null
3470      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3471      *                  or if {@code pos} is negative or greater than the arity of the target,
3472      *                  or if the new method handle's type would have
3473      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
3474      */
3475     public static
3476     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
3477         return dropArguments0(target, pos, copyTypes(valueTypes));
3478     }
3479 
3480     // private version which allows caller some freedom with error handling
3481     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
3482                                       boolean nullOnFailure) {
3483         newTypes = copyTypes(newTypes.toArray());
3484         List<Class<?>> oldTypes = target.type().parameterList();
3485         int match = oldTypes.size();
3486         if (skip != 0) {
3487             if (skip < 0 || skip > match) {
3488                 throw newIllegalArgumentException("illegal skip", skip, target);
3489             }
3490             oldTypes = oldTypes.subList(skip, match);
3491             match -= skip;
3492         }
3493         List<Class<?>> addTypes = newTypes;
3494         int add = addTypes.size();
3495         if (pos != 0) {
3496             if (pos < 0 || pos > add) {
3497                 throw newIllegalArgumentException("illegal pos", pos, newTypes);
3498             }
3499             addTypes = addTypes.subList(pos, add);
3500             add -= pos;
3501             assert(addTypes.size() == add);
3502         }
3503         // Do not add types which already match the existing arguments.
3504         if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
3505             if (nullOnFailure) {
3506                 return null;
3507             }
3508             throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
3509         }
3510         addTypes = addTypes.subList(match, add);
3511         add -= match;
3512         assert(addTypes.size() == add);
3513         // newTypes:     (   P*[pos], M*[match], A*[add] )
3514         // target: ( S*[skip],        M*[match]  )
3515         MethodHandle adapter = target;
3516         if (add > 0) {
3517             adapter = dropArguments0(adapter, skip+ match, addTypes);
3518         }
3519         // adapter: (S*[skip],        M*[match], A*[add] )
3520         if (pos > 0) {
3521             adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
3522         }
3523         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
3524         return adapter;
3525     }
3526 
3527     /**
3528      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
3529      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
3530      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
3531      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
3532      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
3533      * {@link #dropArguments(MethodHandle, int, Class[])}.
3534      * <p>
3535      * The resulting handle will have the same return type as the target handle.
3536      * <p>
3537      * In more formal terms, assume these two type lists:<ul>
3538      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
3539      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
3540      * {@code newTypes}.
3541      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
3542      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
3543      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
3544      * sub-list.
3545      * </ul>
3546      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
3547      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
3548      * {@link #dropArguments(MethodHandle, int, Class[])}.
3549      * <p>
3550      * @apiNote
3551      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
3552      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
3553      * <blockquote><pre>{@code
3554 import static java.lang.invoke.MethodHandles.*;
3555 import static java.lang.invoke.MethodType.*;
3556 ...
3557 ...
3558 MethodHandle h0 = constant(boolean.class, true);
3559 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
3560 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
3561 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
3562 if (h1.type().parameterCount() < h2.type().parameterCount())
3563     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
3564 else
3565     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
3566 MethodHandle h3 = guardWithTest(h0, h1, h2);
3567 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
3568      * }</pre></blockquote>
3569      * @param target the method handle to adapt
3570      * @param skip number of targets parameters to disregard (they will be unchanged)
3571      * @param newTypes the list of types to match {@code target}'s parameter type list to
3572      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
3573      * @return a possibly adapted method handle
3574      * @throws NullPointerException if either argument is null
3575      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
3576      *         or if {@code skip} is negative or greater than the arity of the target,
3577      *         or if {@code pos} is negative or greater than the newTypes list size,
3578      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
3579      *         {@code pos}.
3580      * @since 9
3581      */
3582     public static
3583     MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
3584         Objects.requireNonNull(target);
3585         Objects.requireNonNull(newTypes);
3586         return dropArgumentsToMatch(target, skip, newTypes, pos, false);
3587     }
3588 
3589     /**
3590      * Adapts a target method handle by pre-processing
3591      * one or more of its arguments, each with its own unary filter function,
3592      * and then calling the target with each pre-processed argument
3593      * replaced by the result of its corresponding filter function.
3594      * <p>
3595      * The pre-processing is performed by one or more method handles,
3596      * specified in the elements of the {@code filters} array.
3597      * The first element of the filter array corresponds to the {@code pos}
3598      * argument of the target, and so on in sequence.
3599      * <p>
3600      * Null arguments in the array are treated as identity functions,
3601      * and the corresponding arguments left unchanged.
3602      * (If there are no non-null elements in the array, the original target is returned.)
3603      * Each filter is applied to the corresponding argument of the adapter.
3604      * <p>
3605      * If a filter {@code F} applies to the {@code N}th argument of
3606      * the target, then {@code F} must be a method handle which
3607      * takes exactly one argument.  The type of {@code F}'s sole argument
3608      * replaces the corresponding argument type of the target
3609      * in the resulting adapted method handle.
3610      * The return type of {@code F} must be identical to the corresponding
3611      * parameter type of the target.
3612      * <p>
3613      * It is an error if there are elements of {@code filters}
3614      * (null or not)
3615      * which do not correspond to argument positions in the target.
3616      * <p><b>Example:</b>
3617      * <blockquote><pre>{@code
3618 import static java.lang.invoke.MethodHandles.*;
3619 import static java.lang.invoke.MethodType.*;
3620 ...
3621 MethodHandle cat = lookup().findVirtual(String.class,
3622   "concat", methodType(String.class, String.class));
3623 MethodHandle upcase = lookup().findVirtual(String.class,
3624   "toUpperCase", methodType(String.class));
3625 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3626 MethodHandle f0 = filterArguments(cat, 0, upcase);
3627 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
3628 MethodHandle f1 = filterArguments(cat, 1, upcase);
3629 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
3630 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
3631 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
3632      * }</pre></blockquote>
3633      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3634      * denotes the return type of both the {@code target} and resulting adapter.
3635      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
3636      * of the parameters and arguments that precede and follow the filter position
3637      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
3638      * values of the filtered parameters and arguments; they also represent the
3639      * return types of the {@code filter[i]} handles. The latter accept arguments
3640      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
3641      * the resulting adapter.
3642      * <blockquote><pre>{@code
3643      * T target(P... p, A[i]... a[i], B... b);
3644      * A[i] filter[i](V[i]);
3645      * T adapter(P... p, V[i]... v[i], B... b) {
3646      *   return target(p..., filter[i](v[i])..., b...);
3647      * }
3648      * }</pre></blockquote>
3649      * <p>
3650      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3651      * variable-arity method handle}, even if the original target method handle was.
3652      *
3653      * @param target the method handle to invoke after arguments are filtered
3654      * @param pos the position of the first argument to filter
3655      * @param filters method handles to call initially on filtered arguments
3656      * @return method handle which incorporates the specified argument filtering logic
3657      * @throws NullPointerException if the target is null
3658      *                              or if the {@code filters} array is null
3659      * @throws IllegalArgumentException if a non-null element of {@code filters}
3660      *          does not match a corresponding argument type of target as described above,
3661      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
3662      *          or if the resulting method handle's type would have
3663      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3664      */
3665     public static
3666     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
3667         filterArgumentsCheckArity(target, pos, filters);
3668         MethodHandle adapter = target;
3669         int curPos = pos-1;  // pre-incremented
3670         for (MethodHandle filter : filters) {
3671             curPos += 1;
3672             if (filter == null)  continue;  // ignore null elements of filters
3673             adapter = filterArgument(adapter, curPos, filter);
3674         }
3675         return adapter;
3676     }
3677 
3678     /*non-public*/ static
3679     MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
3680         filterArgumentChecks(target, pos, filter);
3681         MethodType targetType = target.type();
3682         MethodType filterType = filter.type();
3683         BoundMethodHandle result = target.rebind();
3684         Class<?> newParamType = filterType.parameterType(0);
3685         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
3686         MethodType newType = targetType.changeParameterType(pos, newParamType);
3687         result = result.copyWithExtendL(newType, lform, filter);
3688         return result;
3689     }
3690 
3691     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
3692         MethodType targetType = target.type();
3693         int maxPos = targetType.parameterCount();
3694         if (pos + filters.length > maxPos)
3695             throw newIllegalArgumentException("too many filters");
3696     }
3697 
3698     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
3699         MethodType targetType = target.type();
3700         MethodType filterType = filter.type();
3701         if (filterType.parameterCount() != 1
3702             || filterType.returnType() != targetType.parameterType(pos))
3703             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3704     }
3705 
3706     /**
3707      * Adapts a target method handle by pre-processing
3708      * a sub-sequence of its arguments with a filter (another method handle).
3709      * The pre-processed arguments are replaced by the result (if any) of the
3710      * filter function.
3711      * The target is then called on the modified (usually shortened) argument list.
3712      * <p>
3713      * If the filter returns a value, the target must accept that value as
3714      * its argument in position {@code pos}, preceded and/or followed by
3715      * any arguments not passed to the filter.
3716      * If the filter returns void, the target must accept all arguments
3717      * not passed to the filter.
3718      * No arguments are reordered, and a result returned from the filter
3719      * replaces (in order) the whole subsequence of arguments originally
3720      * passed to the adapter.
3721      * <p>
3722      * The argument types (if any) of the filter
3723      * replace zero or one argument types of the target, at position {@code pos},
3724      * in the resulting adapted method handle.
3725      * The return type of the filter (if any) must be identical to the
3726      * argument type of the target at position {@code pos}, and that target argument
3727      * is supplied by the return value of the filter.
3728      * <p>
3729      * In all cases, {@code pos} must be greater than or equal to zero, and
3730      * {@code pos} must also be less than or equal to the target's arity.
3731      * <p><b>Example:</b>
3732      * <blockquote><pre>{@code
3733 import static java.lang.invoke.MethodHandles.*;
3734 import static java.lang.invoke.MethodType.*;
3735 ...
3736 MethodHandle deepToString = publicLookup()
3737   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
3738 
3739 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
3740 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
3741 
3742 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
3743 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
3744 
3745 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
3746 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
3747 assertEquals("[top, [up, down], strange]",
3748              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
3749 
3750 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
3751 assertEquals("[top, [up, down], [strange]]",
3752              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
3753 
3754 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
3755 assertEquals("[top, [[up, down, strange], charm], bottom]",
3756              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
3757      * }</pre></blockquote>
3758      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3759      * represents the return type of the {@code target} and resulting adapter.
3760      * {@code V}/{@code v} stand for the return type and value of the
3761      * {@code filter}, which are also found in the signature and arguments of
3762      * the {@code target}, respectively, unless {@code V} is {@code void}.
3763      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
3764      * and values preceding and following the collection position, {@code pos},
3765      * in the {@code target}'s signature. They also turn up in the resulting
3766      * adapter's signature and arguments, where they surround
3767      * {@code B}/{@code b}, which represent the parameter types and arguments
3768      * to the {@code filter} (if any).
3769      * <blockquote><pre>{@code
3770      * T target(A...,V,C...);
3771      * V filter(B...);
3772      * T adapter(A... a,B... b,C... c) {
3773      *   V v = filter(b...);
3774      *   return target(a...,v,c...);
3775      * }
3776      * // and if the filter has no arguments:
3777      * T target2(A...,V,C...);
3778      * V filter2();
3779      * T adapter2(A... a,C... c) {
3780      *   V v = filter2();
3781      *   return target2(a...,v,c...);
3782      * }
3783      * // and if the filter has a void return:
3784      * T target3(A...,C...);
3785      * void filter3(B...);
3786      * T adapter3(A... a,B... b,C... c) {
3787      *   filter3(b...);
3788      *   return target3(a...,c...);
3789      * }
3790      * }</pre></blockquote>
3791      * <p>
3792      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
3793      * one which first "folds" the affected arguments, and then drops them, in separate
3794      * steps as follows:
3795      * <blockquote><pre>{@code
3796      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
3797      * mh = MethodHandles.foldArguments(mh, coll); //step 1
3798      * }</pre></blockquote>
3799      * If the target method handle consumes no arguments besides than the result
3800      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
3801      * is equivalent to {@code filterReturnValue(coll, mh)}.
3802      * If the filter method handle {@code coll} consumes one argument and produces
3803      * a non-void result, then {@code collectArguments(mh, N, coll)}
3804      * is equivalent to {@code filterArguments(mh, N, coll)}.
3805      * Other equivalences are possible but would require argument permutation.
3806      * <p>
3807      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3808      * variable-arity method handle}, even if the original target method handle was.
3809      *
3810      * @param target the method handle to invoke after filtering the subsequence of arguments
3811      * @param pos the position of the first adapter argument to pass to the filter,
3812      *            and/or the target argument which receives the result of the filter
3813      * @param filter method handle to call on the subsequence of arguments
3814      * @return method handle which incorporates the specified argument subsequence filtering logic
3815      * @throws NullPointerException if either argument is null
3816      * @throws IllegalArgumentException if the return type of {@code filter}
3817      *          is non-void and is not the same as the {@code pos} argument of the target,
3818      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
3819      *          or if the resulting method handle's type would have
3820      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3821      * @see MethodHandles#foldArguments
3822      * @see MethodHandles#filterArguments
3823      * @see MethodHandles#filterReturnValue
3824      */
3825     public static
3826     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
3827         MethodType newType = collectArgumentsChecks(target, pos, filter);
3828         MethodType collectorType = filter.type();
3829         BoundMethodHandle result = target.rebind();
3830         LambdaForm lform;
3831         if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) {
3832             lform = result.editor().collectArgumentArrayForm(1 + pos, filter);
3833             if (lform != null) {
3834                 return result.copyWith(newType, lform);
3835             }
3836         }
3837         lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
3838         return result.copyWithExtendL(newType, lform, filter);
3839     }
3840 
3841     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
3842         MethodType targetType = target.type();
3843         MethodType filterType = filter.type();
3844         Class<?> rtype = filterType.returnType();
3845         List<Class<?>> filterArgs = filterType.parameterList();
3846         if (rtype == void.class) {
3847             return targetType.insertParameterTypes(pos, filterArgs);
3848         }
3849         if (rtype != targetType.parameterType(pos)) {
3850             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3851         }
3852         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
3853     }
3854 
3855     /**
3856      * Adapts a target method handle by post-processing
3857      * its return value (if any) with a filter (another method handle).
3858      * The result of the filter is returned from the adapter.
3859      * <p>
3860      * If the target returns a value, the filter must accept that value as
3861      * its only argument.
3862      * If the target returns void, the filter must accept no arguments.
3863      * <p>
3864      * The return type of the filter
3865      * replaces the return type of the target
3866      * in the resulting adapted method handle.
3867      * The argument type of the filter (if any) must be identical to the
3868      * return type of the target.
3869      * <p><b>Example:</b>
3870      * <blockquote><pre>{@code
3871 import static java.lang.invoke.MethodHandles.*;
3872 import static java.lang.invoke.MethodType.*;
3873 ...
3874 MethodHandle cat = lookup().findVirtual(String.class,
3875   "concat", methodType(String.class, String.class));
3876 MethodHandle length = lookup().findVirtual(String.class,
3877   "length", methodType(int.class));
3878 System.out.println((String) cat.invokeExact("x", "y")); // xy
3879 MethodHandle f0 = filterReturnValue(cat, length);
3880 System.out.println((int) f0.invokeExact("x", "y")); // 2
3881      * }</pre></blockquote>
3882      * <p>Here is pseudocode for the resulting adapter. In the code,
3883      * {@code T}/{@code t} represent the result type and value of the
3884      * {@code target}; {@code V}, the result type of the {@code filter}; and
3885      * {@code A}/{@code a}, the types and values of the parameters and arguments
3886      * of the {@code target} as well as the resulting adapter.
3887      * <blockquote><pre>{@code
3888      * T target(A...);
3889      * V filter(T);
3890      * V adapter(A... a) {
3891      *   T t = target(a...);
3892      *   return filter(t);
3893      * }
3894      * // and if the target has a void return:
3895      * void target2(A...);
3896      * V filter2();
3897      * V adapter2(A... a) {
3898      *   target2(a...);
3899      *   return filter2();
3900      * }
3901      * // and if the filter has a void return:
3902      * T target3(A...);
3903      * void filter3(V);
3904      * void adapter3(A... a) {
3905      *   T t = target3(a...);
3906      *   filter3(t);
3907      * }
3908      * }</pre></blockquote>
3909      * <p>
3910      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3911      * variable-arity method handle}, even if the original target method handle was.
3912      * @param target the method handle to invoke before filtering the return value
3913      * @param filter method handle to call on the return value
3914      * @return method handle which incorporates the specified return value filtering logic
3915      * @throws NullPointerException if either argument is null
3916      * @throws IllegalArgumentException if the argument list of {@code filter}
3917      *          does not match the return type of target as described above
3918      */
3919     public static
3920     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
3921         MethodType targetType = target.type();
3922         MethodType filterType = filter.type();
3923         filterReturnValueChecks(targetType, filterType);
3924         BoundMethodHandle result = target.rebind();
3925         BasicType rtype = BasicType.basicType(filterType.returnType());
3926         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
3927         MethodType newType = targetType.changeReturnType(filterType.returnType());
3928         result = result.copyWithExtendL(newType, lform, filter);
3929         return result;
3930     }
3931 
3932     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
3933         Class<?> rtype = targetType.returnType();
3934         int filterValues = filterType.parameterCount();
3935         if (filterValues == 0
3936                 ? (rtype != void.class)
3937                 : (rtype != filterType.parameterType(0) || filterValues != 1))
3938             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3939     }
3940 
3941     /**
3942      * Adapts a target method handle by pre-processing
3943      * some of its arguments, and then calling the target with
3944      * the result of the pre-processing, inserted into the original
3945      * sequence of arguments.
3946      * <p>
3947      * The pre-processing is performed by {@code combiner}, a second method handle.
3948      * Of the arguments passed to the adapter, the first {@code N} arguments
3949      * are copied to the combiner, which is then called.
3950      * (Here, {@code N} is defined as the parameter count of the combiner.)
3951      * After this, control passes to the target, with any result
3952      * from the combiner inserted before the original {@code N} incoming
3953      * arguments.
3954      * <p>
3955      * If the combiner returns a value, the first parameter type of the target
3956      * must be identical with the return type of the combiner, and the next
3957      * {@code N} parameter types of the target must exactly match the parameters
3958      * of the combiner.
3959      * <p>
3960      * If the combiner has a void return, no result will be inserted,
3961      * and the first {@code N} parameter types of the target
3962      * must exactly match the parameters of the combiner.
3963      * <p>
3964      * The resulting adapter is the same type as the target, except that the
3965      * first parameter type is dropped,
3966      * if it corresponds to the result of the combiner.
3967      * <p>
3968      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
3969      * that either the combiner or the target does not wish to receive.
3970      * If some of the incoming arguments are destined only for the combiner,
3971      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
3972      * arguments will not need to be live on the stack on entry to the
3973      * target.)
3974      * <p><b>Example:</b>
3975      * <blockquote><pre>{@code
3976 import static java.lang.invoke.MethodHandles.*;
3977 import static java.lang.invoke.MethodType.*;
3978 ...
3979 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
3980   "println", methodType(void.class, String.class))
3981     .bindTo(System.out);
3982 MethodHandle cat = lookup().findVirtual(String.class,
3983   "concat", methodType(String.class, String.class));
3984 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
3985 MethodHandle catTrace = foldArguments(cat, trace);
3986 // also prints "boo":
3987 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
3988      * }</pre></blockquote>
3989      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3990      * represents the result type of the {@code target} and resulting adapter.
3991      * {@code V}/{@code v} represent the type and value of the parameter and argument
3992      * of {@code target} that precedes the folding position; {@code V} also is
3993      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
3994      * types and values of the {@code N} parameters and arguments at the folding
3995      * position. {@code B}/{@code b} represent the types and values of the
3996      * {@code target} parameters and arguments that follow the folded parameters
3997      * and arguments.
3998      * <blockquote><pre>{@code
3999      * // there are N arguments in A...
4000      * T target(V, A[N]..., B...);
4001      * V combiner(A...);
4002      * T adapter(A... a, B... b) {
4003      *   V v = combiner(a...);
4004      *   return target(v, a..., b...);
4005      * }
4006      * // and if the combiner has a void return:
4007      * T target2(A[N]..., B...);
4008      * void combiner2(A...);
4009      * T adapter2(A... a, B... b) {
4010      *   combiner2(a...);
4011      *   return target2(a..., b...);
4012      * }
4013      * }</pre></blockquote>
4014      * <p>
4015      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4016      * variable-arity method handle}, even if the original target method handle was.
4017      * @param target the method handle to invoke after arguments are combined
4018      * @param combiner method handle to call initially on the incoming arguments
4019      * @return method handle which incorporates the specified argument folding logic
4020      * @throws NullPointerException if either argument is null
4021      * @throws IllegalArgumentException if {@code combiner}'s return type
4022      *          is non-void and not the same as the first argument type of
4023      *          the target, or if the initial {@code N} argument types
4024      *          of the target
4025      *          (skipping one matching the {@code combiner}'s return type)
4026      *          are not identical with the argument types of {@code combiner}
4027      */
4028     public static
4029     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
4030         return foldArguments(target, 0, combiner);
4031     }
4032 
4033     /**
4034      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
4035      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
4036      * before the folded arguments.
4037      * <p>
4038      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
4039      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
4040      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
4041      * 0.
4042      * <p>
4043      * @apiNote Example:
4044      * <blockquote><pre>{@code
4045     import static java.lang.invoke.MethodHandles.*;
4046     import static java.lang.invoke.MethodType.*;
4047     ...
4048     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4049     "println", methodType(void.class, String.class))
4050     .bindTo(System.out);
4051     MethodHandle cat = lookup().findVirtual(String.class,
4052     "concat", methodType(String.class, String.class));
4053     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4054     MethodHandle catTrace = foldArguments(cat, 1, trace);
4055     // also prints "jum":
4056     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4057      * }</pre></blockquote>
4058      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4059      * represents the result type of the {@code target} and resulting adapter.
4060      * {@code V}/{@code v} represent the type and value of the parameter and argument
4061      * of {@code target} that precedes the folding position; {@code V} also is
4062      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4063      * types and values of the {@code N} parameters and arguments at the folding
4064      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
4065      * and values of the {@code target} parameters and arguments that precede and
4066      * follow the folded parameters and arguments starting at {@code pos},
4067      * respectively.
4068      * <blockquote><pre>{@code
4069      * // there are N arguments in A...
4070      * T target(Z..., V, A[N]..., B...);
4071      * V combiner(A...);
4072      * T adapter(Z... z, A... a, B... b) {
4073      *   V v = combiner(a...);
4074      *   return target(z..., v, a..., b...);
4075      * }
4076      * // and if the combiner has a void return:
4077      * T target2(Z..., A[N]..., B...);
4078      * void combiner2(A...);
4079      * T adapter2(Z... z, A... a, B... b) {
4080      *   combiner2(a...);
4081      *   return target2(z..., a..., b...);
4082      * }
4083      * }</pre></blockquote>
4084      * <p>
4085      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4086      * variable-arity method handle}, even if the original target method handle was.
4087      *
4088      * @param target the method handle to invoke after arguments are combined
4089      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
4090      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
4091      * @param combiner method handle to call initially on the incoming arguments
4092      * @return method handle which incorporates the specified argument folding logic
4093      * @throws NullPointerException if either argument is null
4094      * @throws IllegalArgumentException if either of the following two conditions holds:
4095      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
4096      *              {@code pos} of the target signature;
4097      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
4098      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
4099      *
4100      * @see #foldArguments(MethodHandle, MethodHandle)
4101      * @since 9
4102      */
4103     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
4104         MethodType targetType = target.type();
4105         MethodType combinerType = combiner.type();
4106         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
4107         BoundMethodHandle result = target.rebind();
4108         boolean dropResult = rtype == void.class;
4109         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
4110         MethodType newType = targetType;
4111         if (!dropResult) {
4112             newType = newType.dropParameterTypes(pos, pos + 1);
4113         }
4114         result = result.copyWithExtendL(newType, lform, combiner);
4115         return result;
4116     }
4117 
4118     /**
4119      * As {@see foldArguments(MethodHandle, int, MethodHandle)}, but with the
4120      * added capability of selecting the arguments from the targets parameters
4121      * to call the combiner with. This allows us to avoid some simple cases of
4122      * permutations and padding the combiner with dropArguments to select the
4123      * right argument, which may ultimately produce fewer intermediaries.
4124      */
4125     static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner, int ... argPositions) {
4126         MethodType targetType = target.type();
4127         MethodType combinerType = combiner.type();
4128         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType, argPositions);
4129         BoundMethodHandle result = target.rebind();
4130         boolean dropResult = rtype == void.class;
4131         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType(), argPositions);
4132         MethodType newType = targetType;
4133         if (!dropResult) {
4134             newType = newType.dropParameterTypes(pos, pos + 1);
4135         }
4136         result = result.copyWithExtendL(newType, lform, combiner);
4137         return result;
4138     }
4139 
4140     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
4141         int foldArgs   = combinerType.parameterCount();
4142         Class<?> rtype = combinerType.returnType();
4143         int foldVals = rtype == void.class ? 0 : 1;
4144         int afterInsertPos = foldPos + foldVals;
4145         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
4146         if (ok) {
4147             for (int i = 0; i < foldArgs; i++) {
4148                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
4149                     ok = false;
4150                     break;
4151                 }
4152             }
4153         }
4154         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
4155             ok = false;
4156         if (!ok)
4157             throw misMatchedTypes("target and combiner types", targetType, combinerType);
4158         return rtype;
4159     }
4160 
4161     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType, int ... argPos) {
4162         int foldArgs = combinerType.parameterCount();
4163         if (argPos.length != foldArgs) {
4164             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
4165         }
4166         Class<?> rtype = combinerType.returnType();
4167         int foldVals = rtype == void.class ? 0 : 1;
4168         boolean ok = true;
4169         for (int i = 0; i < foldArgs; i++) {
4170             int arg = argPos[i];
4171             if (arg < 0 || arg > targetType.parameterCount()) {
4172                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
4173             }
4174             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
4175                 throw newIllegalArgumentException("target argument type at position " + arg
4176                         + " must match combiner argument type at index " + i + ": " + targetType
4177                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
4178             }
4179         }
4180         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos)) {
4181             ok = false;
4182         }
4183         if (!ok)
4184             throw misMatchedTypes("target and combiner types", targetType, combinerType);
4185         return rtype;
4186     }
4187 
4188     /**
4189      * Makes a method handle which adapts a target method handle,
4190      * by guarding it with a test, a boolean-valued method handle.
4191      * If the guard fails, a fallback handle is called instead.
4192      * All three method handles must have the same corresponding
4193      * argument and return types, except that the return type
4194      * of the test must be boolean, and the test is allowed
4195      * to have fewer arguments than the other two method handles.
4196      * <p>
4197      * Here is pseudocode for the resulting adapter. In the code, {@code T}
4198      * represents the uniform result type of the three involved handles;
4199      * {@code A}/{@code a}, the types and values of the {@code target}
4200      * parameters and arguments that are consumed by the {@code test}; and
4201      * {@code B}/{@code b}, those types and values of the {@code target}
4202      * parameters and arguments that are not consumed by the {@code test}.
4203      * <blockquote><pre>{@code
4204      * boolean test(A...);
4205      * T target(A...,B...);
4206      * T fallback(A...,B...);
4207      * T adapter(A... a,B... b) {
4208      *   if (test(a...))
4209      *     return target(a..., b...);
4210      *   else
4211      *     return fallback(a..., b...);
4212      * }
4213      * }</pre></blockquote>
4214      * Note that the test arguments ({@code a...} in the pseudocode) cannot
4215      * be modified by execution of the test, and so are passed unchanged
4216      * from the caller to the target or fallback as appropriate.
4217      * @param test method handle used for test, must return boolean
4218      * @param target method handle to call if test passes
4219      * @param fallback method handle to call if test fails
4220      * @return method handle which incorporates the specified if/then/else logic
4221      * @throws NullPointerException if any argument is null
4222      * @throws IllegalArgumentException if {@code test} does not return boolean,
4223      *          or if all three method types do not match (with the return
4224      *          type of {@code test} changed to match that of the target).
4225      */
4226     public static
4227     MethodHandle guardWithTest(MethodHandle test,
4228                                MethodHandle target,
4229                                MethodHandle fallback) {
4230         MethodType gtype = test.type();
4231         MethodType ttype = target.type();
4232         MethodType ftype = fallback.type();
4233         if (!ttype.equals(ftype))
4234             throw misMatchedTypes("target and fallback types", ttype, ftype);
4235         if (gtype.returnType() != boolean.class)
4236             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
4237         List<Class<?>> targs = ttype.parameterList();
4238         test = dropArgumentsToMatch(test, 0, targs, 0, true);
4239         if (test == null) {
4240             throw misMatchedTypes("target and test types", ttype, gtype);
4241         }
4242         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
4243     }
4244 
4245     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
4246         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
4247     }
4248 
4249     /**
4250      * Makes a method handle which adapts a target method handle,
4251      * by running it inside an exception handler.
4252      * If the target returns normally, the adapter returns that value.
4253      * If an exception matching the specified type is thrown, the fallback
4254      * handle is called instead on the exception, plus the original arguments.
4255      * <p>
4256      * The target and handler must have the same corresponding
4257      * argument and return types, except that handler may omit trailing arguments
4258      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
4259      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
4260      * <p>
4261      * Here is pseudocode for the resulting adapter. In the code, {@code T}
4262      * represents the return type of the {@code target} and {@code handler},
4263      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
4264      * the types and values of arguments to the resulting handle consumed by
4265      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
4266      * resulting handle discarded by {@code handler}.
4267      * <blockquote><pre>{@code
4268      * T target(A..., B...);
4269      * T handler(ExType, A...);
4270      * T adapter(A... a, B... b) {
4271      *   try {
4272      *     return target(a..., b...);
4273      *   } catch (ExType ex) {
4274      *     return handler(ex, a...);
4275      *   }
4276      * }
4277      * }</pre></blockquote>
4278      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
4279      * be modified by execution of the target, and so are passed unchanged
4280      * from the caller to the handler, if the handler is invoked.
4281      * <p>
4282      * The target and handler must return the same type, even if the handler
4283      * always throws.  (This might happen, for instance, because the handler
4284      * is simulating a {@code finally} clause).
4285      * To create such a throwing handler, compose the handler creation logic
4286      * with {@link #throwException throwException},
4287      * in order to create a method handle of the correct return type.
4288      * @param target method handle to call
4289      * @param exType the type of exception which the handler will catch
4290      * @param handler method handle to call if a matching exception is thrown
4291      * @return method handle which incorporates the specified try/catch logic
4292      * @throws NullPointerException if any argument is null
4293      * @throws IllegalArgumentException if {@code handler} does not accept
4294      *          the given exception type, or if the method handle types do
4295      *          not match in their return types and their
4296      *          corresponding parameters
4297      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
4298      */
4299     public static
4300     MethodHandle catchException(MethodHandle target,
4301                                 Class<? extends Throwable> exType,
4302                                 MethodHandle handler) {
4303         MethodType ttype = target.type();
4304         MethodType htype = handler.type();
4305         if (!Throwable.class.isAssignableFrom(exType))
4306             throw new ClassCastException(exType.getName());
4307         if (htype.parameterCount() < 1 ||
4308             !htype.parameterType(0).isAssignableFrom(exType))
4309             throw newIllegalArgumentException("handler does not accept exception type "+exType);
4310         if (htype.returnType() != ttype.returnType())
4311             throw misMatchedTypes("target and handler return types", ttype, htype);
4312         handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
4313         if (handler == null) {
4314             throw misMatchedTypes("target and handler types", ttype, htype);
4315         }
4316         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
4317     }
4318 
4319     /**
4320      * Produces a method handle which will throw exceptions of the given {@code exType}.
4321      * The method handle will accept a single argument of {@code exType},
4322      * and immediately throw it as an exception.
4323      * The method type will nominally specify a return of {@code returnType}.
4324      * The return type may be anything convenient:  It doesn't matter to the
4325      * method handle's behavior, since it will never return normally.
4326      * @param returnType the return type of the desired method handle
4327      * @param exType the parameter type of the desired method handle
4328      * @return method handle which can throw the given exceptions
4329      * @throws NullPointerException if either argument is null
4330      */
4331     public static
4332     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
4333         if (!Throwable.class.isAssignableFrom(exType))
4334             throw new ClassCastException(exType.getName());
4335         return MethodHandleImpl.throwException(methodType(returnType, exType));
4336     }
4337 
4338     /**
4339      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
4340      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
4341      * delivers the loop's result, which is the return value of the resulting handle.
4342      * <p>
4343      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
4344      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
4345      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
4346      * terms of method handles, each clause will specify up to four independent actions:<ul>
4347      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
4348      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
4349      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
4350      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
4351      * </ul>
4352      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
4353      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
4354      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
4355      * <p>
4356      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
4357      * this case. See below for a detailed description.
4358      * <p>
4359      * <em>Parameters optional everywhere:</em>
4360      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
4361      * As an exception, the init functions cannot take any {@code v} parameters,
4362      * because those values are not yet computed when the init functions are executed.
4363      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
4364      * In fact, any clause function may take no arguments at all.
4365      * <p>
4366      * <em>Loop parameters:</em>
4367      * A clause function may take all the iteration variable values it is entitled to, in which case
4368      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
4369      * with their types and values notated as {@code (A...)} and {@code (a...)}.
4370      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
4371      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
4372      * init function is automatically a loop parameter {@code a}.)
4373      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
4374      * These loop parameters act as loop-invariant values visible across the whole loop.
4375      * <p>
4376      * <em>Parameters visible everywhere:</em>
4377      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
4378      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
4379      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
4380      * Most clause functions will not need all of this information, but they will be formally connected to it
4381      * as if by {@link #dropArguments}.
4382      * <a name="astar"></a>
4383      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
4384      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
4385      * In that notation, the general form of an init function parameter list
4386      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
4387      * <p>
4388      * <em>Checking clause structure:</em>
4389      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
4390      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
4391      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
4392      * met by the inputs to the loop combinator.
4393      * <p>
4394      * <em>Effectively identical sequences:</em>
4395      * <a name="effid"></a>
4396      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
4397      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
4398      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
4399      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
4400      * that longest list.
4401      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
4402      * and the same is true if more sequences of the form {@code (V... A*)} are added.
4403      * <p>
4404      * <em>Step 0: Determine clause structure.</em><ol type="a">
4405      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
4406      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
4407      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
4408      * four. Padding takes place by appending elements to the array.
4409      * <li>Clauses with all {@code null}s are disregarded.
4410      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
4411      * </ol>
4412      * <p>
4413      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
4414      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
4415      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
4416      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
4417      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
4418      * iteration variable type.
4419      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
4420      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
4421      * </ol>
4422      * <p>
4423      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
4424      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
4425      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
4426      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
4427      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
4428      * (These types will checked in step 2, along with all the clause function types.)
4429      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
4430      * <li>All of the collected parameter lists must be effectively identical.
4431      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
4432      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
4433      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
4434      * the "internal parameter list".
4435      * </ul>
4436      * <p>
4437      * <em>Step 1C: Determine loop return type.</em><ol type="a">
4438      * <li>Examine fini function return types, disregarding omitted fini functions.
4439      * <li>If there are no fini functions, the loop return type is {@code void}.
4440      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
4441      * type.
4442      * </ol>
4443      * <p>
4444      * <em>Step 1D: Check other types.</em><ol type="a">
4445      * <li>There must be at least one non-omitted pred function.
4446      * <li>Every non-omitted pred function must have a {@code boolean} return type.
4447      * </ol>
4448      * <p>
4449      * <em>Step 2: Determine parameter lists.</em><ol type="a">
4450      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
4451      * <li>The parameter list for init functions will be adjusted to the external parameter list.
4452      * (Note that their parameter lists are already effectively identical to this list.)
4453      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
4454      * effectively identical to the internal parameter list {@code (V... A...)}.
4455      * </ol>
4456      * <p>
4457      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
4458      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
4459      * type.
4460      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
4461      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
4462      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
4463      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
4464      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
4465      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
4466      * loop return type.
4467      * </ol>
4468      * <p>
4469      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
4470      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
4471      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
4472      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
4473      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
4474      * pad out the end of the list.
4475      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch dropping unused trailing arguments}.
4476      * </ol>
4477      * <p>
4478      * <em>Final observations.</em><ol type="a">
4479      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
4480      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
4481      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
4482      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
4483      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
4484      * <li>Each pair of init and step functions agrees in their return type {@code V}.
4485      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
4486      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
4487      * </ol>
4488      * <p>
4489      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
4490      * <ul>
4491      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
4492      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
4493      * (Only one {@code Pn} has to be non-{@code null}.)
4494      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
4495      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
4496      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
4497      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
4498      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
4499      * the resulting loop handle's parameter types {@code (A...)}.
4500      * </ul>
4501      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
4502      * which is natural if most of the loop computation happens in the steps.  For some loops,
4503      * the burden of computation might be heaviest in the pred functions, and so the pred functions
4504      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
4505      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
4506      * where the init functions will need the extra parameters.  For such reasons, the rules for
4507      * determining these parameters are as symmetric as possible, across all clause parts.
4508      * In general, the loop parameters function as common invariant values across the whole
4509      * loop, while the iteration variables function as common variant values, or (if there is
4510      * no step function) as internal loop invariant temporaries.
4511      * <p>
4512      * <em>Loop execution.</em><ol type="a">
4513      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
4514      * every clause function. These locals are loop invariant.
4515      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
4516      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
4517      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
4518      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
4519      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
4520      * (in argument order).
4521      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
4522      * returns {@code false}.
4523      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
4524      * sequence {@code (v...)} of loop variables.
4525      * The updated value is immediately visible to all subsequent function calls.
4526      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
4527      * (of type {@code R}) is returned from the loop as a whole.
4528      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
4529      * except by throwing an exception.
4530      * </ol>
4531      * <p>
4532      * <em>Usage tips.</em>
4533      * <ul>
4534      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
4535      * sometimes a step function only needs to observe the current value of its own variable.
4536      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
4537      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
4538      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
4539      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
4540      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
4541      * <li>If some of the clause functions are virtual methods on an instance, the instance
4542      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
4543      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
4544      * will be the first iteration variable value, and it will be easy to use virtual
4545      * methods as clause parts, since all of them will take a leading instance reference matching that value.
4546      * </ul>
4547      * <p>
4548      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
4549      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
4550      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
4551      * <blockquote><pre>{@code
4552      * V... init...(A...);
4553      * boolean pred...(V..., A...);
4554      * V... step...(V..., A...);
4555      * R fini...(V..., A...);
4556      * R loop(A... a) {
4557      *   V... v... = init...(a...);
4558      *   for (;;) {
4559      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
4560      *       v = s(v..., a...);
4561      *       if (!p(v..., a...)) {
4562      *         return f(v..., a...);
4563      *       }
4564      *     }
4565      *   }
4566      * }
4567      * }</pre></blockquote>
4568      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
4569      * to their full length, even though individual clause functions may neglect to take them all.
4570      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch}.
4571      * <p>
4572      * @apiNote Example:
4573      * <blockquote><pre>{@code
4574      * // iterative implementation of the factorial function as a loop handle
4575      * static int one(int k) { return 1; }
4576      * static int inc(int i, int acc, int k) { return i + 1; }
4577      * static int mult(int i, int acc, int k) { return i * acc; }
4578      * static boolean pred(int i, int acc, int k) { return i < k; }
4579      * static int fin(int i, int acc, int k) { return acc; }
4580      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
4581      * // null initializer for counter, should initialize to 0
4582      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4583      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4584      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
4585      * assertEquals(120, loop.invoke(5));
4586      * }</pre></blockquote>
4587      * The same example, dropping arguments and using combinators:
4588      * <blockquote><pre>{@code
4589      * // simplified implementation of the factorial function as a loop handle
4590      * static int inc(int i) { return i + 1; } // drop acc, k
4591      * static int mult(int i, int acc) { return i * acc; } //drop k
4592      * static boolean cmp(int i, int k) { return i < k; }
4593      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
4594      * // null initializer for counter, should initialize to 0
4595      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
4596      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
4597      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
4598      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4599      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4600      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
4601      * assertEquals(720, loop.invoke(6));
4602      * }</pre></blockquote>
4603      * A similar example, using a helper object to hold a loop parameter:
4604      * <blockquote><pre>{@code
4605      * // instance-based implementation of the factorial function as a loop handle
4606      * static class FacLoop {
4607      *   final int k;
4608      *   FacLoop(int k) { this.k = k; }
4609      *   int inc(int i) { return i + 1; }
4610      *   int mult(int i, int acc) { return i * acc; }
4611      *   boolean pred(int i) { return i < k; }
4612      *   int fin(int i, int acc) { return acc; }
4613      * }
4614      * // assume MH_FacLoop is a handle to the constructor
4615      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
4616      * // null initializer for counter, should initialize to 0
4617      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
4618      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
4619      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4620      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4621      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
4622      * assertEquals(5040, loop.invoke(7));
4623      * }</pre></blockquote>
4624      *
4625      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
4626      *
4627      * @return a method handle embodying the looping behavior as defined by the arguments.
4628      *
4629      * @throws IllegalArgumentException in case any of the constraints described above is violated.
4630      *
4631      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
4632      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
4633      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
4634      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
4635      * @since 9
4636      */
4637     public static MethodHandle loop(MethodHandle[]... clauses) {
4638         // Step 0: determine clause structure.
4639         loopChecks0(clauses);
4640 
4641         List<MethodHandle> init = new ArrayList<>();
4642         List<MethodHandle> step = new ArrayList<>();
4643         List<MethodHandle> pred = new ArrayList<>();
4644         List<MethodHandle> fini = new ArrayList<>();
4645 
4646         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
4647             init.add(clause[0]); // all clauses have at least length 1
4648             step.add(clause.length <= 1 ? null : clause[1]);
4649             pred.add(clause.length <= 2 ? null : clause[2]);
4650             fini.add(clause.length <= 3 ? null : clause[3]);
4651         });
4652 
4653         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
4654         final int nclauses = init.size();
4655 
4656         // Step 1A: determine iteration variables (V...).
4657         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
4658         for (int i = 0; i < nclauses; ++i) {
4659             MethodHandle in = init.get(i);
4660             MethodHandle st = step.get(i);
4661             if (in == null && st == null) {
4662                 iterationVariableTypes.add(void.class);
4663             } else if (in != null && st != null) {
4664                 loopChecks1a(i, in, st);
4665                 iterationVariableTypes.add(in.type().returnType());
4666             } else {
4667                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
4668             }
4669         }
4670         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
4671                 collect(Collectors.toList());
4672 
4673         // Step 1B: determine loop parameters (A...).
4674         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
4675         loopChecks1b(init, commonSuffix);
4676 
4677         // Step 1C: determine loop return type.
4678         // Step 1D: check other types.
4679         final Class<?> loopReturnType = fini.stream().filter(Objects::nonNull).map(MethodHandle::type).
4680                 map(MethodType::returnType).findFirst().orElse(void.class);
4681         loopChecks1cd(pred, fini, loopReturnType);
4682 
4683         // Step 2: determine parameter lists.
4684         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
4685         commonParameterSequence.addAll(commonSuffix);
4686         loopChecks2(step, pred, fini, commonParameterSequence);
4687 
4688         // Step 3: fill in omitted functions.
4689         for (int i = 0; i < nclauses; ++i) {
4690             Class<?> t = iterationVariableTypes.get(i);
4691             if (init.get(i) == null) {
4692                 init.set(i, empty(methodType(t, commonSuffix)));
4693             }
4694             if (step.get(i) == null) {
4695                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
4696             }
4697             if (pred.get(i) == null) {
4698                 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
4699             }
4700             if (fini.get(i) == null) {
4701                 fini.set(i, empty(methodType(t, commonParameterSequence)));
4702             }
4703         }
4704 
4705         // Step 4: fill in missing parameter types.
4706         // Also convert all handles to fixed-arity handles.
4707         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
4708         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
4709         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
4710         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
4711 
4712         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
4713                 allMatch(pl -> pl.equals(commonSuffix));
4714         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
4715                 allMatch(pl -> pl.equals(commonParameterSequence));
4716 
4717         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
4718     }
4719 
4720     private static void loopChecks0(MethodHandle[][] clauses) {
4721         if (clauses == null || clauses.length == 0) {
4722             throw newIllegalArgumentException("null or no clauses passed");
4723         }
4724         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
4725             throw newIllegalArgumentException("null clauses are not allowed");
4726         }
4727         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
4728             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
4729         }
4730     }
4731 
4732     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
4733         if (in.type().returnType() != st.type().returnType()) {
4734             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
4735                     st.type().returnType());
4736         }
4737     }
4738 
4739     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
4740         final List<Class<?>> empty = List.of();
4741         final List<Class<?>> longest = mhs.filter(Objects::nonNull).
4742                 // take only those that can contribute to a common suffix because they are longer than the prefix
4743                         map(MethodHandle::type).
4744                         filter(t -> t.parameterCount() > skipSize).
4745                         map(MethodType::parameterList).
4746                         reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4747         return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
4748     }
4749 
4750     private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
4751         final List<Class<?>> empty = List.of();
4752         return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4753     }
4754 
4755     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
4756         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
4757         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
4758         return longestParameterList(Arrays.asList(longest1, longest2));
4759     }
4760 
4761     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
4762         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
4763                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
4764             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
4765                     " (common suffix: " + commonSuffix + ")");
4766         }
4767     }
4768 
4769     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
4770         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4771                 anyMatch(t -> t != loopReturnType)) {
4772             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
4773                     loopReturnType + ")");
4774         }
4775 
4776         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
4777             throw newIllegalArgumentException("no predicate found", pred);
4778         }
4779         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4780                 anyMatch(t -> t != boolean.class)) {
4781             throw newIllegalArgumentException("predicates must have boolean return type", pred);
4782         }
4783     }
4784 
4785     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
4786         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
4787                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
4788             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
4789                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
4790         }
4791     }
4792 
4793     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
4794         return hs.stream().map(h -> {
4795             int pc = h.type().parameterCount();
4796             int tpsize = targetParams.size();
4797             return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
4798         }).collect(Collectors.toList());
4799     }
4800 
4801     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
4802         return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
4803     }
4804 
4805     /**
4806      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
4807      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
4808      * <p>
4809      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
4810      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
4811      * evaluates to {@code true}).
4812      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
4813      * <p>
4814      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
4815      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
4816      * and updated with the value returned from its invocation. The result of loop execution will be
4817      * the final value of the additional loop-local variable (if present).
4818      * <p>
4819      * The following rules hold for these argument handles:<ul>
4820      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
4821      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
4822      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
4823      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
4824      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
4825      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
4826      * It will constrain the parameter lists of the other loop parts.
4827      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
4828      * list {@code (A...)} is called the <em>external parameter list</em>.
4829      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
4830      * additional state variable of the loop.
4831      * The body must both accept and return a value of this type {@code V}.
4832      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
4833      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
4834      * <a href="MethodHandles.html#effid">effectively identical</a>
4835      * to the external parameter list {@code (A...)}.
4836      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
4837      * {@linkplain #empty default value}.
4838      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
4839      * Its parameter list (either empty or of the form {@code (V A*)}) must be
4840      * effectively identical to the internal parameter list.
4841      * </ul>
4842      * <p>
4843      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
4844      * <li>The loop handle's result type is the result type {@code V} of the body.
4845      * <li>The loop handle's parameter types are the types {@code (A...)},
4846      * from the external parameter list.
4847      * </ul>
4848      * <p>
4849      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
4850      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
4851      * passed to the loop.
4852      * <blockquote><pre>{@code
4853      * V init(A...);
4854      * boolean pred(V, A...);
4855      * V body(V, A...);
4856      * V whileLoop(A... a...) {
4857      *   V v = init(a...);
4858      *   while (pred(v, a...)) {
4859      *     v = body(v, a...);
4860      *   }
4861      *   return v;
4862      * }
4863      * }</pre></blockquote>
4864      * <p>
4865      * @apiNote Example:
4866      * <blockquote><pre>{@code
4867      * // implement the zip function for lists as a loop handle
4868      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
4869      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
4870      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
4871      *   zip.add(a.next());
4872      *   zip.add(b.next());
4873      *   return zip;
4874      * }
4875      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
4876      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
4877      * List<String> a = Arrays.asList("a", "b", "c", "d");
4878      * List<String> b = Arrays.asList("e", "f", "g", "h");
4879      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
4880      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
4881      * }</pre></blockquote>
4882      *
4883      * <p>
4884      * @apiNote The implementation of this method can be expressed as follows:
4885      * <blockquote><pre>{@code
4886      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
4887      *     MethodHandle fini = (body.type().returnType() == void.class
4888      *                         ? null : identity(body.type().returnType()));
4889      *     MethodHandle[]
4890      *         checkExit = { null, null, pred, fini },
4891      *         varBody   = { init, body };
4892      *     return loop(checkExit, varBody);
4893      * }
4894      * }</pre></blockquote>
4895      *
4896      * @param init optional initializer, providing the initial value of the loop variable.
4897      *             May be {@code null}, implying a default initial value.  See above for other constraints.
4898      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
4899      *             above for other constraints.
4900      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
4901      *             See above for other constraints.
4902      *
4903      * @return a method handle implementing the {@code while} loop as described by the arguments.
4904      * @throws IllegalArgumentException if the rules for the arguments are violated.
4905      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
4906      *
4907      * @see #loop(MethodHandle[][])
4908      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
4909      * @since 9
4910      */
4911     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
4912         whileLoopChecks(init, pred, body);
4913         MethodHandle fini = identityOrVoid(body.type().returnType());
4914         MethodHandle[] checkExit = { null, null, pred, fini };
4915         MethodHandle[] varBody = { init, body };
4916         return loop(checkExit, varBody);
4917     }
4918 
4919     /**
4920      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
4921      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
4922      * <p>
4923      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
4924      * method will, in each iteration, first execute its body and then evaluate the predicate.
4925      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
4926      * <p>
4927      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
4928      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
4929      * and updated with the value returned from its invocation. The result of loop execution will be
4930      * the final value of the additional loop-local variable (if present).
4931      * <p>
4932      * The following rules hold for these argument handles:<ul>
4933      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
4934      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
4935      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
4936      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
4937      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
4938      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
4939      * It will constrain the parameter lists of the other loop parts.
4940      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
4941      * list {@code (A...)} is called the <em>external parameter list</em>.
4942      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
4943      * additional state variable of the loop.
4944      * The body must both accept and return a value of this type {@code V}.
4945      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
4946      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
4947      * <a href="MethodHandles.html#effid">effectively identical</a>
4948      * to the external parameter list {@code (A...)}.
4949      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
4950      * {@linkplain #empty default value}.
4951      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
4952      * Its parameter list (either empty or of the form {@code (V A*)}) must be
4953      * effectively identical to the internal parameter list.
4954      * </ul>
4955      * <p>
4956      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
4957      * <li>The loop handle's result type is the result type {@code V} of the body.
4958      * <li>The loop handle's parameter types are the types {@code (A...)},
4959      * from the external parameter list.
4960      * </ul>
4961      * <p>
4962      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
4963      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
4964      * passed to the loop.
4965      * <blockquote><pre>{@code
4966      * V init(A...);
4967      * boolean pred(V, A...);
4968      * V body(V, A...);
4969      * V doWhileLoop(A... a...) {
4970      *   V v = init(a...);
4971      *   do {
4972      *     v = body(v, a...);
4973      *   } while (pred(v, a...));
4974      *   return v;
4975      * }
4976      * }</pre></blockquote>
4977      * <p>
4978      * @apiNote Example:
4979      * <blockquote><pre>{@code
4980      * // int i = 0; while (i < limit) { ++i; } return i; => limit
4981      * static int zero(int limit) { return 0; }
4982      * static int step(int i, int limit) { return i + 1; }
4983      * static boolean pred(int i, int limit) { return i < limit; }
4984      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
4985      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
4986      * assertEquals(23, loop.invoke(23));
4987      * }</pre></blockquote>
4988      *
4989      * <p>
4990      * @apiNote The implementation of this method can be expressed as follows:
4991      * <blockquote><pre>{@code
4992      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
4993      *     MethodHandle fini = (body.type().returnType() == void.class
4994      *                         ? null : identity(body.type().returnType()));
4995      *     MethodHandle[] clause = { init, body, pred, fini };
4996      *     return loop(clause);
4997      * }
4998      * }</pre></blockquote>
4999      *
5000      * @param init optional initializer, providing the initial value of the loop variable.
5001      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5002      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5003      *             See above for other constraints.
5004      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5005      *             above for other constraints.
5006      *
5007      * @return a method handle implementing the {@code while} loop as described by the arguments.
5008      * @throws IllegalArgumentException if the rules for the arguments are violated.
5009      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5010      *
5011      * @see #loop(MethodHandle[][])
5012      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
5013      * @since 9
5014      */
5015     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
5016         whileLoopChecks(init, pred, body);
5017         MethodHandle fini = identityOrVoid(body.type().returnType());
5018         MethodHandle[] clause = {init, body, pred, fini };
5019         return loop(clause);
5020     }
5021 
5022     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
5023         Objects.requireNonNull(pred);
5024         Objects.requireNonNull(body);
5025         MethodType bodyType = body.type();
5026         Class<?> returnType = bodyType.returnType();
5027         List<Class<?>> innerList = bodyType.parameterList();
5028         List<Class<?>> outerList = innerList;
5029         if (returnType == void.class) {
5030             // OK
5031         } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
5032             // leading V argument missing => error
5033             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5034             throw misMatchedTypes("body function", bodyType, expected);
5035         } else {
5036             outerList = innerList.subList(1, innerList.size());
5037         }
5038         MethodType predType = pred.type();
5039         if (predType.returnType() != boolean.class ||
5040                 !predType.effectivelyIdenticalParameters(0, innerList)) {
5041             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
5042         }
5043         if (init != null) {
5044             MethodType initType = init.type();
5045             if (initType.returnType() != returnType ||
5046                     !initType.effectivelyIdenticalParameters(0, outerList)) {
5047                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5048             }
5049         }
5050     }
5051 
5052     /**
5053      * Constructs a loop that runs a given number of iterations.
5054      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5055      * <p>
5056      * The number of iterations is determined by the {@code iterations} handle evaluation result.
5057      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
5058      * It will be initialized to 0 and incremented by 1 in each iteration.
5059      * <p>
5060      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5061      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5062      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5063      * <p>
5064      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5065      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5066      * iteration variable.
5067      * The result of the loop handle execution will be the final {@code V} value of that variable
5068      * (or {@code void} if there is no {@code V} variable).
5069      * <p>
5070      * The following rules hold for the argument handles:<ul>
5071      * <li>The {@code iterations} handle must not be {@code null}, and must return
5072      * the type {@code int}, referred to here as {@code I} in parameter type lists.
5073      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5074      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
5075      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5076      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
5077      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
5078      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
5079      * of types called the <em>internal parameter list</em>.
5080      * It will constrain the parameter lists of the other loop parts.
5081      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
5082      * with no additional {@code A} types, then the internal parameter list is extended by
5083      * the argument types {@code A...} of the {@code iterations} handle.
5084      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
5085      * list {@code (A...)} is called the <em>external parameter list</em>.
5086      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5087      * additional state variable of the loop.
5088      * The body must both accept a leading parameter and return a value of this type {@code V}.
5089      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5090      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5091      * <a href="MethodHandles.html#effid">effectively identical</a>
5092      * to the external parameter list {@code (A...)}.
5093      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5094      * {@linkplain #empty default value}.
5095      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
5096      * effectively identical to the external parameter list {@code (A...)}.
5097      * </ul>
5098      * <p>
5099      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5100      * <li>The loop handle's result type is the result type {@code V} of the body.
5101      * <li>The loop handle's parameter types are the types {@code (A...)},
5102      * from the external parameter list.
5103      * </ul>
5104      * <p>
5105      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5106      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
5107      * arguments passed to the loop.
5108      * <blockquote><pre>{@code
5109      * int iterations(A...);
5110      * V init(A...);
5111      * V body(V, int, A...);
5112      * V countedLoop(A... a...) {
5113      *   int end = iterations(a...);
5114      *   V v = init(a...);
5115      *   for (int i = 0; i < end; ++i) {
5116      *     v = body(v, i, a...);
5117      *   }
5118      *   return v;
5119      * }
5120      * }</pre></blockquote>
5121      * <p>
5122      * @apiNote Example with a fully conformant body method:
5123      * <blockquote><pre>{@code
5124      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
5125      * // => a variation on a well known theme
5126      * static String step(String v, int counter, String init) { return "na " + v; }
5127      * // assume MH_step is a handle to the method above
5128      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
5129      * MethodHandle start = MethodHandles.identity(String.class);
5130      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
5131      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
5132      * }</pre></blockquote>
5133      * <p>
5134      * @apiNote Example with the simplest possible body method type,
5135      * and passing the number of iterations to the loop invocation:
5136      * <blockquote><pre>{@code
5137      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
5138      * // => a variation on a well known theme
5139      * static String step(String v, int counter ) { return "na " + v; }
5140      * // assume MH_step is a handle to the method above
5141      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
5142      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
5143      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
5144      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
5145      * }</pre></blockquote>
5146      * <p>
5147      * @apiNote Example that treats the number of iterations, string to append to, and string to append
5148      * as loop parameters:
5149      * <blockquote><pre>{@code
5150      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
5151      * // => a variation on a well known theme
5152      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
5153      * // assume MH_step is a handle to the method above
5154      * MethodHandle count = MethodHandles.identity(int.class);
5155      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
5156      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
5157      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
5158      * }</pre></blockquote>
5159      * <p>
5160      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
5161      * to enforce a loop type:
5162      * <blockquote><pre>{@code
5163      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
5164      * // => a variation on a well known theme
5165      * static String step(String v, int counter, String pre) { return pre + " " + v; }
5166      * // assume MH_step is a handle to the method above
5167      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
5168      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
5169      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
5170      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
5171      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
5172      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
5173      * }</pre></blockquote>
5174      * <p>
5175      * @apiNote The implementation of this method can be expressed as follows:
5176      * <blockquote><pre>{@code
5177      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
5178      *     return countedLoop(empty(iterations.type()), iterations, init, body);
5179      * }
5180      * }</pre></blockquote>
5181      *
5182      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
5183      *                   result type must be {@code int}. See above for other constraints.
5184      * @param init optional initializer, providing the initial value of the loop variable.
5185      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5186      * @param body body of the loop, which may not be {@code null}.
5187      *             It controls the loop parameters and result type in the standard case (see above for details).
5188      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
5189      *             and may accept any number of additional types.
5190      *             See above for other constraints.
5191      *
5192      * @return a method handle representing the loop.
5193      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
5194      * @throws IllegalArgumentException if any argument violates the rules formulated above.
5195      *
5196      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
5197      * @since 9
5198      */
5199     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
5200         return countedLoop(empty(iterations.type()), iterations, init, body);
5201     }
5202 
5203     /**
5204      * Constructs a loop that counts over a range of numbers.
5205      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5206      * <p>
5207      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
5208      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
5209      * values of the loop counter.
5210      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
5211      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
5212      * <p>
5213      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5214      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5215      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5216      * <p>
5217      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5218      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5219      * iteration variable.
5220      * The result of the loop handle execution will be the final {@code V} value of that variable
5221      * (or {@code void} if there is no {@code V} variable).
5222      * <p>
5223      * The following rules hold for the argument handles:<ul>
5224      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
5225      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
5226      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5227      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
5228      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5229      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
5230      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
5231      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
5232      * of types called the <em>internal parameter list</em>.
5233      * It will constrain the parameter lists of the other loop parts.
5234      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
5235      * with no additional {@code A} types, then the internal parameter list is extended by
5236      * the argument types {@code A...} of the {@code end} handle.
5237      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
5238      * list {@code (A...)} is called the <em>external parameter list</em>.
5239      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5240      * additional state variable of the loop.
5241      * The body must both accept a leading parameter and return a value of this type {@code V}.
5242      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5243      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5244      * <a href="MethodHandles.html#effid">effectively identical</a>
5245      * to the external parameter list {@code (A...)}.
5246      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5247      * {@linkplain #empty default value}.
5248      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
5249      * effectively identical to the external parameter list {@code (A...)}.
5250      * <li>Likewise, the parameter list of {@code end} must be effectively identical
5251      * to the external parameter list.
5252      * </ul>
5253      * <p>
5254      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5255      * <li>The loop handle's result type is the result type {@code V} of the body.
5256      * <li>The loop handle's parameter types are the types {@code (A...)},
5257      * from the external parameter list.
5258      * </ul>
5259      * <p>
5260      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5261      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
5262      * arguments passed to the loop.
5263      * <blockquote><pre>{@code
5264      * int start(A...);
5265      * int end(A...);
5266      * V init(A...);
5267      * V body(V, int, A...);
5268      * V countedLoop(A... a...) {
5269      *   int e = end(a...);
5270      *   int s = start(a...);
5271      *   V v = init(a...);
5272      *   for (int i = s; i < e; ++i) {
5273      *     v = body(v, i, a...);
5274      *   }
5275      *   return v;
5276      * }
5277      * }</pre></blockquote>
5278      *
5279      * <p>
5280      * @apiNote The implementation of this method can be expressed as follows:
5281      * <blockquote><pre>{@code
5282      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5283      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
5284      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
5285      *     // the following semantics:
5286      *     // MH_increment: (int limit, int counter) -> counter + 1
5287      *     // MH_predicate: (int limit, int counter) -> counter < limit
5288      *     Class<?> counterType = start.type().returnType();  // int
5289      *     Class<?> returnType = body.type().returnType();
5290      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
5291      *     if (returnType != void.class) {  // ignore the V variable
5292      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5293      *         pred = dropArguments(pred, 1, returnType);  // ditto
5294      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
5295      *     }
5296      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
5297      *     MethodHandle[]
5298      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5299      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
5300      *         indexVar   = { start, incr };           // i = start(); i = i + 1
5301      *     return loop(loopLimit, bodyClause, indexVar);
5302      * }
5303      * }</pre></blockquote>
5304      *
5305      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
5306      *              See above for other constraints.
5307      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
5308      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
5309      * @param init optional initializer, providing the initial value of the loop variable.
5310      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5311      * @param body body of the loop, which may not be {@code null}.
5312      *             It controls the loop parameters and result type in the standard case (see above for details).
5313      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
5314      *             and may accept any number of additional types.
5315      *             See above for other constraints.
5316      *
5317      * @return a method handle representing the loop.
5318      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
5319      * @throws IllegalArgumentException if any argument violates the rules formulated above.
5320      *
5321      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
5322      * @since 9
5323      */
5324     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5325         countedLoopChecks(start, end, init, body);
5326         Class<?> counterType = start.type().returnType();  // int, but who's counting?
5327         Class<?> limitType   = end.type().returnType();    // yes, int again
5328         Class<?> returnType  = body.type().returnType();
5329         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
5330         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
5331         MethodHandle retv = null;
5332         if (returnType != void.class) {
5333             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5334             pred = dropArguments(pred, 1, returnType);  // ditto
5335             retv = dropArguments(identity(returnType), 0, counterType);
5336         }
5337         body = dropArguments(body, 0, counterType);  // ignore the limit variable
5338         MethodHandle[]
5339             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5340             bodyClause = { init, body },            // v = init(); v = body(v, i)
5341             indexVar   = { start, incr };           // i = start(); i = i + 1
5342         return loop(loopLimit, bodyClause, indexVar);
5343     }
5344 
5345     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5346         Objects.requireNonNull(start);
5347         Objects.requireNonNull(end);
5348         Objects.requireNonNull(body);
5349         Class<?> counterType = start.type().returnType();
5350         if (counterType != int.class) {
5351             MethodType expected = start.type().changeReturnType(int.class);
5352             throw misMatchedTypes("start function", start.type(), expected);
5353         } else if (end.type().returnType() != counterType) {
5354             MethodType expected = end.type().changeReturnType(counterType);
5355             throw misMatchedTypes("end function", end.type(), expected);
5356         }
5357         MethodType bodyType = body.type();
5358         Class<?> returnType = bodyType.returnType();
5359         List<Class<?>> innerList = bodyType.parameterList();
5360         // strip leading V value if present
5361         int vsize = (returnType == void.class ? 0 : 1);
5362         if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
5363             // argument list has no "V" => error
5364             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5365             throw misMatchedTypes("body function", bodyType, expected);
5366         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
5367             // missing I type => error
5368             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
5369             throw misMatchedTypes("body function", bodyType, expected);
5370         }
5371         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
5372         if (outerList.isEmpty()) {
5373             // special case; take lists from end handle
5374             outerList = end.type().parameterList();
5375             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
5376         }
5377         MethodType expected = methodType(counterType, outerList);
5378         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
5379             throw misMatchedTypes("start parameter types", start.type(), expected);
5380         }
5381         if (end.type() != start.type() &&
5382             !end.type().effectivelyIdenticalParameters(0, outerList)) {
5383             throw misMatchedTypes("end parameter types", end.type(), expected);
5384         }
5385         if (init != null) {
5386             MethodType initType = init.type();
5387             if (initType.returnType() != returnType ||
5388                 !initType.effectivelyIdenticalParameters(0, outerList)) {
5389                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5390             }
5391         }
5392     }
5393 
5394     /**
5395      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
5396      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5397      * <p>
5398      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
5399      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
5400      * <p>
5401      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5402      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5403      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5404      * <p>
5405      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5406      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5407      * iteration variable.
5408      * The result of the loop handle execution will be the final {@code V} value of that variable
5409      * (or {@code void} if there is no {@code V} variable).
5410      * <p>
5411      * The following rules hold for the argument handles:<ul>
5412      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5413      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
5414      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5415      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
5416      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
5417      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
5418      * of types called the <em>internal parameter list</em>.
5419      * It will constrain the parameter lists of the other loop parts.
5420      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
5421      * with no additional {@code A} types, then the internal parameter list is extended by
5422      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
5423      * single type {@code Iterable} is added and constitutes the {@code A...} list.
5424      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
5425      * list {@code (A...)} is called the <em>external parameter list</em>.
5426      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5427      * additional state variable of the loop.
5428      * The body must both accept a leading parameter and return a value of this type {@code V}.
5429      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5430      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5431      * <a href="MethodHandles.html#effid">effectively identical</a>
5432      * to the external parameter list {@code (A...)}.
5433      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5434      * {@linkplain #empty default value}.
5435      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
5436      * type {@code java.util.Iterator} or a subtype thereof.
5437      * The iterator it produces when the loop is executed will be assumed
5438      * to yield values which can be converted to type {@code T}.
5439      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
5440      * effectively identical to the external parameter list {@code (A...)}.
5441      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
5442      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
5443      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
5444      * handle parameter is adjusted to accept the leading {@code A} type, as if by
5445      * the {@link MethodHandle#asType asType} conversion method.
5446      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
5447      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
5448      * </ul>
5449      * <p>
5450      * The type {@code T} may be either a primitive or reference.
5451      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
5452      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
5453      * as if by the {@link MethodHandle#asType asType} conversion method.
5454      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
5455      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
5456      * <p>
5457      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5458      * <li>The loop handle's result type is the result type {@code V} of the body.
5459      * <li>The loop handle's parameter types are the types {@code (A...)},
5460      * from the external parameter list.
5461      * </ul>
5462      * <p>
5463      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5464      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
5465      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
5466      * <blockquote><pre>{@code
5467      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
5468      * V init(A...);
5469      * V body(V,T,A...);
5470      * V iteratedLoop(A... a...) {
5471      *   Iterator<T> it = iterator(a...);
5472      *   V v = init(a...);
5473      *   while (it.hasNext()) {
5474      *     T t = it.next();
5475      *     v = body(v, t, a...);
5476      *   }
5477      *   return v;
5478      * }
5479      * }</pre></blockquote>
5480      * <p>
5481      * @apiNote Example:
5482      * <blockquote><pre>{@code
5483      * // get an iterator from a list
5484      * static List<String> reverseStep(List<String> r, String e) {
5485      *   r.add(0, e);
5486      *   return r;
5487      * }
5488      * static List<String> newArrayList() { return new ArrayList<>(); }
5489      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
5490      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
5491      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
5492      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
5493      * assertEquals(reversedList, (List<String>) loop.invoke(list));
5494      * }</pre></blockquote>
5495      * <p>
5496      * @apiNote The implementation of this method can be expressed approximately as follows:
5497      * <blockquote><pre>{@code
5498      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5499      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
5500      *     Class<?> returnType = body.type().returnType();
5501      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
5502      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
5503      *     MethodHandle retv = null, step = body, startIter = iterator;
5504      *     if (returnType != void.class) {
5505      *         // the simple thing first:  in (I V A...), drop the I to get V
5506      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
5507      *         // body type signature (V T A...), internal loop types (I V A...)
5508      *         step = swapArguments(body, 0, 1);  // swap V <-> T
5509      *     }
5510      *     if (startIter == null)  startIter = MH_getIter;
5511      *     MethodHandle[]
5512      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
5513      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
5514      *     return loop(iterVar, bodyClause);
5515      * }
5516      * }</pre></blockquote>
5517      *
5518      * @param iterator an optional handle to return the iterator to start the loop.
5519      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
5520      *                 See above for other constraints.
5521      * @param init optional initializer, providing the initial value of the loop variable.
5522      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5523      * @param body body of the loop, which may not be {@code null}.
5524      *             It controls the loop parameters and result type in the standard case (see above for details).
5525      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
5526      *             and may accept any number of additional types.
5527      *             See above for other constraints.
5528      *
5529      * @return a method handle embodying the iteration loop functionality.
5530      * @throws NullPointerException if the {@code body} handle is {@code null}.
5531      * @throws IllegalArgumentException if any argument violates the above requirements.
5532      *
5533      * @since 9
5534      */
5535     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5536         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
5537         Class<?> returnType = body.type().returnType();
5538         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
5539         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
5540         MethodHandle startIter;
5541         MethodHandle nextVal;
5542         {
5543             MethodType iteratorType;
5544             if (iterator == null) {
5545                 // derive argument type from body, if available, else use Iterable
5546                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
5547                 iteratorType = startIter.type().changeParameterType(0, iterableType);
5548             } else {
5549                 // force return type to the internal iterator class
5550                 iteratorType = iterator.type().changeReturnType(Iterator.class);
5551                 startIter = iterator;
5552             }
5553             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
5554             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
5555 
5556             // perform the asType transforms under an exception transformer, as per spec.:
5557             try {
5558                 startIter = startIter.asType(iteratorType);
5559                 nextVal = nextRaw.asType(nextValType);
5560             } catch (WrongMethodTypeException ex) {
5561                 throw new IllegalArgumentException(ex);
5562             }
5563         }
5564 
5565         MethodHandle retv = null, step = body;
5566         if (returnType != void.class) {
5567             // the simple thing first:  in (I V A...), drop the I to get V
5568             retv = dropArguments(identity(returnType), 0, Iterator.class);
5569             // body type signature (V T A...), internal loop types (I V A...)
5570             step = swapArguments(body, 0, 1);  // swap V <-> T
5571         }
5572 
5573         MethodHandle[]
5574             iterVar    = { startIter, null, hasNext, retv },
5575             bodyClause = { init, filterArgument(step, 0, nextVal) };
5576         return loop(iterVar, bodyClause);
5577     }
5578 
5579     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5580         Objects.requireNonNull(body);
5581         MethodType bodyType = body.type();
5582         Class<?> returnType = bodyType.returnType();
5583         List<Class<?>> internalParamList = bodyType.parameterList();
5584         // strip leading V value if present
5585         int vsize = (returnType == void.class ? 0 : 1);
5586         if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
5587             // argument list has no "V" => error
5588             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5589             throw misMatchedTypes("body function", bodyType, expected);
5590         } else if (internalParamList.size() <= vsize) {
5591             // missing T type => error
5592             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
5593             throw misMatchedTypes("body function", bodyType, expected);
5594         }
5595         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
5596         Class<?> iterableType = null;
5597         if (iterator != null) {
5598             // special case; if the body handle only declares V and T then
5599             // the external parameter list is obtained from iterator handle
5600             if (externalParamList.isEmpty()) {
5601                 externalParamList = iterator.type().parameterList();
5602             }
5603             MethodType itype = iterator.type();
5604             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
5605                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
5606             }
5607             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
5608                 MethodType expected = methodType(itype.returnType(), externalParamList);
5609                 throw misMatchedTypes("iterator parameters", itype, expected);
5610             }
5611         } else {
5612             if (externalParamList.isEmpty()) {
5613                 // special case; if the iterator handle is null and the body handle
5614                 // only declares V and T then the external parameter list consists
5615                 // of Iterable
5616                 externalParamList = Arrays.asList(Iterable.class);
5617                 iterableType = Iterable.class;
5618             } else {
5619                 // special case; if the iterator handle is null and the external
5620                 // parameter list is not empty then the first parameter must be
5621                 // assignable to Iterable
5622                 iterableType = externalParamList.get(0);
5623                 if (!Iterable.class.isAssignableFrom(iterableType)) {
5624                     throw newIllegalArgumentException(
5625                             "inferred first loop argument must inherit from Iterable: " + iterableType);
5626                 }
5627             }
5628         }
5629         if (init != null) {
5630             MethodType initType = init.type();
5631             if (initType.returnType() != returnType ||
5632                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
5633                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
5634             }
5635         }
5636         return iterableType;  // help the caller a bit
5637     }
5638 
5639     /*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
5640         // there should be a better way to uncross my wires
5641         int arity = mh.type().parameterCount();
5642         int[] order = new int[arity];
5643         for (int k = 0; k < arity; k++)  order[k] = k;
5644         order[i] = j; order[j] = i;
5645         Class<?>[] types = mh.type().parameterArray();
5646         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
5647         MethodType swapType = methodType(mh.type().returnType(), types);
5648         return permuteArguments(mh, swapType, order);
5649     }
5650 
5651     /**
5652      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
5653      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
5654      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
5655      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
5656      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
5657      * {@code try-finally} handle.
5658      * <p>
5659      * The {@code cleanup} handle will be passed one or two additional leading arguments.
5660      * The first is the exception thrown during the
5661      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
5662      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
5663      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
5664      * The second argument is not present if the {@code target} handle has a {@code void} return type.
5665      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
5666      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
5667      * <p>
5668      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
5669      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
5670      * two extra leading parameters:<ul>
5671      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
5672      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
5673      * the result from the execution of the {@code target} handle.
5674      * This parameter is not present if the {@code target} returns {@code void}.
5675      * </ul>
5676      * <p>
5677      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
5678      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
5679      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
5680      * the cleanup.
5681      * <blockquote><pre>{@code
5682      * V target(A..., B...);
5683      * V cleanup(Throwable, V, A...);
5684      * V adapter(A... a, B... b) {
5685      *   V result = (zero value for V);
5686      *   Throwable throwable = null;
5687      *   try {
5688      *     result = target(a..., b...);
5689      *   } catch (Throwable t) {
5690      *     throwable = t;
5691      *     throw t;
5692      *   } finally {
5693      *     result = cleanup(throwable, result, a...);
5694      *   }
5695      *   return result;
5696      * }
5697      * }</pre></blockquote>
5698      * <p>
5699      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
5700      * be modified by execution of the target, and so are passed unchanged
5701      * from the caller to the cleanup, if it is invoked.
5702      * <p>
5703      * The target and cleanup must return the same type, even if the cleanup
5704      * always throws.
5705      * To create such a throwing cleanup, compose the cleanup logic
5706      * with {@link #throwException throwException},
5707      * in order to create a method handle of the correct return type.
5708      * <p>
5709      * Note that {@code tryFinally} never converts exceptions into normal returns.
5710      * In rare cases where exceptions must be converted in that way, first wrap
5711      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
5712      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
5713      *
5714      * @param target the handle whose execution is to be wrapped in a {@code try} block.
5715      * @param cleanup the handle that is invoked in the finally block.
5716      *
5717      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
5718      * @throws NullPointerException if any argument is null
5719      * @throws IllegalArgumentException if {@code cleanup} does not accept
5720      *          the required leading arguments, or if the method handle types do
5721      *          not match in their return types and their
5722      *          corresponding trailing parameters
5723      *
5724      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
5725      * @since 9
5726      */
5727     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
5728         List<Class<?>> targetParamTypes = target.type().parameterList();
5729         List<Class<?>> cleanupParamTypes = cleanup.type().parameterList();
5730         Class<?> rtype = target.type().returnType();
5731 
5732         tryFinallyChecks(target, cleanup);
5733 
5734         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
5735         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
5736         // target parameter list.
5737         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
5738 
5739         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
5740         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
5741     }
5742 
5743     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
5744         Class<?> rtype = target.type().returnType();
5745         if (rtype != cleanup.type().returnType()) {
5746             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
5747         }
5748         MethodType cleanupType = cleanup.type();
5749         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
5750             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
5751         }
5752         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
5753             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
5754         }
5755         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
5756         // target parameter list.
5757         int cleanupArgIndex = rtype == void.class ? 1 : 2;
5758         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
5759             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
5760                     cleanup.type(), target.type());
5761         }
5762     }
5763 
5764 }