1 /*
   2  * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.reflect.CallerSensitive;
  29 import jdk.internal.reflect.Reflection;
  30 import jdk.internal.vm.annotation.ForceInline;
  31 import sun.invoke.util.ValueConversions;
  32 import sun.invoke.util.VerifyAccess;
  33 import sun.invoke.util.Wrapper;
  34 import sun.reflect.misc.ReflectUtil;
  35 import sun.security.util.SecurityConstants;
  36 
  37 import java.lang.invoke.LambdaForm.BasicType;
  38 import java.lang.reflect.Constructor;
  39 import java.lang.reflect.Field;
  40 import java.lang.reflect.Member;
  41 import java.lang.reflect.Method;
  42 import java.lang.reflect.Modifier;
  43 import java.lang.reflect.Module;
  44 import java.lang.reflect.ReflectPermission;
  45 import java.nio.ByteOrder;
  46 import java.util.ArrayList;
  47 import java.util.Arrays;
  48 import java.util.BitSet;
  49 import java.util.Iterator;
  50 import java.util.List;
  51 import java.util.Objects;
  52 import java.util.concurrent.ConcurrentHashMap;
  53 import java.util.stream.Collectors;
  54 import java.util.stream.Stream;
  55 
  56 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
  57 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  58 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  59 import static java.lang.invoke.MethodType.methodType;
  60 
  61 /**
  62  * This class consists exclusively of static methods that operate on or return
  63  * method handles. They fall into several categories:
  64  * <ul>
  65  * <li>Lookup methods which help create method handles for methods and fields.
  66  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  67  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  68  * </ul>
  69  *
  70  * @author John Rose, JSR 292 EG
  71  * @since 1.7
  72  */
  73 public class MethodHandles {
  74 
  75     private MethodHandles() { }  // do not instantiate
  76 
  77     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  78 
  79     // See IMPL_LOOKUP below.
  80 
  81     //// Method handle creation from ordinary methods.
  82 
  83     /**
  84      * Returns a {@link Lookup lookup object} with
  85      * full capabilities to emulate all supported bytecode behaviors of the caller.
  86      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
  87      * Factory methods on the lookup object can create
  88      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  89      * for any member that the caller has access to via bytecodes,
  90      * including protected and private fields and methods.
  91      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
  92      * Do not store it in place where untrusted code can access it.
  93      * <p>
  94      * This method is caller sensitive, which means that it may return different
  95      * values to different callers.
  96      * <p>
  97      * For any given caller class {@code C}, the lookup object returned by this call
  98      * has equivalent capabilities to any lookup object
  99      * supplied by the JVM to the bootstrap method of an
 100      * <a href="package-summary.html#indyinsn">invokedynamic instruction</a>
 101      * executing in the same caller class {@code C}.
 102      * @return a lookup object for the caller of this method, with private access
 103      */
 104     @CallerSensitive
 105     @ForceInline // to ensure Reflection.getCallerClass optimization
 106     public static Lookup lookup() {
 107         return new Lookup(Reflection.getCallerClass());
 108     }
 109 
 110     /**
 111      * Returns a {@link Lookup lookup object} which is trusted minimally.
 112      * The lookup has the {@code PUBLIC} and {@code UNCONDITIONAL} modes.
 113      * It can only be used to create method handles to public members of
 114      * public classes in packages that are exported unconditionally.
 115      * <p>
 116      * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
 117      * of this lookup object will be {@link java.lang.Object}.
 118      *
 119      * @apiNote The use of Object is conventional, and because the lookup modes are
 120      * limited, there is no special access provided to the internals of Object, its package
 121      * or its module. Consequently, the lookup context of this lookup object will be the
 122      * bootstrap class loader, which means it cannot find user classes.
 123      *
 124      * <p style="font-size:smaller;">
 125      * <em>Discussion:</em>
 126      * The lookup class can be changed to any other class {@code C} using an expression of the form
 127      * {@link Lookup#in publicLookup().in(C.class)}.
 128      * but may change the lookup context by virtue of changing the class loader.
 129      * A public lookup object is always subject to
 130      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 131      * Also, it cannot access
 132      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 133      * @return a lookup object which is trusted minimally
 134      *
 135      * @revised 9
 136      * @spec JPMS
 137      */
 138     public static Lookup publicLookup() {
 139         return Lookup.PUBLIC_LOOKUP;
 140     }
 141 
 142     /**
 143      * Returns a {@link Lookup lookup object} with full capabilities to emulate all
 144      * supported bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">
 145      * private access</a>, on a target class.
 146      * This method checks that a caller, specified as a {@code Lookup} object, is allowed to
 147      * do <em>deep reflection</em> on the target class. If {@code m1} is the module containing
 148      * the {@link Lookup#lookupClass() lookup class}, and {@code m2} is the module containing
 149      * the target class, then this check ensures that
 150      * <ul>
 151      *     <li>{@code m1} {@link Module#canRead reads} {@code m2}.</li>
 152      *     <li>{@code m2} {@link Module#isOpen(String,Module) opens} the package containing
 153      *     the target class to at least {@code m1}.</li>
 154      *     <li>The lookup has the {@link Lookup#MODULE MODULE} lookup mode.</li>
 155      * </ul>
 156      * <p>
 157      * If there is a security manager, its {@code checkPermission} method is called to
 158      * check {@code ReflectPermission("suppressAccessChecks")}.
 159      * @apiNote The {@code MODULE} lookup mode serves to authenticate that the lookup object
 160      * was created by code in the caller module (or derived from a lookup object originally
 161      * created by the caller). A lookup object with the {@code MODULE} lookup mode can be
 162      * shared with trusted parties without giving away {@code PRIVATE} and {@code PACKAGE}
 163      * access to the caller.
 164      * @param targetClass the target class
 165      * @param lookup the caller lookup object
 166      * @return a lookup object for the target class, with private access
 167      * @throws IllegalArgumentException if {@code targetClass} is a primitve type or array class
 168      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
 169      * @throws IllegalAccessException if the access check specified above fails
 170      * @throws SecurityException if denied by the security manager
 171      * @since 9
 172      * @spec JPMS
 173      * @see Lookup#dropLookupMode
 174      */
 175     public static Lookup privateLookupIn(Class<?> targetClass, Lookup lookup) throws IllegalAccessException {
 176         SecurityManager sm = System.getSecurityManager();
 177         if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
 178         if (targetClass.isPrimitive())
 179             throw new IllegalArgumentException(targetClass + " is a primitive class");
 180         if (targetClass.isArray())
 181             throw new IllegalArgumentException(targetClass + " is an array class");
 182         Module targetModule = targetClass.getModule();
 183         Module callerModule = lookup.lookupClass().getModule();
 184         if (!callerModule.canRead(targetModule))
 185             throw new IllegalAccessException(callerModule + " does not read " + targetModule);
 186         if (targetModule.isNamed()) {
 187             String pn = targetClass.getPackageName();
 188             assert pn.length() > 0 : "unnamed package cannot be in named module";
 189             if (!targetModule.isOpen(pn, callerModule))
 190                 throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
 191         }
 192         if ((lookup.lookupModes() & Lookup.MODULE) == 0)
 193             throw new IllegalAccessException("lookup does not have MODULE lookup mode");
 194         return new Lookup(targetClass);
 195     }
 196 
 197     /**
 198      * Performs an unchecked "crack" of a
 199      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 200      * The result is as if the user had obtained a lookup object capable enough
 201      * to crack the target method handle, called
 202      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 203      * on the target to obtain its symbolic reference, and then called
 204      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 205      * to resolve the symbolic reference to a member.
 206      * <p>
 207      * If there is a security manager, its {@code checkPermission} method
 208      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 209      * @param <T> the desired type of the result, either {@link Member} or a subtype
 210      * @param target a direct method handle to crack into symbolic reference components
 211      * @param expected a class object representing the desired result type {@code T}
 212      * @return a reference to the method, constructor, or field object
 213      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
 214      * @exception NullPointerException if either argument is {@code null}
 215      * @exception IllegalArgumentException if the target is not a direct method handle
 216      * @exception ClassCastException if the member is not of the expected type
 217      * @since 1.8
 218      */
 219     public static <T extends Member> T
 220     reflectAs(Class<T> expected, MethodHandle target) {
 221         SecurityManager smgr = System.getSecurityManager();
 222         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 223         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 224         return lookup.revealDirect(target).reflectAs(expected, lookup);
 225     }
 226     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 227     private static final java.security.Permission ACCESS_PERMISSION =
 228         new ReflectPermission("suppressAccessChecks");
 229 
 230     /**
 231      * A <em>lookup object</em> is a factory for creating method handles,
 232      * when the creation requires access checking.
 233      * Method handles do not perform
 234      * access checks when they are called, but rather when they are created.
 235      * Therefore, method handle access
 236      * restrictions must be enforced when a method handle is created.
 237      * The caller class against which those restrictions are enforced
 238      * is known as the {@linkplain #lookupClass lookup class}.
 239      * <p>
 240      * A lookup class which needs to create method handles will call
 241      * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself.
 242      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 243      * determined, and securely stored in the {@code Lookup} object.
 244      * The lookup class (or its delegates) may then use factory methods
 245      * on the {@code Lookup} object to create method handles for access-checked members.
 246      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 247      * even private ones.
 248      *
 249      * <h1><a name="lookups"></a>Lookup Factory Methods</h1>
 250      * The factory methods on a {@code Lookup} object correspond to all major
 251      * use cases for methods, constructors, and fields.
 252      * Each method handle created by a factory method is the functional
 253      * equivalent of a particular <em>bytecode behavior</em>.
 254      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
 255      * Here is a summary of the correspondence between these factory methods and
 256      * the behavior of the resulting method handles:
 257      * <table border=1 cellpadding=5 summary="lookup method behaviors">
 258      * <tr>
 259      *     <th><a name="equiv"></a>lookup expression</th>
 260      *     <th>member</th>
 261      *     <th>bytecode behavior</th>
 262      * </tr>
 263      * <tr>
 264      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
 265      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 266      * </tr>
 267      * <tr>
 268      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
 269      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
 270      * </tr>
 271      * <tr>
 272      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
 273      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 274      * </tr>
 275      * <tr>
 276      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
 277      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 278      * </tr>
 279      * <tr>
 280      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
 281      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 282      * </tr>
 283      * <tr>
 284      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
 285      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 286      * </tr>
 287      * <tr>
 288      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
 289      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 290      * </tr>
 291      * <tr>
 292      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
 293      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 294      * </tr>
 295      * <tr>
 296      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
 297      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 298      * </tr>
 299      * <tr>
 300      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
 301      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 302      * </tr>
 303      * <tr>
 304      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
 305      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 306      * </tr>
 307      * <tr>
 308      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
 309      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 310      * </tr>
 311      * <tr>
 312      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
 313      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 314      * </tr>
 315      * <tr>
 316      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</td>
 317      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 318      * </tr>
 319      * </table>
 320      *
 321      * Here, the type {@code C} is the class or interface being searched for a member,
 322      * documented as a parameter named {@code refc} in the lookup methods.
 323      * The method type {@code MT} is composed from the return type {@code T}
 324      * and the sequence of argument types {@code A*}.
 325      * The constructor also has a sequence of argument types {@code A*} and
 326      * is deemed to return the newly-created object of type {@code C}.
 327      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 328      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 329      * if it is present, it is always the leading argument to the method handle invocation.
 330      * (In the case of some {@code protected} members, {@code this} may be
 331      * restricted in type to the lookup class; see below.)
 332      * The name {@code arg} stands for all the other method handle arguments.
 333      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 334      * stands for a null reference if the accessed method or field is static,
 335      * and {@code this} otherwise.
 336      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 337      * for reflective objects corresponding to the given members.
 338      * <p>
 339      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 340      * as if by {@code ldc CONSTANT_Class}.
 341      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 342      * <p>
 343      * In cases where the given member is of variable arity (i.e., a method or constructor)
 344      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 345      * In all other cases, the returned method handle will be of fixed arity.
 346      * <p style="font-size:smaller;">
 347      * <em>Discussion:</em>
 348      * The equivalence between looked-up method handles and underlying
 349      * class members and bytecode behaviors
 350      * can break down in a few ways:
 351      * <ul style="font-size:smaller;">
 352      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 353      * the lookup can still succeed, even when there is no equivalent
 354      * Java expression or bytecoded constant.
 355      * <li>Likewise, if {@code T} or {@code MT}
 356      * is not symbolically accessible from the lookup class's loader,
 357      * the lookup can still succeed.
 358      * For example, lookups for {@code MethodHandle.invokeExact} and
 359      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 360      * <li>If there is a security manager installed, it can forbid the lookup
 361      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 362      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 363      * constant is not subject to security manager checks.
 364      * <li>If the looked-up method has a
 365      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 366      * the method handle creation may fail, due to the method handle
 367      * type having too many parameters.
 368      * </ul>
 369      *
 370      * <h1><a name="access"></a>Access checking</h1>
 371      * Access checks are applied in the factory methods of {@code Lookup},
 372      * when a method handle is created.
 373      * This is a key difference from the Core Reflection API, since
 374      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 375      * performs access checking against every caller, on every call.
 376      * <p>
 377      * All access checks start from a {@code Lookup} object, which
 378      * compares its recorded lookup class against all requests to
 379      * create method handles.
 380      * A single {@code Lookup} object can be used to create any number
 381      * of access-checked method handles, all checked against a single
 382      * lookup class.
 383      * <p>
 384      * A {@code Lookup} object can be shared with other trusted code,
 385      * such as a metaobject protocol.
 386      * A shared {@code Lookup} object delegates the capability
 387      * to create method handles on private members of the lookup class.
 388      * Even if privileged code uses the {@code Lookup} object,
 389      * the access checking is confined to the privileges of the
 390      * original lookup class.
 391      * <p>
 392      * A lookup can fail, because
 393      * the containing class is not accessible to the lookup class, or
 394      * because the desired class member is missing, or because the
 395      * desired class member is not accessible to the lookup class, or
 396      * because the lookup object is not trusted enough to access the member.
 397      * In any of these cases, a {@code ReflectiveOperationException} will be
 398      * thrown from the attempted lookup.  The exact class will be one of
 399      * the following:
 400      * <ul>
 401      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 402      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 403      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 404      * </ul>
 405      * <p>
 406      * In general, the conditions under which a method handle may be
 407      * looked up for a method {@code M} are no more restrictive than the conditions
 408      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 409      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 410      * a method handle lookup will generally raise a corresponding
 411      * checked exception, such as {@code NoSuchMethodException}.
 412      * And the effect of invoking the method handle resulting from the lookup
 413      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 414      * to executing the compiled, verified, and resolved call to {@code M}.
 415      * The same point is true of fields and constructors.
 416      * <p style="font-size:smaller;">
 417      * <em>Discussion:</em>
 418      * Access checks only apply to named and reflected methods,
 419      * constructors, and fields.
 420      * Other method handle creation methods, such as
 421      * {@link MethodHandle#asType MethodHandle.asType},
 422      * do not require any access checks, and are used
 423      * independently of any {@code Lookup} object.
 424      * <p>
 425      * If the desired member is {@code protected}, the usual JVM rules apply,
 426      * including the requirement that the lookup class must be either be in the
 427      * same package as the desired member, or must inherit that member.
 428      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
 429      * In addition, if the desired member is a non-static field or method
 430      * in a different package, the resulting method handle may only be applied
 431      * to objects of the lookup class or one of its subclasses.
 432      * This requirement is enforced by narrowing the type of the leading
 433      * {@code this} parameter from {@code C}
 434      * (which will necessarily be a superclass of the lookup class)
 435      * to the lookup class itself.
 436      * <p>
 437      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 438      * that the receiver argument must match both the resolved method <em>and</em>
 439      * the current class.  Again, this requirement is enforced by narrowing the
 440      * type of the leading parameter to the resulting method handle.
 441      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
 442      * <p>
 443      * The JVM represents constructors and static initializer blocks as internal methods
 444      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 445      * The internal syntax of invocation instructions allows them to refer to such internal
 446      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 447      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 448      * <p>
 449      * In some cases, access between nested classes is obtained by the Java compiler by creating
 450      * an wrapper method to access a private method of another class
 451      * in the same top-level declaration.
 452      * For example, a nested class {@code C.D}
 453      * can access private members within other related classes such as
 454      * {@code C}, {@code C.D.E}, or {@code C.B},
 455      * but the Java compiler may need to generate wrapper methods in
 456      * those related classes.  In such cases, a {@code Lookup} object on
 457      * {@code C.E} would be unable to those private members.
 458      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 459      * which can transform a lookup on {@code C.E} into one on any of those other
 460      * classes, without special elevation of privilege.
 461      * <p>
 462      * The accesses permitted to a given lookup object may be limited,
 463      * according to its set of {@link #lookupModes lookupModes},
 464      * to a subset of members normally accessible to the lookup class.
 465      * For example, the {@link MethodHandles#publicLookup publicLookup}
 466      * method produces a lookup object which is only allowed to access
 467      * public members in public classes of exported packages.
 468      * The caller sensitive method {@link MethodHandles#lookup lookup}
 469      * produces a lookup object with full capabilities relative to
 470      * its caller class, to emulate all supported bytecode behaviors.
 471      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 472      * with fewer access modes than the original lookup object.
 473      *
 474      * <p style="font-size:smaller;">
 475      * <a name="privacc"></a>
 476      * <em>Discussion of private access:</em>
 477      * We say that a lookup has <em>private access</em>
 478      * if its {@linkplain #lookupModes lookup modes}
 479      * include the possibility of accessing {@code private} members.
 480      * As documented in the relevant methods elsewhere,
 481      * only lookups with private access possess the following capabilities:
 482      * <ul style="font-size:smaller;">
 483      * <li>access private fields, methods, and constructors of the lookup class
 484      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 485      *     such as {@code Class.forName}
 486      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 487      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 488      *     for classes accessible to the lookup class
 489      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 490      *     within the same package member
 491      * </ul>
 492      * <p style="font-size:smaller;">
 493      * Each of these permissions is a consequence of the fact that a lookup object
 494      * with private access can be securely traced back to an originating class,
 495      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 496      * can be reliably determined and emulated by method handles.
 497      *
 498      * <h1><a name="secmgr"></a>Security manager interactions</h1>
 499      * Although bytecode instructions can only refer to classes in
 500      * a related class loader, this API can search for methods in any
 501      * class, as long as a reference to its {@code Class} object is
 502      * available.  Such cross-loader references are also possible with the
 503      * Core Reflection API, and are impossible to bytecode instructions
 504      * such as {@code invokestatic} or {@code getfield}.
 505      * There is a {@linkplain java.lang.SecurityManager security manager API}
 506      * to allow applications to check such cross-loader references.
 507      * These checks apply to both the {@code MethodHandles.Lookup} API
 508      * and the Core Reflection API
 509      * (as found on {@link java.lang.Class Class}).
 510      * <p>
 511      * If a security manager is present, member and class lookups are subject to
 512      * additional checks.
 513      * From one to three calls are made to the security manager.
 514      * Any of these calls can refuse access by throwing a
 515      * {@link java.lang.SecurityException SecurityException}.
 516      * Define {@code smgr} as the security manager,
 517      * {@code lookc} as the lookup class of the current lookup object,
 518      * {@code refc} as the containing class in which the member
 519      * is being sought, and {@code defc} as the class in which the
 520      * member is actually defined.
 521      * (If a class or other type is being accessed,
 522      * the {@code refc} and {@code defc} values are the class itself.)
 523      * The value {@code lookc} is defined as <em>not present</em>
 524      * if the current lookup object does not have
 525      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
 526      * The calls are made according to the following rules:
 527      * <ul>
 528      * <li><b>Step 1:</b>
 529      *     If {@code lookc} is not present, or if its class loader is not
 530      *     the same as or an ancestor of the class loader of {@code refc},
 531      *     then {@link SecurityManager#checkPackageAccess
 532      *     smgr.checkPackageAccess(refcPkg)} is called,
 533      *     where {@code refcPkg} is the package of {@code refc}.
 534      * <li><b>Step 2a:</b>
 535      *     If the retrieved member is not public and
 536      *     {@code lookc} is not present, then
 537      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 538      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
 539      * <li><b>Step 2b:</b>
 540      *     If the retrieved class has a {@code null} class loader,
 541      *     and {@code lookc} is not present, then
 542      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 543      *     with {@code RuntimePermission("getClassLoader")} is called.
 544      * <li><b>Step 3:</b>
 545      *     If the retrieved member is not public,
 546      *     and if {@code lookc} is not present,
 547      *     and if {@code defc} and {@code refc} are different,
 548      *     then {@link SecurityManager#checkPackageAccess
 549      *     smgr.checkPackageAccess(defcPkg)} is called,
 550      *     where {@code defcPkg} is the package of {@code defc}.
 551      * </ul>
 552      * Security checks are performed after other access checks have passed.
 553      * Therefore, the above rules presuppose a member or class that is public,
 554      * or else that is being accessed from a lookup class that has
 555      * rights to access the member or class.
 556      *
 557      * <h1><a name="callsens"></a>Caller sensitive methods</h1>
 558      * A small number of Java methods have a special property called caller sensitivity.
 559      * A <em>caller-sensitive</em> method can behave differently depending on the
 560      * identity of its immediate caller.
 561      * <p>
 562      * If a method handle for a caller-sensitive method is requested,
 563      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
 564      * but they take account of the lookup class in a special way.
 565      * The resulting method handle behaves as if it were called
 566      * from an instruction contained in the lookup class,
 567      * so that the caller-sensitive method detects the lookup class.
 568      * (By contrast, the invoker of the method handle is disregarded.)
 569      * Thus, in the case of caller-sensitive methods,
 570      * different lookup classes may give rise to
 571      * differently behaving method handles.
 572      * <p>
 573      * In cases where the lookup object is
 574      * {@link MethodHandles#publicLookup() publicLookup()},
 575      * or some other lookup object without
 576      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
 577      * the lookup class is disregarded.
 578      * In such cases, no caller-sensitive method handle can be created,
 579      * access is forbidden, and the lookup fails with an
 580      * {@code IllegalAccessException}.
 581      * <p style="font-size:smaller;">
 582      * <em>Discussion:</em>
 583      * For example, the caller-sensitive method
 584      * {@link java.lang.Class#forName(String) Class.forName(x)}
 585      * can return varying classes or throw varying exceptions,
 586      * depending on the class loader of the class that calls it.
 587      * A public lookup of {@code Class.forName} will fail, because
 588      * there is no reasonable way to determine its bytecode behavior.
 589      * <p style="font-size:smaller;">
 590      * If an application caches method handles for broad sharing,
 591      * it should use {@code publicLookup()} to create them.
 592      * If there is a lookup of {@code Class.forName}, it will fail,
 593      * and the application must take appropriate action in that case.
 594      * It may be that a later lookup, perhaps during the invocation of a
 595      * bootstrap method, can incorporate the specific identity
 596      * of the caller, making the method accessible.
 597      * <p style="font-size:smaller;">
 598      * The function {@code MethodHandles.lookup} is caller sensitive
 599      * so that there can be a secure foundation for lookups.
 600      * Nearly all other methods in the JSR 292 API rely on lookup
 601      * objects to check access requests.
 602      *
 603      * @revised 9
 604      */
 605     public static final
 606     class Lookup {
 607         /** The class on behalf of whom the lookup is being performed. */
 608         private final Class<?> lookupClass;
 609 
 610         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
 611         private final int allowedModes;
 612 
 613         /** A single-bit mask representing {@code public} access,
 614          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 615          *  The value, {@code 0x01}, happens to be the same as the value of the
 616          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
 617          */
 618         public static final int PUBLIC = Modifier.PUBLIC;
 619 
 620         /** A single-bit mask representing {@code private} access,
 621          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 622          *  The value, {@code 0x02}, happens to be the same as the value of the
 623          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
 624          */
 625         public static final int PRIVATE = Modifier.PRIVATE;
 626 
 627         /** A single-bit mask representing {@code protected} access,
 628          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 629          *  The value, {@code 0x04}, happens to be the same as the value of the
 630          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
 631          */
 632         public static final int PROTECTED = Modifier.PROTECTED;
 633 
 634         /** A single-bit mask representing {@code package} access (default access),
 635          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 636          *  The value is {@code 0x08}, which does not correspond meaningfully to
 637          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 638          */
 639         public static final int PACKAGE = Modifier.STATIC;
 640 
 641         /** A single-bit mask representing {@code module} access (default access),
 642          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 643          *  The value is {@code 0x10}, which does not correspond meaningfully to
 644          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 645          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
 646          *  with this lookup mode can access all public types in the module of the
 647          *  lookup class and public types in packages exported by other modules
 648          *  to the module of the lookup class.
 649          *  @since 9
 650          *  @spec JPMS
 651          */
 652         public static final int MODULE = PACKAGE << 1;
 653 
 654         /** A single-bit mask representing {@code unconditional} access
 655          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 656          *  The value is {@code 0x20}, which does not correspond meaningfully to
 657          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 658          *  A {@code Lookup} with this lookup mode assumes {@linkplain
 659          *  java.lang.reflect.Module#canRead(java.lang.reflect.Module) readability}.
 660          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
 661          *  with this lookup mode can access all public members of public types
 662          *  of all modules where the type is in a package that is {@link
 663          *  java.lang.reflect.Module#isExported(String) exported unconditionally}.
 664          *  @since 9
 665          *  @spec JPMS
 666          *  @see #publicLookup()
 667          */
 668         public static final int UNCONDITIONAL = PACKAGE << 2;
 669 
 670         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL);
 671         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);
 672         private static final int TRUSTED   = -1;
 673 
 674         private static int fixmods(int mods) {
 675             mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL);
 676             return (mods != 0) ? mods : (PACKAGE | MODULE | UNCONDITIONAL);
 677         }
 678 
 679         /** Tells which class is performing the lookup.  It is this class against
 680          *  which checks are performed for visibility and access permissions.
 681          *  <p>
 682          *  The class implies a maximum level of access permission,
 683          *  but the permissions may be additionally limited by the bitmask
 684          *  {@link #lookupModes lookupModes}, which controls whether non-public members
 685          *  can be accessed.
 686          *  @return the lookup class, on behalf of which this lookup object finds members
 687          */
 688         public Class<?> lookupClass() {
 689             return lookupClass;
 690         }
 691 
 692         // This is just for calling out to MethodHandleImpl.
 693         private Class<?> lookupClassOrNull() {
 694             return (allowedModes == TRUSTED) ? null : lookupClass;
 695         }
 696 
 697         /** Tells which access-protection classes of members this lookup object can produce.
 698          *  The result is a bit-mask of the bits
 699          *  {@linkplain #PUBLIC PUBLIC (0x01)},
 700          *  {@linkplain #PRIVATE PRIVATE (0x02)},
 701          *  {@linkplain #PROTECTED PROTECTED (0x04)},
 702          *  {@linkplain #PACKAGE PACKAGE (0x08)},
 703          *  {@linkplain #MODULE MODULE (0x10)},
 704          *  and {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}.
 705          *  <p>
 706          *  A freshly-created lookup object
 707          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
 708          *  all possible bits set, except {@code UNCONDITIONAL}. The lookup can be used to
 709          *  access all members of the caller's class, all public types in the caller's module,
 710          *  and all public types in packages exported by other modules to the caller's module.
 711          *  A lookup object on a new lookup class
 712          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
 713          *  may have some mode bits set to zero.
 714          *  Mode bits can also be
 715          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
 716          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
 717          *  The purpose of this is to restrict access via the new lookup object,
 718          *  so that it can access only names which can be reached by the original
 719          *  lookup object, and also by the new lookup class.
 720          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
 721          *  @see #in
 722          *  @see #dropLookupMode
 723          *
 724          *  @revised 9
 725          *  @spec JPMS
 726          */
 727         public int lookupModes() {
 728             return allowedModes & ALL_MODES;
 729         }
 730 
 731         /** Embody the current class (the lookupClass) as a lookup class
 732          * for method handle creation.
 733          * Must be called by from a method in this package,
 734          * which in turn is called by a method not in this package.
 735          */
 736         Lookup(Class<?> lookupClass) {
 737             this(lookupClass, FULL_POWER_MODES);
 738             // make sure we haven't accidentally picked up a privileged class:
 739             checkUnprivilegedlookupClass(lookupClass, FULL_POWER_MODES);
 740         }
 741 
 742         private Lookup(Class<?> lookupClass, int allowedModes) {
 743             this.lookupClass = lookupClass;
 744             this.allowedModes = allowedModes;
 745         }
 746 
 747         /**
 748          * Creates a lookup on the specified new lookup class.
 749          * The resulting object will report the specified
 750          * class as its own {@link #lookupClass lookupClass}.
 751          * <p>
 752          * However, the resulting {@code Lookup} object is guaranteed
 753          * to have no more access capabilities than the original.
 754          * In particular, access capabilities can be lost as follows:<ul>
 755          * <li>If the old lookup class is in a {@link Module#isNamed() named} module, and
 756          * the new lookup class is in a different module {@code M}, then no members, not
 757          * even public members in {@code M}'s exported packages, will be accessible.
 758          * The exception to this is when this lookup is {@link #publicLookup()
 759          * publicLookup}, in which case {@code PUBLIC} access is not lost.
 760          * <li>If the old lookup class is in an unnamed module, and the new lookup class
 761          * is a different module then {@link #MODULE MODULE} access is lost.
 762          * <li>If the new lookup class differs from the old one then {@code UNCONDITIONAL} is lost.
 763          * <li>If the new lookup class is in a different package
 764          * than the old one, protected and default (package) members will not be accessible.
 765          * <li>If the new lookup class is not within the same package member
 766          * as the old one, private members will not be accessible, and protected members
 767          * will not be accessible by virtue of inheritance.
 768          * (Protected members may continue to be accessible because of package sharing.)
 769          * <li>If the new lookup class is not accessible to the old lookup class,
 770          * then no members, not even public members, will be accessible.
 771          * (In all other cases, public members will continue to be accessible.)
 772          * </ul>
 773          * <p>
 774          * The resulting lookup's capabilities for loading classes
 775          * (used during {@link #findClass} invocations)
 776          * are determined by the lookup class' loader,
 777          * which may change due to this operation.
 778          *
 779          * @param requestedLookupClass the desired lookup class for the new lookup object
 780          * @return a lookup object which reports the desired lookup class, or the same object
 781          * if there is no change
 782          * @throws NullPointerException if the argument is null
 783          *
 784          * @revised 9
 785          * @spec JPMS
 786          */
 787         public Lookup in(Class<?> requestedLookupClass) {
 788             Objects.requireNonNull(requestedLookupClass);
 789             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
 790                 return new Lookup(requestedLookupClass, FULL_POWER_MODES);
 791             if (requestedLookupClass == this.lookupClass)
 792                 return this;  // keep same capabilities
 793             int newModes = (allowedModes & FULL_POWER_MODES);
 794             if (!VerifyAccess.isSameModule(this.lookupClass, requestedLookupClass)) {
 795                 // Need to drop all access when teleporting from a named module to another
 796                 // module. The exception is publicLookup where PUBLIC is not lost.
 797                 if (this.lookupClass.getModule().isNamed()
 798                     && (this.allowedModes & UNCONDITIONAL) == 0)
 799                     newModes = 0;
 800                 else
 801                     newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
 802             }
 803             if ((newModes & PACKAGE) != 0
 804                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
 805                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
 806             }
 807             // Allow nestmate lookups to be created without special privilege:
 808             if ((newModes & PRIVATE) != 0
 809                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
 810                 newModes &= ~(PRIVATE|PROTECTED);
 811             }
 812             if ((newModes & PUBLIC) != 0
 813                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
 814                 // The requested class it not accessible from the lookup class.
 815                 // No permissions.
 816                 newModes = 0;
 817             }
 818 
 819             checkUnprivilegedlookupClass(requestedLookupClass, newModes);
 820             return new Lookup(requestedLookupClass, newModes);
 821         }
 822 
 823 
 824         /**
 825          * Creates a lookup on the same lookup class which this lookup object
 826          * finds members, but with a lookup mode that has lost the given lookup mode.
 827          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
 828          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED} or {@link #PRIVATE PRIVATE}.
 829          * {@link #PROTECTED PROTECTED} and {@link #UNCONDITIONAL UNCONDITIONAL} are always
 830          * dropped and so the resulting lookup mode will never have these access capabilities.
 831          * When dropping {@code PACKAGE} then the resulting lookup will not have {@code PACKAGE}
 832          * or {@code PRIVATE} access. When dropping {@code MODULE} then the resulting lookup will
 833          * not have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. If {@code PUBLIC}
 834          * is dropped then the resulting lookup has no access.
 835          * @param modeToDrop the lookup mode to drop
 836          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
 837          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
 838          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL}
 839          * @see MethodHandles#privateLookupIn
 840          * @since 9
 841          */
 842         public Lookup dropLookupMode(int modeToDrop) {
 843             int oldModes = lookupModes();
 844             int newModes = oldModes & ~(modeToDrop | PROTECTED | UNCONDITIONAL);
 845             switch (modeToDrop) {
 846                 case PUBLIC: newModes &= ~(ALL_MODES); break;
 847                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
 848                 case PACKAGE: newModes &= ~(PRIVATE); break;
 849                 case PROTECTED:
 850                 case PRIVATE:
 851                 case UNCONDITIONAL: break;
 852                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
 853             }
 854             if (newModes == oldModes) return this;  // return self if no change
 855             return new Lookup(lookupClass(), newModes);
 856         }
 857 
 858         // Make sure outer class is initialized first.
 859         static { IMPL_NAMES.getClass(); }
 860 
 861         /** Package-private version of lookup which is trusted. */
 862         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
 863 
 864         /** Version of lookup which is trusted minimally.
 865          *  It can only be used to create method handles to publicly accessible
 866          *  members in packages that are exported unconditionally.
 867          */
 868         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, (PUBLIC|UNCONDITIONAL));
 869 
 870         private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) {
 871             String name = lookupClass.getName();
 872             if (name.startsWith("java.lang.invoke."))
 873                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
 874 
 875             // For caller-sensitive MethodHandles.lookup() disallow lookup from
 876             // restricted packages.  This a fragile and blunt approach.
 877             // TODO replace with a more formal and less fragile mechanism
 878             // that does not bluntly restrict classes under packages within
 879             // java.base from looking up MethodHandles or VarHandles.
 880             if (allowedModes == FULL_POWER_MODES && lookupClass.getClassLoader() == null) {
 881                 if ((name.startsWith("java.") &&
 882                      !name.equals("java.lang.Thread") &&
 883                      !name.startsWith("java.util.concurrent.")) ||
 884                     (name.startsWith("sun.") &&
 885                      !name.startsWith("sun.invoke."))) {
 886                     throw newIllegalArgumentException("illegal lookupClass: " + lookupClass);
 887                 }
 888             }
 889         }
 890 
 891         /**
 892          * Displays the name of the class from which lookups are to be made.
 893          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
 894          * If there are restrictions on the access permitted to this lookup,
 895          * this is indicated by adding a suffix to the class name, consisting
 896          * of a slash and a keyword.  The keyword represents the strongest
 897          * allowed access, and is chosen as follows:
 898          * <ul>
 899          * <li>If no access is allowed, the suffix is "/noaccess".
 900          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
 901          * <li>If only public access and unconditional access are allowed, the suffix is "/publicLookup".
 902          * <li>If only public and module access are allowed, the suffix is "/module".
 903          * <li>If only public, module and package access are allowed, the suffix is "/package".
 904          * <li>If only public, module, package, and private access are allowed, the suffix is "/private".
 905          * </ul>
 906          * If none of the above cases apply, it is the case that full
 907          * access (public, module, package, private, and protected) is allowed.
 908          * In this case, no suffix is added.
 909          * This is true only of an object obtained originally from
 910          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
 911          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
 912          * always have restricted access, and will display a suffix.
 913          * <p>
 914          * (It may seem strange that protected access should be
 915          * stronger than private access.  Viewed independently from
 916          * package access, protected access is the first to be lost,
 917          * because it requires a direct subclass relationship between
 918          * caller and callee.)
 919          * @see #in
 920          *
 921          * @revised 9
 922          * @spec JPMS
 923          */
 924         @Override
 925         public String toString() {
 926             String cname = lookupClass.getName();
 927             switch (allowedModes) {
 928             case 0:  // no privileges
 929                 return cname + "/noaccess";
 930             case PUBLIC:
 931                 return cname + "/public";
 932             case PUBLIC|UNCONDITIONAL:
 933                 return cname  + "/publicLookup";
 934             case PUBLIC|MODULE:
 935                 return cname + "/module";
 936             case PUBLIC|MODULE|PACKAGE:
 937                 return cname + "/package";
 938             case FULL_POWER_MODES & ~PROTECTED:
 939                 return cname + "/private";
 940             case FULL_POWER_MODES:
 941                 return cname;
 942             case TRUSTED:
 943                 return "/trusted";  // internal only; not exported
 944             default:  // Should not happen, but it's a bitfield...
 945                 cname = cname + "/" + Integer.toHexString(allowedModes);
 946                 assert(false) : cname;
 947                 return cname;
 948             }
 949         }
 950 
 951         /**
 952          * Produces a method handle for a static method.
 953          * The type of the method handle will be that of the method.
 954          * (Since static methods do not take receivers, there is no
 955          * additional receiver argument inserted into the method handle type,
 956          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
 957          * The method and all its argument types must be accessible to the lookup object.
 958          * <p>
 959          * The returned method handle will have
 960          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 961          * the method's variable arity modifier bit ({@code 0x0080}) is set.
 962          * <p>
 963          * If the returned method handle is invoked, the method's class will
 964          * be initialized, if it has not already been initialized.
 965          * <p><b>Example:</b>
 966          * <blockquote><pre>{@code
 967 import static java.lang.invoke.MethodHandles.*;
 968 import static java.lang.invoke.MethodType.*;
 969 ...
 970 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
 971   "asList", methodType(List.class, Object[].class));
 972 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
 973          * }</pre></blockquote>
 974          * @param refc the class from which the method is accessed
 975          * @param name the name of the method
 976          * @param type the type of the method
 977          * @return the desired method handle
 978          * @throws NoSuchMethodException if the method does not exist
 979          * @throws IllegalAccessException if access checking fails,
 980          *                                or if the method is not {@code static},
 981          *                                or if the method's variable arity modifier bit
 982          *                                is set and {@code asVarargsCollector} fails
 983          * @exception SecurityException if a security manager is present and it
 984          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
 985          * @throws NullPointerException if any argument is null
 986          */
 987         public
 988         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
 989             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
 990             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
 991         }
 992 
 993         /**
 994          * Produces a method handle for a virtual method.
 995          * The type of the method handle will be that of the method,
 996          * with the receiver type (usually {@code refc}) prepended.
 997          * The method and all its argument types must be accessible to the lookup object.
 998          * <p>
 999          * When called, the handle will treat the first argument as a receiver
1000          * and dispatch on the receiver's type to determine which method
1001          * implementation to enter.
1002          * (The dispatching action is identical with that performed by an
1003          * {@code invokevirtual} or {@code invokeinterface} instruction.)
1004          * <p>
1005          * The first argument will be of type {@code refc} if the lookup
1006          * class has full privileges to access the member.  Otherwise
1007          * the member must be {@code protected} and the first argument
1008          * will be restricted in type to the lookup class.
1009          * <p>
1010          * The returned method handle will have
1011          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1012          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1013          * <p>
1014          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
1015          * instructions and method handles produced by {@code findVirtual},
1016          * if the class is {@code MethodHandle} and the name string is
1017          * {@code invokeExact} or {@code invoke}, the resulting
1018          * method handle is equivalent to one produced by
1019          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
1020          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
1021          * with the same {@code type} argument.
1022          * <p>
1023          * If the class is {@code VarHandle} and the name string corresponds to
1024          * the name of a signature-polymorphic access mode method, the resulting
1025          * method handle is equivalent to one produced by
1026          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
1027          * the access mode corresponding to the name string and with the same
1028          * {@code type} arguments.
1029          * <p>
1030          * <b>Example:</b>
1031          * <blockquote><pre>{@code
1032 import static java.lang.invoke.MethodHandles.*;
1033 import static java.lang.invoke.MethodType.*;
1034 ...
1035 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
1036   "concat", methodType(String.class, String.class));
1037 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
1038   "hashCode", methodType(int.class));
1039 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
1040   "hashCode", methodType(int.class));
1041 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
1042 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
1043 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
1044 // interface method:
1045 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
1046   "subSequence", methodType(CharSequence.class, int.class, int.class));
1047 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
1048 // constructor "internal method" must be accessed differently:
1049 MethodType MT_newString = methodType(void.class); //()V for new String()
1050 try { assertEquals("impossible", lookup()
1051         .findVirtual(String.class, "<init>", MT_newString));
1052  } catch (NoSuchMethodException ex) { } // OK
1053 MethodHandle MH_newString = publicLookup()
1054   .findConstructor(String.class, MT_newString);
1055 assertEquals("", (String) MH_newString.invokeExact());
1056          * }</pre></blockquote>
1057          *
1058          * @param refc the class or interface from which the method is accessed
1059          * @param name the name of the method
1060          * @param type the type of the method, with the receiver argument omitted
1061          * @return the desired method handle
1062          * @throws NoSuchMethodException if the method does not exist
1063          * @throws IllegalAccessException if access checking fails,
1064          *                                or if the method is {@code static},
1065          *                                or if the method is {@code private} method of interface,
1066          *                                or if the method's variable arity modifier bit
1067          *                                is set and {@code asVarargsCollector} fails
1068          * @exception SecurityException if a security manager is present and it
1069          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1070          * @throws NullPointerException if any argument is null
1071          */
1072         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1073             if (refc == MethodHandle.class) {
1074                 MethodHandle mh = findVirtualForMH(name, type);
1075                 if (mh != null)  return mh;
1076             } else if (refc == VarHandle.class) {
1077                 MethodHandle mh = findVirtualForVH(name, type);
1078                 if (mh != null)  return mh;
1079             }
1080             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
1081             MemberName method = resolveOrFail(refKind, refc, name, type);
1082             return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
1083         }
1084         private MethodHandle findVirtualForMH(String name, MethodType type) {
1085             // these names require special lookups because of the implicit MethodType argument
1086             if ("invoke".equals(name))
1087                 return invoker(type);
1088             if ("invokeExact".equals(name))
1089                 return exactInvoker(type);
1090             assert(!MemberName.isMethodHandleInvokeName(name));
1091             return null;
1092         }
1093         private MethodHandle findVirtualForVH(String name, MethodType type) {
1094             try {
1095                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
1096             } catch (IllegalArgumentException e) {
1097                 return null;
1098             }
1099         }
1100 
1101         /**
1102          * Produces a method handle which creates an object and initializes it, using
1103          * the constructor of the specified type.
1104          * The parameter types of the method handle will be those of the constructor,
1105          * while the return type will be a reference to the constructor's class.
1106          * The constructor and all its argument types must be accessible to the lookup object.
1107          * <p>
1108          * The requested type must have a return type of {@code void}.
1109          * (This is consistent with the JVM's treatment of constructor type descriptors.)
1110          * <p>
1111          * The returned method handle will have
1112          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1113          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1114          * <p>
1115          * If the returned method handle is invoked, the constructor's class will
1116          * be initialized, if it has not already been initialized.
1117          * <p><b>Example:</b>
1118          * <blockquote><pre>{@code
1119 import static java.lang.invoke.MethodHandles.*;
1120 import static java.lang.invoke.MethodType.*;
1121 ...
1122 MethodHandle MH_newArrayList = publicLookup().findConstructor(
1123   ArrayList.class, methodType(void.class, Collection.class));
1124 Collection orig = Arrays.asList("x", "y");
1125 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
1126 assert(orig != copy);
1127 assertEquals(orig, copy);
1128 // a variable-arity constructor:
1129 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
1130   ProcessBuilder.class, methodType(void.class, String[].class));
1131 ProcessBuilder pb = (ProcessBuilder)
1132   MH_newProcessBuilder.invoke("x", "y", "z");
1133 assertEquals("[x, y, z]", pb.command().toString());
1134          * }</pre></blockquote>
1135          * @param refc the class or interface from which the method is accessed
1136          * @param type the type of the method, with the receiver argument omitted, and a void return type
1137          * @return the desired method handle
1138          * @throws NoSuchMethodException if the constructor does not exist
1139          * @throws IllegalAccessException if access checking fails
1140          *                                or if the method's variable arity modifier bit
1141          *                                is set and {@code asVarargsCollector} fails
1142          * @exception SecurityException if a security manager is present and it
1143          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1144          * @throws NullPointerException if any argument is null
1145          */
1146         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1147             if (refc.isArray()) {
1148                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
1149             }
1150             String name = "<init>";
1151             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
1152             return getDirectConstructor(refc, ctor);
1153         }
1154 
1155         /**
1156          * Looks up a class by name from the lookup context defined by this {@code Lookup} object. The static
1157          * initializer of the class is not run.
1158          * <p>
1159          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, its class
1160          * loader, and the {@linkplain #lookupModes() lookup modes}. In particular, the method first attempts to
1161          * load the requested class, and then determines whether the class is accessible to this lookup object.
1162          *
1163          * @param targetName the fully qualified name of the class to be looked up.
1164          * @return the requested class.
1165          * @exception SecurityException if a security manager is present and it
1166          *            <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1167          * @throws LinkageError if the linkage fails
1168          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
1169          * @throws IllegalAccessException if the class is not accessible, using the allowed access
1170          * modes.
1171          * @exception SecurityException if a security manager is present and it
1172          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1173          * @since 9
1174          */
1175         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
1176             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
1177             return accessClass(targetClass);
1178         }
1179 
1180         /**
1181          * Determines if a class can be accessed from the lookup context defined by this {@code Lookup} object. The
1182          * static initializer of the class is not run.
1183          * <p>
1184          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class} and the
1185          * {@linkplain #lookupModes() lookup modes}.
1186          *
1187          * @param targetClass the class to be access-checked
1188          *
1189          * @return the class that has been access-checked
1190          *
1191          * @throws IllegalAccessException if the class is not accessible from the lookup class, using the allowed access
1192          * modes.
1193          * @exception SecurityException if a security manager is present and it
1194          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1195          * @since 9
1196          */
1197         public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
1198             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, allowedModes)) {
1199                 throw new MemberName(targetClass).makeAccessException("access violation", this);
1200             }
1201             checkSecurityManager(targetClass, null);
1202             return targetClass;
1203         }
1204 
1205         /**
1206          * Produces an early-bound method handle for a virtual method.
1207          * It will bypass checks for overriding methods on the receiver,
1208          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1209          * instruction from within the explicitly specified {@code specialCaller}.
1210          * The type of the method handle will be that of the method,
1211          * with a suitably restricted receiver type prepended.
1212          * (The receiver type will be {@code specialCaller} or a subtype.)
1213          * The method and all its argument types must be accessible
1214          * to the lookup object.
1215          * <p>
1216          * Before method resolution,
1217          * if the explicitly specified caller class is not identical with the
1218          * lookup class, or if this lookup object does not have
1219          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1220          * privileges, the access fails.
1221          * <p>
1222          * The returned method handle will have
1223          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1224          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1225          * <p style="font-size:smaller;">
1226          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
1227          * even though the {@code invokespecial} instruction can refer to them
1228          * in special circumstances.  Use {@link #findConstructor findConstructor}
1229          * to access instance initialization methods in a safe manner.)</em>
1230          * <p><b>Example:</b>
1231          * <blockquote><pre>{@code
1232 import static java.lang.invoke.MethodHandles.*;
1233 import static java.lang.invoke.MethodType.*;
1234 ...
1235 static class Listie extends ArrayList {
1236   public String toString() { return "[wee Listie]"; }
1237   static Lookup lookup() { return MethodHandles.lookup(); }
1238 }
1239 ...
1240 // no access to constructor via invokeSpecial:
1241 MethodHandle MH_newListie = Listie.lookup()
1242   .findConstructor(Listie.class, methodType(void.class));
1243 Listie l = (Listie) MH_newListie.invokeExact();
1244 try { assertEquals("impossible", Listie.lookup().findSpecial(
1245         Listie.class, "<init>", methodType(void.class), Listie.class));
1246  } catch (NoSuchMethodException ex) { } // OK
1247 // access to super and self methods via invokeSpecial:
1248 MethodHandle MH_super = Listie.lookup().findSpecial(
1249   ArrayList.class, "toString" , methodType(String.class), Listie.class);
1250 MethodHandle MH_this = Listie.lookup().findSpecial(
1251   Listie.class, "toString" , methodType(String.class), Listie.class);
1252 MethodHandle MH_duper = Listie.lookup().findSpecial(
1253   Object.class, "toString" , methodType(String.class), Listie.class);
1254 assertEquals("[]", (String) MH_super.invokeExact(l));
1255 assertEquals(""+l, (String) MH_this.invokeExact(l));
1256 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
1257 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
1258         String.class, "toString", methodType(String.class), Listie.class));
1259  } catch (IllegalAccessException ex) { } // OK
1260 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
1261 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
1262          * }</pre></blockquote>
1263          *
1264          * @param refc the class or interface from which the method is accessed
1265          * @param name the name of the method (which must not be "&lt;init&gt;")
1266          * @param type the type of the method, with the receiver argument omitted
1267          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
1268          * @return the desired method handle
1269          * @throws NoSuchMethodException if the method does not exist
1270          * @throws IllegalAccessException if access checking fails,
1271          *                                or if the method is {@code static},
1272          *                                or if the method's variable arity modifier bit
1273          *                                is set and {@code asVarargsCollector} fails
1274          * @exception SecurityException if a security manager is present and it
1275          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1276          * @throws NullPointerException if any argument is null
1277          */
1278         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
1279                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
1280             checkSpecialCaller(specialCaller, refc);
1281             Lookup specialLookup = this.in(specialCaller);
1282             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
1283             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1284         }
1285 
1286         /**
1287          * Produces a method handle giving read access to a non-static field.
1288          * The type of the method handle will have a return type of the field's
1289          * value type.
1290          * The method handle's single argument will be the instance containing
1291          * the field.
1292          * Access checking is performed immediately on behalf of the lookup class.
1293          * @param refc the class or interface from which the method is accessed
1294          * @param name the field's name
1295          * @param type the field's type
1296          * @return a method handle which can load values from the field
1297          * @throws NoSuchFieldException if the field does not exist
1298          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1299          * @exception SecurityException if a security manager is present and it
1300          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1301          * @throws NullPointerException if any argument is null
1302          * @see #findVarHandle(Class, String, Class)
1303          */
1304         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1305             MemberName field = resolveOrFail(REF_getField, refc, name, type);
1306             return getDirectField(REF_getField, refc, field);
1307         }
1308 
1309         /**
1310          * Produces a method handle giving write access to a non-static field.
1311          * The type of the method handle will have a void return type.
1312          * The method handle will take two arguments, the instance containing
1313          * the field, and the value to be stored.
1314          * The second argument will be of the field's value type.
1315          * Access checking is performed immediately on behalf of the lookup class.
1316          * @param refc the class or interface from which the method is accessed
1317          * @param name the field's name
1318          * @param type the field's type
1319          * @return a method handle which can store values into the field
1320          * @throws NoSuchFieldException if the field does not exist
1321          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1322          * @exception SecurityException if a security manager is present and it
1323          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1324          * @throws NullPointerException if any argument is null
1325          * @see #findVarHandle(Class, String, Class)
1326          */
1327         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1328             MemberName field = resolveOrFail(REF_putField, refc, name, type);
1329             return getDirectField(REF_putField, refc, field);
1330         }
1331 
1332         /**
1333          * Produces a VarHandle giving access to non-static fields of type
1334          * {@code T} declared by a receiver class of type {@code R}, supporting
1335          * shape {@code (R : T)}.
1336          * <p>
1337          * Access checking is performed immediately on behalf of the lookup
1338          * class.
1339          * <p>
1340          * Certain access modes of the returned VarHandle are unsupported under
1341          * the following conditions:
1342          * <ul>
1343          * <li>if the field is declared {@code final}, then the write, atomic
1344          *     update, numeric atomic update, and bitwise atomic update access
1345          *     modes are unsupported.
1346          * <li>if the field type is anything other than {@code byte},
1347          *     {@code short}, {@code char}, {@code int}, {@code long},
1348          *     {@code float}, or {@code double} then numeric atomic update
1349          *     access modes are unsupported.
1350          * <li>if the field type is anything other than {@code boolean},
1351          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1352          *     {@code long} then bitwise atomic update access modes are
1353          *     unsupported.
1354          * </ul>
1355          * <p>
1356          * If the field is declared {@code volatile} then the returned VarHandle
1357          * will override access to the field (effectively ignore the
1358          * {@code volatile} declaration) in accordance to it's specified
1359          * access modes.
1360          * <p>
1361          * If the field type is {@code float} or {@code double} then numeric
1362          * and atomic update access modes compare values using their bitwise
1363          * representation (see {@link Float#floatToRawIntBits} and
1364          * {@link Double#doubleToRawLongBits}, respectively).
1365          * @apiNote
1366          * Bitwise comparison of {@code float} values or {@code double} values,
1367          * as performed by the numeric and atomic update access modes, differ
1368          * from the primitive {@code ==} operator and the {@link Float#equals}
1369          * and {@link Double#equals} methods, specifically with respect to
1370          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1371          * Care should be taken when performing a compare and set or a compare
1372          * and exchange operation with such values since the operation may
1373          * unexpectedly fail.
1374          * There are many possible NaN values that are considered to be
1375          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1376          * provided by Java can distinguish between them.  Operation failure can
1377          * occur if the expected or witness value is a NaN value and it is
1378          * transformed (perhaps in a platform specific manner) into another NaN
1379          * value, and thus has a different bitwise representation (see
1380          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1381          * details).
1382          * The values {@code -0.0} and {@code +0.0} have different bitwise
1383          * representations but are considered equal when using the primitive
1384          * {@code ==} operator.  Operation failure can occur if, for example, a
1385          * numeric algorithm computes an expected value to be say {@code -0.0}
1386          * and previously computed the witness value to be say {@code +0.0}.
1387          * @param recv the receiver class, of type {@code R}, that declares the
1388          * non-static field
1389          * @param name the field's name
1390          * @param type the field's type, of type {@code T}
1391          * @return a VarHandle giving access to non-static fields.
1392          * @throws NoSuchFieldException if the field does not exist
1393          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1394          * @exception SecurityException if a security manager is present and it
1395          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1396          * @throws NullPointerException if any argument is null
1397          * @since 9
1398          */
1399         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1400             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
1401             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
1402             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
1403         }
1404 
1405         /**
1406          * Produces a method handle giving read access to a static field.
1407          * The type of the method handle will have a return type of the field's
1408          * value type.
1409          * The method handle will take no arguments.
1410          * Access checking is performed immediately on behalf of the lookup class.
1411          * <p>
1412          * If the returned method handle is invoked, the field's class will
1413          * be initialized, if it has not already been initialized.
1414          * @param refc the class or interface from which the method is accessed
1415          * @param name the field's name
1416          * @param type the field's type
1417          * @return a method handle which can load values from the field
1418          * @throws NoSuchFieldException if the field does not exist
1419          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1420          * @exception SecurityException if a security manager is present and it
1421          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1422          * @throws NullPointerException if any argument is null
1423          */
1424         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1425             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
1426             return getDirectField(REF_getStatic, refc, field);
1427         }
1428 
1429         /**
1430          * Produces a method handle giving write access to a static field.
1431          * The type of the method handle will have a void return type.
1432          * The method handle will take a single
1433          * argument, of the field's value type, the value to be stored.
1434          * Access checking is performed immediately on behalf of the lookup class.
1435          * <p>
1436          * If the returned method handle is invoked, the field's class will
1437          * be initialized, if it has not already been initialized.
1438          * @param refc the class or interface from which the method is accessed
1439          * @param name the field's name
1440          * @param type the field's type
1441          * @return a method handle which can store values into the field
1442          * @throws NoSuchFieldException if the field does not exist
1443          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1444          * @exception SecurityException if a security manager is present and it
1445          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1446          * @throws NullPointerException if any argument is null
1447          */
1448         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1449             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
1450             return getDirectField(REF_putStatic, refc, field);
1451         }
1452 
1453         /**
1454          * Produces a VarHandle giving access to a static field of type
1455          * {@code T} declared by a given declaring class, supporting shape
1456          * {@code ((empty) : T)}.
1457          * <p>
1458          * Access checking is performed immediately on behalf of the lookup
1459          * class.
1460          * <p>
1461          * If the returned VarHandle is operated on, the declaring class will be
1462          * initialized, if it has not already been initialized.
1463          * <p>
1464          * Certain access modes of the returned VarHandle are unsupported under
1465          * the following conditions:
1466          * <ul>
1467          * <li>if the field is declared {@code final}, then the write, atomic
1468          *     update, numeric atomic update, and bitwise atomic update access
1469          *     modes are unsupported.
1470          * <li>if the field type is anything other than {@code byte},
1471          *     {@code short}, {@code char}, {@code int}, {@code long},
1472          *     {@code float}, or {@code double}, then numeric atomic update
1473          *     access modes are unsupported.
1474          * <li>if the field type is anything other than {@code boolean},
1475          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1476          *     {@code long} then bitwise atomic update access modes are
1477          *     unsupported.
1478          * </ul>
1479          * <p>
1480          * If the field is declared {@code volatile} then the returned VarHandle
1481          * will override access to the field (effectively ignore the
1482          * {@code volatile} declaration) in accordance to it's specified
1483          * access modes.
1484          * <p>
1485          * If the field type is {@code float} or {@code double} then numeric
1486          * and atomic update access modes compare values using their bitwise
1487          * representation (see {@link Float#floatToRawIntBits} and
1488          * {@link Double#doubleToRawLongBits}, respectively).
1489          * @apiNote
1490          * Bitwise comparison of {@code float} values or {@code double} values,
1491          * as performed by the numeric and atomic update access modes, differ
1492          * from the primitive {@code ==} operator and the {@link Float#equals}
1493          * and {@link Double#equals} methods, specifically with respect to
1494          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1495          * Care should be taken when performing a compare and set or a compare
1496          * and exchange operation with such values since the operation may
1497          * unexpectedly fail.
1498          * There are many possible NaN values that are considered to be
1499          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1500          * provided by Java can distinguish between them.  Operation failure can
1501          * occur if the expected or witness value is a NaN value and it is
1502          * transformed (perhaps in a platform specific manner) into another NaN
1503          * value, and thus has a different bitwise representation (see
1504          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1505          * details).
1506          * The values {@code -0.0} and {@code +0.0} have different bitwise
1507          * representations but are considered equal when using the primitive
1508          * {@code ==} operator.  Operation failure can occur if, for example, a
1509          * numeric algorithm computes an expected value to be say {@code -0.0}
1510          * and previously computed the witness value to be say {@code +0.0}.
1511          * @param decl the class that declares the static field
1512          * @param name the field's name
1513          * @param type the field's type, of type {@code T}
1514          * @return a VarHandle giving access to a static field
1515          * @throws NoSuchFieldException if the field does not exist
1516          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1517          * @exception SecurityException if a security manager is present and it
1518          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1519          * @throws NullPointerException if any argument is null
1520          * @since 9
1521          */
1522         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1523             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
1524             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
1525             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
1526         }
1527 
1528         /**
1529          * Produces an early-bound method handle for a non-static method.
1530          * The receiver must have a supertype {@code defc} in which a method
1531          * of the given name and type is accessible to the lookup class.
1532          * The method and all its argument types must be accessible to the lookup object.
1533          * The type of the method handle will be that of the method,
1534          * without any insertion of an additional receiver parameter.
1535          * The given receiver will be bound into the method handle,
1536          * so that every call to the method handle will invoke the
1537          * requested method on the given receiver.
1538          * <p>
1539          * The returned method handle will have
1540          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1541          * the method's variable arity modifier bit ({@code 0x0080}) is set
1542          * <em>and</em> the trailing array argument is not the only argument.
1543          * (If the trailing array argument is the only argument,
1544          * the given receiver value will be bound to it.)
1545          * <p>
1546          * This is equivalent to the following code:
1547          * <blockquote><pre>{@code
1548 import static java.lang.invoke.MethodHandles.*;
1549 import static java.lang.invoke.MethodType.*;
1550 ...
1551 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
1552 MethodHandle mh1 = mh0.bindTo(receiver);
1553 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
1554 return mh1;
1555          * }</pre></blockquote>
1556          * where {@code defc} is either {@code receiver.getClass()} or a super
1557          * type of that class, in which the requested method is accessible
1558          * to the lookup class.
1559          * (Note that {@code bindTo} does not preserve variable arity.)
1560          * @param receiver the object from which the method is accessed
1561          * @param name the name of the method
1562          * @param type the type of the method, with the receiver argument omitted
1563          * @return the desired method handle
1564          * @throws NoSuchMethodException if the method does not exist
1565          * @throws IllegalAccessException if access checking fails
1566          *                                or if the method's variable arity modifier bit
1567          *                                is set and {@code asVarargsCollector} fails
1568          * @exception SecurityException if a security manager is present and it
1569          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1570          * @throws NullPointerException if any argument is null
1571          * @see MethodHandle#bindTo
1572          * @see #findVirtual
1573          */
1574         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1575             Class<? extends Object> refc = receiver.getClass(); // may get NPE
1576             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
1577             MethodHandle mh = getDirectMethodNoRestrict(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1578             return mh.bindArgumentL(0, receiver).setVarargs(method);
1579         }
1580 
1581         /**
1582          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1583          * to <i>m</i>, if the lookup class has permission.
1584          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
1585          * If <i>m</i> is virtual, overriding is respected on every call.
1586          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
1587          * The type of the method handle will be that of the method,
1588          * with the receiver type prepended (but only if it is non-static).
1589          * If the method's {@code accessible} flag is not set,
1590          * access checking is performed immediately on behalf of the lookup class.
1591          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
1592          * <p>
1593          * The returned method handle will have
1594          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1595          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1596          * <p>
1597          * If <i>m</i> is static, and
1598          * if the returned method handle is invoked, the method's class will
1599          * be initialized, if it has not already been initialized.
1600          * @param m the reflected method
1601          * @return a method handle which can invoke the reflected method
1602          * @throws IllegalAccessException if access checking fails
1603          *                                or if the method's variable arity modifier bit
1604          *                                is set and {@code asVarargsCollector} fails
1605          * @throws NullPointerException if the argument is null
1606          */
1607         public MethodHandle unreflect(Method m) throws IllegalAccessException {
1608             if (m.getDeclaringClass() == MethodHandle.class) {
1609                 MethodHandle mh = unreflectForMH(m);
1610                 if (mh != null)  return mh;
1611             }
1612             if (m.getDeclaringClass() == VarHandle.class) {
1613                 MethodHandle mh = unreflectForVH(m);
1614                 if (mh != null)  return mh;
1615             }
1616             MemberName method = new MemberName(m);
1617             byte refKind = method.getReferenceKind();
1618             if (refKind == REF_invokeSpecial)
1619                 refKind = REF_invokeVirtual;
1620             assert(method.isMethod());
1621             @SuppressWarnings("deprecation")
1622             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
1623             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
1624         }
1625         private MethodHandle unreflectForMH(Method m) {
1626             // these names require special lookups because they throw UnsupportedOperationException
1627             if (MemberName.isMethodHandleInvokeName(m.getName()))
1628                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
1629             return null;
1630         }
1631         private MethodHandle unreflectForVH(Method m) {
1632             // these names require special lookups because they throw UnsupportedOperationException
1633             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
1634                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
1635             return null;
1636         }
1637 
1638         /**
1639          * Produces a method handle for a reflected method.
1640          * It will bypass checks for overriding methods on the receiver,
1641          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1642          * instruction from within the explicitly specified {@code specialCaller}.
1643          * The type of the method handle will be that of the method,
1644          * with a suitably restricted receiver type prepended.
1645          * (The receiver type will be {@code specialCaller} or a subtype.)
1646          * If the method's {@code accessible} flag is not set,
1647          * access checking is performed immediately on behalf of the lookup class,
1648          * as if {@code invokespecial} instruction were being linked.
1649          * <p>
1650          * Before method resolution,
1651          * if the explicitly specified caller class is not identical with the
1652          * lookup class, or if this lookup object does not have
1653          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1654          * privileges, the access fails.
1655          * <p>
1656          * The returned method handle will have
1657          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1658          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1659          * @param m the reflected method
1660          * @param specialCaller the class nominally calling the method
1661          * @return a method handle which can invoke the reflected method
1662          * @throws IllegalAccessException if access checking fails,
1663          *                                or if the method is {@code static},
1664          *                                or if the method's variable arity modifier bit
1665          *                                is set and {@code asVarargsCollector} fails
1666          * @throws NullPointerException if any argument is null
1667          */
1668         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
1669             checkSpecialCaller(specialCaller, null);
1670             Lookup specialLookup = this.in(specialCaller);
1671             MemberName method = new MemberName(m, true);
1672             assert(method.isMethod());
1673             // ignore m.isAccessible:  this is a new kind of access
1674             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
1675         }
1676 
1677         /**
1678          * Produces a method handle for a reflected constructor.
1679          * The type of the method handle will be that of the constructor,
1680          * with the return type changed to the declaring class.
1681          * The method handle will perform a {@code newInstance} operation,
1682          * creating a new instance of the constructor's class on the
1683          * arguments passed to the method handle.
1684          * <p>
1685          * If the constructor's {@code accessible} flag is not set,
1686          * access checking is performed immediately on behalf of the lookup class.
1687          * <p>
1688          * The returned method handle will have
1689          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1690          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1691          * <p>
1692          * If the returned method handle is invoked, the constructor's class will
1693          * be initialized, if it has not already been initialized.
1694          * @param c the reflected constructor
1695          * @return a method handle which can invoke the reflected constructor
1696          * @throws IllegalAccessException if access checking fails
1697          *                                or if the method's variable arity modifier bit
1698          *                                is set and {@code asVarargsCollector} fails
1699          * @throws NullPointerException if the argument is null
1700          */
1701         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
1702             MemberName ctor = new MemberName(c);
1703             assert(ctor.isConstructor());
1704             @SuppressWarnings("deprecation")
1705             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
1706             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
1707         }
1708 
1709         /**
1710          * Produces a method handle giving read access to a reflected field.
1711          * The type of the method handle will have a return type of the field's
1712          * value type.
1713          * If the field is static, the method handle will take no arguments.
1714          * Otherwise, its single argument will be the instance containing
1715          * the field.
1716          * If the field's {@code accessible} flag is not set,
1717          * access checking is performed immediately on behalf of the lookup class.
1718          * <p>
1719          * If the field is static, and
1720          * if the returned method handle is invoked, the field's class will
1721          * be initialized, if it has not already been initialized.
1722          * @param f the reflected field
1723          * @return a method handle which can load values from the reflected field
1724          * @throws IllegalAccessException if access checking fails
1725          * @throws NullPointerException if the argument is null
1726          */
1727         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
1728             return unreflectField(f, false);
1729         }
1730         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
1731             MemberName field = new MemberName(f, isSetter);
1732             assert(isSetter
1733                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
1734                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
1735             @SuppressWarnings("deprecation")
1736             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
1737             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
1738         }
1739 
1740         /**
1741          * Produces a method handle giving write access to a reflected field.
1742          * The type of the method handle will have a void return type.
1743          * If the field is static, the method handle will take a single
1744          * argument, of the field's value type, the value to be stored.
1745          * Otherwise, the two arguments will be the instance containing
1746          * the field, and the value to be stored.
1747          * If the field's {@code accessible} flag is not set,
1748          * access checking is performed immediately on behalf of the lookup class.
1749          * <p>
1750          * If the field is static, and
1751          * if the returned method handle is invoked, the field's class will
1752          * be initialized, if it has not already been initialized.
1753          * @param f the reflected field
1754          * @return a method handle which can store values into the reflected field
1755          * @throws IllegalAccessException if access checking fails
1756          * @throws NullPointerException if the argument is null
1757          */
1758         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1759             return unreflectField(f, true);
1760         }
1761 
1762         /**
1763          * Produces a VarHandle that accesses fields of type {@code T} declared
1764          * by a class of type {@code R}, as described by the given reflected
1765          * field.
1766          * If the field is non-static the VarHandle supports a shape of
1767          * {@code (R : T)}, otherwise supports a shape of {@code ((empty) : T)}.
1768          * <p>
1769          * Access checking is performed immediately on behalf of the lookup
1770          * class, regardless of the value of the field's {@code accessible}
1771          * flag.
1772          * <p>
1773          * If the field is static, and if the returned VarHandle is operated
1774          * on, the field's declaring class will be initialized, if it has not
1775          * already been initialized.
1776          * <p>
1777          * Certain access modes of the returned VarHandle are unsupported under
1778          * the following conditions:
1779          * <ul>
1780          * <li>if the field is declared {@code final}, then the write, atomic
1781          *     update, numeric atomic update, and bitwise atomic update access
1782          *     modes are unsupported.
1783          * <li>if the field type is anything other than {@code byte},
1784          *     {@code short}, {@code char}, {@code int}, {@code long},
1785          *     {@code float}, or {@code double} then numeric atomic update
1786          *     access modes are unsupported.
1787          * <li>if the field type is anything other than {@code boolean},
1788          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1789          *     {@code long} then bitwise atomic update access modes are
1790          *     unsupported.
1791          * </ul>
1792          * <p>
1793          * If the field is declared {@code volatile} then the returned VarHandle
1794          * will override access to the field (effectively ignore the
1795          * {@code volatile} declaration) in accordance to it's specified
1796          * access modes.
1797          * <p>
1798          * If the field type is {@code float} or {@code double} then numeric
1799          * and atomic update access modes compare values using their bitwise
1800          * representation (see {@link Float#floatToRawIntBits} and
1801          * {@link Double#doubleToRawLongBits}, respectively).
1802          * @apiNote
1803          * Bitwise comparison of {@code float} values or {@code double} values,
1804          * as performed by the numeric and atomic update access modes, differ
1805          * from the primitive {@code ==} operator and the {@link Float#equals}
1806          * and {@link Double#equals} methods, specifically with respect to
1807          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1808          * Care should be taken when performing a compare and set or a compare
1809          * and exchange operation with such values since the operation may
1810          * unexpectedly fail.
1811          * There are many possible NaN values that are considered to be
1812          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1813          * provided by Java can distinguish between them.  Operation failure can
1814          * occur if the expected or witness value is a NaN value and it is
1815          * transformed (perhaps in a platform specific manner) into another NaN
1816          * value, and thus has a different bitwise representation (see
1817          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1818          * details).
1819          * The values {@code -0.0} and {@code +0.0} have different bitwise
1820          * representations but are considered equal when using the primitive
1821          * {@code ==} operator.  Operation failure can occur if, for example, a
1822          * numeric algorithm computes an expected value to be say {@code -0.0}
1823          * and previously computed the witness value to be say {@code +0.0}.
1824          * @param f the reflected field, with a field of type {@code T}, and
1825          * a declaring class of type {@code R}
1826          * @return a VarHandle giving access to non-static fields or a static
1827          * field
1828          * @throws IllegalAccessException if access checking fails
1829          * @throws NullPointerException if the argument is null
1830          * @since 9
1831          */
1832         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
1833             MemberName getField = new MemberName(f, false);
1834             MemberName putField = new MemberName(f, true);
1835             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
1836                                                       f.getDeclaringClass(), getField, putField);
1837         }
1838 
1839         /**
1840          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1841          * created by this lookup object or a similar one.
1842          * Security and access checks are performed to ensure that this lookup object
1843          * is capable of reproducing the target method handle.
1844          * This means that the cracking may fail if target is a direct method handle
1845          * but was created by an unrelated lookup object.
1846          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
1847          * and was created by a lookup object for a different class.
1848          * @param target a direct method handle to crack into symbolic reference components
1849          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
1850          * @exception SecurityException if a security manager is present and it
1851          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1852          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
1853          * @exception NullPointerException if the target is {@code null}
1854          * @see MethodHandleInfo
1855          * @since 1.8
1856          */
1857         public MethodHandleInfo revealDirect(MethodHandle target) {
1858             MemberName member = target.internalMemberName();
1859             if (member == null || (!member.isResolved() &&
1860                                    !member.isMethodHandleInvoke() &&
1861                                    !member.isVarHandleMethodInvoke()))
1862                 throw newIllegalArgumentException("not a direct method handle");
1863             Class<?> defc = member.getDeclaringClass();
1864             byte refKind = member.getReferenceKind();
1865             assert(MethodHandleNatives.refKindIsValid(refKind));
1866             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
1867                 // Devirtualized method invocation is usually formally virtual.
1868                 // To avoid creating extra MemberName objects for this common case,
1869                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
1870                 refKind = REF_invokeVirtual;
1871             if (refKind == REF_invokeVirtual && defc.isInterface())
1872                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
1873                 refKind = REF_invokeInterface;
1874             // Check SM permissions and member access before cracking.
1875             try {
1876                 checkAccess(refKind, defc, member);
1877                 checkSecurityManager(defc, member);
1878             } catch (IllegalAccessException ex) {
1879                 throw new IllegalArgumentException(ex);
1880             }
1881             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
1882                 Class<?> callerClass = target.internalCallerClass();
1883                 if (!hasPrivateAccess() || callerClass != lookupClass())
1884                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
1885             }
1886             // Produce the handle to the results.
1887             return new InfoFromMemberName(this, member, refKind);
1888         }
1889 
1890         /// Helper methods, all package-private.
1891 
1892         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1893             checkSymbolicClass(refc);  // do this before attempting to resolve
1894             Objects.requireNonNull(name);
1895             Objects.requireNonNull(type);
1896             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1897                                             NoSuchFieldException.class);
1898         }
1899 
1900         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1901             checkSymbolicClass(refc);  // do this before attempting to resolve
1902             Objects.requireNonNull(name);
1903             Objects.requireNonNull(type);
1904             checkMethodName(refKind, name);  // NPE check on name
1905             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1906                                             NoSuchMethodException.class);
1907         }
1908 
1909         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
1910             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
1911             Objects.requireNonNull(member.getName());
1912             Objects.requireNonNull(member.getType());
1913             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
1914                                             ReflectiveOperationException.class);
1915         }
1916 
1917         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
1918             Objects.requireNonNull(refc);
1919             Class<?> caller = lookupClassOrNull();
1920             if (caller != null && !VerifyAccess.isClassAccessible(refc, caller, allowedModes))
1921                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
1922         }
1923 
1924         /** Check name for an illegal leading "&lt;" character. */
1925         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
1926             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
1927                 throw new NoSuchMethodException("illegal method name: "+name);
1928         }
1929 
1930 
1931         /**
1932          * Find my trustable caller class if m is a caller sensitive method.
1933          * If this lookup object has private access, then the caller class is the lookupClass.
1934          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
1935          */
1936         Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
1937             Class<?> callerClass = null;
1938             if (MethodHandleNatives.isCallerSensitive(m)) {
1939                 // Only lookups with private access are allowed to resolve caller-sensitive methods
1940                 if (hasPrivateAccess()) {
1941                     callerClass = lookupClass;
1942                 } else {
1943                     throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
1944                 }
1945             }
1946             return callerClass;
1947         }
1948 
1949         /**
1950          * Returns {@code true} if this lookup has {@code PRIVATE} access.
1951          * @return {@code true} if this lookup has {@code PRIVATE} acesss.
1952          * @since 9
1953          */
1954         public boolean hasPrivateAccess() {
1955             return (allowedModes & PRIVATE) != 0;
1956         }
1957 
1958         /**
1959          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
1960          * Determines a trustable caller class to compare with refc, the symbolic reference class.
1961          * If this lookup object has private access, then the caller class is the lookupClass.
1962          */
1963         void checkSecurityManager(Class<?> refc, MemberName m) {
1964             SecurityManager smgr = System.getSecurityManager();
1965             if (smgr == null)  return;
1966             if (allowedModes == TRUSTED)  return;
1967 
1968             // Step 1:
1969             boolean fullPowerLookup = hasPrivateAccess();
1970             if (!fullPowerLookup ||
1971                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
1972                 ReflectUtil.checkPackageAccess(refc);
1973             }
1974 
1975             if (m == null) {  // findClass or accessClass
1976                 // Step 2b:
1977                 if (!fullPowerLookup) {
1978                     smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
1979                 }
1980                 return;
1981             }
1982 
1983             // Step 2a:
1984             if (m.isPublic()) return;
1985             if (!fullPowerLookup) {
1986                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
1987             }
1988 
1989             // Step 3:
1990             Class<?> defc = m.getDeclaringClass();
1991             if (!fullPowerLookup && defc != refc) {
1992                 ReflectUtil.checkPackageAccess(defc);
1993             }
1994         }
1995 
1996         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
1997             boolean wantStatic = (refKind == REF_invokeStatic);
1998             String message;
1999             if (m.isConstructor())
2000                 message = "expected a method, not a constructor";
2001             else if (!m.isMethod())
2002                 message = "expected a method";
2003             else if (wantStatic != m.isStatic())
2004                 message = wantStatic ? "expected a static method" : "expected a non-static method";
2005             else
2006                 { checkAccess(refKind, refc, m); return; }
2007             throw m.makeAccessException(message, this);
2008         }
2009 
2010         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2011             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
2012             String message;
2013             if (wantStatic != m.isStatic())
2014                 message = wantStatic ? "expected a static field" : "expected a non-static field";
2015             else
2016                 { checkAccess(refKind, refc, m); return; }
2017             throw m.makeAccessException(message, this);
2018         }
2019 
2020         /** Check public/protected/private bits on the symbolic reference class and its member. */
2021         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2022             assert(m.referenceKindIsConsistentWith(refKind) &&
2023                    MethodHandleNatives.refKindIsValid(refKind) &&
2024                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
2025             int allowedModes = this.allowedModes;
2026             if (allowedModes == TRUSTED)  return;
2027             int mods = m.getModifiers();
2028             if (Modifier.isProtected(mods) &&
2029                     refKind == REF_invokeVirtual &&
2030                     m.getDeclaringClass() == Object.class &&
2031                     m.getName().equals("clone") &&
2032                     refc.isArray()) {
2033                 // The JVM does this hack also.
2034                 // (See ClassVerifier::verify_invoke_instructions
2035                 // and LinkResolver::check_method_accessability.)
2036                 // Because the JVM does not allow separate methods on array types,
2037                 // there is no separate method for int[].clone.
2038                 // All arrays simply inherit Object.clone.
2039                 // But for access checking logic, we make Object.clone
2040                 // (normally protected) appear to be public.
2041                 // Later on, when the DirectMethodHandle is created,
2042                 // its leading argument will be restricted to the
2043                 // requested array type.
2044                 // N.B. The return type is not adjusted, because
2045                 // that is *not* the bytecode behavior.
2046                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
2047             }
2048             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
2049                 // cannot "new" a protected ctor in a different package
2050                 mods ^= Modifier.PROTECTED;
2051             }
2052             if (Modifier.isFinal(mods) &&
2053                     MethodHandleNatives.refKindIsSetter(refKind))
2054                 throw m.makeAccessException("unexpected set of a final field", this);
2055             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
2056             if ((requestedModes & allowedModes) != 0) {
2057                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
2058                                                     mods, lookupClass(), allowedModes))
2059                     return;
2060             } else {
2061                 // Protected members can also be checked as if they were package-private.
2062                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
2063                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
2064                     return;
2065             }
2066             throw m.makeAccessException(accessFailedMessage(refc, m), this);
2067         }
2068 
2069         String accessFailedMessage(Class<?> refc, MemberName m) {
2070             Class<?> defc = m.getDeclaringClass();
2071             int mods = m.getModifiers();
2072             // check the class first:
2073             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
2074                                (defc == refc ||
2075                                 Modifier.isPublic(refc.getModifiers())));
2076             if (!classOK && (allowedModes & PACKAGE) != 0) {
2077                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), FULL_POWER_MODES) &&
2078                            (defc == refc ||
2079                             VerifyAccess.isClassAccessible(refc, lookupClass(), FULL_POWER_MODES)));
2080             }
2081             if (!classOK)
2082                 return "class is not public";
2083             if (Modifier.isPublic(mods))
2084                 return "access to public member failed";  // (how?, module not readable?)
2085             if (Modifier.isPrivate(mods))
2086                 return "member is private";
2087             if (Modifier.isProtected(mods))
2088                 return "member is protected";
2089             return "member is private to package";
2090         }
2091 
2092         private static final boolean ALLOW_NESTMATE_ACCESS = false;
2093 
2094         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
2095             int allowedModes = this.allowedModes;
2096             if (allowedModes == TRUSTED)  return;
2097             if (!hasPrivateAccess()
2098                 || (specialCaller != lookupClass()
2099                        // ensure non-abstract methods in superinterfaces can be special-invoked
2100                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))
2101                     && !(ALLOW_NESTMATE_ACCESS &&
2102                          VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
2103                 throw new MemberName(specialCaller).
2104                     makeAccessException("no private access for invokespecial", this);
2105         }
2106 
2107         private boolean restrictProtectedReceiver(MemberName method) {
2108             // The accessing class only has the right to use a protected member
2109             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
2110             if (!method.isProtected() || method.isStatic()
2111                 || allowedModes == TRUSTED
2112                 || method.getDeclaringClass() == lookupClass()
2113                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())
2114                 || (ALLOW_NESTMATE_ACCESS &&
2115                     VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
2116                 return false;
2117             return true;
2118         }
2119         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
2120             assert(!method.isStatic());
2121             // receiver type of mh is too wide; narrow to caller
2122             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
2123                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
2124             }
2125             MethodType rawType = mh.type();
2126             if (rawType.parameterType(0) == caller)  return mh;
2127             MethodType narrowType = rawType.changeParameterType(0, caller);
2128             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
2129             assert(mh.viewAsTypeChecks(narrowType, true));
2130             return mh.copyWith(narrowType, mh.form);
2131         }
2132 
2133         /** Check access and get the requested method. */
2134         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
2135             final boolean doRestrict    = true;
2136             final boolean checkSecurity = true;
2137             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
2138         }
2139         /** Check access and get the requested method, eliding receiver narrowing rules. */
2140         private MethodHandle getDirectMethodNoRestrict(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
2141             final boolean doRestrict    = false;
2142             final boolean checkSecurity = true;
2143             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
2144         }
2145         /** Check access and get the requested method, eliding security manager checks. */
2146         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
2147             final boolean doRestrict    = true;
2148             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2149             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
2150         }
2151         /** Common code for all methods; do not call directly except from immediately above. */
2152         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
2153                                                    boolean checkSecurity,
2154                                                    boolean doRestrict, Class<?> callerClass) throws IllegalAccessException {
2155             checkMethod(refKind, refc, method);
2156             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2157             if (checkSecurity)
2158                 checkSecurityManager(refc, method);
2159             assert(!method.isMethodHandleInvoke());
2160 
2161             if (refKind == REF_invokeSpecial &&
2162                 refc != lookupClass() &&
2163                 !refc.isInterface() &&
2164                 refc != lookupClass().getSuperclass() &&
2165                 refc.isAssignableFrom(lookupClass())) {
2166                 assert(!method.getName().equals("<init>"));  // not this code path
2167                 // Per JVMS 6.5, desc. of invokespecial instruction:
2168                 // If the method is in a superclass of the LC,
2169                 // and if our original search was above LC.super,
2170                 // repeat the search (symbolic lookup) from LC.super
2171                 // and continue with the direct superclass of that class,
2172                 // and so forth, until a match is found or no further superclasses exist.
2173                 // FIXME: MemberName.resolve should handle this instead.
2174                 Class<?> refcAsSuper = lookupClass();
2175                 MemberName m2;
2176                 do {
2177                     refcAsSuper = refcAsSuper.getSuperclass();
2178                     m2 = new MemberName(refcAsSuper,
2179                                         method.getName(),
2180                                         method.getMethodType(),
2181                                         REF_invokeSpecial);
2182                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
2183                 } while (m2 == null &&         // no method is found yet
2184                          refc != refcAsSuper); // search up to refc
2185                 if (m2 == null)  throw new InternalError(method.toString());
2186                 method = m2;
2187                 refc = refcAsSuper;
2188                 // redo basic checks
2189                 checkMethod(refKind, refc, method);
2190             }
2191 
2192             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method);
2193             MethodHandle mh = dmh;
2194             // Optionally narrow the receiver argument to refc using restrictReceiver.
2195             if (doRestrict &&
2196                    (refKind == REF_invokeSpecial ||
2197                        (MethodHandleNatives.refKindHasReceiver(refKind) &&
2198                            restrictProtectedReceiver(method)))) {
2199                 mh = restrictReceiver(method, dmh, lookupClass());
2200             }
2201             mh = maybeBindCaller(method, mh, callerClass);
2202             mh = mh.setVarargs(method);
2203             return mh;
2204         }
2205         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
2206                                              Class<?> callerClass)
2207                                              throws IllegalAccessException {
2208             if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
2209                 return mh;
2210             Class<?> hostClass = lookupClass;
2211             if (!hasPrivateAccess())  // caller must have private access
2212                 hostClass = callerClass;  // callerClass came from a security manager style stack walk
2213             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
2214             // Note: caller will apply varargs after this step happens.
2215             return cbmh;
2216         }
2217         /** Check access and get the requested field. */
2218         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
2219             final boolean checkSecurity = true;
2220             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
2221         }
2222         /** Check access and get the requested field, eliding security manager checks. */
2223         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
2224             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2225             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
2226         }
2227         /** Common code for all fields; do not call directly except from immediately above. */
2228         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
2229                                                   boolean checkSecurity) throws IllegalAccessException {
2230             checkField(refKind, refc, field);
2231             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2232             if (checkSecurity)
2233                 checkSecurityManager(refc, field);
2234             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
2235             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
2236                                     restrictProtectedReceiver(field));
2237             if (doRestrict)
2238                 return restrictReceiver(field, dmh, lookupClass());
2239             return dmh;
2240         }
2241         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
2242                                             Class<?> refc, MemberName getField, MemberName putField)
2243                 throws IllegalAccessException {
2244             final boolean checkSecurity = true;
2245             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2246         }
2247         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
2248                                                              Class<?> refc, MemberName getField, MemberName putField)
2249                 throws IllegalAccessException {
2250             final boolean checkSecurity = false;
2251             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2252         }
2253         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
2254                                                   Class<?> refc, MemberName getField, MemberName putField,
2255                                                   boolean checkSecurity) throws IllegalAccessException {
2256             assert getField.isStatic() == putField.isStatic();
2257             assert getField.isGetter() && putField.isSetter();
2258             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
2259             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
2260 
2261             checkField(getRefKind, refc, getField);
2262             if (checkSecurity)
2263                 checkSecurityManager(refc, getField);
2264 
2265             if (!putField.isFinal()) {
2266                 // A VarHandle does not support updates to final fields, any
2267                 // such VarHandle to a final field will be read-only and
2268                 // therefore the following write-based accessibility checks are
2269                 // only required for non-final fields
2270                 checkField(putRefKind, refc, putField);
2271                 if (checkSecurity)
2272                     checkSecurityManager(refc, putField);
2273             }
2274 
2275             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
2276                                   restrictProtectedReceiver(getField));
2277             if (doRestrict) {
2278                 assert !getField.isStatic();
2279                 // receiver type of VarHandle is too wide; narrow to caller
2280                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
2281                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
2282                 }
2283                 refc = lookupClass();
2284             }
2285             return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED);
2286         }
2287         /** Check access and get the requested constructor. */
2288         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2289             final boolean checkSecurity = true;
2290             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2291         }
2292         /** Check access and get the requested constructor, eliding security manager checks. */
2293         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2294             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2295             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2296         }
2297         /** Common code for all constructors; do not call directly except from immediately above. */
2298         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
2299                                                   boolean checkSecurity) throws IllegalAccessException {
2300             assert(ctor.isConstructor());
2301             checkAccess(REF_newInvokeSpecial, refc, ctor);
2302             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2303             if (checkSecurity)
2304                 checkSecurityManager(refc, ctor);
2305             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
2306             return DirectMethodHandle.make(ctor).setVarargs(ctor);
2307         }
2308 
2309         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
2310          */
2311         /*non-public*/
2312         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
2313             if (!(type instanceof Class || type instanceof MethodType))
2314                 throw new InternalError("unresolved MemberName");
2315             MemberName member = new MemberName(refKind, defc, name, type);
2316             MethodHandle mh = LOOKASIDE_TABLE.get(member);
2317             if (mh != null) {
2318                 checkSymbolicClass(defc);
2319                 return mh;
2320             }
2321             // Treat MethodHandle.invoke and invokeExact specially.
2322             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
2323                 mh = findVirtualForMH(member.getName(), member.getMethodType());
2324                 if (mh != null) {
2325                     return mh;
2326                 }
2327             }
2328             MemberName resolved = resolveOrFail(refKind, member);
2329             mh = getDirectMethodForConstant(refKind, defc, resolved);
2330             if (mh instanceof DirectMethodHandle
2331                     && canBeCached(refKind, defc, resolved)) {
2332                 MemberName key = mh.internalMemberName();
2333                 if (key != null) {
2334                     key = key.asNormalOriginal();
2335                 }
2336                 if (member.equals(key)) {  // better safe than sorry
2337                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
2338                 }
2339             }
2340             return mh;
2341         }
2342         private
2343         boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
2344             if (refKind == REF_invokeSpecial) {
2345                 return false;
2346             }
2347             if (!Modifier.isPublic(defc.getModifiers()) ||
2348                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
2349                     !member.isPublic() ||
2350                     member.isCallerSensitive()) {
2351                 return false;
2352             }
2353             ClassLoader loader = defc.getClassLoader();
2354             if (!jdk.internal.misc.VM.isSystemDomainLoader(loader)) {
2355                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
2356                 boolean found = false;
2357                 while (sysl != null) {
2358                     if (loader == sysl) { found = true; break; }
2359                     sysl = sysl.getParent();
2360                 }
2361                 if (!found) {
2362                     return false;
2363                 }
2364             }
2365             try {
2366                 MemberName resolved2 = publicLookup().resolveOrFail(refKind,
2367                     new MemberName(refKind, defc, member.getName(), member.getType()));
2368                 checkSecurityManager(defc, resolved2);
2369             } catch (ReflectiveOperationException | SecurityException ex) {
2370                 return false;
2371             }
2372             return true;
2373         }
2374         private
2375         MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
2376                 throws ReflectiveOperationException {
2377             if (MethodHandleNatives.refKindIsField(refKind)) {
2378                 return getDirectFieldNoSecurityManager(refKind, defc, member);
2379             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
2380                 return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
2381             } else if (refKind == REF_newInvokeSpecial) {
2382                 return getDirectConstructorNoSecurityManager(defc, member);
2383             }
2384             // oops
2385             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
2386         }
2387 
2388         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
2389     }
2390 
2391     /**
2392      * Produces a method handle constructing arrays of a desired type.
2393      * The return type of the method handle will be the array type.
2394      * The type of its sole argument will be {@code int}, which specifies the size of the array.
2395      * @param arrayClass an array type
2396      * @return a method handle which can create arrays of the given type
2397      * @throws NullPointerException if the argument is {@code null}
2398      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
2399      * @see java.lang.reflect.Array#newInstance(Class, int)
2400      * @since 9
2401      */
2402     public static
2403     MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
2404         if (!arrayClass.isArray()) {
2405             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
2406         }
2407         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
2408                 bindTo(arrayClass.getComponentType());
2409         return ani.asType(ani.type().changeReturnType(arrayClass));
2410     }
2411 
2412     /**
2413      * Produces a method handle returning the length of an array.
2414      * The type of the method handle will have {@code int} as return type,
2415      * and its sole argument will be the array type.
2416      * @param arrayClass an array type
2417      * @return a method handle which can retrieve the length of an array of the given array type
2418      * @throws NullPointerException if the argument is {@code null}
2419      * @throws IllegalArgumentException if arrayClass is not an array type
2420      * @since 9
2421      */
2422     public static
2423     MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
2424         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
2425     }
2426 
2427     /**
2428      * Produces a method handle giving read access to elements of an array.
2429      * The type of the method handle will have a return type of the array's
2430      * element type.  Its first argument will be the array type,
2431      * and the second will be {@code int}.
2432      * @param arrayClass an array type
2433      * @return a method handle which can load values from the given array type
2434      * @throws NullPointerException if the argument is null
2435      * @throws  IllegalArgumentException if arrayClass is not an array type
2436      */
2437     public static
2438     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
2439         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
2440     }
2441 
2442     /**
2443      * Produces a method handle giving write access to elements of an array.
2444      * The type of the method handle will have a void return type.
2445      * Its last argument will be the array's element type.
2446      * The first and second arguments will be the array type and int.
2447      * @param arrayClass the class of an array
2448      * @return a method handle which can store values into the array type
2449      * @throws NullPointerException if the argument is null
2450      * @throws IllegalArgumentException if arrayClass is not an array type
2451      */
2452     public static
2453     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
2454         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
2455     }
2456 
2457     /**
2458      *
2459      * Produces a VarHandle giving access to elements of an array type
2460      * {@code T[]}, supporting shape {@code (T[], int : T)}.
2461      * <p>
2462      * Certain access modes of the returned VarHandle are unsupported under
2463      * the following conditions:
2464      * <ul>
2465      * <li>if the component type is anything other than {@code byte},
2466      *     {@code short}, {@code char}, {@code int}, {@code long},
2467      *     {@code float}, or {@code double} then numeric atomic update access
2468      *     modes are unsupported.
2469      * <li>if the field type is anything other than {@code boolean},
2470      *     {@code byte}, {@code short}, {@code char}, {@code int} or
2471      *     {@code long} then bitwise atomic update access modes are
2472      *     unsupported.
2473      * </ul>
2474      * <p>
2475      * If the component type is {@code float} or {@code double} then numeric
2476      * and atomic update access modes compare values using their bitwise
2477      * representation (see {@link Float#floatToRawIntBits} and
2478      * {@link Double#doubleToRawLongBits}, respectively).
2479      * @apiNote
2480      * Bitwise comparison of {@code float} values or {@code double} values,
2481      * as performed by the numeric and atomic update access modes, differ
2482      * from the primitive {@code ==} operator and the {@link Float#equals}
2483      * and {@link Double#equals} methods, specifically with respect to
2484      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2485      * Care should be taken when performing a compare and set or a compare
2486      * and exchange operation with such values since the operation may
2487      * unexpectedly fail.
2488      * There are many possible NaN values that are considered to be
2489      * {@code NaN} in Java, although no IEEE 754 floating-point operation
2490      * provided by Java can distinguish between them.  Operation failure can
2491      * occur if the expected or witness value is a NaN value and it is
2492      * transformed (perhaps in a platform specific manner) into another NaN
2493      * value, and thus has a different bitwise representation (see
2494      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2495      * details).
2496      * The values {@code -0.0} and {@code +0.0} have different bitwise
2497      * representations but are considered equal when using the primitive
2498      * {@code ==} operator.  Operation failure can occur if, for example, a
2499      * numeric algorithm computes an expected value to be say {@code -0.0}
2500      * and previously computed the witness value to be say {@code +0.0}.
2501      * @param arrayClass the class of an array, of type {@code T[]}
2502      * @return a VarHandle giving access to elements of an array
2503      * @throws NullPointerException if the arrayClass is null
2504      * @throws IllegalArgumentException if arrayClass is not an array type
2505      * @since 9
2506      */
2507     public static
2508     VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
2509         return VarHandles.makeArrayElementHandle(arrayClass);
2510     }
2511 
2512     /**
2513      * Produces a VarHandle giving access to elements of a {@code byte[]} array
2514      * viewed as if it were a different primitive array type, such as
2515      * {@code int[]} or {@code long[]}.  The shape of the resulting VarHandle is
2516      * {@code (byte[], int : T)}, where the {@code int} coordinate type
2517      * corresponds to an argument that is an index in a {@code byte[]} array,
2518      * and {@code T} is the component type of the given view array class.  The
2519      * returned VarHandle accesses bytes at an index in a {@code byte[]} array,
2520      * composing bytes to or from a value of {@code T} according to the given
2521      * endianness.
2522      * <p>
2523      * The supported component types (variables types) are {@code short},
2524      * {@code char}, {@code int}, {@code long}, {@code float} and
2525      * {@code double}.
2526      * <p>
2527      * Access of bytes at a given index will result in an
2528      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2529      * or greater than the {@code byte[]} array length minus the size (in bytes)
2530      * of {@code T}.
2531      * <p>
2532      * Access of bytes at an index may be aligned or misaligned for {@code T},
2533      * with respect to the underlying memory address, {@code A} say, associated
2534      * with the array and index.
2535      * If access is misaligned then access for anything other than the
2536      * {@code get} and {@code set} access modes will result in an
2537      * {@code IllegalStateException}.  In such cases atomic access is only
2538      * guaranteed with respect to the largest power of two that divides the GCD
2539      * of {@code A} and the size (in bytes) of {@code T}.
2540      * If access is aligned then following access modes are supported and are
2541      * guaranteed to support atomic access:
2542      * <ul>
2543      * <li>read write access modes for all {@code T}, with the exception of
2544      *     access modes {@code get} and {@code set} for {@code long} and
2545      *     {@code double} on 32-bit platforms.
2546      * <li>atomic update access modes for {@code int}, {@code long},
2547      *     {@code float} or {@code double}.
2548      *     (Future major platform releases of the JDK may support additional
2549      *     types for certain currently unsupported access modes.)
2550      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2551      *     (Future major platform releases of the JDK may support additional
2552      *     numeric types for certain currently unsupported access modes.)
2553      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
2554      *     (Future major platform releases of the JDK may support additional
2555      *     numeric types for certain currently unsupported access modes.)
2556      * </ul>
2557      * <p>
2558      * Misaligned access, and therefore atomicity guarantees, may be determined
2559      * for {@code byte[]} arrays without operating on a specific array.  Given
2560      * an {@code index}, {@code T} and it's corresponding boxed type,
2561      * {@code T_BOX}, misalignment may be determined as follows:
2562      * <pre>{@code
2563      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2564      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
2565      *     alignmentOffset(0, sizeOfT);
2566      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
2567      * boolean isMisaligned = misalignedAtIndex != 0;
2568      * }</pre>
2569      * <p>
2570      * If the variable type is {@code float} or {@code double} then atomic
2571      * update access modes compare values using their bitwise representation
2572      * (see {@link Float#floatToRawIntBits} and
2573      * {@link Double#doubleToRawLongBits}, respectively).
2574      * @param viewArrayClass the view array class, with a component type of
2575      * type {@code T}
2576      * @param byteOrder the endianness of the view array elements, as
2577      * stored in the underlying {@code byte} array
2578      * @return a VarHandle giving access to elements of a {@code byte[]} array
2579      * viewed as if elements corresponding to the components type of the view
2580      * array class
2581      * @throws NullPointerException if viewArrayClass or byteOrder is null
2582      * @throws IllegalArgumentException if viewArrayClass is not an array type
2583      * @throws UnsupportedOperationException if the component type of
2584      * viewArrayClass is not supported as a variable type
2585      * @since 9
2586      */
2587     public static
2588     VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
2589                                      ByteOrder byteOrder) throws IllegalArgumentException {
2590         Objects.requireNonNull(byteOrder);
2591         return VarHandles.byteArrayViewHandle(viewArrayClass,
2592                                               byteOrder == ByteOrder.BIG_ENDIAN);
2593     }
2594 
2595     /**
2596      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
2597      * viewed as if it were an array of elements of a different primitive
2598      * component type to that of {@code byte}, such as {@code int[]} or
2599      * {@code long[]}.  The shape of the resulting VarHandle is
2600      * {@code (ByteBuffer, int : T)}, where the {@code int} coordinate type
2601      * corresponds to an argument that is an index in a {@code ByteBuffer}, and
2602      * {@code T} is the component type of the given view array class.  The
2603      * returned VarHandle accesses bytes at an index in a {@code ByteBuffer},
2604      * composing bytes to or from a value of {@code T} according to the given
2605      * endianness.
2606      * <p>
2607      * The supported component types (variables types) are {@code short},
2608      * {@code char}, {@code int}, {@code long}, {@code float} and
2609      * {@code double}.
2610      * <p>
2611      * Access will result in a {@code ReadOnlyBufferException} for anything
2612      * other than the read access modes if the {@code ByteBuffer} is read-only.
2613      * <p>
2614      * Access of bytes at a given index will result in an
2615      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2616      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
2617      * {@code T}.
2618      * <p>
2619      * Access of bytes at an index may be aligned or misaligned for {@code T},
2620      * with respect to the underlying memory address, {@code A} say, associated
2621      * with the {@code ByteBuffer} and index.
2622      * If access is misaligned then access for anything other than the
2623      * {@code get} and {@code set} access modes will result in an
2624      * {@code IllegalStateException}.  In such cases atomic access is only
2625      * guaranteed with respect to the largest power of two that divides the GCD
2626      * of {@code A} and the size (in bytes) of {@code T}.
2627      * If access is aligned then following access modes are supported and are
2628      * guaranteed to support atomic access:
2629      * <ul>
2630      * <li>read write access modes for all {@code T}, with the exception of
2631      *     access modes {@code get} and {@code set} for {@code long} and
2632      *     {@code double} on 32-bit platforms.
2633      * <li>atomic update access modes for {@code int}, {@code long},
2634      *     {@code float} or {@code double}.
2635      *     (Future major platform releases of the JDK may support additional
2636      *     types for certain currently unsupported access modes.)
2637      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2638      *     (Future major platform releases of the JDK may support additional
2639      *     numeric types for certain currently unsupported access modes.)
2640      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
2641      *     (Future major platform releases of the JDK may support additional
2642      *     numeric types for certain currently unsupported access modes.)
2643      * </ul>
2644      * <p>
2645      * Misaligned access, and therefore atomicity guarantees, may be determined
2646      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
2647      * {@code index}, {@code T} and it's corresponding boxed type,
2648      * {@code T_BOX}, as follows:
2649      * <pre>{@code
2650      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2651      * ByteBuffer bb = ...
2652      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
2653      * boolean isMisaligned = misalignedAtIndex != 0;
2654      * }</pre>
2655      * <p>
2656      * If the variable type is {@code float} or {@code double} then atomic
2657      * update access modes compare values using their bitwise representation
2658      * (see {@link Float#floatToRawIntBits} and
2659      * {@link Double#doubleToRawLongBits}, respectively).
2660      * @param viewArrayClass the view array class, with a component type of
2661      * type {@code T}
2662      * @param byteOrder the endianness of the view array elements, as
2663      * stored in the underlying {@code ByteBuffer} (Note this overrides the
2664      * endianness of a {@code ByteBuffer})
2665      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
2666      * viewed as if elements corresponding to the components type of the view
2667      * array class
2668      * @throws NullPointerException if viewArrayClass or byteOrder is null
2669      * @throws IllegalArgumentException if viewArrayClass is not an array type
2670      * @throws UnsupportedOperationException if the component type of
2671      * viewArrayClass is not supported as a variable type
2672      * @since 9
2673      */
2674     public static
2675     VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
2676                                       ByteOrder byteOrder) throws IllegalArgumentException {
2677         Objects.requireNonNull(byteOrder);
2678         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
2679                                                    byteOrder == ByteOrder.BIG_ENDIAN);
2680     }
2681 
2682 
2683     /// method handle invocation (reflective style)
2684 
2685     /**
2686      * Produces a method handle which will invoke any method handle of the
2687      * given {@code type}, with a given number of trailing arguments replaced by
2688      * a single trailing {@code Object[]} array.
2689      * The resulting invoker will be a method handle with the following
2690      * arguments:
2691      * <ul>
2692      * <li>a single {@code MethodHandle} target
2693      * <li>zero or more leading values (counted by {@code leadingArgCount})
2694      * <li>an {@code Object[]} array containing trailing arguments
2695      * </ul>
2696      * <p>
2697      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
2698      * the indicated {@code type}.
2699      * That is, if the target is exactly of the given {@code type}, it will behave
2700      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
2701      * is used to convert the target to the required {@code type}.
2702      * <p>
2703      * The type of the returned invoker will not be the given {@code type}, but rather
2704      * will have all parameters except the first {@code leadingArgCount}
2705      * replaced by a single array of type {@code Object[]}, which will be
2706      * the final parameter.
2707      * <p>
2708      * Before invoking its target, the invoker will spread the final array, apply
2709      * reference casts as necessary, and unbox and widen primitive arguments.
2710      * If, when the invoker is called, the supplied array argument does
2711      * not have the correct number of elements, the invoker will throw
2712      * an {@link IllegalArgumentException} instead of invoking the target.
2713      * <p>
2714      * This method is equivalent to the following code (though it may be more efficient):
2715      * <blockquote><pre>{@code
2716 MethodHandle invoker = MethodHandles.invoker(type);
2717 int spreadArgCount = type.parameterCount() - leadingArgCount;
2718 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
2719 return invoker;
2720      * }</pre></blockquote>
2721      * This method throws no reflective or security exceptions.
2722      * @param type the desired target type
2723      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
2724      * @return a method handle suitable for invoking any method handle of the given type
2725      * @throws NullPointerException if {@code type} is null
2726      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
2727      *                  the range from 0 to {@code type.parameterCount()} inclusive,
2728      *                  or if the resulting method handle's type would have
2729      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2730      */
2731     public static
2732     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
2733         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
2734             throw newIllegalArgumentException("bad argument count", leadingArgCount);
2735         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
2736         return type.invokers().spreadInvoker(leadingArgCount);
2737     }
2738 
2739     /**
2740      * Produces a special <em>invoker method handle</em> which can be used to
2741      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
2742      * The resulting invoker will have a type which is
2743      * exactly equal to the desired type, except that it will accept
2744      * an additional leading argument of type {@code MethodHandle}.
2745      * <p>
2746      * This method is equivalent to the following code (though it may be more efficient):
2747      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
2748      *
2749      * <p style="font-size:smaller;">
2750      * <em>Discussion:</em>
2751      * Invoker method handles can be useful when working with variable method handles
2752      * of unknown types.
2753      * For example, to emulate an {@code invokeExact} call to a variable method
2754      * handle {@code M}, extract its type {@code T},
2755      * look up the invoker method {@code X} for {@code T},
2756      * and call the invoker method, as {@code X.invoke(T, A...)}.
2757      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
2758      * is unknown.)
2759      * If spreading, collecting, or other argument transformations are required,
2760      * they can be applied once to the invoker {@code X} and reused on many {@code M}
2761      * method handle values, as long as they are compatible with the type of {@code X}.
2762      * <p style="font-size:smaller;">
2763      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2764      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2765      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2766      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2767      * <p>
2768      * This method throws no reflective or security exceptions.
2769      * @param type the desired target type
2770      * @return a method handle suitable for invoking any method handle of the given type
2771      * @throws IllegalArgumentException if the resulting method handle's type would have
2772      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2773      */
2774     public static
2775     MethodHandle exactInvoker(MethodType type) {
2776         return type.invokers().exactInvoker();
2777     }
2778 
2779     /**
2780      * Produces a special <em>invoker method handle</em> which can be used to
2781      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
2782      * The resulting invoker will have a type which is
2783      * exactly equal to the desired type, except that it will accept
2784      * an additional leading argument of type {@code MethodHandle}.
2785      * <p>
2786      * Before invoking its target, if the target differs from the expected type,
2787      * the invoker will apply reference casts as
2788      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
2789      * Similarly, the return value will be converted as necessary.
2790      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
2791      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
2792      * <p>
2793      * This method is equivalent to the following code (though it may be more efficient):
2794      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
2795      * <p style="font-size:smaller;">
2796      * <em>Discussion:</em>
2797      * A {@linkplain MethodType#genericMethodType general method type} is one which
2798      * mentions only {@code Object} arguments and return values.
2799      * An invoker for such a type is capable of calling any method handle
2800      * of the same arity as the general type.
2801      * <p style="font-size:smaller;">
2802      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2803      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2804      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2805      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2806      * <p>
2807      * This method throws no reflective or security exceptions.
2808      * @param type the desired target type
2809      * @return a method handle suitable for invoking any method handle convertible to the given type
2810      * @throws IllegalArgumentException if the resulting method handle's type would have
2811      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2812      */
2813     public static
2814     MethodHandle invoker(MethodType type) {
2815         return type.invokers().genericInvoker();
2816     }
2817 
2818     /**
2819      * Produces a special <em>invoker method handle</em> which can be used to
2820      * invoke a signature-polymorphic access mode method on any VarHandle whose
2821      * associated access mode type is compatible with the given type.
2822      * The resulting invoker will have a type which is exactly equal to the
2823      * desired given type, except that it will accept an additional leading
2824      * argument of type {@code VarHandle}.
2825      *
2826      * @param accessMode the VarHandle access mode
2827      * @param type the desired target type
2828      * @return a method handle suitable for invoking an access mode method of
2829      *         any VarHandle whose access mode type is of the given type.
2830      * @since 9
2831      */
2832     static public
2833     MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
2834         return type.invokers().varHandleMethodExactInvoker(accessMode);
2835     }
2836 
2837     /**
2838      * Produces a special <em>invoker method handle</em> which can be used to
2839      * invoke a signature-polymorphic access mode method on any VarHandle whose
2840      * associated access mode type is compatible with the given type.
2841      * The resulting invoker will have a type which is exactly equal to the
2842      * desired given type, except that it will accept an additional leading
2843      * argument of type {@code VarHandle}.
2844      * <p>
2845      * Before invoking its target, if the access mode type differs from the
2846      * desired given type, the invoker will apply reference casts as necessary
2847      * and box, unbox, or widen primitive values, as if by
2848      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
2849      * converted as necessary.
2850      * <p>
2851      * This method is equivalent to the following code (though it may be more
2852      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
2853      *
2854      * @param accessMode the VarHandle access mode
2855      * @param type the desired target type
2856      * @return a method handle suitable for invoking an access mode method of
2857      *         any VarHandle whose access mode type is convertible to the given
2858      *         type.
2859      * @since 9
2860      */
2861     static public
2862     MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
2863         return type.invokers().varHandleMethodInvoker(accessMode);
2864     }
2865 
2866     static /*non-public*/
2867     MethodHandle basicInvoker(MethodType type) {
2868         return type.invokers().basicInvoker();
2869     }
2870 
2871      /// method handle modification (creation from other method handles)
2872 
2873     /**
2874      * Produces a method handle which adapts the type of the
2875      * given method handle to a new type by pairwise argument and return type conversion.
2876      * The original type and new type must have the same number of arguments.
2877      * The resulting method handle is guaranteed to report a type
2878      * which is equal to the desired new type.
2879      * <p>
2880      * If the original type and new type are equal, returns target.
2881      * <p>
2882      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
2883      * and some additional conversions are also applied if those conversions fail.
2884      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
2885      * if possible, before or instead of any conversions done by {@code asType}:
2886      * <ul>
2887      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
2888      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
2889      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
2890      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
2891      *     the boolean is converted to a byte value, 1 for true, 0 for false.
2892      *     (This treatment follows the usage of the bytecode verifier.)
2893      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
2894      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
2895      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
2896      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
2897      *     then a Java casting conversion (JLS 5.5) is applied.
2898      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
2899      *     widening and/or narrowing.)
2900      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
2901      *     conversion will be applied at runtime, possibly followed
2902      *     by a Java casting conversion (JLS 5.5) on the primitive value,
2903      *     possibly followed by a conversion from byte to boolean by testing
2904      *     the low-order bit.
2905      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
2906      *     and if the reference is null at runtime, a zero value is introduced.
2907      * </ul>
2908      * @param target the method handle to invoke after arguments are retyped
2909      * @param newType the expected type of the new method handle
2910      * @return a method handle which delegates to the target after performing
2911      *           any necessary argument conversions, and arranges for any
2912      *           necessary return value conversions
2913      * @throws NullPointerException if either argument is null
2914      * @throws WrongMethodTypeException if the conversion cannot be made
2915      * @see MethodHandle#asType
2916      */
2917     public static
2918     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
2919         explicitCastArgumentsChecks(target, newType);
2920         // use the asTypeCache when possible:
2921         MethodType oldType = target.type();
2922         if (oldType == newType)  return target;
2923         if (oldType.explicitCastEquivalentToAsType(newType)) {
2924             return target.asFixedArity().asType(newType);
2925         }
2926         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
2927     }
2928 
2929     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
2930         if (target.type().parameterCount() != newType.parameterCount()) {
2931             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
2932         }
2933     }
2934 
2935     /**
2936      * Produces a method handle which adapts the calling sequence of the
2937      * given method handle to a new type, by reordering the arguments.
2938      * The resulting method handle is guaranteed to report a type
2939      * which is equal to the desired new type.
2940      * <p>
2941      * The given array controls the reordering.
2942      * Call {@code #I} the number of incoming parameters (the value
2943      * {@code newType.parameterCount()}, and call {@code #O} the number
2944      * of outgoing parameters (the value {@code target.type().parameterCount()}).
2945      * Then the length of the reordering array must be {@code #O},
2946      * and each element must be a non-negative number less than {@code #I}.
2947      * For every {@code N} less than {@code #O}, the {@code N}-th
2948      * outgoing argument will be taken from the {@code I}-th incoming
2949      * argument, where {@code I} is {@code reorder[N]}.
2950      * <p>
2951      * No argument or return value conversions are applied.
2952      * The type of each incoming argument, as determined by {@code newType},
2953      * must be identical to the type of the corresponding outgoing parameter
2954      * or parameters in the target method handle.
2955      * The return type of {@code newType} must be identical to the return
2956      * type of the original target.
2957      * <p>
2958      * The reordering array need not specify an actual permutation.
2959      * An incoming argument will be duplicated if its index appears
2960      * more than once in the array, and an incoming argument will be dropped
2961      * if its index does not appear in the array.
2962      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
2963      * incoming arguments which are not mentioned in the reordering array
2964      * may be of any type, as determined only by {@code newType}.
2965      * <blockquote><pre>{@code
2966 import static java.lang.invoke.MethodHandles.*;
2967 import static java.lang.invoke.MethodType.*;
2968 ...
2969 MethodType intfn1 = methodType(int.class, int.class);
2970 MethodType intfn2 = methodType(int.class, int.class, int.class);
2971 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
2972 assert(sub.type().equals(intfn2));
2973 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
2974 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
2975 assert((int)rsub.invokeExact(1, 100) == 99);
2976 MethodHandle add = ... (int x, int y) -> (x+y) ...;
2977 assert(add.type().equals(intfn2));
2978 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
2979 assert(twice.type().equals(intfn1));
2980 assert((int)twice.invokeExact(21) == 42);
2981      * }</pre></blockquote>
2982      * <p>
2983      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
2984      * variable-arity method handle}, even if the original target method handle was.
2985      * @param target the method handle to invoke after arguments are reordered
2986      * @param newType the expected type of the new method handle
2987      * @param reorder an index array which controls the reordering
2988      * @return a method handle which delegates to the target after it
2989      *           drops unused arguments and moves and/or duplicates the other arguments
2990      * @throws NullPointerException if any argument is null
2991      * @throws IllegalArgumentException if the index array length is not equal to
2992      *                  the arity of the target, or if any index array element
2993      *                  not a valid index for a parameter of {@code newType},
2994      *                  or if two corresponding parameter types in
2995      *                  {@code target.type()} and {@code newType} are not identical,
2996      */
2997     public static
2998     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
2999         reorder = reorder.clone();  // get a private copy
3000         MethodType oldType = target.type();
3001         permuteArgumentChecks(reorder, newType, oldType);
3002         // first detect dropped arguments and handle them separately
3003         int[] originalReorder = reorder;
3004         BoundMethodHandle result = target.rebind();
3005         LambdaForm form = result.form;
3006         int newArity = newType.parameterCount();
3007         // Normalize the reordering into a real permutation,
3008         // by removing duplicates and adding dropped elements.
3009         // This somewhat improves lambda form caching, as well
3010         // as simplifying the transform by breaking it up into steps.
3011         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
3012             if (ddIdx > 0) {
3013                 // We found a duplicated entry at reorder[ddIdx].
3014                 // Example:  (x,y,z)->asList(x,y,z)
3015                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
3016                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
3017                 // The starred element corresponds to the argument
3018                 // deleted by the dupArgumentForm transform.
3019                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
3020                 boolean killFirst = false;
3021                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
3022                     // Set killFirst if the dup is larger than an intervening position.
3023                     // This will remove at least one inversion from the permutation.
3024                     if (dupVal > val) killFirst = true;
3025                 }
3026                 if (!killFirst) {
3027                     srcPos = dstPos;
3028                     dstPos = ddIdx;
3029                 }
3030                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
3031                 assert (reorder[srcPos] == reorder[dstPos]);
3032                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
3033                 // contract the reordering by removing the element at dstPos
3034                 int tailPos = dstPos + 1;
3035                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
3036                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
3037             } else {
3038                 int dropVal = ~ddIdx, insPos = 0;
3039                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
3040                     // Find first element of reorder larger than dropVal.
3041                     // This is where we will insert the dropVal.
3042                     insPos += 1;
3043                 }
3044                 Class<?> ptype = newType.parameterType(dropVal);
3045                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
3046                 oldType = oldType.insertParameterTypes(insPos, ptype);
3047                 // expand the reordering by inserting an element at insPos
3048                 int tailPos = insPos + 1;
3049                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
3050                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
3051                 reorder[insPos] = dropVal;
3052             }
3053             assert (permuteArgumentChecks(reorder, newType, oldType));
3054         }
3055         assert (reorder.length == newArity);  // a perfect permutation
3056         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
3057         form = form.editor().permuteArgumentsForm(1, reorder);
3058         if (newType == result.type() && form == result.internalForm())
3059             return result;
3060         return result.copyWith(newType, form);
3061     }
3062 
3063     /**
3064      * Return an indication of any duplicate or omission in reorder.
3065      * If the reorder contains a duplicate entry, return the index of the second occurrence.
3066      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
3067      * Otherwise, return zero.
3068      * If an element not in [0..newArity-1] is encountered, return reorder.length.
3069      */
3070     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
3071         final int BIT_LIMIT = 63;  // max number of bits in bit mask
3072         if (newArity < BIT_LIMIT) {
3073             long mask = 0;
3074             for (int i = 0; i < reorder.length; i++) {
3075                 int arg = reorder[i];
3076                 if (arg >= newArity) {
3077                     return reorder.length;
3078                 }
3079                 long bit = 1L << arg;
3080                 if ((mask & bit) != 0) {
3081                     return i;  // >0 indicates a dup
3082                 }
3083                 mask |= bit;
3084             }
3085             if (mask == (1L << newArity) - 1) {
3086                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
3087                 return 0;
3088             }
3089             // find first zero
3090             long zeroBit = Long.lowestOneBit(~mask);
3091             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
3092             assert(zeroPos <= newArity);
3093             if (zeroPos == newArity) {
3094                 return 0;
3095             }
3096             return ~zeroPos;
3097         } else {
3098             // same algorithm, different bit set
3099             BitSet mask = new BitSet(newArity);
3100             for (int i = 0; i < reorder.length; i++) {
3101                 int arg = reorder[i];
3102                 if (arg >= newArity) {
3103                     return reorder.length;
3104                 }
3105                 if (mask.get(arg)) {
3106                     return i;  // >0 indicates a dup
3107                 }
3108                 mask.set(arg);
3109             }
3110             int zeroPos = mask.nextClearBit(0);
3111             assert(zeroPos <= newArity);
3112             if (zeroPos == newArity) {
3113                 return 0;
3114             }
3115             return ~zeroPos;
3116         }
3117     }
3118 
3119     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
3120         if (newType.returnType() != oldType.returnType())
3121             throw newIllegalArgumentException("return types do not match",
3122                     oldType, newType);
3123         if (reorder.length == oldType.parameterCount()) {
3124             int limit = newType.parameterCount();
3125             boolean bad = false;
3126             for (int j = 0; j < reorder.length; j++) {
3127                 int i = reorder[j];
3128                 if (i < 0 || i >= limit) {
3129                     bad = true; break;
3130                 }
3131                 Class<?> src = newType.parameterType(i);
3132                 Class<?> dst = oldType.parameterType(j);
3133                 if (src != dst)
3134                     throw newIllegalArgumentException("parameter types do not match after reorder",
3135                             oldType, newType);
3136             }
3137             if (!bad)  return true;
3138         }
3139         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
3140     }
3141 
3142     /**
3143      * Produces a method handle of the requested return type which returns the given
3144      * constant value every time it is invoked.
3145      * <p>
3146      * Before the method handle is returned, the passed-in value is converted to the requested type.
3147      * If the requested type is primitive, widening primitive conversions are attempted,
3148      * else reference conversions are attempted.
3149      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
3150      * @param type the return type of the desired method handle
3151      * @param value the value to return
3152      * @return a method handle of the given return type and no arguments, which always returns the given value
3153      * @throws NullPointerException if the {@code type} argument is null
3154      * @throws ClassCastException if the value cannot be converted to the required return type
3155      * @throws IllegalArgumentException if the given type is {@code void.class}
3156      */
3157     public static
3158     MethodHandle constant(Class<?> type, Object value) {
3159         if (type.isPrimitive()) {
3160             if (type == void.class)
3161                 throw newIllegalArgumentException("void type");
3162             Wrapper w = Wrapper.forPrimitiveType(type);
3163             value = w.convert(value, type);
3164             if (w.zero().equals(value))
3165                 return zero(w, type);
3166             return insertArguments(identity(type), 0, value);
3167         } else {
3168             if (value == null)
3169                 return zero(Wrapper.OBJECT, type);
3170             return identity(type).bindTo(value);
3171         }
3172     }
3173 
3174     /**
3175      * Produces a method handle which returns its sole argument when invoked.
3176      * @param type the type of the sole parameter and return value of the desired method handle
3177      * @return a unary method handle which accepts and returns the given type
3178      * @throws NullPointerException if the argument is null
3179      * @throws IllegalArgumentException if the given type is {@code void.class}
3180      */
3181     public static
3182     MethodHandle identity(Class<?> type) {
3183         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
3184         int pos = btw.ordinal();
3185         MethodHandle ident = IDENTITY_MHS[pos];
3186         if (ident == null) {
3187             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
3188         }
3189         if (ident.type().returnType() == type)
3190             return ident;
3191         // something like identity(Foo.class); do not bother to intern these
3192         assert (btw == Wrapper.OBJECT);
3193         return makeIdentity(type);
3194     }
3195 
3196     /**
3197      * Produces a constant method handle of the requested return type which
3198      * returns the default value for that type every time it is invoked.
3199      * The resulting constant method handle will have no side effects.
3200      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
3201      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
3202      * since {@code explicitCastArguments} converts {@code null} to default values.
3203      * @param type the expected return type of the desired method handle
3204      * @return a constant method handle that takes no arguments
3205      *         and returns the default value of the given type (or void, if the type is void)
3206      * @throws NullPointerException if the argument is null
3207      * @see MethodHandles#constant
3208      * @see MethodHandles#empty
3209      * @see MethodHandles#explicitCastArguments
3210      * @since 9
3211      */
3212     public static MethodHandle zero(Class<?> type) {
3213         Objects.requireNonNull(type);
3214         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
3215     }
3216 
3217     private static MethodHandle identityOrVoid(Class<?> type) {
3218         return type == void.class ? zero(type) : identity(type);
3219     }
3220 
3221     /**
3222      * Produces a method handle of the requested type which ignores any arguments, does nothing,
3223      * and returns a suitable default depending on the return type.
3224      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
3225      * <p>The returned method handle is equivalent to
3226      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
3227      * <p>
3228      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
3229      * {@code guardWithTest(pred, target, empty(target.type())}.
3230      * @param type the type of the desired method handle
3231      * @return a constant method handle of the given type, which returns a default value of the given return type
3232      * @throws NullPointerException if the argument is null
3233      * @see MethodHandles#zero
3234      * @see MethodHandles#constant
3235      * @since 9
3236      */
3237     public static  MethodHandle empty(MethodType type) {
3238         Objects.requireNonNull(type);
3239         return dropArguments(zero(type.returnType()), 0, type.parameterList());
3240     }
3241 
3242     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
3243     private static MethodHandle makeIdentity(Class<?> ptype) {
3244         MethodType mtype = methodType(ptype, ptype);
3245         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
3246         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
3247     }
3248 
3249     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
3250         int pos = btw.ordinal();
3251         MethodHandle zero = ZERO_MHS[pos];
3252         if (zero == null) {
3253             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
3254         }
3255         if (zero.type().returnType() == rtype)
3256             return zero;
3257         assert(btw == Wrapper.OBJECT);
3258         return makeZero(rtype);
3259     }
3260     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
3261     private static MethodHandle makeZero(Class<?> rtype) {
3262         MethodType mtype = methodType(rtype);
3263         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
3264         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
3265     }
3266 
3267     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
3268         // Simulate a CAS, to avoid racy duplication of results.
3269         MethodHandle prev = cache[pos];
3270         if (prev != null) return prev;
3271         return cache[pos] = value;
3272     }
3273 
3274     /**
3275      * Provides a target method handle with one or more <em>bound arguments</em>
3276      * in advance of the method handle's invocation.
3277      * The formal parameters to the target corresponding to the bound
3278      * arguments are called <em>bound parameters</em>.
3279      * Returns a new method handle which saves away the bound arguments.
3280      * When it is invoked, it receives arguments for any non-bound parameters,
3281      * binds the saved arguments to their corresponding parameters,
3282      * and calls the original target.
3283      * <p>
3284      * The type of the new method handle will drop the types for the bound
3285      * parameters from the original target type, since the new method handle
3286      * will no longer require those arguments to be supplied by its callers.
3287      * <p>
3288      * Each given argument object must match the corresponding bound parameter type.
3289      * If a bound parameter type is a primitive, the argument object
3290      * must be a wrapper, and will be unboxed to produce the primitive value.
3291      * <p>
3292      * The {@code pos} argument selects which parameters are to be bound.
3293      * It may range between zero and <i>N-L</i> (inclusively),
3294      * where <i>N</i> is the arity of the target method handle
3295      * and <i>L</i> is the length of the values array.
3296      * <p>
3297      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3298      * variable-arity method handle}, even if the original target method handle was.
3299      * @param target the method handle to invoke after the argument is inserted
3300      * @param pos where to insert the argument (zero for the first)
3301      * @param values the series of arguments to insert
3302      * @return a method handle which inserts an additional argument,
3303      *         before calling the original method handle
3304      * @throws NullPointerException if the target or the {@code values} array is null
3305      * @see MethodHandle#bindTo
3306      */
3307     public static
3308     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
3309         int insCount = values.length;
3310         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
3311         if (insCount == 0)  return target;
3312         BoundMethodHandle result = target.rebind();
3313         for (int i = 0; i < insCount; i++) {
3314             Object value = values[i];
3315             Class<?> ptype = ptypes[pos+i];
3316             if (ptype.isPrimitive()) {
3317                 result = insertArgumentPrimitive(result, pos, ptype, value);
3318             } else {
3319                 value = ptype.cast(value);  // throw CCE if needed
3320                 result = result.bindArgumentL(pos, value);
3321             }
3322         }
3323         return result;
3324     }
3325 
3326     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
3327                                                              Class<?> ptype, Object value) {
3328         Wrapper w = Wrapper.forPrimitiveType(ptype);
3329         // perform unboxing and/or primitive conversion
3330         value = w.convert(value, ptype);
3331         switch (w) {
3332         case INT:     return result.bindArgumentI(pos, (int)value);
3333         case LONG:    return result.bindArgumentJ(pos, (long)value);
3334         case FLOAT:   return result.bindArgumentF(pos, (float)value);
3335         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
3336         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
3337         }
3338     }
3339 
3340     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
3341         MethodType oldType = target.type();
3342         int outargs = oldType.parameterCount();
3343         int inargs  = outargs - insCount;
3344         if (inargs < 0)
3345             throw newIllegalArgumentException("too many values to insert");
3346         if (pos < 0 || pos > inargs)
3347             throw newIllegalArgumentException("no argument type to append");
3348         return oldType.ptypes();
3349     }
3350 
3351     /**
3352      * Produces a method handle which will discard some dummy arguments
3353      * before calling some other specified <i>target</i> method handle.
3354      * The type of the new method handle will be the same as the target's type,
3355      * except it will also include the dummy argument types,
3356      * at some given position.
3357      * <p>
3358      * The {@code pos} argument may range between zero and <i>N</i>,
3359      * where <i>N</i> is the arity of the target.
3360      * If {@code pos} is zero, the dummy arguments will precede
3361      * the target's real arguments; if {@code pos} is <i>N</i>
3362      * they will come after.
3363      * <p>
3364      * <b>Example:</b>
3365      * <blockquote><pre>{@code
3366 import static java.lang.invoke.MethodHandles.*;
3367 import static java.lang.invoke.MethodType.*;
3368 ...
3369 MethodHandle cat = lookup().findVirtual(String.class,
3370   "concat", methodType(String.class, String.class));
3371 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3372 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
3373 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
3374 assertEquals(bigType, d0.type());
3375 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
3376      * }</pre></blockquote>
3377      * <p>
3378      * This method is also equivalent to the following code:
3379      * <blockquote><pre>
3380      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
3381      * </pre></blockquote>
3382      * @param target the method handle to invoke after the arguments are dropped
3383      * @param valueTypes the type(s) of the argument(s) to drop
3384      * @param pos position of first argument to drop (zero for the leftmost)
3385      * @return a method handle which drops arguments of the given types,
3386      *         before calling the original method handle
3387      * @throws NullPointerException if the target is null,
3388      *                              or if the {@code valueTypes} list or any of its elements is null
3389      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3390      *                  or if {@code pos} is negative or greater than the arity of the target,
3391      *                  or if the new method handle's type would have too many parameters
3392      */
3393     public static
3394     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3395         return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
3396     }
3397 
3398     private static List<Class<?>> copyTypes(Object[] array) {
3399         return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
3400     }
3401 
3402     private static
3403     MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3404         MethodType oldType = target.type();  // get NPE
3405         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
3406         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
3407         if (dropped == 0)  return target;
3408         BoundMethodHandle result = target.rebind();
3409         LambdaForm lform = result.form;
3410         int insertFormArg = 1 + pos;
3411         for (Class<?> ptype : valueTypes) {
3412             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
3413         }
3414         result = result.copyWith(newType, lform);
3415         return result;
3416     }
3417 
3418     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
3419         int dropped = valueTypes.size();
3420         MethodType.checkSlotCount(dropped);
3421         int outargs = oldType.parameterCount();
3422         int inargs  = outargs + dropped;
3423         if (pos < 0 || pos > outargs)
3424             throw newIllegalArgumentException("no argument type to remove"
3425                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
3426                     );
3427         return dropped;
3428     }
3429 
3430     /**
3431      * Produces a method handle which will discard some dummy arguments
3432      * before calling some other specified <i>target</i> method handle.
3433      * The type of the new method handle will be the same as the target's type,
3434      * except it will also include the dummy argument types,
3435      * at some given position.
3436      * <p>
3437      * The {@code pos} argument may range between zero and <i>N</i>,
3438      * where <i>N</i> is the arity of the target.
3439      * If {@code pos} is zero, the dummy arguments will precede
3440      * the target's real arguments; if {@code pos} is <i>N</i>
3441      * they will come after.
3442      * @apiNote
3443      * <blockquote><pre>{@code
3444 import static java.lang.invoke.MethodHandles.*;
3445 import static java.lang.invoke.MethodType.*;
3446 ...
3447 MethodHandle cat = lookup().findVirtual(String.class,
3448   "concat", methodType(String.class, String.class));
3449 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3450 MethodHandle d0 = dropArguments(cat, 0, String.class);
3451 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
3452 MethodHandle d1 = dropArguments(cat, 1, String.class);
3453 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
3454 MethodHandle d2 = dropArguments(cat, 2, String.class);
3455 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
3456 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
3457 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
3458      * }</pre></blockquote>
3459      * <p>
3460      * This method is also equivalent to the following code:
3461      * <blockquote><pre>
3462      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
3463      * </pre></blockquote>
3464      * @param target the method handle to invoke after the arguments are dropped
3465      * @param valueTypes the type(s) of the argument(s) to drop
3466      * @param pos position of first argument to drop (zero for the leftmost)
3467      * @return a method handle which drops arguments of the given types,
3468      *         before calling the original method handle
3469      * @throws NullPointerException if the target is null,
3470      *                              or if the {@code valueTypes} array or any of its elements is null
3471      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3472      *                  or if {@code pos} is negative or greater than the arity of the target,
3473      *                  or if the new method handle's type would have
3474      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
3475      */
3476     public static
3477     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
3478         return dropArguments0(target, pos, copyTypes(valueTypes));
3479     }
3480 
3481     // private version which allows caller some freedom with error handling
3482     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
3483                                       boolean nullOnFailure) {
3484         newTypes = copyTypes(newTypes.toArray());
3485         List<Class<?>> oldTypes = target.type().parameterList();
3486         int match = oldTypes.size();
3487         if (skip != 0) {
3488             if (skip < 0 || skip > match) {
3489                 throw newIllegalArgumentException("illegal skip", skip, target);
3490             }
3491             oldTypes = oldTypes.subList(skip, match);
3492             match -= skip;
3493         }
3494         List<Class<?>> addTypes = newTypes;
3495         int add = addTypes.size();
3496         if (pos != 0) {
3497             if (pos < 0 || pos > add) {
3498                 throw newIllegalArgumentException("illegal pos", pos, newTypes);
3499             }
3500             addTypes = addTypes.subList(pos, add);
3501             add -= pos;
3502             assert(addTypes.size() == add);
3503         }
3504         // Do not add types which already match the existing arguments.
3505         if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
3506             if (nullOnFailure) {
3507                 return null;
3508             }
3509             throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
3510         }
3511         addTypes = addTypes.subList(match, add);
3512         add -= match;
3513         assert(addTypes.size() == add);
3514         // newTypes:     (   P*[pos], M*[match], A*[add] )
3515         // target: ( S*[skip],        M*[match]  )
3516         MethodHandle adapter = target;
3517         if (add > 0) {
3518             adapter = dropArguments0(adapter, skip+ match, addTypes);
3519         }
3520         // adapter: (S*[skip],        M*[match], A*[add] )
3521         if (pos > 0) {
3522             adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
3523         }
3524         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
3525         return adapter;
3526     }
3527 
3528     /**
3529      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
3530      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
3531      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
3532      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
3533      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
3534      * {@link #dropArguments(MethodHandle, int, Class[])}.
3535      * <p>
3536      * The resulting handle will have the same return type as the target handle.
3537      * <p>
3538      * In more formal terms, assume these two type lists:<ul>
3539      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
3540      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
3541      * {@code newTypes}.
3542      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
3543      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
3544      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
3545      * sub-list.
3546      * </ul>
3547      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
3548      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
3549      * {@link #dropArguments(MethodHandle, int, Class[])}.
3550      * <p>
3551      * @apiNote
3552      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
3553      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
3554      * <blockquote><pre>{@code
3555 import static java.lang.invoke.MethodHandles.*;
3556 import static java.lang.invoke.MethodType.*;
3557 ...
3558 ...
3559 MethodHandle h0 = constant(boolean.class, true);
3560 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
3561 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
3562 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
3563 if (h1.type().parameterCount() < h2.type().parameterCount())
3564     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
3565 else
3566     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
3567 MethodHandle h3 = guardWithTest(h0, h1, h2);
3568 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
3569      * }</pre></blockquote>
3570      * @param target the method handle to adapt
3571      * @param skip number of targets parameters to disregard (they will be unchanged)
3572      * @param newTypes the list of types to match {@code target}'s parameter type list to
3573      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
3574      * @return a possibly adapted method handle
3575      * @throws NullPointerException if either argument is null
3576      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
3577      *         or if {@code skip} is negative or greater than the arity of the target,
3578      *         or if {@code pos} is negative or greater than the newTypes list size,
3579      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
3580      *         {@code pos}.
3581      * @since 9
3582      */
3583     public static
3584     MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
3585         Objects.requireNonNull(target);
3586         Objects.requireNonNull(newTypes);
3587         return dropArgumentsToMatch(target, skip, newTypes, pos, false);
3588     }
3589 
3590     /**
3591      * Adapts a target method handle by pre-processing
3592      * one or more of its arguments, each with its own unary filter function,
3593      * and then calling the target with each pre-processed argument
3594      * replaced by the result of its corresponding filter function.
3595      * <p>
3596      * The pre-processing is performed by one or more method handles,
3597      * specified in the elements of the {@code filters} array.
3598      * The first element of the filter array corresponds to the {@code pos}
3599      * argument of the target, and so on in sequence.
3600      * <p>
3601      * Null arguments in the array are treated as identity functions,
3602      * and the corresponding arguments left unchanged.
3603      * (If there are no non-null elements in the array, the original target is returned.)
3604      * Each filter is applied to the corresponding argument of the adapter.
3605      * <p>
3606      * If a filter {@code F} applies to the {@code N}th argument of
3607      * the target, then {@code F} must be a method handle which
3608      * takes exactly one argument.  The type of {@code F}'s sole argument
3609      * replaces the corresponding argument type of the target
3610      * in the resulting adapted method handle.
3611      * The return type of {@code F} must be identical to the corresponding
3612      * parameter type of the target.
3613      * <p>
3614      * It is an error if there are elements of {@code filters}
3615      * (null or not)
3616      * which do not correspond to argument positions in the target.
3617      * <p><b>Example:</b>
3618      * <blockquote><pre>{@code
3619 import static java.lang.invoke.MethodHandles.*;
3620 import static java.lang.invoke.MethodType.*;
3621 ...
3622 MethodHandle cat = lookup().findVirtual(String.class,
3623   "concat", methodType(String.class, String.class));
3624 MethodHandle upcase = lookup().findVirtual(String.class,
3625   "toUpperCase", methodType(String.class));
3626 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3627 MethodHandle f0 = filterArguments(cat, 0, upcase);
3628 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
3629 MethodHandle f1 = filterArguments(cat, 1, upcase);
3630 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
3631 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
3632 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
3633      * }</pre></blockquote>
3634      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3635      * denotes the return type of both the {@code target} and resulting adapter.
3636      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
3637      * of the parameters and arguments that precede and follow the filter position
3638      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
3639      * values of the filtered parameters and arguments; they also represent the
3640      * return types of the {@code filter[i]} handles. The latter accept arguments
3641      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
3642      * the resulting adapter.
3643      * <blockquote><pre>{@code
3644      * T target(P... p, A[i]... a[i], B... b);
3645      * A[i] filter[i](V[i]);
3646      * T adapter(P... p, V[i]... v[i], B... b) {
3647      *   return target(p..., filter[i](v[i])..., b...);
3648      * }
3649      * }</pre></blockquote>
3650      * <p>
3651      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3652      * variable-arity method handle}, even if the original target method handle was.
3653      *
3654      * @param target the method handle to invoke after arguments are filtered
3655      * @param pos the position of the first argument to filter
3656      * @param filters method handles to call initially on filtered arguments
3657      * @return method handle which incorporates the specified argument filtering logic
3658      * @throws NullPointerException if the target is null
3659      *                              or if the {@code filters} array is null
3660      * @throws IllegalArgumentException if a non-null element of {@code filters}
3661      *          does not match a corresponding argument type of target as described above,
3662      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
3663      *          or if the resulting method handle's type would have
3664      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3665      */
3666     public static
3667     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
3668         filterArgumentsCheckArity(target, pos, filters);
3669         MethodHandle adapter = target;
3670         int curPos = pos-1;  // pre-incremented
3671         for (MethodHandle filter : filters) {
3672             curPos += 1;
3673             if (filter == null)  continue;  // ignore null elements of filters
3674             adapter = filterArgument(adapter, curPos, filter);
3675         }
3676         return adapter;
3677     }
3678 
3679     /*non-public*/ static
3680     MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
3681         filterArgumentChecks(target, pos, filter);
3682         MethodType targetType = target.type();
3683         MethodType filterType = filter.type();
3684         BoundMethodHandle result = target.rebind();
3685         Class<?> newParamType = filterType.parameterType(0);
3686         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
3687         MethodType newType = targetType.changeParameterType(pos, newParamType);
3688         result = result.copyWithExtendL(newType, lform, filter);
3689         return result;
3690     }
3691 
3692     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
3693         MethodType targetType = target.type();
3694         int maxPos = targetType.parameterCount();
3695         if (pos + filters.length > maxPos)
3696             throw newIllegalArgumentException("too many filters");
3697     }
3698 
3699     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
3700         MethodType targetType = target.type();
3701         MethodType filterType = filter.type();
3702         if (filterType.parameterCount() != 1
3703             || filterType.returnType() != targetType.parameterType(pos))
3704             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3705     }
3706 
3707     /**
3708      * Adapts a target method handle by pre-processing
3709      * a sub-sequence of its arguments with a filter (another method handle).
3710      * The pre-processed arguments are replaced by the result (if any) of the
3711      * filter function.
3712      * The target is then called on the modified (usually shortened) argument list.
3713      * <p>
3714      * If the filter returns a value, the target must accept that value as
3715      * its argument in position {@code pos}, preceded and/or followed by
3716      * any arguments not passed to the filter.
3717      * If the filter returns void, the target must accept all arguments
3718      * not passed to the filter.
3719      * No arguments are reordered, and a result returned from the filter
3720      * replaces (in order) the whole subsequence of arguments originally
3721      * passed to the adapter.
3722      * <p>
3723      * The argument types (if any) of the filter
3724      * replace zero or one argument types of the target, at position {@code pos},
3725      * in the resulting adapted method handle.
3726      * The return type of the filter (if any) must be identical to the
3727      * argument type of the target at position {@code pos}, and that target argument
3728      * is supplied by the return value of the filter.
3729      * <p>
3730      * In all cases, {@code pos} must be greater than or equal to zero, and
3731      * {@code pos} must also be less than or equal to the target's arity.
3732      * <p><b>Example:</b>
3733      * <blockquote><pre>{@code
3734 import static java.lang.invoke.MethodHandles.*;
3735 import static java.lang.invoke.MethodType.*;
3736 ...
3737 MethodHandle deepToString = publicLookup()
3738   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
3739 
3740 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
3741 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
3742 
3743 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
3744 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
3745 
3746 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
3747 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
3748 assertEquals("[top, [up, down], strange]",
3749              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
3750 
3751 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
3752 assertEquals("[top, [up, down], [strange]]",
3753              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
3754 
3755 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
3756 assertEquals("[top, [[up, down, strange], charm], bottom]",
3757              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
3758      * }</pre></blockquote>
3759      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3760      * represents the return type of the {@code target} and resulting adapter.
3761      * {@code V}/{@code v} stand for the return type and value of the
3762      * {@code filter}, which are also found in the signature and arguments of
3763      * the {@code target}, respectively, unless {@code V} is {@code void}.
3764      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
3765      * and values preceding and following the collection position, {@code pos},
3766      * in the {@code target}'s signature. They also turn up in the resulting
3767      * adapter's signature and arguments, where they surround
3768      * {@code B}/{@code b}, which represent the parameter types and arguments
3769      * to the {@code filter} (if any).
3770      * <blockquote><pre>{@code
3771      * T target(A...,V,C...);
3772      * V filter(B...);
3773      * T adapter(A... a,B... b,C... c) {
3774      *   V v = filter(b...);
3775      *   return target(a...,v,c...);
3776      * }
3777      * // and if the filter has no arguments:
3778      * T target2(A...,V,C...);
3779      * V filter2();
3780      * T adapter2(A... a,C... c) {
3781      *   V v = filter2();
3782      *   return target2(a...,v,c...);
3783      * }
3784      * // and if the filter has a void return:
3785      * T target3(A...,C...);
3786      * void filter3(B...);
3787      * T adapter3(A... a,B... b,C... c) {
3788      *   filter3(b...);
3789      *   return target3(a...,c...);
3790      * }
3791      * }</pre></blockquote>
3792      * <p>
3793      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
3794      * one which first "folds" the affected arguments, and then drops them, in separate
3795      * steps as follows:
3796      * <blockquote><pre>{@code
3797      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
3798      * mh = MethodHandles.foldArguments(mh, coll); //step 1
3799      * }</pre></blockquote>
3800      * If the target method handle consumes no arguments besides than the result
3801      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
3802      * is equivalent to {@code filterReturnValue(coll, mh)}.
3803      * If the filter method handle {@code coll} consumes one argument and produces
3804      * a non-void result, then {@code collectArguments(mh, N, coll)}
3805      * is equivalent to {@code filterArguments(mh, N, coll)}.
3806      * Other equivalences are possible but would require argument permutation.
3807      * <p>
3808      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3809      * variable-arity method handle}, even if the original target method handle was.
3810      *
3811      * @param target the method handle to invoke after filtering the subsequence of arguments
3812      * @param pos the position of the first adapter argument to pass to the filter,
3813      *            and/or the target argument which receives the result of the filter
3814      * @param filter method handle to call on the subsequence of arguments
3815      * @return method handle which incorporates the specified argument subsequence filtering logic
3816      * @throws NullPointerException if either argument is null
3817      * @throws IllegalArgumentException if the return type of {@code filter}
3818      *          is non-void and is not the same as the {@code pos} argument of the target,
3819      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
3820      *          or if the resulting method handle's type would have
3821      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3822      * @see MethodHandles#foldArguments
3823      * @see MethodHandles#filterArguments
3824      * @see MethodHandles#filterReturnValue
3825      */
3826     public static
3827     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
3828         MethodType newType = collectArgumentsChecks(target, pos, filter);
3829         MethodType collectorType = filter.type();
3830         BoundMethodHandle result = target.rebind();
3831         LambdaForm lform;
3832         if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) {
3833             lform = result.editor().collectArgumentArrayForm(1 + pos, filter);
3834             if (lform != null) {
3835                 return result.copyWith(newType, lform);
3836             }
3837         }
3838         lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
3839         return result.copyWithExtendL(newType, lform, filter);
3840     }
3841 
3842     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
3843         MethodType targetType = target.type();
3844         MethodType filterType = filter.type();
3845         Class<?> rtype = filterType.returnType();
3846         List<Class<?>> filterArgs = filterType.parameterList();
3847         if (rtype == void.class) {
3848             return targetType.insertParameterTypes(pos, filterArgs);
3849         }
3850         if (rtype != targetType.parameterType(pos)) {
3851             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3852         }
3853         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
3854     }
3855 
3856     /**
3857      * Adapts a target method handle by post-processing
3858      * its return value (if any) with a filter (another method handle).
3859      * The result of the filter is returned from the adapter.
3860      * <p>
3861      * If the target returns a value, the filter must accept that value as
3862      * its only argument.
3863      * If the target returns void, the filter must accept no arguments.
3864      * <p>
3865      * The return type of the filter
3866      * replaces the return type of the target
3867      * in the resulting adapted method handle.
3868      * The argument type of the filter (if any) must be identical to the
3869      * return type of the target.
3870      * <p><b>Example:</b>
3871      * <blockquote><pre>{@code
3872 import static java.lang.invoke.MethodHandles.*;
3873 import static java.lang.invoke.MethodType.*;
3874 ...
3875 MethodHandle cat = lookup().findVirtual(String.class,
3876   "concat", methodType(String.class, String.class));
3877 MethodHandle length = lookup().findVirtual(String.class,
3878   "length", methodType(int.class));
3879 System.out.println((String) cat.invokeExact("x", "y")); // xy
3880 MethodHandle f0 = filterReturnValue(cat, length);
3881 System.out.println((int) f0.invokeExact("x", "y")); // 2
3882      * }</pre></blockquote>
3883      * <p>Here is pseudocode for the resulting adapter. In the code,
3884      * {@code T}/{@code t} represent the result type and value of the
3885      * {@code target}; {@code V}, the result type of the {@code filter}; and
3886      * {@code A}/{@code a}, the types and values of the parameters and arguments
3887      * of the {@code target} as well as the resulting adapter.
3888      * <blockquote><pre>{@code
3889      * T target(A...);
3890      * V filter(T);
3891      * V adapter(A... a) {
3892      *   T t = target(a...);
3893      *   return filter(t);
3894      * }
3895      * // and if the target has a void return:
3896      * void target2(A...);
3897      * V filter2();
3898      * V adapter2(A... a) {
3899      *   target2(a...);
3900      *   return filter2();
3901      * }
3902      * // and if the filter has a void return:
3903      * T target3(A...);
3904      * void filter3(V);
3905      * void adapter3(A... a) {
3906      *   T t = target3(a...);
3907      *   filter3(t);
3908      * }
3909      * }</pre></blockquote>
3910      * <p>
3911      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3912      * variable-arity method handle}, even if the original target method handle was.
3913      * @param target the method handle to invoke before filtering the return value
3914      * @param filter method handle to call on the return value
3915      * @return method handle which incorporates the specified return value filtering logic
3916      * @throws NullPointerException if either argument is null
3917      * @throws IllegalArgumentException if the argument list of {@code filter}
3918      *          does not match the return type of target as described above
3919      */
3920     public static
3921     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
3922         MethodType targetType = target.type();
3923         MethodType filterType = filter.type();
3924         filterReturnValueChecks(targetType, filterType);
3925         BoundMethodHandle result = target.rebind();
3926         BasicType rtype = BasicType.basicType(filterType.returnType());
3927         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
3928         MethodType newType = targetType.changeReturnType(filterType.returnType());
3929         result = result.copyWithExtendL(newType, lform, filter);
3930         return result;
3931     }
3932 
3933     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
3934         Class<?> rtype = targetType.returnType();
3935         int filterValues = filterType.parameterCount();
3936         if (filterValues == 0
3937                 ? (rtype != void.class)
3938                 : (rtype != filterType.parameterType(0) || filterValues != 1))
3939             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3940     }
3941 
3942     /**
3943      * Adapts a target method handle by pre-processing
3944      * some of its arguments, and then calling the target with
3945      * the result of the pre-processing, inserted into the original
3946      * sequence of arguments.
3947      * <p>
3948      * The pre-processing is performed by {@code combiner}, a second method handle.
3949      * Of the arguments passed to the adapter, the first {@code N} arguments
3950      * are copied to the combiner, which is then called.
3951      * (Here, {@code N} is defined as the parameter count of the combiner.)
3952      * After this, control passes to the target, with any result
3953      * from the combiner inserted before the original {@code N} incoming
3954      * arguments.
3955      * <p>
3956      * If the combiner returns a value, the first parameter type of the target
3957      * must be identical with the return type of the combiner, and the next
3958      * {@code N} parameter types of the target must exactly match the parameters
3959      * of the combiner.
3960      * <p>
3961      * If the combiner has a void return, no result will be inserted,
3962      * and the first {@code N} parameter types of the target
3963      * must exactly match the parameters of the combiner.
3964      * <p>
3965      * The resulting adapter is the same type as the target, except that the
3966      * first parameter type is dropped,
3967      * if it corresponds to the result of the combiner.
3968      * <p>
3969      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
3970      * that either the combiner or the target does not wish to receive.
3971      * If some of the incoming arguments are destined only for the combiner,
3972      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
3973      * arguments will not need to be live on the stack on entry to the
3974      * target.)
3975      * <p><b>Example:</b>
3976      * <blockquote><pre>{@code
3977 import static java.lang.invoke.MethodHandles.*;
3978 import static java.lang.invoke.MethodType.*;
3979 ...
3980 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
3981   "println", methodType(void.class, String.class))
3982     .bindTo(System.out);
3983 MethodHandle cat = lookup().findVirtual(String.class,
3984   "concat", methodType(String.class, String.class));
3985 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
3986 MethodHandle catTrace = foldArguments(cat, trace);
3987 // also prints "boo":
3988 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
3989      * }</pre></blockquote>
3990      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3991      * represents the result type of the {@code target} and resulting adapter.
3992      * {@code V}/{@code v} represent the type and value of the parameter and argument
3993      * of {@code target} that precedes the folding position; {@code V} also is
3994      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
3995      * types and values of the {@code N} parameters and arguments at the folding
3996      * position. {@code B}/{@code b} represent the types and values of the
3997      * {@code target} parameters and arguments that follow the folded parameters
3998      * and arguments.
3999      * <blockquote><pre>{@code
4000      * // there are N arguments in A...
4001      * T target(V, A[N]..., B...);
4002      * V combiner(A...);
4003      * T adapter(A... a, B... b) {
4004      *   V v = combiner(a...);
4005      *   return target(v, a..., b...);
4006      * }
4007      * // and if the combiner has a void return:
4008      * T target2(A[N]..., B...);
4009      * void combiner2(A...);
4010      * T adapter2(A... a, B... b) {
4011      *   combiner2(a...);
4012      *   return target2(a..., b...);
4013      * }
4014      * }</pre></blockquote>
4015      * <p>
4016      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4017      * variable-arity method handle}, even if the original target method handle was.
4018      * @param target the method handle to invoke after arguments are combined
4019      * @param combiner method handle to call initially on the incoming arguments
4020      * @return method handle which incorporates the specified argument folding logic
4021      * @throws NullPointerException if either argument is null
4022      * @throws IllegalArgumentException if {@code combiner}'s return type
4023      *          is non-void and not the same as the first argument type of
4024      *          the target, or if the initial {@code N} argument types
4025      *          of the target
4026      *          (skipping one matching the {@code combiner}'s return type)
4027      *          are not identical with the argument types of {@code combiner}
4028      */
4029     public static
4030     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
4031         return foldArguments(target, 0, combiner);
4032     }
4033 
4034     /**
4035      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
4036      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
4037      * before the folded arguments.
4038      * <p>
4039      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
4040      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
4041      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
4042      * 0.
4043      * <p>
4044      * @apiNote Example:
4045      * <blockquote><pre>{@code
4046     import static java.lang.invoke.MethodHandles.*;
4047     import static java.lang.invoke.MethodType.*;
4048     ...
4049     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4050     "println", methodType(void.class, String.class))
4051     .bindTo(System.out);
4052     MethodHandle cat = lookup().findVirtual(String.class,
4053     "concat", methodType(String.class, String.class));
4054     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4055     MethodHandle catTrace = foldArguments(cat, 1, trace);
4056     // also prints "jum":
4057     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4058      * }</pre></blockquote>
4059      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4060      * represents the result type of the {@code target} and resulting adapter.
4061      * {@code V}/{@code v} represent the type and value of the parameter and argument
4062      * of {@code target} that precedes the folding position; {@code V} also is
4063      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4064      * types and values of the {@code N} parameters and arguments at the folding
4065      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
4066      * and values of the {@code target} parameters and arguments that precede and
4067      * follow the folded parameters and arguments starting at {@code pos},
4068      * respectively.
4069      * <blockquote><pre>{@code
4070      * // there are N arguments in A...
4071      * T target(Z..., V, A[N]..., B...);
4072      * V combiner(A...);
4073      * T adapter(Z... z, A... a, B... b) {
4074      *   V v = combiner(a...);
4075      *   return target(z..., v, a..., b...);
4076      * }
4077      * // and if the combiner has a void return:
4078      * T target2(Z..., A[N]..., B...);
4079      * void combiner2(A...);
4080      * T adapter2(Z... z, A... a, B... b) {
4081      *   combiner2(a...);
4082      *   return target2(z..., a..., b...);
4083      * }
4084      * }</pre></blockquote>
4085      * <p>
4086      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4087      * variable-arity method handle}, even if the original target method handle was.
4088      *
4089      * @param target the method handle to invoke after arguments are combined
4090      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
4091      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
4092      * @param combiner method handle to call initially on the incoming arguments
4093      * @return method handle which incorporates the specified argument folding logic
4094      * @throws NullPointerException if either argument is null
4095      * @throws IllegalArgumentException if either of the following two conditions holds:
4096      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
4097      *              {@code pos} of the target signature;
4098      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
4099      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
4100      *
4101      * @see #foldArguments(MethodHandle, MethodHandle)
4102      * @since 9
4103      */
4104     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
4105         MethodType targetType = target.type();
4106         MethodType combinerType = combiner.type();
4107         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
4108         BoundMethodHandle result = target.rebind();
4109         boolean dropResult = rtype == void.class;
4110         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
4111         MethodType newType = targetType;
4112         if (!dropResult) {
4113             newType = newType.dropParameterTypes(pos, pos + 1);
4114         }
4115         result = result.copyWithExtendL(newType, lform, combiner);
4116         return result;
4117     }
4118 
4119     /**
4120      * As {@see foldArguments(MethodHandle, int, MethodHandle)}, but with the
4121      * added capability of selecting the arguments from the targets parameters
4122      * to call the combiner with. This allows us to avoid some simple cases of
4123      * permutations and padding the combiner with dropArguments to select the
4124      * right argument, which may ultimately produce fewer intermediaries.
4125      */
4126     static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner, int ... argPositions) {
4127         MethodType targetType = target.type();
4128         MethodType combinerType = combiner.type();
4129         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType, argPositions);
4130         BoundMethodHandle result = target.rebind();
4131         boolean dropResult = rtype == void.class;
4132         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType(), argPositions);
4133         MethodType newType = targetType;
4134         if (!dropResult) {
4135             newType = newType.dropParameterTypes(pos, pos + 1);
4136         }
4137         result = result.copyWithExtendL(newType, lform, combiner);
4138         return result;
4139     }
4140 
4141     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
4142         int foldArgs   = combinerType.parameterCount();
4143         Class<?> rtype = combinerType.returnType();
4144         int foldVals = rtype == void.class ? 0 : 1;
4145         int afterInsertPos = foldPos + foldVals;
4146         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
4147         if (ok) {
4148             for (int i = 0; i < foldArgs; i++) {
4149                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
4150                     ok = false;
4151                     break;
4152                 }
4153             }
4154         }
4155         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
4156             ok = false;
4157         if (!ok)
4158             throw misMatchedTypes("target and combiner types", targetType, combinerType);
4159         return rtype;
4160     }
4161 
4162     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType, int ... argPos) {
4163         int foldArgs = combinerType.parameterCount();
4164         if (argPos.length != foldArgs) {
4165             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
4166         }
4167         Class<?> rtype = combinerType.returnType();
4168         int foldVals = rtype == void.class ? 0 : 1;
4169         boolean ok = true;
4170         for (int i = 0; i < foldArgs; i++) {
4171             int arg = argPos[i];
4172             if (arg < 0 || arg > targetType.parameterCount()) {
4173                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
4174             }
4175             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
4176                 throw newIllegalArgumentException("target argument type at position " + arg
4177                         + " must match combiner argument type at index " + i + ": " + targetType
4178                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
4179             }
4180         }
4181         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos)) {
4182             ok = false;
4183         }
4184         if (!ok)
4185             throw misMatchedTypes("target and combiner types", targetType, combinerType);
4186         return rtype;
4187     }
4188 
4189     /**
4190      * Makes a method handle which adapts a target method handle,
4191      * by guarding it with a test, a boolean-valued method handle.
4192      * If the guard fails, a fallback handle is called instead.
4193      * All three method handles must have the same corresponding
4194      * argument and return types, except that the return type
4195      * of the test must be boolean, and the test is allowed
4196      * to have fewer arguments than the other two method handles.
4197      * <p>
4198      * Here is pseudocode for the resulting adapter. In the code, {@code T}
4199      * represents the uniform result type of the three involved handles;
4200      * {@code A}/{@code a}, the types and values of the {@code target}
4201      * parameters and arguments that are consumed by the {@code test}; and
4202      * {@code B}/{@code b}, those types and values of the {@code target}
4203      * parameters and arguments that are not consumed by the {@code test}.
4204      * <blockquote><pre>{@code
4205      * boolean test(A...);
4206      * T target(A...,B...);
4207      * T fallback(A...,B...);
4208      * T adapter(A... a,B... b) {
4209      *   if (test(a...))
4210      *     return target(a..., b...);
4211      *   else
4212      *     return fallback(a..., b...);
4213      * }
4214      * }</pre></blockquote>
4215      * Note that the test arguments ({@code a...} in the pseudocode) cannot
4216      * be modified by execution of the test, and so are passed unchanged
4217      * from the caller to the target or fallback as appropriate.
4218      * @param test method handle used for test, must return boolean
4219      * @param target method handle to call if test passes
4220      * @param fallback method handle to call if test fails
4221      * @return method handle which incorporates the specified if/then/else logic
4222      * @throws NullPointerException if any argument is null
4223      * @throws IllegalArgumentException if {@code test} does not return boolean,
4224      *          or if all three method types do not match (with the return
4225      *          type of {@code test} changed to match that of the target).
4226      */
4227     public static
4228     MethodHandle guardWithTest(MethodHandle test,
4229                                MethodHandle target,
4230                                MethodHandle fallback) {
4231         MethodType gtype = test.type();
4232         MethodType ttype = target.type();
4233         MethodType ftype = fallback.type();
4234         if (!ttype.equals(ftype))
4235             throw misMatchedTypes("target and fallback types", ttype, ftype);
4236         if (gtype.returnType() != boolean.class)
4237             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
4238         List<Class<?>> targs = ttype.parameterList();
4239         test = dropArgumentsToMatch(test, 0, targs, 0, true);
4240         if (test == null) {
4241             throw misMatchedTypes("target and test types", ttype, gtype);
4242         }
4243         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
4244     }
4245 
4246     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
4247         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
4248     }
4249 
4250     /**
4251      * Makes a method handle which adapts a target method handle,
4252      * by running it inside an exception handler.
4253      * If the target returns normally, the adapter returns that value.
4254      * If an exception matching the specified type is thrown, the fallback
4255      * handle is called instead on the exception, plus the original arguments.
4256      * <p>
4257      * The target and handler must have the same corresponding
4258      * argument and return types, except that handler may omit trailing arguments
4259      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
4260      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
4261      * <p>
4262      * Here is pseudocode for the resulting adapter. In the code, {@code T}
4263      * represents the return type of the {@code target} and {@code handler},
4264      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
4265      * the types and values of arguments to the resulting handle consumed by
4266      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
4267      * resulting handle discarded by {@code handler}.
4268      * <blockquote><pre>{@code
4269      * T target(A..., B...);
4270      * T handler(ExType, A...);
4271      * T adapter(A... a, B... b) {
4272      *   try {
4273      *     return target(a..., b...);
4274      *   } catch (ExType ex) {
4275      *     return handler(ex, a...);
4276      *   }
4277      * }
4278      * }</pre></blockquote>
4279      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
4280      * be modified by execution of the target, and so are passed unchanged
4281      * from the caller to the handler, if the handler is invoked.
4282      * <p>
4283      * The target and handler must return the same type, even if the handler
4284      * always throws.  (This might happen, for instance, because the handler
4285      * is simulating a {@code finally} clause).
4286      * To create such a throwing handler, compose the handler creation logic
4287      * with {@link #throwException throwException},
4288      * in order to create a method handle of the correct return type.
4289      * @param target method handle to call
4290      * @param exType the type of exception which the handler will catch
4291      * @param handler method handle to call if a matching exception is thrown
4292      * @return method handle which incorporates the specified try/catch logic
4293      * @throws NullPointerException if any argument is null
4294      * @throws IllegalArgumentException if {@code handler} does not accept
4295      *          the given exception type, or if the method handle types do
4296      *          not match in their return types and their
4297      *          corresponding parameters
4298      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
4299      */
4300     public static
4301     MethodHandle catchException(MethodHandle target,
4302                                 Class<? extends Throwable> exType,
4303                                 MethodHandle handler) {
4304         MethodType ttype = target.type();
4305         MethodType htype = handler.type();
4306         if (!Throwable.class.isAssignableFrom(exType))
4307             throw new ClassCastException(exType.getName());
4308         if (htype.parameterCount() < 1 ||
4309             !htype.parameterType(0).isAssignableFrom(exType))
4310             throw newIllegalArgumentException("handler does not accept exception type "+exType);
4311         if (htype.returnType() != ttype.returnType())
4312             throw misMatchedTypes("target and handler return types", ttype, htype);
4313         handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
4314         if (handler == null) {
4315             throw misMatchedTypes("target and handler types", ttype, htype);
4316         }
4317         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
4318     }
4319 
4320     /**
4321      * Produces a method handle which will throw exceptions of the given {@code exType}.
4322      * The method handle will accept a single argument of {@code exType},
4323      * and immediately throw it as an exception.
4324      * The method type will nominally specify a return of {@code returnType}.
4325      * The return type may be anything convenient:  It doesn't matter to the
4326      * method handle's behavior, since it will never return normally.
4327      * @param returnType the return type of the desired method handle
4328      * @param exType the parameter type of the desired method handle
4329      * @return method handle which can throw the given exceptions
4330      * @throws NullPointerException if either argument is null
4331      */
4332     public static
4333     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
4334         if (!Throwable.class.isAssignableFrom(exType))
4335             throw new ClassCastException(exType.getName());
4336         return MethodHandleImpl.throwException(methodType(returnType, exType));
4337     }
4338 
4339     /**
4340      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
4341      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
4342      * delivers the loop's result, which is the return value of the resulting handle.
4343      * <p>
4344      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
4345      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
4346      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
4347      * terms of method handles, each clause will specify up to four independent actions:<ul>
4348      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
4349      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
4350      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
4351      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
4352      * </ul>
4353      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
4354      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
4355      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
4356      * <p>
4357      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
4358      * this case. See below for a detailed description.
4359      * <p>
4360      * <em>Parameters optional everywhere:</em>
4361      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
4362      * As an exception, the init functions cannot take any {@code v} parameters,
4363      * because those values are not yet computed when the init functions are executed.
4364      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
4365      * In fact, any clause function may take no arguments at all.
4366      * <p>
4367      * <em>Loop parameters:</em>
4368      * A clause function may take all the iteration variable values it is entitled to, in which case
4369      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
4370      * with their types and values notated as {@code (A...)} and {@code (a...)}.
4371      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
4372      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
4373      * init function is automatically a loop parameter {@code a}.)
4374      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
4375      * These loop parameters act as loop-invariant values visible across the whole loop.
4376      * <p>
4377      * <em>Parameters visible everywhere:</em>
4378      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
4379      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
4380      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
4381      * Most clause functions will not need all of this information, but they will be formally connected to it
4382      * as if by {@link #dropArguments}.
4383      * <a name="astar"></a>
4384      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
4385      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
4386      * In that notation, the general form of an init function parameter list
4387      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
4388      * <p>
4389      * <em>Checking clause structure:</em>
4390      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
4391      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
4392      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
4393      * met by the inputs to the loop combinator.
4394      * <p>
4395      * <em>Effectively identical sequences:</em>
4396      * <a name="effid"></a>
4397      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
4398      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
4399      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
4400      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
4401      * that longest list.
4402      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
4403      * and the same is true if more sequences of the form {@code (V... A*)} are added.
4404      * <p>
4405      * <em>Step 0: Determine clause structure.</em><ol type="a">
4406      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
4407      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
4408      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
4409      * four. Padding takes place by appending elements to the array.
4410      * <li>Clauses with all {@code null}s are disregarded.
4411      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
4412      * </ol>
4413      * <p>
4414      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
4415      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
4416      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
4417      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
4418      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
4419      * iteration variable type.
4420      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
4421      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
4422      * </ol>
4423      * <p>
4424      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
4425      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
4426      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
4427      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
4428      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
4429      * (These types will checked in step 2, along with all the clause function types.)
4430      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
4431      * <li>All of the collected parameter lists must be effectively identical.
4432      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
4433      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
4434      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
4435      * the "internal parameter list".
4436      * </ul>
4437      * <p>
4438      * <em>Step 1C: Determine loop return type.</em><ol type="a">
4439      * <li>Examine fini function return types, disregarding omitted fini functions.
4440      * <li>If there are no fini functions, the loop return type is {@code void}.
4441      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
4442      * type.
4443      * </ol>
4444      * <p>
4445      * <em>Step 1D: Check other types.</em><ol type="a">
4446      * <li>There must be at least one non-omitted pred function.
4447      * <li>Every non-omitted pred function must have a {@code boolean} return type.
4448      * </ol>
4449      * <p>
4450      * <em>Step 2: Determine parameter lists.</em><ol type="a">
4451      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
4452      * <li>The parameter list for init functions will be adjusted to the external parameter list.
4453      * (Note that their parameter lists are already effectively identical to this list.)
4454      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
4455      * effectively identical to the internal parameter list {@code (V... A...)}.
4456      * </ol>
4457      * <p>
4458      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
4459      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
4460      * type.
4461      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
4462      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
4463      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
4464      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
4465      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
4466      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
4467      * loop return type.
4468      * </ol>
4469      * <p>
4470      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
4471      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
4472      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
4473      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
4474      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
4475      * pad out the end of the list.
4476      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch dropping unused trailing arguments}.
4477      * </ol>
4478      * <p>
4479      * <em>Final observations.</em><ol type="a">
4480      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
4481      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
4482      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
4483      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
4484      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
4485      * <li>Each pair of init and step functions agrees in their return type {@code V}.
4486      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
4487      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
4488      * </ol>
4489      * <p>
4490      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
4491      * <ul>
4492      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
4493      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
4494      * (Only one {@code Pn} has to be non-{@code null}.)
4495      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
4496      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
4497      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
4498      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
4499      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
4500      * the resulting loop handle's parameter types {@code (A...)}.
4501      * </ul>
4502      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
4503      * which is natural if most of the loop computation happens in the steps.  For some loops,
4504      * the burden of computation might be heaviest in the pred functions, and so the pred functions
4505      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
4506      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
4507      * where the init functions will need the extra parameters.  For such reasons, the rules for
4508      * determining these parameters are as symmetric as possible, across all clause parts.
4509      * In general, the loop parameters function as common invariant values across the whole
4510      * loop, while the iteration variables function as common variant values, or (if there is
4511      * no step function) as internal loop invariant temporaries.
4512      * <p>
4513      * <em>Loop execution.</em><ol type="a">
4514      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
4515      * every clause function. These locals are loop invariant.
4516      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
4517      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
4518      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
4519      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
4520      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
4521      * (in argument order).
4522      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
4523      * returns {@code false}.
4524      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
4525      * sequence {@code (v...)} of loop variables.
4526      * The updated value is immediately visible to all subsequent function calls.
4527      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
4528      * (of type {@code R}) is returned from the loop as a whole.
4529      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
4530      * except by throwing an exception.
4531      * </ol>
4532      * <p>
4533      * <em>Usage tips.</em>
4534      * <ul>
4535      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
4536      * sometimes a step function only needs to observe the current value of its own variable.
4537      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
4538      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
4539      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
4540      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
4541      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
4542      * <li>If some of the clause functions are virtual methods on an instance, the instance
4543      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
4544      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
4545      * will be the first iteration variable value, and it will be easy to use virtual
4546      * methods as clause parts, since all of them will take a leading instance reference matching that value.
4547      * </ul>
4548      * <p>
4549      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
4550      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
4551      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
4552      * <blockquote><pre>{@code
4553      * V... init...(A...);
4554      * boolean pred...(V..., A...);
4555      * V... step...(V..., A...);
4556      * R fini...(V..., A...);
4557      * R loop(A... a) {
4558      *   V... v... = init...(a...);
4559      *   for (;;) {
4560      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
4561      *       v = s(v..., a...);
4562      *       if (!p(v..., a...)) {
4563      *         return f(v..., a...);
4564      *       }
4565      *     }
4566      *   }
4567      * }
4568      * }</pre></blockquote>
4569      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
4570      * to their full length, even though individual clause functions may neglect to take them all.
4571      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch}.
4572      * <p>
4573      * @apiNote Example:
4574      * <blockquote><pre>{@code
4575      * // iterative implementation of the factorial function as a loop handle
4576      * static int one(int k) { return 1; }
4577      * static int inc(int i, int acc, int k) { return i + 1; }
4578      * static int mult(int i, int acc, int k) { return i * acc; }
4579      * static boolean pred(int i, int acc, int k) { return i < k; }
4580      * static int fin(int i, int acc, int k) { return acc; }
4581      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
4582      * // null initializer for counter, should initialize to 0
4583      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4584      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4585      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
4586      * assertEquals(120, loop.invoke(5));
4587      * }</pre></blockquote>
4588      * The same example, dropping arguments and using combinators:
4589      * <blockquote><pre>{@code
4590      * // simplified implementation of the factorial function as a loop handle
4591      * static int inc(int i) { return i + 1; } // drop acc, k
4592      * static int mult(int i, int acc) { return i * acc; } //drop k
4593      * static boolean cmp(int i, int k) { return i < k; }
4594      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
4595      * // null initializer for counter, should initialize to 0
4596      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
4597      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
4598      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
4599      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4600      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4601      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
4602      * assertEquals(720, loop.invoke(6));
4603      * }</pre></blockquote>
4604      * A similar example, using a helper object to hold a loop parameter:
4605      * <blockquote><pre>{@code
4606      * // instance-based implementation of the factorial function as a loop handle
4607      * static class FacLoop {
4608      *   final int k;
4609      *   FacLoop(int k) { this.k = k; }
4610      *   int inc(int i) { return i + 1; }
4611      *   int mult(int i, int acc) { return i * acc; }
4612      *   boolean pred(int i) { return i < k; }
4613      *   int fin(int i, int acc) { return acc; }
4614      * }
4615      * // assume MH_FacLoop is a handle to the constructor
4616      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
4617      * // null initializer for counter, should initialize to 0
4618      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
4619      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
4620      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4621      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4622      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
4623      * assertEquals(5040, loop.invoke(7));
4624      * }</pre></blockquote>
4625      *
4626      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
4627      *
4628      * @return a method handle embodying the looping behavior as defined by the arguments.
4629      *
4630      * @throws IllegalArgumentException in case any of the constraints described above is violated.
4631      *
4632      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
4633      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
4634      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
4635      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
4636      * @since 9
4637      */
4638     public static MethodHandle loop(MethodHandle[]... clauses) {
4639         // Step 0: determine clause structure.
4640         loopChecks0(clauses);
4641 
4642         List<MethodHandle> init = new ArrayList<>();
4643         List<MethodHandle> step = new ArrayList<>();
4644         List<MethodHandle> pred = new ArrayList<>();
4645         List<MethodHandle> fini = new ArrayList<>();
4646 
4647         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
4648             init.add(clause[0]); // all clauses have at least length 1
4649             step.add(clause.length <= 1 ? null : clause[1]);
4650             pred.add(clause.length <= 2 ? null : clause[2]);
4651             fini.add(clause.length <= 3 ? null : clause[3]);
4652         });
4653 
4654         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
4655         final int nclauses = init.size();
4656 
4657         // Step 1A: determine iteration variables (V...).
4658         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
4659         for (int i = 0; i < nclauses; ++i) {
4660             MethodHandle in = init.get(i);
4661             MethodHandle st = step.get(i);
4662             if (in == null && st == null) {
4663                 iterationVariableTypes.add(void.class);
4664             } else if (in != null && st != null) {
4665                 loopChecks1a(i, in, st);
4666                 iterationVariableTypes.add(in.type().returnType());
4667             } else {
4668                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
4669             }
4670         }
4671         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
4672                 collect(Collectors.toList());
4673 
4674         // Step 1B: determine loop parameters (A...).
4675         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
4676         loopChecks1b(init, commonSuffix);
4677 
4678         // Step 1C: determine loop return type.
4679         // Step 1D: check other types.
4680         final Class<?> loopReturnType = fini.stream().filter(Objects::nonNull).map(MethodHandle::type).
4681                 map(MethodType::returnType).findFirst().orElse(void.class);
4682         loopChecks1cd(pred, fini, loopReturnType);
4683 
4684         // Step 2: determine parameter lists.
4685         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
4686         commonParameterSequence.addAll(commonSuffix);
4687         loopChecks2(step, pred, fini, commonParameterSequence);
4688 
4689         // Step 3: fill in omitted functions.
4690         for (int i = 0; i < nclauses; ++i) {
4691             Class<?> t = iterationVariableTypes.get(i);
4692             if (init.get(i) == null) {
4693                 init.set(i, empty(methodType(t, commonSuffix)));
4694             }
4695             if (step.get(i) == null) {
4696                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
4697             }
4698             if (pred.get(i) == null) {
4699                 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
4700             }
4701             if (fini.get(i) == null) {
4702                 fini.set(i, empty(methodType(t, commonParameterSequence)));
4703             }
4704         }
4705 
4706         // Step 4: fill in missing parameter types.
4707         // Also convert all handles to fixed-arity handles.
4708         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
4709         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
4710         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
4711         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
4712 
4713         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
4714                 allMatch(pl -> pl.equals(commonSuffix));
4715         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
4716                 allMatch(pl -> pl.equals(commonParameterSequence));
4717 
4718         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
4719     }
4720 
4721     private static void loopChecks0(MethodHandle[][] clauses) {
4722         if (clauses == null || clauses.length == 0) {
4723             throw newIllegalArgumentException("null or no clauses passed");
4724         }
4725         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
4726             throw newIllegalArgumentException("null clauses are not allowed");
4727         }
4728         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
4729             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
4730         }
4731     }
4732 
4733     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
4734         if (in.type().returnType() != st.type().returnType()) {
4735             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
4736                     st.type().returnType());
4737         }
4738     }
4739 
4740     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
4741         final List<Class<?>> empty = List.of();
4742         final List<Class<?>> longest = mhs.filter(Objects::nonNull).
4743                 // take only those that can contribute to a common suffix because they are longer than the prefix
4744                         map(MethodHandle::type).
4745                         filter(t -> t.parameterCount() > skipSize).
4746                         map(MethodType::parameterList).
4747                         reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4748         return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
4749     }
4750 
4751     private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
4752         final List<Class<?>> empty = List.of();
4753         return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4754     }
4755 
4756     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
4757         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
4758         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
4759         return longestParameterList(Arrays.asList(longest1, longest2));
4760     }
4761 
4762     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
4763         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
4764                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
4765             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
4766                     " (common suffix: " + commonSuffix + ")");
4767         }
4768     }
4769 
4770     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
4771         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4772                 anyMatch(t -> t != loopReturnType)) {
4773             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
4774                     loopReturnType + ")");
4775         }
4776 
4777         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
4778             throw newIllegalArgumentException("no predicate found", pred);
4779         }
4780         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4781                 anyMatch(t -> t != boolean.class)) {
4782             throw newIllegalArgumentException("predicates must have boolean return type", pred);
4783         }
4784     }
4785 
4786     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
4787         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
4788                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
4789             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
4790                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
4791         }
4792     }
4793 
4794     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
4795         return hs.stream().map(h -> {
4796             int pc = h.type().parameterCount();
4797             int tpsize = targetParams.size();
4798             return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
4799         }).collect(Collectors.toList());
4800     }
4801 
4802     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
4803         return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
4804     }
4805 
4806     /**
4807      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
4808      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
4809      * <p>
4810      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
4811      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
4812      * evaluates to {@code true}).
4813      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
4814      * <p>
4815      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
4816      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
4817      * and updated with the value returned from its invocation. The result of loop execution will be
4818      * the final value of the additional loop-local variable (if present).
4819      * <p>
4820      * The following rules hold for these argument handles:<ul>
4821      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
4822      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
4823      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
4824      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
4825      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
4826      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
4827      * It will constrain the parameter lists of the other loop parts.
4828      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
4829      * list {@code (A...)} is called the <em>external parameter list</em>.
4830      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
4831      * additional state variable of the loop.
4832      * The body must both accept and return a value of this type {@code V}.
4833      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
4834      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
4835      * <a href="MethodHandles.html#effid">effectively identical</a>
4836      * to the external parameter list {@code (A...)}.
4837      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
4838      * {@linkplain #empty default value}.
4839      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
4840      * Its parameter list (either empty or of the form {@code (V A*)}) must be
4841      * effectively identical to the internal parameter list.
4842      * </ul>
4843      * <p>
4844      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
4845      * <li>The loop handle's result type is the result type {@code V} of the body.
4846      * <li>The loop handle's parameter types are the types {@code (A...)},
4847      * from the external parameter list.
4848      * </ul>
4849      * <p>
4850      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
4851      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
4852      * passed to the loop.
4853      * <blockquote><pre>{@code
4854      * V init(A...);
4855      * boolean pred(V, A...);
4856      * V body(V, A...);
4857      * V whileLoop(A... a...) {
4858      *   V v = init(a...);
4859      *   while (pred(v, a...)) {
4860      *     v = body(v, a...);
4861      *   }
4862      *   return v;
4863      * }
4864      * }</pre></blockquote>
4865      * <p>
4866      * @apiNote Example:
4867      * <blockquote><pre>{@code
4868      * // implement the zip function for lists as a loop handle
4869      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
4870      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
4871      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
4872      *   zip.add(a.next());
4873      *   zip.add(b.next());
4874      *   return zip;
4875      * }
4876      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
4877      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
4878      * List<String> a = Arrays.asList("a", "b", "c", "d");
4879      * List<String> b = Arrays.asList("e", "f", "g", "h");
4880      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
4881      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
4882      * }</pre></blockquote>
4883      *
4884      * <p>
4885      * @apiNote The implementation of this method can be expressed as follows:
4886      * <blockquote><pre>{@code
4887      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
4888      *     MethodHandle fini = (body.type().returnType() == void.class
4889      *                         ? null : identity(body.type().returnType()));
4890      *     MethodHandle[]
4891      *         checkExit = { null, null, pred, fini },
4892      *         varBody   = { init, body };
4893      *     return loop(checkExit, varBody);
4894      * }
4895      * }</pre></blockquote>
4896      *
4897      * @param init optional initializer, providing the initial value of the loop variable.
4898      *             May be {@code null}, implying a default initial value.  See above for other constraints.
4899      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
4900      *             above for other constraints.
4901      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
4902      *             See above for other constraints.
4903      *
4904      * @return a method handle implementing the {@code while} loop as described by the arguments.
4905      * @throws IllegalArgumentException if the rules for the arguments are violated.
4906      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
4907      *
4908      * @see #loop(MethodHandle[][])
4909      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
4910      * @since 9
4911      */
4912     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
4913         whileLoopChecks(init, pred, body);
4914         MethodHandle fini = identityOrVoid(body.type().returnType());
4915         MethodHandle[] checkExit = { null, null, pred, fini };
4916         MethodHandle[] varBody = { init, body };
4917         return loop(checkExit, varBody);
4918     }
4919 
4920     /**
4921      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
4922      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
4923      * <p>
4924      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
4925      * method will, in each iteration, first execute its body and then evaluate the predicate.
4926      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
4927      * <p>
4928      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
4929      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
4930      * and updated with the value returned from its invocation. The result of loop execution will be
4931      * the final value of the additional loop-local variable (if present).
4932      * <p>
4933      * The following rules hold for these argument handles:<ul>
4934      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
4935      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
4936      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
4937      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
4938      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
4939      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
4940      * It will constrain the parameter lists of the other loop parts.
4941      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
4942      * list {@code (A...)} is called the <em>external parameter list</em>.
4943      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
4944      * additional state variable of the loop.
4945      * The body must both accept and return a value of this type {@code V}.
4946      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
4947      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
4948      * <a href="MethodHandles.html#effid">effectively identical</a>
4949      * to the external parameter list {@code (A...)}.
4950      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
4951      * {@linkplain #empty default value}.
4952      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
4953      * Its parameter list (either empty or of the form {@code (V A*)}) must be
4954      * effectively identical to the internal parameter list.
4955      * </ul>
4956      * <p>
4957      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
4958      * <li>The loop handle's result type is the result type {@code V} of the body.
4959      * <li>The loop handle's parameter types are the types {@code (A...)},
4960      * from the external parameter list.
4961      * </ul>
4962      * <p>
4963      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
4964      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
4965      * passed to the loop.
4966      * <blockquote><pre>{@code
4967      * V init(A...);
4968      * boolean pred(V, A...);
4969      * V body(V, A...);
4970      * V doWhileLoop(A... a...) {
4971      *   V v = init(a...);
4972      *   do {
4973      *     v = body(v, a...);
4974      *   } while (pred(v, a...));
4975      *   return v;
4976      * }
4977      * }</pre></blockquote>
4978      * <p>
4979      * @apiNote Example:
4980      * <blockquote><pre>{@code
4981      * // int i = 0; while (i < limit) { ++i; } return i; => limit
4982      * static int zero(int limit) { return 0; }
4983      * static int step(int i, int limit) { return i + 1; }
4984      * static boolean pred(int i, int limit) { return i < limit; }
4985      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
4986      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
4987      * assertEquals(23, loop.invoke(23));
4988      * }</pre></blockquote>
4989      *
4990      * <p>
4991      * @apiNote The implementation of this method can be expressed as follows:
4992      * <blockquote><pre>{@code
4993      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
4994      *     MethodHandle fini = (body.type().returnType() == void.class
4995      *                         ? null : identity(body.type().returnType()));
4996      *     MethodHandle[] clause = { init, body, pred, fini };
4997      *     return loop(clause);
4998      * }
4999      * }</pre></blockquote>
5000      *
5001      * @param init optional initializer, providing the initial value of the loop variable.
5002      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5003      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5004      *             See above for other constraints.
5005      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5006      *             above for other constraints.
5007      *
5008      * @return a method handle implementing the {@code while} loop as described by the arguments.
5009      * @throws IllegalArgumentException if the rules for the arguments are violated.
5010      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5011      *
5012      * @see #loop(MethodHandle[][])
5013      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
5014      * @since 9
5015      */
5016     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
5017         whileLoopChecks(init, pred, body);
5018         MethodHandle fini = identityOrVoid(body.type().returnType());
5019         MethodHandle[] clause = {init, body, pred, fini };
5020         return loop(clause);
5021     }
5022 
5023     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
5024         Objects.requireNonNull(pred);
5025         Objects.requireNonNull(body);
5026         MethodType bodyType = body.type();
5027         Class<?> returnType = bodyType.returnType();
5028         List<Class<?>> innerList = bodyType.parameterList();
5029         List<Class<?>> outerList = innerList;
5030         if (returnType == void.class) {
5031             // OK
5032         } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
5033             // leading V argument missing => error
5034             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5035             throw misMatchedTypes("body function", bodyType, expected);
5036         } else {
5037             outerList = innerList.subList(1, innerList.size());
5038         }
5039         MethodType predType = pred.type();
5040         if (predType.returnType() != boolean.class ||
5041                 !predType.effectivelyIdenticalParameters(0, innerList)) {
5042             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
5043         }
5044         if (init != null) {
5045             MethodType initType = init.type();
5046             if (initType.returnType() != returnType ||
5047                     !initType.effectivelyIdenticalParameters(0, outerList)) {
5048                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5049             }
5050         }
5051     }
5052 
5053     /**
5054      * Constructs a loop that runs a given number of iterations.
5055      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5056      * <p>
5057      * The number of iterations is determined by the {@code iterations} handle evaluation result.
5058      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
5059      * It will be initialized to 0 and incremented by 1 in each iteration.
5060      * <p>
5061      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5062      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5063      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5064      * <p>
5065      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5066      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5067      * iteration variable.
5068      * The result of the loop handle execution will be the final {@code V} value of that variable
5069      * (or {@code void} if there is no {@code V} variable).
5070      * <p>
5071      * The following rules hold for the argument handles:<ul>
5072      * <li>The {@code iterations} handle must not be {@code null}, and must return
5073      * the type {@code int}, referred to here as {@code I} in parameter type lists.
5074      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5075      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
5076      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5077      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
5078      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
5079      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
5080      * of types called the <em>internal parameter list</em>.
5081      * It will constrain the parameter lists of the other loop parts.
5082      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
5083      * with no additional {@code A} types, then the internal parameter list is extended by
5084      * the argument types {@code A...} of the {@code iterations} handle.
5085      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
5086      * list {@code (A...)} is called the <em>external parameter list</em>.
5087      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5088      * additional state variable of the loop.
5089      * The body must both accept a leading parameter and return a value of this type {@code V}.
5090      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5091      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5092      * <a href="MethodHandles.html#effid">effectively identical</a>
5093      * to the external parameter list {@code (A...)}.
5094      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5095      * {@linkplain #empty default value}.
5096      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
5097      * effectively identical to the external parameter list {@code (A...)}.
5098      * </ul>
5099      * <p>
5100      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5101      * <li>The loop handle's result type is the result type {@code V} of the body.
5102      * <li>The loop handle's parameter types are the types {@code (A...)},
5103      * from the external parameter list.
5104      * </ul>
5105      * <p>
5106      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5107      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
5108      * arguments passed to the loop.
5109      * <blockquote><pre>{@code
5110      * int iterations(A...);
5111      * V init(A...);
5112      * V body(V, int, A...);
5113      * V countedLoop(A... a...) {
5114      *   int end = iterations(a...);
5115      *   V v = init(a...);
5116      *   for (int i = 0; i < end; ++i) {
5117      *     v = body(v, i, a...);
5118      *   }
5119      *   return v;
5120      * }
5121      * }</pre></blockquote>
5122      * <p>
5123      * @apiNote Example with a fully conformant body method:
5124      * <blockquote><pre>{@code
5125      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
5126      * // => a variation on a well known theme
5127      * static String step(String v, int counter, String init) { return "na " + v; }
5128      * // assume MH_step is a handle to the method above
5129      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
5130      * MethodHandle start = MethodHandles.identity(String.class);
5131      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
5132      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
5133      * }</pre></blockquote>
5134      * <p>
5135      * @apiNote Example with the simplest possible body method type,
5136      * and passing the number of iterations to the loop invocation:
5137      * <blockquote><pre>{@code
5138      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
5139      * // => a variation on a well known theme
5140      * static String step(String v, int counter ) { return "na " + v; }
5141      * // assume MH_step is a handle to the method above
5142      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
5143      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
5144      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
5145      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
5146      * }</pre></blockquote>
5147      * <p>
5148      * @apiNote Example that treats the number of iterations, string to append to, and string to append
5149      * as loop parameters:
5150      * <blockquote><pre>{@code
5151      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
5152      * // => a variation on a well known theme
5153      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
5154      * // assume MH_step is a handle to the method above
5155      * MethodHandle count = MethodHandles.identity(int.class);
5156      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
5157      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
5158      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
5159      * }</pre></blockquote>
5160      * <p>
5161      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
5162      * to enforce a loop type:
5163      * <blockquote><pre>{@code
5164      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
5165      * // => a variation on a well known theme
5166      * static String step(String v, int counter, String pre) { return pre + " " + v; }
5167      * // assume MH_step is a handle to the method above
5168      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
5169      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
5170      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
5171      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
5172      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
5173      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
5174      * }</pre></blockquote>
5175      * <p>
5176      * @apiNote The implementation of this method can be expressed as follows:
5177      * <blockquote><pre>{@code
5178      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
5179      *     return countedLoop(empty(iterations.type()), iterations, init, body);
5180      * }
5181      * }</pre></blockquote>
5182      *
5183      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
5184      *                   result type must be {@code int}. See above for other constraints.
5185      * @param init optional initializer, providing the initial value of the loop variable.
5186      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5187      * @param body body of the loop, which may not be {@code null}.
5188      *             It controls the loop parameters and result type in the standard case (see above for details).
5189      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
5190      *             and may accept any number of additional types.
5191      *             See above for other constraints.
5192      *
5193      * @return a method handle representing the loop.
5194      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
5195      * @throws IllegalArgumentException if any argument violates the rules formulated above.
5196      *
5197      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
5198      * @since 9
5199      */
5200     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
5201         return countedLoop(empty(iterations.type()), iterations, init, body);
5202     }
5203 
5204     /**
5205      * Constructs a loop that counts over a range of numbers.
5206      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5207      * <p>
5208      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
5209      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
5210      * values of the loop counter.
5211      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
5212      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
5213      * <p>
5214      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5215      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5216      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5217      * <p>
5218      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5219      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5220      * iteration variable.
5221      * The result of the loop handle execution will be the final {@code V} value of that variable
5222      * (or {@code void} if there is no {@code V} variable).
5223      * <p>
5224      * The following rules hold for the argument handles:<ul>
5225      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
5226      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
5227      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5228      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
5229      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5230      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
5231      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
5232      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
5233      * of types called the <em>internal parameter list</em>.
5234      * It will constrain the parameter lists of the other loop parts.
5235      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
5236      * with no additional {@code A} types, then the internal parameter list is extended by
5237      * the argument types {@code A...} of the {@code end} handle.
5238      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
5239      * list {@code (A...)} is called the <em>external parameter list</em>.
5240      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5241      * additional state variable of the loop.
5242      * The body must both accept a leading parameter and return a value of this type {@code V}.
5243      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5244      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5245      * <a href="MethodHandles.html#effid">effectively identical</a>
5246      * to the external parameter list {@code (A...)}.
5247      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5248      * {@linkplain #empty default value}.
5249      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
5250      * effectively identical to the external parameter list {@code (A...)}.
5251      * <li>Likewise, the parameter list of {@code end} must be effectively identical
5252      * to the external parameter list.
5253      * </ul>
5254      * <p>
5255      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5256      * <li>The loop handle's result type is the result type {@code V} of the body.
5257      * <li>The loop handle's parameter types are the types {@code (A...)},
5258      * from the external parameter list.
5259      * </ul>
5260      * <p>
5261      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5262      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
5263      * arguments passed to the loop.
5264      * <blockquote><pre>{@code
5265      * int start(A...);
5266      * int end(A...);
5267      * V init(A...);
5268      * V body(V, int, A...);
5269      * V countedLoop(A... a...) {
5270      *   int e = end(a...);
5271      *   int s = start(a...);
5272      *   V v = init(a...);
5273      *   for (int i = s; i < e; ++i) {
5274      *     v = body(v, i, a...);
5275      *   }
5276      *   return v;
5277      * }
5278      * }</pre></blockquote>
5279      *
5280      * <p>
5281      * @apiNote The implementation of this method can be expressed as follows:
5282      * <blockquote><pre>{@code
5283      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5284      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
5285      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
5286      *     // the following semantics:
5287      *     // MH_increment: (int limit, int counter) -> counter + 1
5288      *     // MH_predicate: (int limit, int counter) -> counter < limit
5289      *     Class<?> counterType = start.type().returnType();  // int
5290      *     Class<?> returnType = body.type().returnType();
5291      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
5292      *     if (returnType != void.class) {  // ignore the V variable
5293      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5294      *         pred = dropArguments(pred, 1, returnType);  // ditto
5295      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
5296      *     }
5297      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
5298      *     MethodHandle[]
5299      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5300      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
5301      *         indexVar   = { start, incr };           // i = start(); i = i + 1
5302      *     return loop(loopLimit, bodyClause, indexVar);
5303      * }
5304      * }</pre></blockquote>
5305      *
5306      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
5307      *              See above for other constraints.
5308      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
5309      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
5310      * @param init optional initializer, providing the initial value of the loop variable.
5311      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5312      * @param body body of the loop, which may not be {@code null}.
5313      *             It controls the loop parameters and result type in the standard case (see above for details).
5314      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
5315      *             and may accept any number of additional types.
5316      *             See above for other constraints.
5317      *
5318      * @return a method handle representing the loop.
5319      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
5320      * @throws IllegalArgumentException if any argument violates the rules formulated above.
5321      *
5322      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
5323      * @since 9
5324      */
5325     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5326         countedLoopChecks(start, end, init, body);
5327         Class<?> counterType = start.type().returnType();  // int, but who's counting?
5328         Class<?> limitType   = end.type().returnType();    // yes, int again
5329         Class<?> returnType  = body.type().returnType();
5330         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
5331         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
5332         MethodHandle retv = null;
5333         if (returnType != void.class) {
5334             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5335             pred = dropArguments(pred, 1, returnType);  // ditto
5336             retv = dropArguments(identity(returnType), 0, counterType);
5337         }
5338         body = dropArguments(body, 0, counterType);  // ignore the limit variable
5339         MethodHandle[]
5340             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5341             bodyClause = { init, body },            // v = init(); v = body(v, i)
5342             indexVar   = { start, incr };           // i = start(); i = i + 1
5343         return loop(loopLimit, bodyClause, indexVar);
5344     }
5345 
5346     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5347         Objects.requireNonNull(start);
5348         Objects.requireNonNull(end);
5349         Objects.requireNonNull(body);
5350         Class<?> counterType = start.type().returnType();
5351         if (counterType != int.class) {
5352             MethodType expected = start.type().changeReturnType(int.class);
5353             throw misMatchedTypes("start function", start.type(), expected);
5354         } else if (end.type().returnType() != counterType) {
5355             MethodType expected = end.type().changeReturnType(counterType);
5356             throw misMatchedTypes("end function", end.type(), expected);
5357         }
5358         MethodType bodyType = body.type();
5359         Class<?> returnType = bodyType.returnType();
5360         List<Class<?>> innerList = bodyType.parameterList();
5361         // strip leading V value if present
5362         int vsize = (returnType == void.class ? 0 : 1);
5363         if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
5364             // argument list has no "V" => error
5365             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5366             throw misMatchedTypes("body function", bodyType, expected);
5367         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
5368             // missing I type => error
5369             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
5370             throw misMatchedTypes("body function", bodyType, expected);
5371         }
5372         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
5373         if (outerList.isEmpty()) {
5374             // special case; take lists from end handle
5375             outerList = end.type().parameterList();
5376             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
5377         }
5378         MethodType expected = methodType(counterType, outerList);
5379         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
5380             throw misMatchedTypes("start parameter types", start.type(), expected);
5381         }
5382         if (end.type() != start.type() &&
5383             !end.type().effectivelyIdenticalParameters(0, outerList)) {
5384             throw misMatchedTypes("end parameter types", end.type(), expected);
5385         }
5386         if (init != null) {
5387             MethodType initType = init.type();
5388             if (initType.returnType() != returnType ||
5389                 !initType.effectivelyIdenticalParameters(0, outerList)) {
5390                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5391             }
5392         }
5393     }
5394 
5395     /**
5396      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
5397      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5398      * <p>
5399      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
5400      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
5401      * <p>
5402      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5403      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5404      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5405      * <p>
5406      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5407      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5408      * iteration variable.
5409      * The result of the loop handle execution will be the final {@code V} value of that variable
5410      * (or {@code void} if there is no {@code V} variable).
5411      * <p>
5412      * The following rules hold for the argument handles:<ul>
5413      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5414      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
5415      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5416      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
5417      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
5418      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
5419      * of types called the <em>internal parameter list</em>.
5420      * It will constrain the parameter lists of the other loop parts.
5421      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
5422      * with no additional {@code A} types, then the internal parameter list is extended by
5423      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
5424      * single type {@code Iterable} is added and constitutes the {@code A...} list.
5425      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
5426      * list {@code (A...)} is called the <em>external parameter list</em>.
5427      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5428      * additional state variable of the loop.
5429      * The body must both accept a leading parameter and return a value of this type {@code V}.
5430      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5431      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5432      * <a href="MethodHandles.html#effid">effectively identical</a>
5433      * to the external parameter list {@code (A...)}.
5434      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5435      * {@linkplain #empty default value}.
5436      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
5437      * type {@code java.util.Iterator} or a subtype thereof.
5438      * The iterator it produces when the loop is executed will be assumed
5439      * to yield values which can be converted to type {@code T}.
5440      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
5441      * effectively identical to the external parameter list {@code (A...)}.
5442      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
5443      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
5444      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
5445      * handle parameter is adjusted to accept the leading {@code A} type, as if by
5446      * the {@link MethodHandle#asType asType} conversion method.
5447      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
5448      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
5449      * </ul>
5450      * <p>
5451      * The type {@code T} may be either a primitive or reference.
5452      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
5453      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
5454      * as if by the {@link MethodHandle#asType asType} conversion method.
5455      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
5456      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
5457      * <p>
5458      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5459      * <li>The loop handle's result type is the result type {@code V} of the body.
5460      * <li>The loop handle's parameter types are the types {@code (A...)},
5461      * from the external parameter list.
5462      * </ul>
5463      * <p>
5464      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5465      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
5466      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
5467      * <blockquote><pre>{@code
5468      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
5469      * V init(A...);
5470      * V body(V,T,A...);
5471      * V iteratedLoop(A... a...) {
5472      *   Iterator<T> it = iterator(a...);
5473      *   V v = init(a...);
5474      *   while (it.hasNext()) {
5475      *     T t = it.next();
5476      *     v = body(v, t, a...);
5477      *   }
5478      *   return v;
5479      * }
5480      * }</pre></blockquote>
5481      * <p>
5482      * @apiNote Example:
5483      * <blockquote><pre>{@code
5484      * // get an iterator from a list
5485      * static List<String> reverseStep(List<String> r, String e) {
5486      *   r.add(0, e);
5487      *   return r;
5488      * }
5489      * static List<String> newArrayList() { return new ArrayList<>(); }
5490      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
5491      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
5492      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
5493      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
5494      * assertEquals(reversedList, (List<String>) loop.invoke(list));
5495      * }</pre></blockquote>
5496      * <p>
5497      * @apiNote The implementation of this method can be expressed approximately as follows:
5498      * <blockquote><pre>{@code
5499      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5500      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
5501      *     Class<?> returnType = body.type().returnType();
5502      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
5503      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
5504      *     MethodHandle retv = null, step = body, startIter = iterator;
5505      *     if (returnType != void.class) {
5506      *         // the simple thing first:  in (I V A...), drop the I to get V
5507      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
5508      *         // body type signature (V T A...), internal loop types (I V A...)
5509      *         step = swapArguments(body, 0, 1);  // swap V <-> T
5510      *     }
5511      *     if (startIter == null)  startIter = MH_getIter;
5512      *     MethodHandle[]
5513      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
5514      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
5515      *     return loop(iterVar, bodyClause);
5516      * }
5517      * }</pre></blockquote>
5518      *
5519      * @param iterator an optional handle to return the iterator to start the loop.
5520      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
5521      *                 See above for other constraints.
5522      * @param init optional initializer, providing the initial value of the loop variable.
5523      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5524      * @param body body of the loop, which may not be {@code null}.
5525      *             It controls the loop parameters and result type in the standard case (see above for details).
5526      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
5527      *             and may accept any number of additional types.
5528      *             See above for other constraints.
5529      *
5530      * @return a method handle embodying the iteration loop functionality.
5531      * @throws NullPointerException if the {@code body} handle is {@code null}.
5532      * @throws IllegalArgumentException if any argument violates the above requirements.
5533      *
5534      * @since 9
5535      */
5536     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5537         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
5538         Class<?> returnType = body.type().returnType();
5539         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
5540         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
5541         MethodHandle startIter;
5542         MethodHandle nextVal;
5543         {
5544             MethodType iteratorType;
5545             if (iterator == null) {
5546                 // derive argument type from body, if available, else use Iterable
5547                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
5548                 iteratorType = startIter.type().changeParameterType(0, iterableType);
5549             } else {
5550                 // force return type to the internal iterator class
5551                 iteratorType = iterator.type().changeReturnType(Iterator.class);
5552                 startIter = iterator;
5553             }
5554             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
5555             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
5556 
5557             // perform the asType transforms under an exception transformer, as per spec.:
5558             try {
5559                 startIter = startIter.asType(iteratorType);
5560                 nextVal = nextRaw.asType(nextValType);
5561             } catch (WrongMethodTypeException ex) {
5562                 throw new IllegalArgumentException(ex);
5563             }
5564         }
5565 
5566         MethodHandle retv = null, step = body;
5567         if (returnType != void.class) {
5568             // the simple thing first:  in (I V A...), drop the I to get V
5569             retv = dropArguments(identity(returnType), 0, Iterator.class);
5570             // body type signature (V T A...), internal loop types (I V A...)
5571             step = swapArguments(body, 0, 1);  // swap V <-> T
5572         }
5573 
5574         MethodHandle[]
5575             iterVar    = { startIter, null, hasNext, retv },
5576             bodyClause = { init, filterArgument(step, 0, nextVal) };
5577         return loop(iterVar, bodyClause);
5578     }
5579 
5580     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5581         Objects.requireNonNull(body);
5582         MethodType bodyType = body.type();
5583         Class<?> returnType = bodyType.returnType();
5584         List<Class<?>> internalParamList = bodyType.parameterList();
5585         // strip leading V value if present
5586         int vsize = (returnType == void.class ? 0 : 1);
5587         if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
5588             // argument list has no "V" => error
5589             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5590             throw misMatchedTypes("body function", bodyType, expected);
5591         } else if (internalParamList.size() <= vsize) {
5592             // missing T type => error
5593             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
5594             throw misMatchedTypes("body function", bodyType, expected);
5595         }
5596         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
5597         Class<?> iterableType = null;
5598         if (iterator != null) {
5599             // special case; if the body handle only declares V and T then
5600             // the external parameter list is obtained from iterator handle
5601             if (externalParamList.isEmpty()) {
5602                 externalParamList = iterator.type().parameterList();
5603             }
5604             MethodType itype = iterator.type();
5605             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
5606                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
5607             }
5608             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
5609                 MethodType expected = methodType(itype.returnType(), externalParamList);
5610                 throw misMatchedTypes("iterator parameters", itype, expected);
5611             }
5612         } else {
5613             if (externalParamList.isEmpty()) {
5614                 // special case; if the iterator handle is null and the body handle
5615                 // only declares V and T then the external parameter list consists
5616                 // of Iterable
5617                 externalParamList = Arrays.asList(Iterable.class);
5618                 iterableType = Iterable.class;
5619             } else {
5620                 // special case; if the iterator handle is null and the external
5621                 // parameter list is not empty then the first parameter must be
5622                 // assignable to Iterable
5623                 iterableType = externalParamList.get(0);
5624                 if (!Iterable.class.isAssignableFrom(iterableType)) {
5625                     throw newIllegalArgumentException(
5626                             "inferred first loop argument must inherit from Iterable: " + iterableType);
5627                 }
5628             }
5629         }
5630         if (init != null) {
5631             MethodType initType = init.type();
5632             if (initType.returnType() != returnType ||
5633                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
5634                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
5635             }
5636         }
5637         return iterableType;  // help the caller a bit
5638     }
5639 
5640     /*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
5641         // there should be a better way to uncross my wires
5642         int arity = mh.type().parameterCount();
5643         int[] order = new int[arity];
5644         for (int k = 0; k < arity; k++)  order[k] = k;
5645         order[i] = j; order[j] = i;
5646         Class<?>[] types = mh.type().parameterArray();
5647         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
5648         MethodType swapType = methodType(mh.type().returnType(), types);
5649         return permuteArguments(mh, swapType, order);
5650     }
5651 
5652     /**
5653      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
5654      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
5655      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
5656      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
5657      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
5658      * {@code try-finally} handle.
5659      * <p>
5660      * The {@code cleanup} handle will be passed one or two additional leading arguments.
5661      * The first is the exception thrown during the
5662      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
5663      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
5664      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
5665      * The second argument is not present if the {@code target} handle has a {@code void} return type.
5666      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
5667      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
5668      * <p>
5669      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
5670      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
5671      * two extra leading parameters:<ul>
5672      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
5673      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
5674      * the result from the execution of the {@code target} handle.
5675      * This parameter is not present if the {@code target} returns {@code void}.
5676      * </ul>
5677      * <p>
5678      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
5679      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
5680      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
5681      * the cleanup.
5682      * <blockquote><pre>{@code
5683      * V target(A..., B...);
5684      * V cleanup(Throwable, V, A...);
5685      * V adapter(A... a, B... b) {
5686      *   V result = (zero value for V);
5687      *   Throwable throwable = null;
5688      *   try {
5689      *     result = target(a..., b...);
5690      *   } catch (Throwable t) {
5691      *     throwable = t;
5692      *     throw t;
5693      *   } finally {
5694      *     result = cleanup(throwable, result, a...);
5695      *   }
5696      *   return result;
5697      * }
5698      * }</pre></blockquote>
5699      * <p>
5700      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
5701      * be modified by execution of the target, and so are passed unchanged
5702      * from the caller to the cleanup, if it is invoked.
5703      * <p>
5704      * The target and cleanup must return the same type, even if the cleanup
5705      * always throws.
5706      * To create such a throwing cleanup, compose the cleanup logic
5707      * with {@link #throwException throwException},
5708      * in order to create a method handle of the correct return type.
5709      * <p>
5710      * Note that {@code tryFinally} never converts exceptions into normal returns.
5711      * In rare cases where exceptions must be converted in that way, first wrap
5712      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
5713      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
5714      *
5715      * @param target the handle whose execution is to be wrapped in a {@code try} block.
5716      * @param cleanup the handle that is invoked in the finally block.
5717      *
5718      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
5719      * @throws NullPointerException if any argument is null
5720      * @throws IllegalArgumentException if {@code cleanup} does not accept
5721      *          the required leading arguments, or if the method handle types do
5722      *          not match in their return types and their
5723      *          corresponding trailing parameters
5724      *
5725      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
5726      * @since 9
5727      */
5728     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
5729         List<Class<?>> targetParamTypes = target.type().parameterList();
5730         List<Class<?>> cleanupParamTypes = cleanup.type().parameterList();
5731         Class<?> rtype = target.type().returnType();
5732 
5733         tryFinallyChecks(target, cleanup);
5734 
5735         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
5736         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
5737         // target parameter list.
5738         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
5739 
5740         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
5741         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
5742     }
5743 
5744     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
5745         Class<?> rtype = target.type().returnType();
5746         if (rtype != cleanup.type().returnType()) {
5747             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
5748         }
5749         MethodType cleanupType = cleanup.type();
5750         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
5751             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
5752         }
5753         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
5754             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
5755         }
5756         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
5757         // target parameter list.
5758         int cleanupArgIndex = rtype == void.class ? 1 : 2;
5759         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
5760             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
5761                     cleanup.type(), target.type());
5762         }
5763     }
5764 
5765 }