1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.jvm;
  27 
  28 import java.util.*;
  29 
  30 import com.sun.tools.javac.tree.TreeInfo.PosKind;
  31 import com.sun.tools.javac.util.*;
  32 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  33 import com.sun.tools.javac.util.List;
  34 import com.sun.tools.javac.code.*;
  35 import com.sun.tools.javac.code.Attribute.TypeCompound;
  36 import com.sun.tools.javac.code.Symbol.VarSymbol;
  37 import com.sun.tools.javac.comp.*;
  38 import com.sun.tools.javac.tree.*;
  39 
  40 import com.sun.tools.javac.code.Symbol.*;
  41 import com.sun.tools.javac.code.Type.*;
  42 import com.sun.tools.javac.jvm.Code.*;
  43 import com.sun.tools.javac.jvm.Items.*;
  44 import com.sun.tools.javac.tree.EndPosTable;
  45 import com.sun.tools.javac.tree.JCTree.*;
  46 
  47 import static com.sun.tools.javac.code.Flags.*;
  48 import static com.sun.tools.javac.code.Kinds.*;
  49 import static com.sun.tools.javac.code.TypeTag.*;
  50 import static com.sun.tools.javac.jvm.ByteCodes.*;
  51 import static com.sun.tools.javac.jvm.CRTFlags.*;
  52 import static com.sun.tools.javac.main.Option.*;
  53 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  54 
  55 /** This pass maps flat Java (i.e. without inner classes) to bytecodes.
  56  *
  57  *  <p><b>This is NOT part of any supported API.
  58  *  If you write code that depends on this, you do so at your own risk.
  59  *  This code and its internal interfaces are subject to change or
  60  *  deletion without notice.</b>
  61  */
  62 public class Gen extends JCTree.Visitor {
  63     protected static final Context.Key<Gen> genKey =
  64         new Context.Key<Gen>();
  65 
  66     private final Log log;
  67     private final Symtab syms;
  68     private final Check chk;
  69     private final Resolve rs;
  70     private final TreeMaker make;
  71     private final Names names;
  72     private final Target target;
  73     private final Type stringBufferType;
  74     private final Map<Type,Symbol> stringBufferAppend;
  75     private Name accessDollar;
  76     private final Types types;
  77     private final Lower lower;
  78     private final Flow flow;
  79 
  80     /** Switch: GJ mode?
  81      */
  82     private final boolean allowGenerics;
  83 
  84     /** Set when Miranda method stubs are to be generated. */
  85     private final boolean generateIproxies;
  86 
  87     /** Format of stackmap tables to be generated. */
  88     private final Code.StackMapFormat stackMap;
  89 
  90     /** A type that serves as the expected type for all method expressions.
  91      */
  92     private final Type methodType;
  93 
  94     public static Gen instance(Context context) {
  95         Gen instance = context.get(genKey);
  96         if (instance == null)
  97             instance = new Gen(context);
  98         return instance;
  99     }
 100 
 101     /** Constant pool, reset by genClass.
 102      */
 103     private Pool pool;
 104 
 105     private final boolean typeAnnoAsserts;
 106 
 107     protected Gen(Context context) {
 108         context.put(genKey, this);
 109 
 110         names = Names.instance(context);
 111         log = Log.instance(context);
 112         syms = Symtab.instance(context);
 113         chk = Check.instance(context);
 114         rs = Resolve.instance(context);
 115         make = TreeMaker.instance(context);
 116         target = Target.instance(context);
 117         types = Types.instance(context);
 118         methodType = new MethodType(null, null, null, syms.methodClass);
 119         allowGenerics = Source.instance(context).allowGenerics();
 120         stringBufferType = target.useStringBuilder()
 121             ? syms.stringBuilderType
 122             : syms.stringBufferType;
 123         stringBufferAppend = new HashMap<Type,Symbol>();
 124         accessDollar = names.
 125             fromString("access" + target.syntheticNameChar());
 126         flow = Flow.instance(context);
 127         lower = Lower.instance(context);
 128 
 129         Options options = Options.instance(context);
 130         lineDebugInfo =
 131             options.isUnset(G_CUSTOM) ||
 132             options.isSet(G_CUSTOM, "lines");
 133         varDebugInfo =
 134             options.isUnset(G_CUSTOM)
 135             ? options.isSet(G)
 136             : options.isSet(G_CUSTOM, "vars");
 137         genCrt = options.isSet(XJCOV);
 138         debugCode = options.isSet("debugcode");
 139         allowInvokedynamic = target.hasInvokedynamic() || options.isSet("invokedynamic");
 140         pool = new Pool(types);
 141         typeAnnoAsserts = options.isSet("TypeAnnotationAsserts");
 142 
 143         generateIproxies =
 144             target.requiresIproxy() ||
 145             options.isSet("miranda");
 146 
 147         if (target.generateStackMapTable()) {
 148             // ignore cldc because we cannot have both stackmap formats
 149             this.stackMap = StackMapFormat.JSR202;
 150         } else {
 151             if (target.generateCLDCStackmap()) {
 152                 this.stackMap = StackMapFormat.CLDC;
 153             } else {
 154                 this.stackMap = StackMapFormat.NONE;
 155             }
 156         }
 157 
 158         // by default, avoid jsr's for simple finalizers
 159         int setjsrlimit = 50;
 160         String jsrlimitString = options.get("jsrlimit");
 161         if (jsrlimitString != null) {
 162             try {
 163                 setjsrlimit = Integer.parseInt(jsrlimitString);
 164             } catch (NumberFormatException ex) {
 165                 // ignore ill-formed numbers for jsrlimit
 166             }
 167         }
 168         this.jsrlimit = setjsrlimit;
 169         this.useJsrLocally = false; // reset in visitTry
 170     }
 171 
 172     /** Switches
 173      */
 174     private final boolean lineDebugInfo;
 175     private final boolean varDebugInfo;
 176     private final boolean genCrt;
 177     private final boolean debugCode;
 178     private final boolean allowInvokedynamic;
 179 
 180     /** Default limit of (approximate) size of finalizer to inline.
 181      *  Zero means always use jsr.  100 or greater means never use
 182      *  jsr.
 183      */
 184     private final int jsrlimit;
 185 
 186     /** True if jsr is used.
 187      */
 188     private boolean useJsrLocally;
 189 
 190     /** Code buffer, set by genMethod.
 191      */
 192     private Code code;
 193 
 194     /** Items structure, set by genMethod.
 195      */
 196     private Items items;
 197 
 198     /** Environment for symbol lookup, set by genClass
 199      */
 200     private Env<AttrContext> attrEnv;
 201 
 202     /** The top level tree.
 203      */
 204     private JCCompilationUnit toplevel;
 205 
 206     /** The number of code-gen errors in this class.
 207      */
 208     private int nerrs = 0;
 209 
 210     /** An object containing mappings of syntax trees to their
 211      *  ending source positions.
 212      */
 213     EndPosTable endPosTable;
 214 
 215     /** Generate code to load an integer constant.
 216      *  @param n     The integer to be loaded.
 217      */
 218     void loadIntConst(int n) {
 219         items.makeImmediateItem(syms.intType, n).load();
 220     }
 221 
 222     /** The opcode that loads a zero constant of a given type code.
 223      *  @param tc   The given type code (@see ByteCode).
 224      */
 225     public static int zero(int tc) {
 226         switch(tc) {
 227         case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
 228             return iconst_0;
 229         case LONGcode:
 230             return lconst_0;
 231         case FLOATcode:
 232             return fconst_0;
 233         case DOUBLEcode:
 234             return dconst_0;
 235         default:
 236             throw new AssertionError("zero");
 237         }
 238     }
 239 
 240     /** The opcode that loads a one constant of a given type code.
 241      *  @param tc   The given type code (@see ByteCode).
 242      */
 243     public static int one(int tc) {
 244         return zero(tc) + 1;
 245     }
 246 
 247     /** Generate code to load -1 of the given type code (either int or long).
 248      *  @param tc   The given type code (@see ByteCode).
 249      */
 250     void emitMinusOne(int tc) {
 251         if (tc == LONGcode) {
 252             items.makeImmediateItem(syms.longType, new Long(-1)).load();
 253         } else {
 254             code.emitop0(iconst_m1);
 255         }
 256     }
 257 
 258     /** Construct a symbol to reflect the qualifying type that should
 259      *  appear in the byte code as per JLS 13.1.
 260      *
 261      *  For {@literal target >= 1.2}: Clone a method with the qualifier as owner (except
 262      *  for those cases where we need to work around VM bugs).
 263      *
 264      *  For {@literal target <= 1.1}: If qualified variable or method is defined in a
 265      *  non-accessible class, clone it with the qualifier class as owner.
 266      *
 267      *  @param sym    The accessed symbol
 268      *  @param site   The qualifier's type.
 269      */
 270     Symbol binaryQualifier(Symbol sym, Type site) {
 271 
 272         if (site.hasTag(ARRAY)) {
 273             if (sym == syms.lengthVar ||
 274                 sym.owner != syms.arrayClass)
 275                 return sym;
 276             // array clone can be qualified by the array type in later targets
 277             Symbol qualifier = target.arrayBinaryCompatibility()
 278                 ? new ClassSymbol(Flags.PUBLIC, site.tsym.name,
 279                                   site, syms.noSymbol)
 280                 : syms.objectType.tsym;
 281             return sym.clone(qualifier);
 282         }
 283 
 284         if (sym.owner == site.tsym ||
 285             (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
 286             return sym;
 287         }
 288         if (!target.obeyBinaryCompatibility())
 289             return rs.isAccessible(attrEnv, (TypeSymbol)sym.owner)
 290                 ? sym
 291                 : sym.clone(site.tsym);
 292 
 293         if (!target.interfaceFieldsBinaryCompatibility()) {
 294             if ((sym.owner.flags() & INTERFACE) != 0 && sym.kind == VAR)
 295                 return sym;
 296         }
 297 
 298         // leave alone methods inherited from Object
 299         // JLS 13.1.
 300         if (sym.owner == syms.objectType.tsym)
 301             return sym;
 302 
 303         if (!target.interfaceObjectOverridesBinaryCompatibility()) {
 304             if ((sym.owner.flags() & INTERFACE) != 0 &&
 305                 syms.objectType.tsym.members().lookup(sym.name).scope != null)
 306                 return sym;
 307         }
 308 
 309         return sym.clone(site.tsym);
 310     }
 311 
 312     /** Insert a reference to given type in the constant pool,
 313      *  checking for an array with too many dimensions;
 314      *  return the reference's index.
 315      *  @param type   The type for which a reference is inserted.
 316      */
 317     int makeRef(DiagnosticPosition pos, Type type) {
 318         checkDimension(pos, type);
 319         if (type.isAnnotated()) {
 320             // Treat annotated types separately - we don't want
 321             // to collapse all of them - at least for annotated
 322             // exceptions.
 323             // TODO: review this.
 324             return pool.put((Object)type);
 325         } else {
 326             return pool.put(type.hasTag(CLASS) ? (Object)type.tsym : (Object)type);
 327         }
 328     }
 329 
 330     /** Check if the given type is an array with too many dimensions.
 331      */
 332     private void checkDimension(DiagnosticPosition pos, Type t) {
 333         switch (t.getTag()) {
 334         case METHOD:
 335             checkDimension(pos, t.getReturnType());
 336             for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
 337                 checkDimension(pos, args.head);
 338             break;
 339         case ARRAY:
 340             if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
 341                 log.error(pos, "limit.dimensions");
 342                 nerrs++;
 343             }
 344             break;
 345         default:
 346             break;
 347         }
 348     }
 349 
 350     /** Create a tempory variable.
 351      *  @param type   The variable's type.
 352      */
 353     LocalItem makeTemp(Type type) {
 354         VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
 355                                     names.empty,
 356                                     type,
 357                                     env.enclMethod.sym);
 358         code.newLocal(v);
 359         return items.makeLocalItem(v);
 360     }
 361 
 362     /** Generate code to call a non-private method or constructor.
 363      *  @param pos         Position to be used for error reporting.
 364      *  @param site        The type of which the method is a member.
 365      *  @param name        The method's name.
 366      *  @param argtypes    The method's argument types.
 367      *  @param isStatic    A flag that indicates whether we call a
 368      *                     static or instance method.
 369      */
 370     void callMethod(DiagnosticPosition pos,
 371                     Type site, Name name, List<Type> argtypes,
 372                     boolean isStatic) {
 373         Symbol msym = rs.
 374             resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
 375         if (isStatic) items.makeStaticItem(msym).invoke();
 376         else items.makeMemberItem(msym, name == names.init).invoke();
 377     }
 378 
 379     /** Is the given method definition an access method
 380      *  resulting from a qualified super? This is signified by an odd
 381      *  access code.
 382      */
 383     private boolean isAccessSuper(JCMethodDecl enclMethod) {
 384         return
 385             (enclMethod.mods.flags & SYNTHETIC) != 0 &&
 386             isOddAccessName(enclMethod.name);
 387     }
 388 
 389     /** Does given name start with "access$" and end in an odd digit?
 390      */
 391     private boolean isOddAccessName(Name name) {
 392         return
 393             name.startsWith(accessDollar) &&
 394             (name.getByteAt(name.getByteLength() - 1) & 1) == 1;
 395     }
 396 
 397 /* ************************************************************************
 398  * Non-local exits
 399  *************************************************************************/
 400 
 401     /** Generate code to invoke the finalizer associated with given
 402      *  environment.
 403      *  Any calls to finalizers are appended to the environments `cont' chain.
 404      *  Mark beginning of gap in catch all range for finalizer.
 405      */
 406     void genFinalizer(Env<GenContext> env) {
 407         if (code.isAlive() && env.info.finalize != null)
 408             env.info.finalize.gen();
 409     }
 410 
 411     /** Generate code to call all finalizers of structures aborted by
 412      *  a non-local
 413      *  exit.  Return target environment of the non-local exit.
 414      *  @param target      The tree representing the structure that's aborted
 415      *  @param env         The environment current at the non-local exit.
 416      */
 417     Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
 418         Env<GenContext> env1 = env;
 419         while (true) {
 420             genFinalizer(env1);
 421             if (env1.tree == target) break;
 422             env1 = env1.next;
 423         }
 424         return env1;
 425     }
 426 
 427     /** Mark end of gap in catch-all range for finalizer.
 428      *  @param env   the environment which might contain the finalizer
 429      *               (if it does, env.info.gaps != null).
 430      */
 431     void endFinalizerGap(Env<GenContext> env) {
 432         if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
 433             env.info.gaps.append(code.curCP());
 434     }
 435 
 436     /** Mark end of all gaps in catch-all ranges for finalizers of environments
 437      *  lying between, and including to two environments.
 438      *  @param from    the most deeply nested environment to mark
 439      *  @param to      the least deeply nested environment to mark
 440      */
 441     void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
 442         Env<GenContext> last = null;
 443         while (last != to) {
 444             endFinalizerGap(from);
 445             last = from;
 446             from = from.next;
 447         }
 448     }
 449 
 450     /** Do any of the structures aborted by a non-local exit have
 451      *  finalizers that require an empty stack?
 452      *  @param target      The tree representing the structure that's aborted
 453      *  @param env         The environment current at the non-local exit.
 454      */
 455     boolean hasFinally(JCTree target, Env<GenContext> env) {
 456         while (env.tree != target) {
 457             if (env.tree.hasTag(TRY) && env.info.finalize.hasFinalizer())
 458                 return true;
 459             env = env.next;
 460         }
 461         return false;
 462     }
 463 
 464 /* ************************************************************************
 465  * Normalizing class-members.
 466  *************************************************************************/
 467 
 468     /** Distribute member initializer code into constructors and {@code <clinit>}
 469      *  method.
 470      *  @param defs         The list of class member declarations.
 471      *  @param c            The enclosing class.
 472      */
 473     List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
 474         ListBuffer<JCStatement> initCode = new ListBuffer<JCStatement>();
 475         ListBuffer<Attribute.TypeCompound> initTAs = new ListBuffer<Attribute.TypeCompound>();
 476         ListBuffer<JCStatement> clinitCode = new ListBuffer<JCStatement>();
 477         ListBuffer<Attribute.TypeCompound> clinitTAs = new ListBuffer<Attribute.TypeCompound>();
 478         ListBuffer<JCTree> methodDefs = new ListBuffer<JCTree>();
 479         // Sort definitions into three listbuffers:
 480         //  - initCode for instance initializers
 481         //  - clinitCode for class initializers
 482         //  - methodDefs for method definitions
 483         for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
 484             JCTree def = l.head;
 485             switch (def.getTag()) {
 486             case BLOCK:
 487                 JCBlock block = (JCBlock)def;
 488                 if ((block.flags & STATIC) != 0)
 489                     clinitCode.append(block);
 490                 else if ((block.flags & SYNTHETIC) == 0)
 491                     initCode.append(block);
 492                 break;
 493             case METHODDEF:
 494                 methodDefs.append(def);
 495                 break;
 496             case VARDEF:
 497                 JCVariableDecl vdef = (JCVariableDecl) def;
 498                 VarSymbol sym = vdef.sym;
 499                 checkDimension(vdef.pos(), sym.type);
 500                 if (vdef.init != null) {
 501                     if ((sym.flags() & STATIC) == 0) {
 502                         // Always initialize instance variables.
 503                         JCStatement init = make.at(vdef.pos()).
 504                             Assignment(sym, vdef.init);
 505                         initCode.append(init);
 506                         endPosTable.replaceTree(vdef, init);
 507                         initTAs.addAll(getAndRemoveNonFieldTAs(sym));
 508                     } else if (sym.getConstValue() == null) {
 509                         // Initialize class (static) variables only if
 510                         // they are not compile-time constants.
 511                         JCStatement init = make.at(vdef.pos).
 512                             Assignment(sym, vdef.init);
 513                         clinitCode.append(init);
 514                         endPosTable.replaceTree(vdef, init);
 515                         clinitTAs.addAll(getAndRemoveNonFieldTAs(sym));
 516                     } else {
 517                         checkStringConstant(vdef.init.pos(), sym.getConstValue());
 518                         /* if the init contains a reference to an external class, add it to the
 519                          * constant's pool
 520                          */
 521                         vdef.init.accept(classReferenceVisitor);
 522                     }
 523                 }
 524                 break;
 525             default:
 526                 Assert.error();
 527             }
 528         }
 529         // Insert any instance initializers into all constructors.
 530         if (initCode.length() != 0) {
 531             List<JCStatement> inits = initCode.toList();
 532             initTAs.addAll(c.getInitTypeAttributes());
 533             List<Attribute.TypeCompound> initTAlist = initTAs.toList();
 534             for (JCTree t : methodDefs) {
 535                 normalizeMethod((JCMethodDecl)t, inits, initTAlist);
 536             }
 537         }
 538         // If there are class initializers, create a <clinit> method
 539         // that contains them as its body.
 540         if (clinitCode.length() != 0) {
 541             MethodSymbol clinit = new MethodSymbol(
 542                 STATIC | (c.flags() & STRICTFP),
 543                 names.clinit,
 544                 new MethodType(
 545                     List.<Type>nil(), syms.voidType,
 546                     List.<Type>nil(), syms.methodClass),
 547                 c);
 548             c.members().enter(clinit);
 549             List<JCStatement> clinitStats = clinitCode.toList();
 550             JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
 551             block.endpos = TreeInfo.endPos(clinitStats.last());
 552             methodDefs.append(make.MethodDef(clinit, block));
 553 
 554             if (!clinitTAs.isEmpty())
 555                 clinit.appendUniqueTypeAttributes(clinitTAs.toList());
 556             if (!c.getClassInitTypeAttributes().isEmpty())
 557                 clinit.appendUniqueTypeAttributes(c.getClassInitTypeAttributes());
 558         }
 559         // Return all method definitions.
 560         return methodDefs.toList();
 561     }
 562 
 563     private List<Attribute.TypeCompound> getAndRemoveNonFieldTAs(VarSymbol sym) {
 564         List<TypeCompound> tas = sym.getRawTypeAttributes();
 565         ListBuffer<Attribute.TypeCompound> fieldTAs = new ListBuffer<Attribute.TypeCompound>();
 566         ListBuffer<Attribute.TypeCompound> nonfieldTAs = new ListBuffer<Attribute.TypeCompound>();
 567         for (TypeCompound ta : tas) {
 568             if (ta.getPosition().type == TargetType.FIELD) {
 569                 fieldTAs.add(ta);
 570             } else {
 571                 if (typeAnnoAsserts) {
 572                     Assert.error("Type annotation does not have a valid positior");
 573                 }
 574 
 575                 nonfieldTAs.add(ta);
 576             }
 577         }
 578         sym.setTypeAttributes(fieldTAs.toList());
 579         return nonfieldTAs.toList();
 580     }
 581 
 582     /** Check a constant value and report if it is a string that is
 583      *  too large.
 584      */
 585     private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
 586         if (nerrs != 0 || // only complain about a long string once
 587             constValue == null ||
 588             !(constValue instanceof String) ||
 589             ((String)constValue).length() < Pool.MAX_STRING_LENGTH)
 590             return;
 591         log.error(pos, "limit.string");
 592         nerrs++;
 593     }
 594 
 595     /** Insert instance initializer code into initial constructor.
 596      *  @param md        The tree potentially representing a
 597      *                   constructor's definition.
 598      *  @param initCode  The list of instance initializer statements.
 599      *  @param initTAs  Type annotations from the initializer expression.
 600      */
 601     void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode, List<TypeCompound> initTAs) {
 602         if (md.name == names.init && TreeInfo.isInitialConstructor(md)) {
 603             // We are seeing a constructor that does not call another
 604             // constructor of the same class.
 605             List<JCStatement> stats = md.body.stats;
 606             ListBuffer<JCStatement> newstats = new ListBuffer<JCStatement>();
 607 
 608             if (stats.nonEmpty()) {
 609                 // Copy initializers of synthetic variables generated in
 610                 // the translation of inner classes.
 611                 while (TreeInfo.isSyntheticInit(stats.head)) {
 612                     newstats.append(stats.head);
 613                     stats = stats.tail;
 614                 }
 615                 // Copy superclass constructor call
 616                 newstats.append(stats.head);
 617                 stats = stats.tail;
 618                 // Copy remaining synthetic initializers.
 619                 while (stats.nonEmpty() &&
 620                        TreeInfo.isSyntheticInit(stats.head)) {
 621                     newstats.append(stats.head);
 622                     stats = stats.tail;
 623                 }
 624                 // Now insert the initializer code.
 625                 newstats.appendList(initCode);
 626                 // And copy all remaining statements.
 627                 while (stats.nonEmpty()) {
 628                     newstats.append(stats.head);
 629                     stats = stats.tail;
 630                 }
 631             }
 632             md.body.stats = newstats.toList();
 633             if (md.body.endpos == Position.NOPOS)
 634                 md.body.endpos = TreeInfo.endPos(md.body.stats.last());
 635 
 636             md.sym.appendUniqueTypeAttributes(initTAs);
 637         }
 638     }
 639 
 640 /* ********************************************************************
 641  * Adding miranda methods
 642  *********************************************************************/
 643 
 644     /** Add abstract methods for all methods defined in one of
 645      *  the interfaces of a given class,
 646      *  provided they are not already implemented in the class.
 647      *
 648      *  @param c      The class whose interfaces are searched for methods
 649      *                for which Miranda methods should be added.
 650      */
 651     void implementInterfaceMethods(ClassSymbol c) {
 652         implementInterfaceMethods(c, c);
 653     }
 654 
 655     /** Add abstract methods for all methods defined in one of
 656      *  the interfaces of a given class,
 657      *  provided they are not already implemented in the class.
 658      *
 659      *  @param c      The class whose interfaces are searched for methods
 660      *                for which Miranda methods should be added.
 661      *  @param site   The class in which a definition may be needed.
 662      */
 663     void implementInterfaceMethods(ClassSymbol c, ClassSymbol site) {
 664         for (List<Type> l = types.interfaces(c.type); l.nonEmpty(); l = l.tail) {
 665             ClassSymbol i = (ClassSymbol)l.head.tsym;
 666             for (Scope.Entry e = i.members().elems;
 667                  e != null;
 668                  e = e.sibling)
 669             {
 670                 if (e.sym.kind == MTH && (e.sym.flags() & STATIC) == 0)
 671                 {
 672                     MethodSymbol absMeth = (MethodSymbol)e.sym;
 673                     MethodSymbol implMeth = absMeth.binaryImplementation(site, types);
 674                     if (implMeth == null)
 675                         addAbstractMethod(site, absMeth);
 676                     else if ((implMeth.flags() & IPROXY) != 0)
 677                         adjustAbstractMethod(site, implMeth, absMeth);
 678                 }
 679             }
 680             implementInterfaceMethods(i, site);
 681         }
 682     }
 683 
 684     /** Add an abstract methods to a class
 685      *  which implicitly implements a method defined in some interface
 686      *  implemented by the class. These methods are called "Miranda methods".
 687      *  Enter the newly created method into its enclosing class scope.
 688      *  Note that it is not entered into the class tree, as the emitter
 689      *  doesn't need to see it there to emit an abstract method.
 690      *
 691      *  @param c      The class to which the Miranda method is added.
 692      *  @param m      The interface method symbol for which a Miranda method
 693      *                is added.
 694      */
 695     private void addAbstractMethod(ClassSymbol c,
 696                                    MethodSymbol m) {
 697         MethodSymbol absMeth = new MethodSymbol(
 698             m.flags() | IPROXY | SYNTHETIC, m.name,
 699             m.type, // was c.type.memberType(m), but now only !generics supported
 700             c);
 701         c.members().enter(absMeth); // add to symbol table
 702     }
 703 
 704     private void adjustAbstractMethod(ClassSymbol c,
 705                                       MethodSymbol pm,
 706                                       MethodSymbol im) {
 707         MethodType pmt = (MethodType)pm.type;
 708         Type imt = types.memberType(c.type, im);
 709         pmt.thrown = chk.intersect(pmt.getThrownTypes(), imt.getThrownTypes());
 710     }
 711 
 712 /* ************************************************************************
 713  * Traversal methods
 714  *************************************************************************/
 715 
 716     /** Visitor argument: The current environment.
 717      */
 718     Env<GenContext> env;
 719 
 720     /** Visitor argument: The expected type (prototype).
 721      */
 722     Type pt;
 723 
 724     /** Visitor result: The item representing the computed value.
 725      */
 726     Item result;
 727 
 728     /** Visitor method: generate code for a definition, catching and reporting
 729      *  any completion failures.
 730      *  @param tree    The definition to be visited.
 731      *  @param env     The environment current at the definition.
 732      */
 733     public void genDef(JCTree tree, Env<GenContext> env) {
 734         Env<GenContext> prevEnv = this.env;
 735         try {
 736             this.env = env;
 737             tree.accept(this);
 738         } catch (CompletionFailure ex) {
 739             chk.completionError(tree.pos(), ex);
 740         } finally {
 741             this.env = prevEnv;
 742         }
 743     }
 744 
 745     /** Derived visitor method: check whether CharacterRangeTable
 746      *  should be emitted, if so, put a new entry into CRTable
 747      *  and call method to generate bytecode.
 748      *  If not, just call method to generate bytecode.
 749      *  @see    #genStat(JCTree, Env)
 750      *
 751      *  @param  tree     The tree to be visited.
 752      *  @param  env      The environment to use.
 753      *  @param  crtFlags The CharacterRangeTable flags
 754      *                   indicating type of the entry.
 755      */
 756     public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
 757         if (!genCrt) {
 758             genStat(tree, env);
 759             return;
 760         }
 761         int startpc = code.curCP();
 762         genStat(tree, env);
 763         if (tree.hasTag(Tag.BLOCK)) crtFlags |= CRT_BLOCK;
 764         code.crt.put(tree, crtFlags, startpc, code.curCP());
 765     }
 766 
 767     /** Derived visitor method: generate code for a statement.
 768      */
 769     public void genStat(JCTree tree, Env<GenContext> env) {
 770         if (code.isAlive()) {
 771             code.statBegin(tree.pos);
 772             genDef(tree, env);
 773         } else if (env.info.isSwitch && tree.hasTag(VARDEF)) {
 774             // variables whose declarations are in a switch
 775             // can be used even if the decl is unreachable.
 776             code.newLocal(((JCVariableDecl) tree).sym);
 777         }
 778     }
 779 
 780     /** Derived visitor method: check whether CharacterRangeTable
 781      *  should be emitted, if so, put a new entry into CRTable
 782      *  and call method to generate bytecode.
 783      *  If not, just call method to generate bytecode.
 784      *  @see    #genStats(List, Env)
 785      *
 786      *  @param  trees    The list of trees to be visited.
 787      *  @param  env      The environment to use.
 788      *  @param  crtFlags The CharacterRangeTable flags
 789      *                   indicating type of the entry.
 790      */
 791     public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
 792         if (!genCrt) {
 793             genStats(trees, env);
 794             return;
 795         }
 796         if (trees.length() == 1) {        // mark one statement with the flags
 797             genStat(trees.head, env, crtFlags | CRT_STATEMENT);
 798         } else {
 799             int startpc = code.curCP();
 800             genStats(trees, env);
 801             code.crt.put(trees, crtFlags, startpc, code.curCP());
 802         }
 803     }
 804 
 805     /** Derived visitor method: generate code for a list of statements.
 806      */
 807     public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
 808         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
 809             genStat(l.head, env, CRT_STATEMENT);
 810     }
 811 
 812     /** Derived visitor method: check whether CharacterRangeTable
 813      *  should be emitted, if so, put a new entry into CRTable
 814      *  and call method to generate bytecode.
 815      *  If not, just call method to generate bytecode.
 816      *  @see    #genCond(JCTree,boolean)
 817      *
 818      *  @param  tree     The tree to be visited.
 819      *  @param  crtFlags The CharacterRangeTable flags
 820      *                   indicating type of the entry.
 821      */
 822     public CondItem genCond(JCTree tree, int crtFlags) {
 823         if (!genCrt) return genCond(tree, false);
 824         int startpc = code.curCP();
 825         CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
 826         code.crt.put(tree, crtFlags, startpc, code.curCP());
 827         return item;
 828     }
 829 
 830     /** Derived visitor method: generate code for a boolean
 831      *  expression in a control-flow context.
 832      *  @param _tree         The expression to be visited.
 833      *  @param markBranches The flag to indicate that the condition is
 834      *                      a flow controller so produced conditions
 835      *                      should contain a proper tree to generate
 836      *                      CharacterRangeTable branches for them.
 837      */
 838     public CondItem genCond(JCTree _tree, boolean markBranches) {
 839         JCTree inner_tree = TreeInfo.skipParens(_tree);
 840         if (inner_tree.hasTag(CONDEXPR)) {
 841             JCConditional tree = (JCConditional)inner_tree;
 842             CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
 843             if (cond.isTrue()) {
 844                 code.resolve(cond.trueJumps);
 845                 CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
 846                 if (markBranches) result.tree = tree.truepart;
 847                 return result;
 848             }
 849             if (cond.isFalse()) {
 850                 code.resolve(cond.falseJumps);
 851                 CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
 852                 if (markBranches) result.tree = tree.falsepart;
 853                 return result;
 854             }
 855             Chain secondJumps = cond.jumpFalse();
 856             code.resolve(cond.trueJumps);
 857             CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
 858             if (markBranches) first.tree = tree.truepart;
 859             Chain falseJumps = first.jumpFalse();
 860             code.resolve(first.trueJumps);
 861             Chain trueJumps = code.branch(goto_);
 862             code.resolve(secondJumps);
 863             CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
 864             CondItem result = items.makeCondItem(second.opcode,
 865                                       Code.mergeChains(trueJumps, second.trueJumps),
 866                                       Code.mergeChains(falseJumps, second.falseJumps));
 867             if (markBranches) result.tree = tree.falsepart;
 868             return result;
 869         } else {
 870             CondItem result = genExpr(_tree, syms.booleanType).mkCond();
 871             if (markBranches) result.tree = _tree;
 872             return result;
 873         }
 874     }
 875 
 876     /** Visitor class for expressions which might be constant expressions.
 877      *  This class is a subset of TreeScanner. Intended to visit trees pruned by
 878      *  Lower as long as constant expressions looking for references to any
 879      *  ClassSymbol. Any such reference will be added to the constant pool so
 880      *  automated tools can detect class dependencies better.
 881      */
 882     class ClassReferenceVisitor extends JCTree.Visitor {
 883 
 884         @Override
 885         public void visitTree(JCTree tree) {}
 886 
 887         @Override
 888         public void visitBinary(JCBinary tree) {
 889             tree.lhs.accept(this);
 890             tree.rhs.accept(this);
 891         }
 892 
 893         @Override
 894         public void visitSelect(JCFieldAccess tree) {
 895             if (tree.selected.type.hasTag(CLASS)) {
 896                 makeRef(tree.selected.pos(), tree.selected.type);
 897             }
 898         }
 899 
 900         @Override
 901         public void visitIdent(JCIdent tree) {
 902             if (tree.sym.owner instanceof ClassSymbol) {
 903                 pool.put(tree.sym.owner);
 904             }
 905         }
 906 
 907         @Override
 908         public void visitConditional(JCConditional tree) {
 909             tree.cond.accept(this);
 910             tree.truepart.accept(this);
 911             tree.falsepart.accept(this);
 912         }
 913 
 914         @Override
 915         public void visitUnary(JCUnary tree) {
 916             tree.arg.accept(this);
 917         }
 918 
 919         @Override
 920         public void visitParens(JCParens tree) {
 921             tree.expr.accept(this);
 922         }
 923 
 924         @Override
 925         public void visitTypeCast(JCTypeCast tree) {
 926             tree.expr.accept(this);
 927         }
 928     }
 929 
 930     private ClassReferenceVisitor classReferenceVisitor = new ClassReferenceVisitor();
 931 
 932     /** Visitor method: generate code for an expression, catching and reporting
 933      *  any completion failures.
 934      *  @param tree    The expression to be visited.
 935      *  @param pt      The expression's expected type (proto-type).
 936      */
 937     public Item genExpr(JCTree tree, Type pt) {
 938         Type prevPt = this.pt;
 939         try {
 940             if (tree.type.constValue() != null) {
 941                 // Short circuit any expressions which are constants
 942                 tree.accept(classReferenceVisitor);
 943                 checkStringConstant(tree.pos(), tree.type.constValue());
 944                 result = items.makeImmediateItem(tree.type, tree.type.constValue());
 945             } else {
 946                 this.pt = pt;
 947                 tree.accept(this);
 948             }
 949             return result.coerce(pt);
 950         } catch (CompletionFailure ex) {
 951             chk.completionError(tree.pos(), ex);
 952             code.state.stacksize = 1;
 953             return items.makeStackItem(pt);
 954         } finally {
 955             this.pt = prevPt;
 956         }
 957     }
 958 
 959     /** Derived visitor method: generate code for a list of method arguments.
 960      *  @param trees    The argument expressions to be visited.
 961      *  @param pts      The expression's expected types (i.e. the formal parameter
 962      *                  types of the invoked method).
 963      */
 964     public void genArgs(List<JCExpression> trees, List<Type> pts) {
 965         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
 966             genExpr(l.head, pts.head).load();
 967             pts = pts.tail;
 968         }
 969         // require lists be of same length
 970         Assert.check(pts.isEmpty());
 971     }
 972 
 973 /* ************************************************************************
 974  * Visitor methods for statements and definitions
 975  *************************************************************************/
 976 
 977     /** Thrown when the byte code size exceeds limit.
 978      */
 979     public static class CodeSizeOverflow extends RuntimeException {
 980         private static final long serialVersionUID = 0;
 981         public CodeSizeOverflow() {}
 982     }
 983 
 984     public void visitMethodDef(JCMethodDecl tree) {
 985         // Create a new local environment that points pack at method
 986         // definition.
 987         Env<GenContext> localEnv = env.dup(tree);
 988         localEnv.enclMethod = tree;
 989         // The expected type of every return statement in this method
 990         // is the method's return type.
 991         this.pt = tree.sym.erasure(types).getReturnType();
 992 
 993         checkDimension(tree.pos(), tree.sym.erasure(types));
 994         genMethod(tree, localEnv, false);
 995     }
 996 //where
 997         /** Generate code for a method.
 998          *  @param tree     The tree representing the method definition.
 999          *  @param env      The environment current for the method body.
1000          *  @param fatcode  A flag that indicates whether all jumps are
1001          *                  within 32K.  We first invoke this method under
1002          *                  the assumption that fatcode == false, i.e. all
1003          *                  jumps are within 32K.  If this fails, fatcode
1004          *                  is set to true and we try again.
1005          */
1006         void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
1007             MethodSymbol meth = tree.sym;
1008             int extras = 0;
1009             // Count up extra parameters
1010             if (meth.isConstructor()) {
1011                 extras++;
1012                 if (meth.enclClass().isInner() &&
1013                     !meth.enclClass().isStatic()) {
1014                     extras++;
1015                 }
1016             } else if ((tree.mods.flags & STATIC) == 0) {
1017                 extras++;
1018             }
1019             //      System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
1020             if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) + extras >
1021                 ClassFile.MAX_PARAMETERS) {
1022                 log.error(tree.pos(), "limit.parameters");
1023                 nerrs++;
1024             }
1025 
1026             else if (tree.body != null) {
1027                 // Create a new code structure and initialize it.
1028                 int startpcCrt = initCode(tree, env, fatcode);
1029 
1030                 try {
1031                     genStat(tree.body, env);
1032                 } catch (CodeSizeOverflow e) {
1033                     // Failed due to code limit, try again with jsr/ret
1034                     startpcCrt = initCode(tree, env, fatcode);
1035                     genStat(tree.body, env);
1036                 }
1037 
1038                 if (code.state.stacksize != 0) {
1039                     log.error(tree.body.pos(), "stack.sim.error", tree);
1040                     throw new AssertionError();
1041                 }
1042 
1043                 // If last statement could complete normally, insert a
1044                 // return at the end.
1045                 if (code.isAlive()) {
1046                     code.statBegin(TreeInfo.endPos(tree.body));
1047                     if (env.enclMethod == null ||
1048                         env.enclMethod.sym.type.getReturnType().hasTag(VOID)) {
1049                         code.emitop0(return_);
1050                     } else {
1051                         // sometime dead code seems alive (4415991);
1052                         // generate a small loop instead
1053                         int startpc = code.entryPoint();
1054                         CondItem c = items.makeCondItem(goto_);
1055                         code.resolve(c.jumpTrue(), startpc);
1056                     }
1057                 }
1058                 if (genCrt)
1059                     code.crt.put(tree.body,
1060                                  CRT_BLOCK,
1061                                  startpcCrt,
1062                                  code.curCP());
1063 
1064                 code.endScopes(0);
1065 
1066                 // If we exceeded limits, panic
1067                 if (code.checkLimits(tree.pos(), log)) {
1068                     nerrs++;
1069                     return;
1070                 }
1071 
1072                 // If we generated short code but got a long jump, do it again
1073                 // with fatCode = true.
1074                 if (!fatcode && code.fatcode) genMethod(tree, env, true);
1075 
1076                 // Clean up
1077                 if(stackMap == StackMapFormat.JSR202) {
1078                     code.lastFrame = null;
1079                     code.frameBeforeLast = null;
1080                 }
1081 
1082                 // Compress exception table
1083                 code.compressCatchTable();
1084 
1085                 // Fill in type annotation positions for exception parameters
1086                 code.fillExceptionParameterPositions();
1087             }
1088         }
1089 
1090         private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
1091             MethodSymbol meth = tree.sym;
1092 
1093             // Create a new code structure.
1094             meth.code = code = new Code(meth,
1095                                         fatcode,
1096                                         lineDebugInfo ? toplevel.lineMap : null,
1097                                         varDebugInfo,
1098                                         stackMap,
1099                                         debugCode,
1100                                         genCrt ? new CRTable(tree, env.toplevel.endPositions)
1101                                                : null,
1102                                         syms,
1103                                         types,
1104                                         pool);
1105             items = new Items(pool, code, syms, types);
1106             if (code.debugCode) {
1107                 System.err.println(meth + " for body " + tree);
1108             }
1109 
1110             // If method is not static, create a new local variable address
1111             // for `this'.
1112             if ((tree.mods.flags & STATIC) == 0) {
1113                 Type selfType = meth.owner.type;
1114                 if (meth.isConstructor() && selfType != syms.objectType)
1115                     selfType = UninitializedType.uninitializedThis(selfType);
1116                 code.setDefined(
1117                         code.newLocal(
1118                             new VarSymbol(FINAL, names._this, selfType, meth.owner)));
1119             }
1120 
1121             // Mark all parameters as defined from the beginning of
1122             // the method.
1123             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1124                 checkDimension(l.head.pos(), l.head.sym.type);
1125                 code.setDefined(code.newLocal(l.head.sym));
1126             }
1127 
1128             // Get ready to generate code for method body.
1129             int startpcCrt = genCrt ? code.curCP() : 0;
1130             code.entryPoint();
1131 
1132             // Suppress initial stackmap
1133             code.pendingStackMap = false;
1134 
1135             return startpcCrt;
1136         }
1137 
1138     public void visitVarDef(JCVariableDecl tree) {
1139         VarSymbol v = tree.sym;
1140         code.newLocal(v);
1141         if (tree.init != null) {
1142             checkStringConstant(tree.init.pos(), v.getConstValue());
1143             if (v.getConstValue() == null || varDebugInfo) {
1144                 genExpr(tree.init, v.erasure(types)).load();
1145                 items.makeLocalItem(v).store();
1146             }
1147         }
1148         checkDimension(tree.pos(), v.type);
1149     }
1150 
1151     public void visitSkip(JCSkip tree) {
1152     }
1153 
1154     public void visitBlock(JCBlock tree) {
1155         int limit = code.nextreg;
1156         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1157         genStats(tree.stats, localEnv);
1158         // End the scope of all block-local variables in variable info.
1159         if (!env.tree.hasTag(METHODDEF)) {
1160             code.statBegin(tree.endpos);
1161             code.endScopes(limit);
1162             code.pendingStatPos = Position.NOPOS;
1163         }
1164     }
1165 
1166     public void visitDoLoop(JCDoWhileLoop tree) {
1167         genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), false);
1168     }
1169 
1170     public void visitWhileLoop(JCWhileLoop tree) {
1171         genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), true);
1172     }
1173 
1174     public void visitForLoop(JCForLoop tree) {
1175         int limit = code.nextreg;
1176         genStats(tree.init, env);
1177         genLoop(tree, tree.body, tree.cond, tree.step, true);
1178         code.endScopes(limit);
1179     }
1180     //where
1181         /** Generate code for a loop.
1182          *  @param loop       The tree representing the loop.
1183          *  @param body       The loop's body.
1184          *  @param cond       The loop's controling condition.
1185          *  @param step       "Step" statements to be inserted at end of
1186          *                    each iteration.
1187          *  @param testFirst  True if the loop test belongs before the body.
1188          */
1189         private void genLoop(JCStatement loop,
1190                              JCStatement body,
1191                              JCExpression cond,
1192                              List<JCExpressionStatement> step,
1193                              boolean testFirst) {
1194             Env<GenContext> loopEnv = env.dup(loop, new GenContext());
1195             int startpc = code.entryPoint();
1196             if (testFirst) { //while or for loop
1197                 CondItem c;
1198                 if (cond != null) {
1199                     code.statBegin(cond.pos);
1200                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1201                 } else {
1202                     c = items.makeCondItem(goto_);
1203                 }
1204                 Chain loopDone = c.jumpFalse();
1205                 code.resolve(c.trueJumps);
1206                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1207                 code.resolve(loopEnv.info.cont);
1208                 genStats(step, loopEnv);
1209                 code.resolve(code.branch(goto_), startpc);
1210                 code.resolve(loopDone);
1211             } else {
1212                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1213                 code.resolve(loopEnv.info.cont);
1214                 genStats(step, loopEnv);
1215                 CondItem c;
1216                 if (cond != null) {
1217                     code.statBegin(cond.pos);
1218                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1219                 } else {
1220                     c = items.makeCondItem(goto_);
1221                 }
1222                 code.resolve(c.jumpTrue(), startpc);
1223                 code.resolve(c.falseJumps);
1224             }
1225             Chain exit = loopEnv.info.exit;
1226             if (exit != null) {
1227                 code.resolve(exit);
1228                 exit.state.defined.excludeFrom(code.nextreg);
1229             }
1230         }
1231 
1232     public void visitForeachLoop(JCEnhancedForLoop tree) {
1233         throw new AssertionError(); // should have been removed by Lower.
1234     }
1235 
1236     public void visitLabelled(JCLabeledStatement tree) {
1237         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1238         genStat(tree.body, localEnv, CRT_STATEMENT);
1239         Chain exit = localEnv.info.exit;
1240         if (exit != null) {
1241             code.resolve(exit);
1242             exit.state.defined.excludeFrom(code.nextreg);
1243         }
1244     }
1245 
1246     public void visitSwitch(JCSwitch tree) {
1247         int limit = code.nextreg;
1248         Assert.check(!tree.selector.type.hasTag(CLASS));
1249         int startpcCrt = genCrt ? code.curCP() : 0;
1250         Item sel = genExpr(tree.selector, syms.intType);
1251         List<JCCase> cases = tree.cases;
1252         if (cases.isEmpty()) {
1253             // We are seeing:  switch <sel> {}
1254             sel.load().drop();
1255             if (genCrt)
1256                 code.crt.put(TreeInfo.skipParens(tree.selector),
1257                              CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1258         } else {
1259             // We are seeing a nonempty switch.
1260             sel.load();
1261             if (genCrt)
1262                 code.crt.put(TreeInfo.skipParens(tree.selector),
1263                              CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1264             Env<GenContext> switchEnv = env.dup(tree, new GenContext());
1265             switchEnv.info.isSwitch = true;
1266 
1267             // Compute number of labels and minimum and maximum label values.
1268             // For each case, store its label in an array.
1269             int lo = Integer.MAX_VALUE;  // minimum label.
1270             int hi = Integer.MIN_VALUE;  // maximum label.
1271             int nlabels = 0;               // number of labels.
1272 
1273             int[] labels = new int[cases.length()];  // the label array.
1274             int defaultIndex = -1;     // the index of the default clause.
1275 
1276             List<JCCase> l = cases;
1277             for (int i = 0; i < labels.length; i++) {
1278                 if (l.head.pat != null) {
1279                     int val = ((Number)l.head.pat.type.constValue()).intValue();
1280                     labels[i] = val;
1281                     if (val < lo) lo = val;
1282                     if (hi < val) hi = val;
1283                     nlabels++;
1284                 } else {
1285                     Assert.check(defaultIndex == -1);
1286                     defaultIndex = i;
1287                 }
1288                 l = l.tail;
1289             }
1290 
1291             // Determine whether to issue a tableswitch or a lookupswitch
1292             // instruction.
1293             long table_space_cost = 4 + ((long) hi - lo + 1); // words
1294             long table_time_cost = 3; // comparisons
1295             long lookup_space_cost = 3 + 2 * (long) nlabels;
1296             long lookup_time_cost = nlabels;
1297             int opcode =
1298                 nlabels > 0 &&
1299                 table_space_cost + 3 * table_time_cost <=
1300                 lookup_space_cost + 3 * lookup_time_cost
1301                 ?
1302                 tableswitch : lookupswitch;
1303 
1304             int startpc = code.curCP();    // the position of the selector operation
1305             code.emitop0(opcode);
1306             code.align(4);
1307             int tableBase = code.curCP();  // the start of the jump table
1308             int[] offsets = null;          // a table of offsets for a lookupswitch
1309             code.emit4(-1);                // leave space for default offset
1310             if (opcode == tableswitch) {
1311                 code.emit4(lo);            // minimum label
1312                 code.emit4(hi);            // maximum label
1313                 for (long i = lo; i <= hi; i++) {  // leave space for jump table
1314                     code.emit4(-1);
1315                 }
1316             } else {
1317                 code.emit4(nlabels);    // number of labels
1318                 for (int i = 0; i < nlabels; i++) {
1319                     code.emit4(-1); code.emit4(-1); // leave space for lookup table
1320                 }
1321                 offsets = new int[labels.length];
1322             }
1323             Code.State stateSwitch = code.state.dup();
1324             code.markDead();
1325 
1326             // For each case do:
1327             l = cases;
1328             for (int i = 0; i < labels.length; i++) {
1329                 JCCase c = l.head;
1330                 l = l.tail;
1331 
1332                 int pc = code.entryPoint(stateSwitch);
1333                 // Insert offset directly into code or else into the
1334                 // offsets table.
1335                 if (i != defaultIndex) {
1336                     if (opcode == tableswitch) {
1337                         code.put4(
1338                             tableBase + 4 * (labels[i] - lo + 3),
1339                             pc - startpc);
1340                     } else {
1341                         offsets[i] = pc - startpc;
1342                     }
1343                 } else {
1344                     code.put4(tableBase, pc - startpc);
1345                 }
1346 
1347                 // Generate code for the statements in this case.
1348                 genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
1349             }
1350 
1351             // Resolve all breaks.
1352             Chain exit = switchEnv.info.exit;
1353             if  (exit != null) {
1354                 code.resolve(exit);
1355                 exit.state.defined.excludeFrom(code.nextreg);
1356             }
1357 
1358             // If we have not set the default offset, we do so now.
1359             if (code.get4(tableBase) == -1) {
1360                 code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
1361             }
1362 
1363             if (opcode == tableswitch) {
1364                 // Let any unfilled slots point to the default case.
1365                 int defaultOffset = code.get4(tableBase);
1366                 for (long i = lo; i <= hi; i++) {
1367                     int t = (int)(tableBase + 4 * (i - lo + 3));
1368                     if (code.get4(t) == -1)
1369                         code.put4(t, defaultOffset);
1370                 }
1371             } else {
1372                 // Sort non-default offsets and copy into lookup table.
1373                 if (defaultIndex >= 0)
1374                     for (int i = defaultIndex; i < labels.length - 1; i++) {
1375                         labels[i] = labels[i+1];
1376                         offsets[i] = offsets[i+1];
1377                     }
1378                 if (nlabels > 0)
1379                     qsort2(labels, offsets, 0, nlabels - 1);
1380                 for (int i = 0; i < nlabels; i++) {
1381                     int caseidx = tableBase + 8 * (i + 1);
1382                     code.put4(caseidx, labels[i]);
1383                     code.put4(caseidx + 4, offsets[i]);
1384                 }
1385             }
1386         }
1387         code.endScopes(limit);
1388     }
1389 //where
1390         /** Sort (int) arrays of keys and values
1391          */
1392        static void qsort2(int[] keys, int[] values, int lo, int hi) {
1393             int i = lo;
1394             int j = hi;
1395             int pivot = keys[(i+j)/2];
1396             do {
1397                 while (keys[i] < pivot) i++;
1398                 while (pivot < keys[j]) j--;
1399                 if (i <= j) {
1400                     int temp1 = keys[i];
1401                     keys[i] = keys[j];
1402                     keys[j] = temp1;
1403                     int temp2 = values[i];
1404                     values[i] = values[j];
1405                     values[j] = temp2;
1406                     i++;
1407                     j--;
1408                 }
1409             } while (i <= j);
1410             if (lo < j) qsort2(keys, values, lo, j);
1411             if (i < hi) qsort2(keys, values, i, hi);
1412         }
1413 
1414     public void visitSynchronized(JCSynchronized tree) {
1415         int limit = code.nextreg;
1416         // Generate code to evaluate lock and save in temporary variable.
1417         final LocalItem lockVar = makeTemp(syms.objectType);
1418         genExpr(tree.lock, tree.lock.type).load().duplicate();
1419         lockVar.store();
1420 
1421         // Generate code to enter monitor.
1422         code.emitop0(monitorenter);
1423         code.state.lock(lockVar.reg);
1424 
1425         // Generate code for a try statement with given body, no catch clauses
1426         // in a new environment with the "exit-monitor" operation as finalizer.
1427         final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
1428         syncEnv.info.finalize = new GenFinalizer() {
1429             void gen() {
1430                 genLast();
1431                 Assert.check(syncEnv.info.gaps.length() % 2 == 0);
1432                 syncEnv.info.gaps.append(code.curCP());
1433             }
1434             void genLast() {
1435                 if (code.isAlive()) {
1436                     lockVar.load();
1437                     code.emitop0(monitorexit);
1438                     code.state.unlock(lockVar.reg);
1439                 }
1440             }
1441         };
1442         syncEnv.info.gaps = new ListBuffer<Integer>();
1443         genTry(tree.body, List.<JCCatch>nil(), syncEnv);
1444         code.endScopes(limit);
1445     }
1446 
1447     public void visitTry(final JCTry tree) {
1448         // Generate code for a try statement with given body and catch clauses,
1449         // in a new environment which calls the finally block if there is one.
1450         final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
1451         final Env<GenContext> oldEnv = env;
1452         if (!useJsrLocally) {
1453             useJsrLocally =
1454                 (stackMap == StackMapFormat.NONE) &&
1455                 (jsrlimit <= 0 ||
1456                 jsrlimit < 100 &&
1457                 estimateCodeComplexity(tree.finalizer)>jsrlimit);
1458         }
1459         tryEnv.info.finalize = new GenFinalizer() {
1460             void gen() {
1461                 if (useJsrLocally) {
1462                     if (tree.finalizer != null) {
1463                         Code.State jsrState = code.state.dup();
1464                         jsrState.push(Code.jsrReturnValue);
1465                         tryEnv.info.cont =
1466                             new Chain(code.emitJump(jsr),
1467                                       tryEnv.info.cont,
1468                                       jsrState);
1469                     }
1470                     Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1471                     tryEnv.info.gaps.append(code.curCP());
1472                 } else {
1473                     Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1474                     tryEnv.info.gaps.append(code.curCP());
1475                     genLast();
1476                 }
1477             }
1478             void genLast() {
1479                 if (tree.finalizer != null)
1480                     genStat(tree.finalizer, oldEnv, CRT_BLOCK);
1481             }
1482             boolean hasFinalizer() {
1483                 return tree.finalizer != null;
1484             }
1485         };
1486         tryEnv.info.gaps = new ListBuffer<Integer>();
1487         genTry(tree.body, tree.catchers, tryEnv);
1488     }
1489     //where
1490         /** Generate code for a try or synchronized statement
1491          *  @param body      The body of the try or synchronized statement.
1492          *  @param catchers  The lis of catch clauses.
1493          *  @param env       the environment current for the body.
1494          */
1495         void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
1496             int limit = code.nextreg;
1497             int startpc = code.curCP();
1498             Code.State stateTry = code.state.dup();
1499             genStat(body, env, CRT_BLOCK);
1500             int endpc = code.curCP();
1501             boolean hasFinalizer =
1502                 env.info.finalize != null &&
1503                 env.info.finalize.hasFinalizer();
1504             List<Integer> gaps = env.info.gaps.toList();
1505             code.statBegin(TreeInfo.endPos(body));
1506             genFinalizer(env);
1507             code.statBegin(TreeInfo.endPos(env.tree));
1508             Chain exitChain = code.branch(goto_);
1509             endFinalizerGap(env);
1510             if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
1511                 // start off with exception on stack
1512                 code.entryPoint(stateTry, l.head.param.sym.type);
1513                 genCatch(l.head, env, startpc, endpc, gaps);
1514                 genFinalizer(env);
1515                 if (hasFinalizer || l.tail.nonEmpty()) {
1516                     code.statBegin(TreeInfo.endPos(env.tree));
1517                     exitChain = Code.mergeChains(exitChain,
1518                                                  code.branch(goto_));
1519                 }
1520                 endFinalizerGap(env);
1521             }
1522             if (hasFinalizer) {
1523                 // Create a new register segement to avoid allocating
1524                 // the same variables in finalizers and other statements.
1525                 code.newRegSegment();
1526 
1527                 // Add a catch-all clause.
1528 
1529                 // start off with exception on stack
1530                 int catchallpc = code.entryPoint(stateTry, syms.throwableType);
1531 
1532                 // Register all exception ranges for catch all clause.
1533                 // The range of the catch all clause is from the beginning
1534                 // of the try or synchronized block until the present
1535                 // code pointer excluding all gaps in the current
1536                 // environment's GenContext.
1537                 int startseg = startpc;
1538                 while (env.info.gaps.nonEmpty()) {
1539                     int endseg = env.info.gaps.next().intValue();
1540                     registerCatch(body.pos(), startseg, endseg,
1541                                   catchallpc, 0);
1542                     startseg = env.info.gaps.next().intValue();
1543                 }
1544                 code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.FIRST_STAT_POS));
1545                 code.markStatBegin();
1546 
1547                 Item excVar = makeTemp(syms.throwableType);
1548                 excVar.store();
1549                 genFinalizer(env);
1550                 code.resolvePending();
1551                 code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.END_POS));
1552                 code.markStatBegin();
1553 
1554                 excVar.load();
1555                 registerCatch(body.pos(), startseg,
1556                               env.info.gaps.next().intValue(),
1557                               catchallpc, 0);
1558                 code.emitop0(athrow);
1559                 code.markDead();
1560 
1561                 // If there are jsr's to this finalizer, ...
1562                 if (env.info.cont != null) {
1563                     // Resolve all jsr's.
1564                     code.resolve(env.info.cont);
1565 
1566                     // Mark statement line number
1567                     code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.FIRST_STAT_POS));
1568                     code.markStatBegin();
1569 
1570                     // Save return address.
1571                     LocalItem retVar = makeTemp(syms.throwableType);
1572                     retVar.store();
1573 
1574                     // Generate finalizer code.
1575                     env.info.finalize.genLast();
1576 
1577                     // Return.
1578                     code.emitop1w(ret, retVar.reg);
1579                     code.markDead();
1580                 }
1581             }
1582             // Resolve all breaks.
1583             code.resolve(exitChain);
1584 
1585             code.endScopes(limit);
1586         }
1587 
1588         /** Generate code for a catch clause.
1589          *  @param tree     The catch clause.
1590          *  @param env      The environment current in the enclosing try.
1591          *  @param startpc  Start pc of try-block.
1592          *  @param endpc    End pc of try-block.
1593          */
1594         void genCatch(JCCatch tree,
1595                       Env<GenContext> env,
1596                       int startpc, int endpc,
1597                       List<Integer> gaps) {
1598             if (startpc != endpc) {
1599                 List<JCExpression> subClauses = TreeInfo.isMultiCatch(tree) ?
1600                         ((JCTypeUnion)tree.param.vartype).alternatives :
1601                         List.of(tree.param.vartype);
1602                 while (gaps.nonEmpty()) {
1603                     for (JCExpression subCatch : subClauses) {
1604                         int catchType = makeRef(tree.pos(), subCatch.type);
1605                         int end = gaps.head.intValue();
1606                         registerCatch(tree.pos(),
1607                                       startpc,  end, code.curCP(),
1608                                       catchType);
1609                         if (subCatch.type.isAnnotated()) {
1610                             for (Attribute.TypeCompound tc :
1611                                      subCatch.type.getAnnotationMirrors()) {
1612                                 tc.position.type_index = catchType;
1613                             }
1614                         }
1615                     }
1616                     gaps = gaps.tail;
1617                     startpc = gaps.head.intValue();
1618                     gaps = gaps.tail;
1619                 }
1620                 if (startpc < endpc) {
1621                     for (JCExpression subCatch : subClauses) {
1622                         int catchType = makeRef(tree.pos(), subCatch.type);
1623                         registerCatch(tree.pos(),
1624                                       startpc, endpc, code.curCP(),
1625                                       catchType);
1626                         if (subCatch.type.isAnnotated()) {
1627                             for (Attribute.TypeCompound tc :
1628                                      subCatch.type.getAnnotationMirrors()) {
1629                                 tc.position.type_index = catchType;
1630                             }
1631                         }
1632                     }
1633                 }
1634                 VarSymbol exparam = tree.param.sym;
1635                 code.statBegin(tree.pos);
1636                 code.markStatBegin();
1637                 int limit = code.nextreg;
1638                 int exlocal = code.newLocal(exparam);
1639                 items.makeLocalItem(exparam).store();
1640                 code.statBegin(TreeInfo.firstStatPos(tree.body));
1641                 genStat(tree.body, env, CRT_BLOCK);
1642                 code.endScopes(limit);
1643                 code.statBegin(TreeInfo.endPos(tree.body));
1644             }
1645         }
1646 
1647         /** Register a catch clause in the "Exceptions" code-attribute.
1648          */
1649         void registerCatch(DiagnosticPosition pos,
1650                            int startpc, int endpc,
1651                            int handler_pc, int catch_type) {
1652             char startpc1 = (char)startpc;
1653             char endpc1 = (char)endpc;
1654             char handler_pc1 = (char)handler_pc;
1655             if (startpc1 == startpc &&
1656                 endpc1 == endpc &&
1657                 handler_pc1 == handler_pc) {
1658                 code.addCatch(startpc1, endpc1, handler_pc1,
1659                               (char)catch_type);
1660             } else {
1661                 if (!useJsrLocally && !target.generateStackMapTable()) {
1662                     useJsrLocally = true;
1663                     throw new CodeSizeOverflow();
1664                 } else {
1665                     log.error(pos, "limit.code.too.large.for.try.stmt");
1666                     nerrs++;
1667                 }
1668             }
1669         }
1670 
1671     /** Very roughly estimate the number of instructions needed for
1672      *  the given tree.
1673      */
1674     int estimateCodeComplexity(JCTree tree) {
1675         if (tree == null) return 0;
1676         class ComplexityScanner extends TreeScanner {
1677             int complexity = 0;
1678             public void scan(JCTree tree) {
1679                 if (complexity > jsrlimit) return;
1680                 super.scan(tree);
1681             }
1682             public void visitClassDef(JCClassDecl tree) {}
1683             public void visitDoLoop(JCDoWhileLoop tree)
1684                 { super.visitDoLoop(tree); complexity++; }
1685             public void visitWhileLoop(JCWhileLoop tree)
1686                 { super.visitWhileLoop(tree); complexity++; }
1687             public void visitForLoop(JCForLoop tree)
1688                 { super.visitForLoop(tree); complexity++; }
1689             public void visitSwitch(JCSwitch tree)
1690                 { super.visitSwitch(tree); complexity+=5; }
1691             public void visitCase(JCCase tree)
1692                 { super.visitCase(tree); complexity++; }
1693             public void visitSynchronized(JCSynchronized tree)
1694                 { super.visitSynchronized(tree); complexity+=6; }
1695             public void visitTry(JCTry tree)
1696                 { super.visitTry(tree);
1697                   if (tree.finalizer != null) complexity+=6; }
1698             public void visitCatch(JCCatch tree)
1699                 { super.visitCatch(tree); complexity+=2; }
1700             public void visitConditional(JCConditional tree)
1701                 { super.visitConditional(tree); complexity+=2; }
1702             public void visitIf(JCIf tree)
1703                 { super.visitIf(tree); complexity+=2; }
1704             // note: for break, continue, and return we don't take unwind() into account.
1705             public void visitBreak(JCBreak tree)
1706                 { super.visitBreak(tree); complexity+=1; }
1707             public void visitContinue(JCContinue tree)
1708                 { super.visitContinue(tree); complexity+=1; }
1709             public void visitReturn(JCReturn tree)
1710                 { super.visitReturn(tree); complexity+=1; }
1711             public void visitThrow(JCThrow tree)
1712                 { super.visitThrow(tree); complexity+=1; }
1713             public void visitAssert(JCAssert tree)
1714                 { super.visitAssert(tree); complexity+=5; }
1715             public void visitApply(JCMethodInvocation tree)
1716                 { super.visitApply(tree); complexity+=2; }
1717             public void visitNewClass(JCNewClass tree)
1718                 { scan(tree.encl); scan(tree.args); complexity+=2; }
1719             public void visitNewArray(JCNewArray tree)
1720                 { super.visitNewArray(tree); complexity+=5; }
1721             public void visitAssign(JCAssign tree)
1722                 { super.visitAssign(tree); complexity+=1; }
1723             public void visitAssignop(JCAssignOp tree)
1724                 { super.visitAssignop(tree); complexity+=2; }
1725             public void visitUnary(JCUnary tree)
1726                 { complexity+=1;
1727                   if (tree.type.constValue() == null) super.visitUnary(tree); }
1728             public void visitBinary(JCBinary tree)
1729                 { complexity+=1;
1730                   if (tree.type.constValue() == null) super.visitBinary(tree); }
1731             public void visitTypeTest(JCInstanceOf tree)
1732                 { super.visitTypeTest(tree); complexity+=1; }
1733             public void visitIndexed(JCArrayAccess tree)
1734                 { super.visitIndexed(tree); complexity+=1; }
1735             public void visitSelect(JCFieldAccess tree)
1736                 { super.visitSelect(tree);
1737                   if (tree.sym.kind == VAR) complexity+=1; }
1738             public void visitIdent(JCIdent tree) {
1739                 if (tree.sym.kind == VAR) {
1740                     complexity+=1;
1741                     if (tree.type.constValue() == null &&
1742                         tree.sym.owner.kind == TYP)
1743                         complexity+=1;
1744                 }
1745             }
1746             public void visitLiteral(JCLiteral tree)
1747                 { complexity+=1; }
1748             public void visitTree(JCTree tree) {}
1749             public void visitWildcard(JCWildcard tree) {
1750                 throw new AssertionError(this.getClass().getName());
1751             }
1752         }
1753         ComplexityScanner scanner = new ComplexityScanner();
1754         tree.accept(scanner);
1755         return scanner.complexity;
1756     }
1757 
1758     public void visitIf(JCIf tree) {
1759         int limit = code.nextreg;
1760         Chain thenExit = null;
1761         CondItem c = genCond(TreeInfo.skipParens(tree.cond),
1762                              CRT_FLOW_CONTROLLER);
1763         Chain elseChain = c.jumpFalse();
1764         if (!c.isFalse()) {
1765             code.resolve(c.trueJumps);
1766             genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
1767             thenExit = code.branch(goto_);
1768         }
1769         if (elseChain != null) {
1770             code.resolve(elseChain);
1771             if (tree.elsepart != null) {
1772                 genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
1773             }
1774         }
1775         code.resolve(thenExit);
1776         code.endScopes(limit);
1777     }
1778 
1779     public void visitExec(JCExpressionStatement tree) {
1780         // Optimize x++ to ++x and x-- to --x.
1781         JCExpression e = tree.expr;
1782         switch (e.getTag()) {
1783             case POSTINC:
1784                 ((JCUnary) e).setTag(PREINC);
1785                 break;
1786             case POSTDEC:
1787                 ((JCUnary) e).setTag(PREDEC);
1788                 break;
1789         }
1790         genExpr(tree.expr, tree.expr.type).drop();
1791     }
1792 
1793     public void visitBreak(JCBreak tree) {
1794         Env<GenContext> targetEnv = unwind(tree.target, env);
1795         Assert.check(code.state.stacksize == 0);
1796         targetEnv.info.addExit(code.branch(goto_));
1797         endFinalizerGaps(env, targetEnv);
1798     }
1799 
1800     public void visitContinue(JCContinue tree) {
1801         Env<GenContext> targetEnv = unwind(tree.target, env);
1802         Assert.check(code.state.stacksize == 0);
1803         targetEnv.info.addCont(code.branch(goto_));
1804         endFinalizerGaps(env, targetEnv);
1805     }
1806 
1807     public void visitReturn(JCReturn tree) {
1808         int limit = code.nextreg;
1809         final Env<GenContext> targetEnv;
1810 
1811         /* Save and then restore the location of the return in case a finally
1812          * is expanded (with unwind()) in the middle of our bytecodes.
1813          */
1814         int tmpPos = code.pendingStatPos;
1815         if (tree.expr != null) {
1816             Item r = genExpr(tree.expr, pt).load();
1817             if (hasFinally(env.enclMethod, env)) {
1818                 r = makeTemp(pt);
1819                 r.store();
1820             }
1821             targetEnv = unwind(env.enclMethod, env);
1822             code.pendingStatPos = tmpPos;
1823             r.load();
1824             code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
1825         } else {
1826             targetEnv = unwind(env.enclMethod, env);
1827             code.pendingStatPos = tmpPos;
1828             code.emitop0(return_);
1829         }
1830         endFinalizerGaps(env, targetEnv);
1831         code.endScopes(limit);
1832     }
1833 
1834     public void visitThrow(JCThrow tree) {
1835         genExpr(tree.expr, tree.expr.type).load();
1836         code.emitop0(athrow);
1837     }
1838 
1839 /* ************************************************************************
1840  * Visitor methods for expressions
1841  *************************************************************************/
1842 
1843     public void visitApply(JCMethodInvocation tree) {
1844         setTypeAnnotationPositions(tree.pos);
1845         // Generate code for method.
1846         Item m = genExpr(tree.meth, methodType);
1847         // Generate code for all arguments, where the expected types are
1848         // the parameters of the method's external type (that is, any implicit
1849         // outer instance of a super(...) call appears as first parameter).
1850         MethodSymbol msym = (MethodSymbol)TreeInfo.symbol(tree.meth);
1851         genArgs(tree.args,
1852                 msym.externalType(types).getParameterTypes());
1853         if (!msym.isDynamic()) {
1854             code.statBegin(tree.pos);
1855         }
1856         result = m.invoke();
1857     }
1858 
1859     public void visitConditional(JCConditional tree) {
1860         Chain thenExit = null;
1861         CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
1862         Chain elseChain = c.jumpFalse();
1863         if (!c.isFalse()) {
1864             code.resolve(c.trueJumps);
1865             int startpc = genCrt ? code.curCP() : 0;
1866             genExpr(tree.truepart, pt).load();
1867             code.state.forceStackTop(tree.type);
1868             if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
1869                                      startpc, code.curCP());
1870             thenExit = code.branch(goto_);
1871         }
1872         if (elseChain != null) {
1873             code.resolve(elseChain);
1874             int startpc = genCrt ? code.curCP() : 0;
1875             genExpr(tree.falsepart, pt).load();
1876             code.state.forceStackTop(tree.type);
1877             if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
1878                                      startpc, code.curCP());
1879         }
1880         code.resolve(thenExit);
1881         result = items.makeStackItem(pt);
1882     }
1883 
1884     private void setTypeAnnotationPositions(int treePos) {
1885         MethodSymbol meth = code.meth;
1886         boolean initOrClinit = code.meth.getKind() == javax.lang.model.element.ElementKind.CONSTRUCTOR
1887                 || code.meth.getKind() == javax.lang.model.element.ElementKind.STATIC_INIT;
1888 
1889         for (Attribute.TypeCompound ta : meth.getRawTypeAttributes()) {
1890             if (ta.hasUnknownPosition())
1891                 ta.tryFixPosition();
1892 
1893             if (ta.position.matchesPos(treePos))
1894                 ta.position.updatePosOffset(code.cp);
1895         }
1896 
1897         if (!initOrClinit)
1898             return;
1899 
1900         for (Attribute.TypeCompound ta : meth.owner.getRawTypeAttributes()) {
1901             if (ta.hasUnknownPosition())
1902                 ta.tryFixPosition();
1903 
1904             if (ta.position.matchesPos(treePos))
1905                 ta.position.updatePosOffset(code.cp);
1906         }
1907 
1908         ClassSymbol clazz = meth.enclClass();
1909         for (Symbol s : new com.sun.tools.javac.model.FilteredMemberList(clazz.members())) {
1910             if (!s.getKind().isField())
1911                 continue;
1912 
1913             for (Attribute.TypeCompound ta : s.getRawTypeAttributes()) {
1914                 if (ta.hasUnknownPosition())
1915                     ta.tryFixPosition();
1916 
1917                 if (ta.position.matchesPos(treePos))
1918                     ta.position.updatePosOffset(code.cp);
1919             }
1920         }
1921     }
1922 
1923     public void visitNewClass(JCNewClass tree) {
1924         // Enclosing instances or anonymous classes should have been eliminated
1925         // by now.
1926         Assert.check(tree.encl == null && tree.def == null);
1927         setTypeAnnotationPositions(tree.pos);
1928 
1929         code.emitop2(new_, makeRef(tree.pos(), tree.type));
1930         code.emitop0(dup);
1931 
1932         // Generate code for all arguments, where the expected types are
1933         // the parameters of the constructor's external type (that is,
1934         // any implicit outer instance appears as first parameter).
1935         genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
1936 
1937         items.makeMemberItem(tree.constructor, true).invoke();
1938         result = items.makeStackItem(tree.type);
1939     }
1940 
1941     public void visitNewArray(JCNewArray tree) {
1942         setTypeAnnotationPositions(tree.pos);
1943 
1944         if (tree.elems != null) {
1945             Type elemtype = types.elemtype(tree.type);
1946             loadIntConst(tree.elems.length());
1947             Item arr = makeNewArray(tree.pos(), tree.type, 1);
1948             int i = 0;
1949             for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
1950                 arr.duplicate();
1951                 loadIntConst(i);
1952                 i++;
1953                 genExpr(l.head, elemtype).load();
1954                 items.makeIndexedItem(elemtype).store();
1955             }
1956             result = arr;
1957         } else {
1958             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
1959                 genExpr(l.head, syms.intType).load();
1960             }
1961             result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
1962         }
1963     }
1964 //where
1965         /** Generate code to create an array with given element type and number
1966          *  of dimensions.
1967          */
1968         Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
1969             Type elemtype = types.elemtype(type);
1970             if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) {
1971                 log.error(pos, "limit.dimensions");
1972                 nerrs++;
1973             }
1974             int elemcode = Code.arraycode(elemtype);
1975             if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
1976                 code.emitAnewarray(makeRef(pos, elemtype), type);
1977             } else if (elemcode == 1) {
1978                 code.emitMultianewarray(ndims, makeRef(pos, type), type);
1979             } else {
1980                 code.emitNewarray(elemcode, type);
1981             }
1982             return items.makeStackItem(type);
1983         }
1984 
1985     public void visitParens(JCParens tree) {
1986         result = genExpr(tree.expr, tree.expr.type);
1987     }
1988 
1989     public void visitAssign(JCAssign tree) {
1990         Item l = genExpr(tree.lhs, tree.lhs.type);
1991         genExpr(tree.rhs, tree.lhs.type).load();
1992         result = items.makeAssignItem(l);
1993     }
1994 
1995     public void visitAssignop(JCAssignOp tree) {
1996         OperatorSymbol operator = (OperatorSymbol) tree.operator;
1997         Item l;
1998         if (operator.opcode == string_add) {
1999             // Generate code to make a string buffer
2000             makeStringBuffer(tree.pos());
2001 
2002             // Generate code for first string, possibly save one
2003             // copy under buffer
2004             l = genExpr(tree.lhs, tree.lhs.type);
2005             if (l.width() > 0) {
2006                 code.emitop0(dup_x1 + 3 * (l.width() - 1));
2007             }
2008 
2009             // Load first string and append to buffer.
2010             l.load();
2011             appendString(tree.lhs);
2012 
2013             // Append all other strings to buffer.
2014             appendStrings(tree.rhs);
2015 
2016             // Convert buffer to string.
2017             bufferToString(tree.pos());
2018         } else {
2019             // Generate code for first expression
2020             l = genExpr(tree.lhs, tree.lhs.type);
2021 
2022             // If we have an increment of -32768 to +32767 of a local
2023             // int variable we can use an incr instruction instead of
2024             // proceeding further.
2025             if ((tree.hasTag(PLUS_ASG) || tree.hasTag(MINUS_ASG)) &&
2026                 l instanceof LocalItem &&
2027                 tree.lhs.type.getTag().isSubRangeOf(INT) &&
2028                 tree.rhs.type.getTag().isSubRangeOf(INT) &&
2029                 tree.rhs.type.constValue() != null) {
2030                 int ival = ((Number) tree.rhs.type.constValue()).intValue();
2031                 if (tree.hasTag(MINUS_ASG)) ival = -ival;
2032                 ((LocalItem)l).incr(ival);
2033                 result = l;
2034                 return;
2035             }
2036             // Otherwise, duplicate expression, load one copy
2037             // and complete binary operation.
2038             l.duplicate();
2039             l.coerce(operator.type.getParameterTypes().head).load();
2040             completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
2041         }
2042         result = items.makeAssignItem(l);
2043     }
2044 
2045     public void visitUnary(JCUnary tree) {
2046         OperatorSymbol operator = (OperatorSymbol)tree.operator;
2047         if (tree.hasTag(NOT)) {
2048             CondItem od = genCond(tree.arg, false);
2049             result = od.negate();
2050         } else {
2051             Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
2052             switch (tree.getTag()) {
2053             case POS:
2054                 result = od.load();
2055                 break;
2056             case NEG:
2057                 result = od.load();
2058                 code.emitop0(operator.opcode);
2059                 break;
2060             case COMPL:
2061                 result = od.load();
2062                 emitMinusOne(od.typecode);
2063                 code.emitop0(operator.opcode);
2064                 break;
2065             case PREINC: case PREDEC:
2066                 od.duplicate();
2067                 if (od instanceof LocalItem &&
2068                     (operator.opcode == iadd || operator.opcode == isub)) {
2069                     ((LocalItem)od).incr(tree.hasTag(PREINC) ? 1 : -1);
2070                     result = od;
2071                 } else {
2072                     od.load();
2073                     code.emitop0(one(od.typecode));
2074                     code.emitop0(operator.opcode);
2075                     // Perform narrowing primitive conversion if byte,
2076                     // char, or short.  Fix for 4304655.
2077                     if (od.typecode != INTcode &&
2078                         Code.truncate(od.typecode) == INTcode)
2079                       code.emitop0(int2byte + od.typecode - BYTEcode);
2080                     result = items.makeAssignItem(od);
2081                 }
2082                 break;
2083             case POSTINC: case POSTDEC:
2084                 od.duplicate();
2085                 if (od instanceof LocalItem &&
2086                     (operator.opcode == iadd || operator.opcode == isub)) {
2087                     Item res = od.load();
2088                     ((LocalItem)od).incr(tree.hasTag(POSTINC) ? 1 : -1);
2089                     result = res;
2090                 } else {
2091                     Item res = od.load();
2092                     od.stash(od.typecode);
2093                     code.emitop0(one(od.typecode));
2094                     code.emitop0(operator.opcode);
2095                     // Perform narrowing primitive conversion if byte,
2096                     // char, or short.  Fix for 4304655.
2097                     if (od.typecode != INTcode &&
2098                         Code.truncate(od.typecode) == INTcode)
2099                       code.emitop0(int2byte + od.typecode - BYTEcode);
2100                     od.store();
2101                     result = res;
2102                 }
2103                 break;
2104             case NULLCHK:
2105                 result = od.load();
2106                 code.emitop0(dup);
2107                 genNullCheck(tree.pos());
2108                 break;
2109             default:
2110                 Assert.error();
2111             }
2112         }
2113     }
2114 
2115     /** Generate a null check from the object value at stack top. */
2116     private void genNullCheck(DiagnosticPosition pos) {
2117         callMethod(pos, syms.objectType, names.getClass,
2118                    List.<Type>nil(), false);
2119         code.emitop0(pop);
2120     }
2121 
2122     public void visitBinary(JCBinary tree) {
2123         OperatorSymbol operator = (OperatorSymbol)tree.operator;
2124         if (operator.opcode == string_add) {
2125             // Create a string buffer.
2126             makeStringBuffer(tree.pos());
2127             // Append all strings to buffer.
2128             appendStrings(tree);
2129             // Convert buffer to string.
2130             bufferToString(tree.pos());
2131             result = items.makeStackItem(syms.stringType);
2132         } else if (tree.hasTag(AND)) {
2133             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2134             if (!lcond.isFalse()) {
2135                 Chain falseJumps = lcond.jumpFalse();
2136                 code.resolve(lcond.trueJumps);
2137                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2138                 result = items.
2139                     makeCondItem(rcond.opcode,
2140                                  rcond.trueJumps,
2141                                  Code.mergeChains(falseJumps,
2142                                                   rcond.falseJumps));
2143             } else {
2144                 result = lcond;
2145             }
2146         } else if (tree.hasTag(OR)) {
2147             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2148             if (!lcond.isTrue()) {
2149                 Chain trueJumps = lcond.jumpTrue();
2150                 code.resolve(lcond.falseJumps);
2151                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2152                 result = items.
2153                     makeCondItem(rcond.opcode,
2154                                  Code.mergeChains(trueJumps, rcond.trueJumps),
2155                                  rcond.falseJumps);
2156             } else {
2157                 result = lcond;
2158             }
2159         } else {
2160             Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
2161             od.load();
2162             result = completeBinop(tree.lhs, tree.rhs, operator);
2163         }
2164     }
2165 //where
2166         /** Make a new string buffer.
2167          */
2168         void makeStringBuffer(DiagnosticPosition pos) {
2169             code.emitop2(new_, makeRef(pos, stringBufferType));
2170             code.emitop0(dup);
2171             callMethod(
2172                 pos, stringBufferType, names.init, List.<Type>nil(), false);
2173         }
2174 
2175         /** Append value (on tos) to string buffer (on tos - 1).
2176          */
2177         void appendString(JCTree tree) {
2178             Type t = tree.type.baseType();
2179             if (!t.isPrimitive() && t.tsym != syms.stringType.tsym) {
2180                 t = syms.objectType;
2181             }
2182             items.makeMemberItem(getStringBufferAppend(tree, t), false).invoke();
2183         }
2184         Symbol getStringBufferAppend(JCTree tree, Type t) {
2185             Assert.checkNull(t.constValue());
2186             Symbol method = stringBufferAppend.get(t);
2187             if (method == null) {
2188                 method = rs.resolveInternalMethod(tree.pos(),
2189                                                   attrEnv,
2190                                                   stringBufferType,
2191                                                   names.append,
2192                                                   List.of(t),
2193                                                   null);
2194                 stringBufferAppend.put(t, method);
2195             }
2196             return method;
2197         }
2198 
2199         /** Add all strings in tree to string buffer.
2200          */
2201         void appendStrings(JCTree tree) {
2202             tree = TreeInfo.skipParens(tree);
2203             if (tree.hasTag(PLUS) && tree.type.constValue() == null) {
2204                 JCBinary op = (JCBinary) tree;
2205                 if (op.operator.kind == MTH &&
2206                     ((OperatorSymbol) op.operator).opcode == string_add) {
2207                     appendStrings(op.lhs);
2208                     appendStrings(op.rhs);
2209                     return;
2210                 }
2211             }
2212             genExpr(tree, tree.type).load();
2213             appendString(tree);
2214         }
2215 
2216         /** Convert string buffer on tos to string.
2217          */
2218         void bufferToString(DiagnosticPosition pos) {
2219             callMethod(
2220                 pos,
2221                 stringBufferType,
2222                 names.toString,
2223                 List.<Type>nil(),
2224                 false);
2225         }
2226 
2227         /** Complete generating code for operation, with left operand
2228          *  already on stack.
2229          *  @param lhs       The tree representing the left operand.
2230          *  @param rhs       The tree representing the right operand.
2231          *  @param operator  The operator symbol.
2232          */
2233         Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
2234             MethodType optype = (MethodType)operator.type;
2235             int opcode = operator.opcode;
2236             if (opcode >= if_icmpeq && opcode <= if_icmple &&
2237                 rhs.type.constValue() instanceof Number &&
2238                 ((Number) rhs.type.constValue()).intValue() == 0) {
2239                 opcode = opcode + (ifeq - if_icmpeq);
2240             } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
2241                        TreeInfo.isNull(rhs)) {
2242                 opcode = opcode + (if_acmp_null - if_acmpeq);
2243             } else {
2244                 // The expected type of the right operand is
2245                 // the second parameter type of the operator, except for
2246                 // shifts with long shiftcount, where we convert the opcode
2247                 // to a short shift and the expected type to int.
2248                 Type rtype = operator.erasure(types).getParameterTypes().tail.head;
2249                 if (opcode >= ishll && opcode <= lushrl) {
2250                     opcode = opcode + (ishl - ishll);
2251                     rtype = syms.intType;
2252                 }
2253                 // Generate code for right operand and load.
2254                 genExpr(rhs, rtype).load();
2255                 // If there are two consecutive opcode instructions,
2256                 // emit the first now.
2257                 if (opcode >= (1 << preShift)) {
2258                     code.emitop0(opcode >> preShift);
2259                     opcode = opcode & 0xFF;
2260                 }
2261             }
2262             if (opcode >= ifeq && opcode <= if_acmpne ||
2263                 opcode == if_acmp_null || opcode == if_acmp_nonnull) {
2264                 return items.makeCondItem(opcode);
2265             } else {
2266                 code.emitop0(opcode);
2267                 return items.makeStackItem(optype.restype);
2268             }
2269         }
2270 
2271     public void visitTypeCast(JCTypeCast tree) {
2272         setTypeAnnotationPositions(tree.pos);
2273         result = genExpr(tree.expr, tree.clazz.type).load();
2274         // Additional code is only needed if we cast to a reference type
2275         // which is not statically a supertype of the expression's type.
2276         // For basic types, the coerce(...) in genExpr(...) will do
2277         // the conversion.
2278         if (!tree.clazz.type.isPrimitive() &&
2279             types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) {
2280             code.emitop2(checkcast, makeRef(tree.pos(), tree.clazz.type));
2281         }
2282     }
2283 
2284     public void visitWildcard(JCWildcard tree) {
2285         throw new AssertionError(this.getClass().getName());
2286     }
2287 
2288     public void visitTypeTest(JCInstanceOf tree) {
2289         setTypeAnnotationPositions(tree.pos);
2290         genExpr(tree.expr, tree.expr.type).load();
2291         code.emitop2(instanceof_, makeRef(tree.pos(), tree.clazz.type));
2292         result = items.makeStackItem(syms.booleanType);
2293     }
2294 
2295     public void visitIndexed(JCArrayAccess tree) {
2296         genExpr(tree.indexed, tree.indexed.type).load();
2297         genExpr(tree.index, syms.intType).load();
2298         result = items.makeIndexedItem(tree.type);
2299     }
2300 
2301     public void visitIdent(JCIdent tree) {
2302         Symbol sym = tree.sym;
2303         if (tree.name == names._this || tree.name == names._super) {
2304             Item res = tree.name == names._this
2305                 ? items.makeThisItem()
2306                 : items.makeSuperItem();
2307             if (sym.kind == MTH) {
2308                 // Generate code to address the constructor.
2309                 res.load();
2310                 res = items.makeMemberItem(sym, true);
2311             }
2312             result = res;
2313         } else if (sym.kind == VAR && sym.owner.kind == MTH) {
2314             result = items.makeLocalItem((VarSymbol)sym);
2315         } else if (isInvokeDynamic(sym)) {
2316             result = items.makeDynamicItem(sym);
2317         } else if ((sym.flags() & STATIC) != 0) {
2318             if (!isAccessSuper(env.enclMethod))
2319                 sym = binaryQualifier(sym, env.enclClass.type);
2320             result = items.makeStaticItem(sym);
2321         } else {
2322             items.makeThisItem().load();
2323             sym = binaryQualifier(sym, env.enclClass.type);
2324             result = items.makeMemberItem(sym, (sym.flags() & PRIVATE) != 0);
2325         }
2326     }
2327 
2328     public void visitSelect(JCFieldAccess tree) {
2329         Symbol sym = tree.sym;
2330 
2331         if (tree.name == names._class) {
2332             Assert.check(target.hasClassLiterals());
2333             code.emitLdc(makeRef(tree.pos(), tree.selected.type));
2334             result = items.makeStackItem(pt);
2335             return;
2336        }
2337 
2338         Symbol ssym = TreeInfo.symbol(tree.selected);
2339 
2340         // Are we selecting via super?
2341         boolean selectSuper =
2342             ssym != null && (ssym.kind == TYP || ssym.name == names._super);
2343 
2344         // Are we accessing a member of the superclass in an access method
2345         // resulting from a qualified super?
2346         boolean accessSuper = isAccessSuper(env.enclMethod);
2347 
2348         Item base = (selectSuper)
2349             ? items.makeSuperItem()
2350             : genExpr(tree.selected, tree.selected.type);
2351 
2352         if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
2353             // We are seeing a variable that is constant but its selecting
2354             // expression is not.
2355             if ((sym.flags() & STATIC) != 0) {
2356                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2357                     base = base.load();
2358                 base.drop();
2359             } else {
2360                 base.load();
2361                 genNullCheck(tree.selected.pos());
2362             }
2363             result = items.
2364                 makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
2365         } else {
2366             if (isInvokeDynamic(sym)) {
2367                 result = items.makeDynamicItem(sym);
2368                 return;
2369             } else {
2370                 sym = binaryQualifier(sym, tree.selected.type);
2371             }
2372             if ((sym.flags() & STATIC) != 0) {
2373                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2374                     base = base.load();
2375                 base.drop();
2376                 result = items.makeStaticItem(sym);
2377             } else {
2378                 base.load();
2379                 if (sym == syms.lengthVar) {
2380                     code.emitop0(arraylength);
2381                     result = items.makeStackItem(syms.intType);
2382                 } else {
2383                     result = items.
2384                         makeMemberItem(sym,
2385                                        (sym.flags() & PRIVATE) != 0 ||
2386                                        selectSuper || accessSuper);
2387                 }
2388             }
2389         }
2390     }
2391 
2392     public boolean isInvokeDynamic(Symbol sym) {
2393         return sym.kind == MTH && ((MethodSymbol)sym).isDynamic();
2394     }
2395 
2396     public void visitLiteral(JCLiteral tree) {
2397         if (tree.type.hasTag(BOT)) {
2398             code.emitop0(aconst_null);
2399             if (types.dimensions(pt) > 1) {
2400                 code.emitop2(checkcast, makeRef(tree.pos(), pt));
2401                 result = items.makeStackItem(pt);
2402             } else {
2403                 result = items.makeStackItem(tree.type);
2404             }
2405         }
2406         else
2407             result = items.makeImmediateItem(tree.type, tree.value);
2408     }
2409 
2410     public void visitLetExpr(LetExpr tree) {
2411         int limit = code.nextreg;
2412         genStats(tree.defs, env);
2413         result = genExpr(tree.expr, tree.expr.type).load();
2414         code.endScopes(limit);
2415     }
2416 
2417     private void generateReferencesToPrunedTree(ClassSymbol classSymbol, Pool pool) {
2418         List<JCTree> prunedInfo = lower.prunedTree.get(classSymbol);
2419         if (prunedInfo != null) {
2420             for (JCTree prunedTree: prunedInfo) {
2421                 prunedTree.accept(classReferenceVisitor);
2422             }
2423         }
2424     }
2425 
2426 /* ************************************************************************
2427  * main method
2428  *************************************************************************/
2429 
2430     /** Generate code for a class definition.
2431      *  @param env   The attribution environment that belongs to the
2432      *               outermost class containing this class definition.
2433      *               We need this for resolving some additional symbols.
2434      *  @param cdef  The tree representing the class definition.
2435      *  @return      True if code is generated with no errors.
2436      */
2437     public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
2438         try {
2439             attrEnv = env;
2440             ClassSymbol c = cdef.sym;
2441             this.toplevel = env.toplevel;
2442             this.endPosTable = toplevel.endPositions;
2443             // If this is a class definition requiring Miranda methods,
2444             // add them.
2445             if (generateIproxies &&
2446                 (c.flags() & (INTERFACE|ABSTRACT)) == ABSTRACT
2447                 && !allowGenerics // no Miranda methods available with generics
2448                 )
2449                 implementInterfaceMethods(c);
2450             c.pool = pool;
2451             pool.reset();
2452             /* method normalizeDefs() can add references to external classes into the constant pool
2453              * so it should be called after pool.reset()
2454              */
2455             cdef.defs = normalizeDefs(cdef.defs, c);
2456             generateReferencesToPrunedTree(c, pool);
2457             Env<GenContext> localEnv =
2458                 new Env<GenContext>(cdef, new GenContext());
2459             localEnv.toplevel = env.toplevel;
2460             localEnv.enclClass = cdef;
2461 
2462             for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2463                 genDef(l.head, localEnv);
2464             }
2465             if (pool.numEntries() > Pool.MAX_ENTRIES) {
2466                 log.error(cdef.pos(), "limit.pool");
2467                 nerrs++;
2468             }
2469             if (nerrs != 0) {
2470                 // if errors, discard code
2471                 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2472                     if (l.head.hasTag(METHODDEF))
2473                         ((JCMethodDecl) l.head).sym.code = null;
2474                 }
2475             }
2476             cdef.defs = List.nil(); // discard trees
2477             return nerrs == 0;
2478         } finally {
2479             // note: this method does NOT support recursion.
2480             attrEnv = null;
2481             this.env = null;
2482             toplevel = null;
2483             endPosTable = null;
2484             nerrs = 0;
2485         }
2486     }
2487 
2488 /* ************************************************************************
2489  * Auxiliary classes
2490  *************************************************************************/
2491 
2492     /** An abstract class for finalizer generation.
2493      */
2494     abstract class GenFinalizer {
2495         /** Generate code to clean up when unwinding. */
2496         abstract void gen();
2497 
2498         /** Generate code to clean up at last. */
2499         abstract void genLast();
2500 
2501         /** Does this finalizer have some nontrivial cleanup to perform? */
2502         boolean hasFinalizer() { return true; }
2503     }
2504 
2505     /** code generation contexts,
2506      *  to be used as type parameter for environments.
2507      */
2508     static class GenContext {
2509 
2510         /** A chain for all unresolved jumps that exit the current environment.
2511          */
2512         Chain exit = null;
2513 
2514         /** A chain for all unresolved jumps that continue in the
2515          *  current environment.
2516          */
2517         Chain cont = null;
2518 
2519         /** A closure that generates the finalizer of the current environment.
2520          *  Only set for Synchronized and Try contexts.
2521          */
2522         GenFinalizer finalize = null;
2523 
2524         /** Is this a switch statement?  If so, allocate registers
2525          * even when the variable declaration is unreachable.
2526          */
2527         boolean isSwitch = false;
2528 
2529         /** A list buffer containing all gaps in the finalizer range,
2530          *  where a catch all exception should not apply.
2531          */
2532         ListBuffer<Integer> gaps = null;
2533 
2534         /** Add given chain to exit chain.
2535          */
2536         void addExit(Chain c)  {
2537             exit = Code.mergeChains(c, exit);
2538         }
2539 
2540         /** Add given chain to cont chain.
2541          */
2542         void addCont(Chain c) {
2543             cont = Code.mergeChains(c, cont);
2544         }
2545     }
2546 
2547 }