1 /*
   2  * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import jdk.internal.math.FloatingDecimal;
  29 import java.util.Arrays;
  30 import java.util.Spliterator;
  31 import java.util.stream.IntStream;
  32 import java.util.stream.StreamSupport;
  33 
  34 import static java.lang.String.COMPACT_STRINGS;
  35 import static java.lang.String.UTF16;
  36 import static java.lang.String.LATIN1;
  37 import static java.lang.String.checkIndex;
  38 import static java.lang.String.checkOffset;
  39 
  40 /**
  41  * A mutable sequence of characters.
  42  * <p>
  43  * Implements a modifiable string. At any point in time it contains some
  44  * particular sequence of characters, but the length and content of the
  45  * sequence can be changed through certain method calls.
  46  *
  47  * <p>Unless otherwise noted, passing a {@code null} argument to a constructor
  48  * or method in this class will cause a {@link NullPointerException} to be
  49  * thrown.
  50  *
  51  * @author      Michael McCloskey
  52  * @author      Martin Buchholz
  53  * @author      Ulf Zibis
  54  * @since       1.5
  55  */
  56 abstract class AbstractStringBuilder implements Appendable, CharSequence {
  57     /**
  58      * The value is used for character storage.
  59      */
  60     byte[] value;
  61 
  62     /**
  63      * The id of the encoding used to encode the bytes in {@code value}.
  64      */
  65     byte coder;
  66 
  67     /**
  68      * The count is the number of characters used.
  69      */
  70     int count;
  71 
  72     private static final byte[] EMPTYVALUE = new byte[0];
  73 
  74     /**
  75      * This no-arg constructor is necessary for serialization of subclasses.
  76      */
  77     AbstractStringBuilder() {
  78         value = EMPTYVALUE;
  79     }
  80 
  81     /**
  82      * Creates an AbstractStringBuilder of the specified capacity.
  83      */
  84     AbstractStringBuilder(int capacity) {
  85         if (COMPACT_STRINGS) {
  86             value = new byte[capacity];
  87             coder = LATIN1;
  88         } else {
  89             value = StringUTF16.newBytesFor(capacity);
  90             coder = UTF16;
  91         }
  92     }
  93 
  94     /**
  95      * Creates an AbstractStringBuilder with the specified coder and with
  96      * the initial capacity equal to the smaller of (length + addition)
  97      * and Integer.MAX_VALUE.
  98      */
  99     AbstractStringBuilder(byte coderHint, int length, int addition) {
 100         if (length < 0) {
 101             throw new NegativeArraySizeException("Negative length: " + length);
 102         }
 103         int capacity = (length < Integer.MAX_VALUE - addition)
 104                 ? length + addition : Integer.MAX_VALUE;
 105         if (COMPACT_STRINGS && coderHint == LATIN1) {
 106             value = new byte[capacity];
 107             coder = LATIN1;
 108         } else {
 109             value = StringUTF16.newBytesFor(capacity);
 110             coder = UTF16;
 111         }
 112     }
 113 
 114     /**
 115      * Compares the objects of two AbstractStringBuilder implementations lexicographically.
 116      *
 117      * @since 11
 118      */
 119     int compareTo(AbstractStringBuilder another) {
 120         if (this == another) {
 121             return 0;
 122         }
 123 
 124         byte val1[] = value;
 125         byte val2[] = another.value;
 126         int count1 = this.count;
 127         int count2 = another.count;
 128 
 129         if (coder == another.coder) {
 130             return isLatin1() ? StringLatin1.compareTo(val1, val2, count1, count2)
 131                               : StringUTF16.compareTo(val1, val2, count1, count2);
 132         }
 133         return isLatin1() ? StringLatin1.compareToUTF16(val1, val2, count1, count2)
 134                           : StringUTF16.compareToLatin1(val1, val2, count1, count2);
 135     }
 136 
 137     /**
 138      * Returns the length (character count).
 139      *
 140      * @return  the length of the sequence of characters currently
 141      *          represented by this object
 142      */
 143     @Override
 144     public int length() {
 145         return count;
 146     }
 147 
 148     /**
 149      * Returns the current capacity. The capacity is the amount of storage
 150      * available for newly inserted characters, beyond which an allocation
 151      * will occur.
 152      *
 153      * @return  the current capacity
 154      */
 155     public int capacity() {
 156         return value.length >> coder;
 157     }
 158 
 159     /**
 160      * Ensures that the capacity is at least equal to the specified minimum.
 161      * If the current capacity is less than the argument, then a new internal
 162      * array is allocated with greater capacity. The new capacity is the
 163      * larger of:
 164      * <ul>
 165      * <li>The {@code minimumCapacity} argument.
 166      * <li>Twice the old capacity, plus {@code 2}.
 167      * </ul>
 168      * If the {@code minimumCapacity} argument is nonpositive, this
 169      * method takes no action and simply returns.
 170      * Note that subsequent operations on this object can reduce the
 171      * actual capacity below that requested here.
 172      *
 173      * @param   minimumCapacity   the minimum desired capacity.
 174      */
 175     public void ensureCapacity(int minimumCapacity) {
 176         if (minimumCapacity > 0) {
 177             ensureCapacityInternal(minimumCapacity);
 178         }
 179     }
 180 
 181     /**
 182      * For positive values of {@code minimumCapacity}, this method
 183      * behaves like {@code ensureCapacity}, however it is never
 184      * synchronized.
 185      * If {@code minimumCapacity} is non positive due to numeric
 186      * overflow, this method throws {@code OutOfMemoryError}.
 187      */
 188     private void ensureCapacityInternal(int minimumCapacity) {
 189         // overflow-conscious code
 190         int oldCapacity = value.length >> coder;
 191         if (minimumCapacity - oldCapacity > 0) {
 192             value = Arrays.copyOf(value,
 193                     newCapacity(minimumCapacity) << coder);
 194         }
 195     }
 196 
 197     /**
 198      * The maximum size of array to allocate (unless necessary).
 199      * Some VMs reserve some header words in an array.
 200      * Attempts to allocate larger arrays may result in
 201      * OutOfMemoryError: Requested array size exceeds VM limit
 202      */
 203     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
 204 
 205     /**
 206      * Returns a capacity at least as large as the given minimum capacity.
 207      * Returns the current capacity increased by the same amount + 2 if
 208      * that suffices.
 209      * Will not return a capacity greater than
 210      * {@code (MAX_ARRAY_SIZE >> coder)} unless the given minimum capacity
 211      * is greater than that.
 212      *
 213      * @param  minCapacity the desired minimum capacity
 214      * @throws OutOfMemoryError if minCapacity is less than zero or
 215      *         greater than (Integer.MAX_VALUE >> coder)
 216      */
 217     private int newCapacity(int minCapacity) {
 218         // overflow-conscious code
 219         int oldCapacity = value.length >> coder;
 220         int newCapacity = (oldCapacity << 1) + 2;
 221         if (newCapacity - minCapacity < 0) {
 222             newCapacity = minCapacity;
 223         }
 224         int SAFE_BOUND = MAX_ARRAY_SIZE >> coder;
 225         return (newCapacity <= 0 || SAFE_BOUND - newCapacity < 0)
 226             ? hugeCapacity(minCapacity)
 227             : newCapacity;
 228     }
 229 
 230     private int hugeCapacity(int minCapacity) {
 231         int SAFE_BOUND = MAX_ARRAY_SIZE >> coder;
 232         int UNSAFE_BOUND = Integer.MAX_VALUE >> coder;
 233         if (UNSAFE_BOUND - minCapacity < 0) { // overflow
 234             throw new OutOfMemoryError();
 235         }
 236         return (minCapacity > SAFE_BOUND)
 237             ? minCapacity : SAFE_BOUND;
 238     }
 239 
 240     /**
 241      * If the coder is "isLatin1", this inflates the internal 8-bit storage
 242      * to 16-bit <hi=0, low> pair storage.
 243      */
 244     private void inflate() {
 245         if (!isLatin1()) {
 246             return;
 247         }
 248         byte[] buf = StringUTF16.newBytesFor(value.length);
 249         StringLatin1.inflate(value, 0, buf, 0, count);
 250         this.value = buf;
 251         this.coder = UTF16;
 252     }
 253 
 254     /**
 255      * Attempts to reduce storage used for the character sequence.
 256      * If the buffer is larger than necessary to hold its current sequence of
 257      * characters, then it may be resized to become more space efficient.
 258      * Calling this method may, but is not required to, affect the value
 259      * returned by a subsequent call to the {@link #capacity()} method.
 260      */
 261     public void trimToSize() {
 262         int length = count << coder;
 263         if (length < value.length) {
 264             value = Arrays.copyOf(value, length);
 265         }
 266     }
 267 
 268     /**
 269      * Sets the length of the character sequence.
 270      * The sequence is changed to a new character sequence
 271      * whose length is specified by the argument. For every nonnegative
 272      * index <i>k</i> less than {@code newLength}, the character at
 273      * index <i>k</i> in the new character sequence is the same as the
 274      * character at index <i>k</i> in the old sequence if <i>k</i> is less
 275      * than the length of the old character sequence; otherwise, it is the
 276      * null character {@code '\u005Cu0000'}.
 277      *
 278      * In other words, if the {@code newLength} argument is less than
 279      * the current length, the length is changed to the specified length.
 280      * <p>
 281      * If the {@code newLength} argument is greater than or equal
 282      * to the current length, sufficient null characters
 283      * ({@code '\u005Cu0000'}) are appended so that
 284      * length becomes the {@code newLength} argument.
 285      * <p>
 286      * The {@code newLength} argument must be greater than or equal
 287      * to {@code 0}.
 288      *
 289      * @param      newLength   the new length
 290      * @throws     IndexOutOfBoundsException  if the
 291      *               {@code newLength} argument is negative.
 292      */
 293     public void setLength(int newLength) {
 294         if (newLength < 0) {
 295             throw new StringIndexOutOfBoundsException(newLength);
 296         }
 297         ensureCapacityInternal(newLength);
 298         if (count < newLength) {
 299             if (isLatin1()) {
 300                 StringLatin1.fillNull(value, count, newLength);
 301             } else {
 302                 StringUTF16.fillNull(value, count, newLength);
 303             }
 304         }
 305         count = newLength;
 306     }
 307 
 308     /**
 309      * Returns the {@code char} value in this sequence at the specified index.
 310      * The first {@code char} value is at index {@code 0}, the next at index
 311      * {@code 1}, and so on, as in array indexing.
 312      * <p>
 313      * The index argument must be greater than or equal to
 314      * {@code 0}, and less than the length of this sequence.
 315      *
 316      * <p>If the {@code char} value specified by the index is a
 317      * <a href="Character.html#unicode">surrogate</a>, the surrogate
 318      * value is returned.
 319      *
 320      * @param      index   the index of the desired {@code char} value.
 321      * @return     the {@code char} value at the specified index.
 322      * @throws     IndexOutOfBoundsException  if {@code index} is
 323      *             negative or greater than or equal to {@code length()}.
 324      */
 325     @Override
 326     public char charAt(int index) {
 327         checkIndex(index, count);
 328         if (isLatin1()) {
 329             return (char)(value[index] & 0xff);
 330         }
 331         return StringUTF16.charAt(value, index);
 332     }
 333 
 334     /**
 335      * Returns the character (Unicode code point) at the specified
 336      * index. The index refers to {@code char} values
 337      * (Unicode code units) and ranges from {@code 0} to
 338      * {@link #length()}{@code  - 1}.
 339      *
 340      * <p> If the {@code char} value specified at the given index
 341      * is in the high-surrogate range, the following index is less
 342      * than the length of this sequence, and the
 343      * {@code char} value at the following index is in the
 344      * low-surrogate range, then the supplementary code point
 345      * corresponding to this surrogate pair is returned. Otherwise,
 346      * the {@code char} value at the given index is returned.
 347      *
 348      * @param      index the index to the {@code char} values
 349      * @return     the code point value of the character at the
 350      *             {@code index}
 351      * @throws     IndexOutOfBoundsException  if the {@code index}
 352      *             argument is negative or not less than the length of this
 353      *             sequence.
 354      */
 355     public int codePointAt(int index) {
 356         int count = this.count;
 357         byte[] value = this.value;
 358         checkIndex(index, count);
 359         if (isLatin1()) {
 360             return value[index] & 0xff;
 361         }
 362         return StringUTF16.codePointAtSB(value, index, count);
 363     }
 364 
 365     /**
 366      * Returns the character (Unicode code point) before the specified
 367      * index. The index refers to {@code char} values
 368      * (Unicode code units) and ranges from {@code 1} to {@link
 369      * #length()}.
 370      *
 371      * <p> If the {@code char} value at {@code (index - 1)}
 372      * is in the low-surrogate range, {@code (index - 2)} is not
 373      * negative, and the {@code char} value at {@code (index -
 374      * 2)} is in the high-surrogate range, then the
 375      * supplementary code point value of the surrogate pair is
 376      * returned. If the {@code char} value at {@code index -
 377      * 1} is an unpaired low-surrogate or a high-surrogate, the
 378      * surrogate value is returned.
 379      *
 380      * @param     index the index following the code point that should be returned
 381      * @return    the Unicode code point value before the given index.
 382      * @throws    IndexOutOfBoundsException if the {@code index}
 383      *            argument is less than 1 or greater than the length
 384      *            of this sequence.
 385      */
 386     public int codePointBefore(int index) {
 387         int i = index - 1;
 388         if (i < 0 || i >= count) {
 389             throw new StringIndexOutOfBoundsException(index);
 390         }
 391         if (isLatin1()) {
 392             return value[i] & 0xff;
 393         }
 394         return StringUTF16.codePointBeforeSB(value, index);
 395     }
 396 
 397     /**
 398      * Returns the number of Unicode code points in the specified text
 399      * range of this sequence. The text range begins at the specified
 400      * {@code beginIndex} and extends to the {@code char} at
 401      * index {@code endIndex - 1}. Thus the length (in
 402      * {@code char}s) of the text range is
 403      * {@code endIndex-beginIndex}. Unpaired surrogates within
 404      * this sequence count as one code point each.
 405      *
 406      * @param beginIndex the index to the first {@code char} of
 407      * the text range.
 408      * @param endIndex the index after the last {@code char} of
 409      * the text range.
 410      * @return the number of Unicode code points in the specified text
 411      * range
 412      * @throws    IndexOutOfBoundsException if the
 413      * {@code beginIndex} is negative, or {@code endIndex}
 414      * is larger than the length of this sequence, or
 415      * {@code beginIndex} is larger than {@code endIndex}.
 416      */
 417     public int codePointCount(int beginIndex, int endIndex) {
 418         if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) {
 419             throw new IndexOutOfBoundsException();
 420         }
 421         if (isLatin1()) {
 422             return endIndex - beginIndex;
 423         }
 424         return StringUTF16.codePointCountSB(value, beginIndex, endIndex);
 425     }
 426 
 427     /**
 428      * Returns the index within this sequence that is offset from the
 429      * given {@code index} by {@code codePointOffset} code
 430      * points. Unpaired surrogates within the text range given by
 431      * {@code index} and {@code codePointOffset} count as
 432      * one code point each.
 433      *
 434      * @param index the index to be offset
 435      * @param codePointOffset the offset in code points
 436      * @return the index within this sequence
 437      * @throws    IndexOutOfBoundsException if {@code index}
 438      *   is negative or larger then the length of this sequence,
 439      *   or if {@code codePointOffset} is positive and the subsequence
 440      *   starting with {@code index} has fewer than
 441      *   {@code codePointOffset} code points,
 442      *   or if {@code codePointOffset} is negative and the subsequence
 443      *   before {@code index} has fewer than the absolute value of
 444      *   {@code codePointOffset} code points.
 445      */
 446     public int offsetByCodePoints(int index, int codePointOffset) {
 447         if (index < 0 || index > count) {
 448             throw new IndexOutOfBoundsException();
 449         }
 450         return Character.offsetByCodePoints(this,
 451                                             index, codePointOffset);
 452     }
 453 
 454     /**
 455      * Characters are copied from this sequence into the
 456      * destination character array {@code dst}. The first character to
 457      * be copied is at index {@code srcBegin}; the last character to
 458      * be copied is at index {@code srcEnd-1}. The total number of
 459      * characters to be copied is {@code srcEnd-srcBegin}. The
 460      * characters are copied into the subarray of {@code dst} starting
 461      * at index {@code dstBegin} and ending at index:
 462      * <pre>{@code
 463      * dstbegin + (srcEnd-srcBegin) - 1
 464      * }</pre>
 465      *
 466      * @param      srcBegin   start copying at this offset.
 467      * @param      srcEnd     stop copying at this offset.
 468      * @param      dst        the array to copy the data into.
 469      * @param      dstBegin   offset into {@code dst}.
 470      * @throws     IndexOutOfBoundsException  if any of the following is true:
 471      *             <ul>
 472      *             <li>{@code srcBegin} is negative
 473      *             <li>{@code dstBegin} is negative
 474      *             <li>the {@code srcBegin} argument is greater than
 475      *             the {@code srcEnd} argument.
 476      *             <li>{@code srcEnd} is greater than
 477      *             {@code this.length()}.
 478      *             <li>{@code dstBegin+srcEnd-srcBegin} is greater than
 479      *             {@code dst.length}
 480      *             </ul>
 481      */
 482     public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
 483     {
 484         checkRangeSIOOBE(srcBegin, srcEnd, count);  // compatible to old version
 485         int n = srcEnd - srcBegin;
 486         checkRange(dstBegin, dstBegin + n, dst.length);
 487         if (isLatin1()) {
 488             StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin);
 489         } else {
 490             StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin);
 491         }
 492     }
 493 
 494     /**
 495      * The character at the specified index is set to {@code ch}. This
 496      * sequence is altered to represent a new character sequence that is
 497      * identical to the old character sequence, except that it contains the
 498      * character {@code ch} at position {@code index}.
 499      * <p>
 500      * The index argument must be greater than or equal to
 501      * {@code 0}, and less than the length of this sequence.
 502      *
 503      * @param      index   the index of the character to modify.
 504      * @param      ch      the new character.
 505      * @throws     IndexOutOfBoundsException  if {@code index} is
 506      *             negative or greater than or equal to {@code length()}.
 507      */
 508     public void setCharAt(int index, char ch) {
 509         checkIndex(index, count);
 510         if (isLatin1() && StringLatin1.canEncode(ch)) {
 511             value[index] = (byte)ch;
 512         } else {
 513             if (isLatin1()) {
 514                 inflate();
 515             }
 516             StringUTF16.putCharSB(value, index, ch);
 517         }
 518     }
 519 
 520     /**
 521      * Appends the string representation of the {@code Object} argument.
 522      * <p>
 523      * The overall effect is exactly as if the argument were converted
 524      * to a string by the method {@link String#valueOf(Object)},
 525      * and the characters of that string were then
 526      * {@link #append(String) appended} to this character sequence.
 527      *
 528      * @param   obj   an {@code Object}.
 529      * @return  a reference to this object.
 530      */
 531     public AbstractStringBuilder append(Object obj) {
 532         return append(String.valueOf(obj));
 533     }
 534 
 535     /**
 536      * Appends the specified string to this character sequence.
 537      * <p>
 538      * The characters of the {@code String} argument are appended, in
 539      * order, increasing the length of this sequence by the length of the
 540      * argument. If {@code str} is {@code null}, then the four
 541      * characters {@code "null"} are appended.
 542      * <p>
 543      * Let <i>n</i> be the length of this character sequence just prior to
 544      * execution of the {@code append} method. Then the character at
 545      * index <i>k</i> in the new character sequence is equal to the character
 546      * at index <i>k</i> in the old character sequence, if <i>k</i> is less
 547      * than <i>n</i>; otherwise, it is equal to the character at index
 548      * <i>k-n</i> in the argument {@code str}.
 549      *
 550      * @param   str   a string.
 551      * @return  a reference to this object.
 552      */
 553     public AbstractStringBuilder append(String str) {
 554         if (str == null) {
 555             return appendNull();
 556         }
 557         int len = str.length();
 558         ensureCapacityInternal(count + len);
 559         putStringAt(count, str);
 560         count += len;
 561         return this;
 562     }
 563 
 564     // Documentation in subclasses because of synchro difference
 565     public AbstractStringBuilder append(StringBuffer sb) {
 566         return this.append((AbstractStringBuilder)sb);
 567     }
 568 
 569     /**
 570      * @since 1.8
 571      */
 572     AbstractStringBuilder append(AbstractStringBuilder asb) {
 573         if (asb == null) {
 574             return appendNull();
 575         }
 576         int len = asb.length();
 577         ensureCapacityInternal(count + len);
 578         if (getCoder() != asb.getCoder()) {
 579             inflate();
 580         }
 581         asb.getBytes(value, count, coder);
 582         count += len;
 583         return this;
 584     }
 585 
 586     // Documentation in subclasses because of synchro difference
 587     @Override
 588     public AbstractStringBuilder append(CharSequence s) {
 589         if (s == null) {
 590             return appendNull();
 591         }
 592         if (s instanceof String) {
 593             return this.append((String)s);
 594         }
 595         if (s instanceof AbstractStringBuilder) {
 596             return this.append((AbstractStringBuilder)s);
 597         }
 598         return this.append(s, 0, s.length());
 599     }
 600 
 601     private AbstractStringBuilder appendNull() {
 602         ensureCapacityInternal(count + 4);
 603         int count = this.count;
 604         byte[] val = this.value;
 605         if (isLatin1()) {
 606             val[count++] = 'n';
 607             val[count++] = 'u';
 608             val[count++] = 'l';
 609             val[count++] = 'l';
 610         } else {
 611             count = StringUTF16.putCharsAt(val, count, 'n', 'u', 'l', 'l');
 612         }
 613         this.count = count;
 614         return this;
 615     }
 616 
 617     /**
 618      * Appends a subsequence of the specified {@code CharSequence} to this
 619      * sequence.
 620      * <p>
 621      * Characters of the argument {@code s}, starting at
 622      * index {@code start}, are appended, in order, to the contents of
 623      * this sequence up to the (exclusive) index {@code end}. The length
 624      * of this sequence is increased by the value of {@code end - start}.
 625      * <p>
 626      * Let <i>n</i> be the length of this character sequence just prior to
 627      * execution of the {@code append} method. Then the character at
 628      * index <i>k</i> in this character sequence becomes equal to the
 629      * character at index <i>k</i> in this sequence, if <i>k</i> is less than
 630      * <i>n</i>; otherwise, it is equal to the character at index
 631      * <i>k+start-n</i> in the argument {@code s}.
 632      * <p>
 633      * If {@code s} is {@code null}, then this method appends
 634      * characters as if the s parameter was a sequence containing the four
 635      * characters {@code "null"}.
 636      *
 637      * @param   s the sequence to append.
 638      * @param   start   the starting index of the subsequence to be appended.
 639      * @param   end     the end index of the subsequence to be appended.
 640      * @return  a reference to this object.
 641      * @throws     IndexOutOfBoundsException if
 642      *             {@code start} is negative, or
 643      *             {@code start} is greater than {@code end} or
 644      *             {@code end} is greater than {@code s.length()}
 645      */
 646     @Override
 647     public AbstractStringBuilder append(CharSequence s, int start, int end) {
 648         if (s == null) {
 649             s = "null";
 650         }
 651         checkRange(start, end, s.length());
 652         int len = end - start;
 653         ensureCapacityInternal(count + len);
 654         appendChars(s, start, end);
 655         return this;
 656     }
 657 
 658     /**
 659      * Appends the string representation of the {@code char} array
 660      * argument to this sequence.
 661      * <p>
 662      * The characters of the array argument are appended, in order, to
 663      * the contents of this sequence. The length of this sequence
 664      * increases by the length of the argument.
 665      * <p>
 666      * The overall effect is exactly as if the argument were converted
 667      * to a string by the method {@link String#valueOf(char[])},
 668      * and the characters of that string were then
 669      * {@link #append(String) appended} to this character sequence.
 670      *
 671      * @param   str   the characters to be appended.
 672      * @return  a reference to this object.
 673      */
 674     public AbstractStringBuilder append(char[] str) {
 675         int len = str.length;
 676         ensureCapacityInternal(count + len);
 677         appendChars(str, 0, len);
 678         return this;
 679     }
 680 
 681     /**
 682      * Appends the string representation of a subarray of the
 683      * {@code char} array argument to this sequence.
 684      * <p>
 685      * Characters of the {@code char} array {@code str}, starting at
 686      * index {@code offset}, are appended, in order, to the contents
 687      * of this sequence. The length of this sequence increases
 688      * by the value of {@code len}.
 689      * <p>
 690      * The overall effect is exactly as if the arguments were converted
 691      * to a string by the method {@link String#valueOf(char[],int,int)},
 692      * and the characters of that string were then
 693      * {@link #append(String) appended} to this character sequence.
 694      *
 695      * @param   str      the characters to be appended.
 696      * @param   offset   the index of the first {@code char} to append.
 697      * @param   len      the number of {@code char}s to append.
 698      * @return  a reference to this object.
 699      * @throws IndexOutOfBoundsException
 700      *         if {@code offset < 0} or {@code len < 0}
 701      *         or {@code offset+len > str.length}
 702      */
 703     public AbstractStringBuilder append(char str[], int offset, int len) {
 704         int end = offset + len;
 705         checkRange(offset, end, str.length);
 706         ensureCapacityInternal(count + len);
 707         appendChars(str, offset, end);
 708         return this;
 709     }
 710 
 711     /**
 712      * Appends the string representation of the {@code boolean}
 713      * argument to the sequence.
 714      * <p>
 715      * The overall effect is exactly as if the argument were converted
 716      * to a string by the method {@link String#valueOf(boolean)},
 717      * and the characters of that string were then
 718      * {@link #append(String) appended} to this character sequence.
 719      *
 720      * @param   b   a {@code boolean}.
 721      * @return  a reference to this object.
 722      */
 723     public AbstractStringBuilder append(boolean b) {
 724         ensureCapacityInternal(count + (b ? 4 : 5));
 725         int count = this.count;
 726         byte[] val = this.value;
 727         if (isLatin1()) {
 728             if (b) {
 729                 val[count++] = 't';
 730                 val[count++] = 'r';
 731                 val[count++] = 'u';
 732                 val[count++] = 'e';
 733             } else {
 734                 val[count++] = 'f';
 735                 val[count++] = 'a';
 736                 val[count++] = 'l';
 737                 val[count++] = 's';
 738                 val[count++] = 'e';
 739             }
 740         } else {
 741             if (b) {
 742                 count = StringUTF16.putCharsAt(val, count, 't', 'r', 'u', 'e');
 743             } else {
 744                 count = StringUTF16.putCharsAt(val, count, 'f', 'a', 'l', 's', 'e');
 745             }
 746         }
 747         this.count = count;
 748         return this;
 749     }
 750 
 751     /**
 752      * Appends the string representation of the {@code char}
 753      * argument to this sequence.
 754      * <p>
 755      * The argument is appended to the contents of this sequence.
 756      * The length of this sequence increases by {@code 1}.
 757      * <p>
 758      * The overall effect is exactly as if the argument were converted
 759      * to a string by the method {@link String#valueOf(char)},
 760      * and the character in that string were then
 761      * {@link #append(String) appended} to this character sequence.
 762      *
 763      * @param   c   a {@code char}.
 764      * @return  a reference to this object.
 765      */
 766     @Override
 767     public AbstractStringBuilder append(char c) {
 768         ensureCapacityInternal(count + 1);
 769         if (isLatin1() && StringLatin1.canEncode(c)) {
 770             value[count++] = (byte)c;
 771         } else {
 772             if (isLatin1()) {
 773                 inflate();
 774             }
 775             StringUTF16.putCharSB(value, count++, c);
 776         }
 777         return this;
 778     }
 779 
 780     /**
 781      * Appends the string representation of the {@code int}
 782      * argument to this sequence.
 783      * <p>
 784      * The overall effect is exactly as if the argument were converted
 785      * to a string by the method {@link String#valueOf(int)},
 786      * and the characters of that string were then
 787      * {@link #append(String) appended} to this character sequence.
 788      *
 789      * @param   i   an {@code int}.
 790      * @return  a reference to this object.
 791      */
 792     public AbstractStringBuilder append(int i) {
 793         int count = this.count;
 794         int spaceNeeded = count + Integer.stringSize(i);
 795         ensureCapacityInternal(spaceNeeded);
 796         if (isLatin1()) {
 797             Integer.getChars(i, spaceNeeded, value);
 798         } else {
 799             StringUTF16.getChars(i, count, spaceNeeded, value);
 800         }
 801         this.count = spaceNeeded;
 802         return this;
 803     }
 804 
 805     /**
 806      * Appends the string representation of the {@code long}
 807      * argument to this sequence.
 808      * <p>
 809      * The overall effect is exactly as if the argument were converted
 810      * to a string by the method {@link String#valueOf(long)},
 811      * and the characters of that string were then
 812      * {@link #append(String) appended} to this character sequence.
 813      *
 814      * @param   l   a {@code long}.
 815      * @return  a reference to this object.
 816      */
 817     public AbstractStringBuilder append(long l) {
 818         int count = this.count;
 819         int spaceNeeded = count + Long.stringSize(l);
 820         ensureCapacityInternal(spaceNeeded);
 821         if (isLatin1()) {
 822             Long.getChars(l, spaceNeeded, value);
 823         } else {
 824             StringUTF16.getChars(l, count, spaceNeeded, value);
 825         }
 826         this.count = spaceNeeded;
 827         return this;
 828     }
 829 
 830     /**
 831      * Appends the string representation of the {@code float}
 832      * argument to this sequence.
 833      * <p>
 834      * The overall effect is exactly as if the argument were converted
 835      * to a string by the method {@link String#valueOf(float)},
 836      * and the characters of that string were then
 837      * {@link #append(String) appended} to this character sequence.
 838      *
 839      * @param   f   a {@code float}.
 840      * @return  a reference to this object.
 841      */
 842     public AbstractStringBuilder append(float f) {
 843         FloatingDecimal.appendTo(f,this);
 844         return this;
 845     }
 846 
 847     /**
 848      * Appends the string representation of the {@code double}
 849      * argument to this sequence.
 850      * <p>
 851      * The overall effect is exactly as if the argument were converted
 852      * to a string by the method {@link String#valueOf(double)},
 853      * and the characters of that string were then
 854      * {@link #append(String) appended} to this character sequence.
 855      *
 856      * @param   d   a {@code double}.
 857      * @return  a reference to this object.
 858      */
 859     public AbstractStringBuilder append(double d) {
 860         FloatingDecimal.appendTo(d,this);
 861         return this;
 862     }
 863 
 864     /**
 865      * Removes the characters in a substring of this sequence.
 866      * The substring begins at the specified {@code start} and extends to
 867      * the character at index {@code end - 1} or to the end of the
 868      * sequence if no such character exists. If
 869      * {@code start} is equal to {@code end}, no changes are made.
 870      *
 871      * @param      start  The beginning index, inclusive.
 872      * @param      end    The ending index, exclusive.
 873      * @return     This object.
 874      * @throws     StringIndexOutOfBoundsException  if {@code start}
 875      *             is negative, greater than {@code length()}, or
 876      *             greater than {@code end}.
 877      */
 878     public AbstractStringBuilder delete(int start, int end) {
 879         int count = this.count;
 880         if (end > count) {
 881             end = count;
 882         }
 883         checkRangeSIOOBE(start, end, count);
 884         int len = end - start;
 885         if (len > 0) {
 886             shift(end, -len);
 887             this.count = count - len;
 888         }
 889         return this;
 890     }
 891 
 892     /**
 893      * Appends the string representation of the {@code codePoint}
 894      * argument to this sequence.
 895      *
 896      * <p> The argument is appended to the contents of this sequence.
 897      * The length of this sequence increases by
 898      * {@link Character#charCount(int) Character.charCount(codePoint)}.
 899      *
 900      * <p> The overall effect is exactly as if the argument were
 901      * converted to a {@code char} array by the method
 902      * {@link Character#toChars(int)} and the character in that array
 903      * were then {@link #append(char[]) appended} to this character
 904      * sequence.
 905      *
 906      * @param   codePoint   a Unicode code point
 907      * @return  a reference to this object.
 908      * @throws    IllegalArgumentException if the specified
 909      * {@code codePoint} isn't a valid Unicode code point
 910      */
 911     public AbstractStringBuilder appendCodePoint(int codePoint) {
 912         if (Character.isBmpCodePoint(codePoint)) {
 913             return append((char)codePoint);
 914         }
 915         return append(Character.toChars(codePoint));
 916     }
 917 
 918     /**
 919      * Removes the {@code char} at the specified position in this
 920      * sequence. This sequence is shortened by one {@code char}.
 921      *
 922      * <p>Note: If the character at the given index is a supplementary
 923      * character, this method does not remove the entire character. If
 924      * correct handling of supplementary characters is required,
 925      * determine the number of {@code char}s to remove by calling
 926      * {@code Character.charCount(thisSequence.codePointAt(index))},
 927      * where {@code thisSequence} is this sequence.
 928      *
 929      * @param       index  Index of {@code char} to remove
 930      * @return      This object.
 931      * @throws      StringIndexOutOfBoundsException  if the {@code index}
 932      *              is negative or greater than or equal to
 933      *              {@code length()}.
 934      */
 935     public AbstractStringBuilder deleteCharAt(int index) {
 936         checkIndex(index, count);
 937         shift(index + 1, -1);
 938         count--;
 939         return this;
 940     }
 941 
 942     /**
 943      * Replaces the characters in a substring of this sequence
 944      * with characters in the specified {@code String}. The substring
 945      * begins at the specified {@code start} and extends to the character
 946      * at index {@code end - 1} or to the end of the
 947      * sequence if no such character exists. First the
 948      * characters in the substring are removed and then the specified
 949      * {@code String} is inserted at {@code start}. (This
 950      * sequence will be lengthened to accommodate the
 951      * specified String if necessary.)
 952      *
 953      * @param      start    The beginning index, inclusive.
 954      * @param      end      The ending index, exclusive.
 955      * @param      str   String that will replace previous contents.
 956      * @return     This object.
 957      * @throws     StringIndexOutOfBoundsException  if {@code start}
 958      *             is negative, greater than {@code length()}, or
 959      *             greater than {@code end}.
 960      */
 961     public AbstractStringBuilder replace(int start, int end, String str) {
 962         int count = this.count;
 963         if (end > count) {
 964             end = count;
 965         }
 966         checkRangeSIOOBE(start, end, count);
 967         int len = str.length();
 968         int newCount = count + len - (end - start);
 969         ensureCapacityInternal(newCount);
 970         shift(end, newCount - count);
 971         this.count = newCount;
 972         putStringAt(start, str);
 973         return this;
 974     }
 975 
 976     /**
 977      * Returns a new {@code String} that contains a subsequence of
 978      * characters currently contained in this character sequence. The
 979      * substring begins at the specified index and extends to the end of
 980      * this sequence.
 981      *
 982      * @param      start    The beginning index, inclusive.
 983      * @return     The new string.
 984      * @throws     StringIndexOutOfBoundsException  if {@code start} is
 985      *             less than zero, or greater than the length of this object.
 986      */
 987     public String substring(int start) {
 988         return substring(start, count);
 989     }
 990 
 991     /**
 992      * Returns a new character sequence that is a subsequence of this sequence.
 993      *
 994      * <p> An invocation of this method of the form
 995      *
 996      * <pre>{@code
 997      * sb.subSequence(begin,&nbsp;end)}</pre>
 998      *
 999      * behaves in exactly the same way as the invocation
1000      *
1001      * <pre>{@code
1002      * sb.substring(begin,&nbsp;end)}</pre>
1003      *
1004      * This method is provided so that this class can
1005      * implement the {@link CharSequence} interface.
1006      *
1007      * @param      start   the start index, inclusive.
1008      * @param      end     the end index, exclusive.
1009      * @return     the specified subsequence.
1010      *
1011      * @throws  IndexOutOfBoundsException
1012      *          if {@code start} or {@code end} are negative,
1013      *          if {@code end} is greater than {@code length()},
1014      *          or if {@code start} is greater than {@code end}
1015      * @spec JSR-51
1016      */
1017     @Override
1018     public CharSequence subSequence(int start, int end) {
1019         return substring(start, end);
1020     }
1021 
1022     /**
1023      * Returns a new {@code String} that contains a subsequence of
1024      * characters currently contained in this sequence. The
1025      * substring begins at the specified {@code start} and
1026      * extends to the character at index {@code end - 1}.
1027      *
1028      * @param      start    The beginning index, inclusive.
1029      * @param      end      The ending index, exclusive.
1030      * @return     The new string.
1031      * @throws     StringIndexOutOfBoundsException  if {@code start}
1032      *             or {@code end} are negative or greater than
1033      *             {@code length()}, or {@code start} is
1034      *             greater than {@code end}.
1035      */
1036     public String substring(int start, int end) {
1037         checkRangeSIOOBE(start, end, count);
1038         if (isLatin1()) {
1039             return StringLatin1.newString(value, start, end - start);
1040         }
1041         return StringUTF16.newString(value, start, end - start);
1042     }
1043 
1044     private void shift(int offset, int n) {
1045         System.arraycopy(value, offset << coder,
1046                          value, (offset + n) << coder, (count - offset) << coder);
1047     }
1048 
1049     /**
1050      * Inserts the string representation of a subarray of the {@code str}
1051      * array argument into this sequence. The subarray begins at the
1052      * specified {@code offset} and extends {@code len} {@code char}s.
1053      * The characters of the subarray are inserted into this sequence at
1054      * the position indicated by {@code index}. The length of this
1055      * sequence increases by {@code len} {@code char}s.
1056      *
1057      * @param      index    position at which to insert subarray.
1058      * @param      str       A {@code char} array.
1059      * @param      offset   the index of the first {@code char} in subarray to
1060      *             be inserted.
1061      * @param      len      the number of {@code char}s in the subarray to
1062      *             be inserted.
1063      * @return     This object
1064      * @throws     StringIndexOutOfBoundsException  if {@code index}
1065      *             is negative or greater than {@code length()}, or
1066      *             {@code offset} or {@code len} are negative, or
1067      *             {@code (offset+len)} is greater than
1068      *             {@code str.length}.
1069      */
1070     public AbstractStringBuilder insert(int index, char[] str, int offset,
1071                                         int len)
1072     {
1073         checkOffset(index, count);
1074         checkRangeSIOOBE(offset, offset + len, str.length);
1075         ensureCapacityInternal(count + len);
1076         shift(index, len);
1077         count += len;
1078         putCharsAt(index, str, offset, offset + len);
1079         return this;
1080     }
1081 
1082     /**
1083      * Inserts the string representation of the {@code Object}
1084      * argument into this character sequence.
1085      * <p>
1086      * The overall effect is exactly as if the second argument were
1087      * converted to a string by the method {@link String#valueOf(Object)},
1088      * and the characters of that string were then
1089      * {@link #insert(int,String) inserted} into this character
1090      * sequence at the indicated offset.
1091      * <p>
1092      * The {@code offset} argument must be greater than or equal to
1093      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1094      * of this sequence.
1095      *
1096      * @param      offset   the offset.
1097      * @param      obj      an {@code Object}.
1098      * @return     a reference to this object.
1099      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1100      */
1101     public AbstractStringBuilder insert(int offset, Object obj) {
1102         return insert(offset, String.valueOf(obj));
1103     }
1104 
1105     /**
1106      * Inserts the string into this character sequence.
1107      * <p>
1108      * The characters of the {@code String} argument are inserted, in
1109      * order, into this sequence at the indicated offset, moving up any
1110      * characters originally above that position and increasing the length
1111      * of this sequence by the length of the argument. If
1112      * {@code str} is {@code null}, then the four characters
1113      * {@code "null"} are inserted into this sequence.
1114      * <p>
1115      * The character at index <i>k</i> in the new character sequence is
1116      * equal to:
1117      * <ul>
1118      * <li>the character at index <i>k</i> in the old character sequence, if
1119      * <i>k</i> is less than {@code offset}
1120      * <li>the character at index <i>k</i>{@code -offset} in the
1121      * argument {@code str}, if <i>k</i> is not less than
1122      * {@code offset} but is less than {@code offset+str.length()}
1123      * <li>the character at index <i>k</i>{@code -str.length()} in the
1124      * old character sequence, if <i>k</i> is not less than
1125      * {@code offset+str.length()}
1126      * </ul><p>
1127      * The {@code offset} argument must be greater than or equal to
1128      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1129      * of this sequence.
1130      *
1131      * @param      offset   the offset.
1132      * @param      str      a string.
1133      * @return     a reference to this object.
1134      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1135      */
1136     public AbstractStringBuilder insert(int offset, String str) {
1137         checkOffset(offset, count);
1138         if (str == null) {
1139             str = "null";
1140         }
1141         int len = str.length();
1142         ensureCapacityInternal(count + len);
1143         shift(offset, len);
1144         count += len;
1145         putStringAt(offset, str);
1146         return this;
1147     }
1148 
1149     /**
1150      * Inserts the string representation of the {@code char} array
1151      * argument into this sequence.
1152      * <p>
1153      * The characters of the array argument are inserted into the
1154      * contents of this sequence at the position indicated by
1155      * {@code offset}. The length of this sequence increases by
1156      * the length of the argument.
1157      * <p>
1158      * The overall effect is exactly as if the second argument were
1159      * converted to a string by the method {@link String#valueOf(char[])},
1160      * and the characters of that string were then
1161      * {@link #insert(int,String) inserted} into this character
1162      * sequence at the indicated offset.
1163      * <p>
1164      * The {@code offset} argument must be greater than or equal to
1165      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1166      * of this sequence.
1167      *
1168      * @param      offset   the offset.
1169      * @param      str      a character array.
1170      * @return     a reference to this object.
1171      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1172      */
1173     public AbstractStringBuilder insert(int offset, char[] str) {
1174         checkOffset(offset, count);
1175         int len = str.length;
1176         ensureCapacityInternal(count + len);
1177         shift(offset, len);
1178         count += len;
1179         putCharsAt(offset, str, 0, len);
1180         return this;
1181     }
1182 
1183     /**
1184      * Inserts the specified {@code CharSequence} into this sequence.
1185      * <p>
1186      * The characters of the {@code CharSequence} argument are inserted,
1187      * in order, into this sequence at the indicated offset, moving up
1188      * any characters originally above that position and increasing the length
1189      * of this sequence by the length of the argument s.
1190      * <p>
1191      * The result of this method is exactly the same as if it were an
1192      * invocation of this object's
1193      * {@link #insert(int,CharSequence,int,int) insert}(dstOffset, s, 0, s.length())
1194      * method.
1195      *
1196      * <p>If {@code s} is {@code null}, then the four characters
1197      * {@code "null"} are inserted into this sequence.
1198      *
1199      * @param      dstOffset   the offset.
1200      * @param      s the sequence to be inserted
1201      * @return     a reference to this object.
1202      * @throws     IndexOutOfBoundsException  if the offset is invalid.
1203      */
1204     public AbstractStringBuilder insert(int dstOffset, CharSequence s) {
1205         if (s == null) {
1206             s = "null";
1207         }
1208         if (s instanceof String) {
1209             return this.insert(dstOffset, (String)s);
1210         }
1211         return this.insert(dstOffset, s, 0, s.length());
1212     }
1213 
1214     /**
1215      * Inserts a subsequence of the specified {@code CharSequence} into
1216      * this sequence.
1217      * <p>
1218      * The subsequence of the argument {@code s} specified by
1219      * {@code start} and {@code end} are inserted,
1220      * in order, into this sequence at the specified destination offset, moving
1221      * up any characters originally above that position. The length of this
1222      * sequence is increased by {@code end - start}.
1223      * <p>
1224      * The character at index <i>k</i> in this sequence becomes equal to:
1225      * <ul>
1226      * <li>the character at index <i>k</i> in this sequence, if
1227      * <i>k</i> is less than {@code dstOffset}
1228      * <li>the character at index <i>k</i>{@code +start-dstOffset} in
1229      * the argument {@code s}, if <i>k</i> is greater than or equal to
1230      * {@code dstOffset} but is less than {@code dstOffset+end-start}
1231      * <li>the character at index <i>k</i>{@code -(end-start)} in this
1232      * sequence, if <i>k</i> is greater than or equal to
1233      * {@code dstOffset+end-start}
1234      * </ul><p>
1235      * The {@code dstOffset} argument must be greater than or equal to
1236      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1237      * of this sequence.
1238      * <p>The start argument must be nonnegative, and not greater than
1239      * {@code end}.
1240      * <p>The end argument must be greater than or equal to
1241      * {@code start}, and less than or equal to the length of s.
1242      *
1243      * <p>If {@code s} is {@code null}, then this method inserts
1244      * characters as if the s parameter was a sequence containing the four
1245      * characters {@code "null"}.
1246      *
1247      * @param      dstOffset   the offset in this sequence.
1248      * @param      s       the sequence to be inserted.
1249      * @param      start   the starting index of the subsequence to be inserted.
1250      * @param      end     the end index of the subsequence to be inserted.
1251      * @return     a reference to this object.
1252      * @throws     IndexOutOfBoundsException  if {@code dstOffset}
1253      *             is negative or greater than {@code this.length()}, or
1254      *              {@code start} or {@code end} are negative, or
1255      *              {@code start} is greater than {@code end} or
1256      *              {@code end} is greater than {@code s.length()}
1257      */
1258     public AbstractStringBuilder insert(int dstOffset, CharSequence s,
1259                                         int start, int end)
1260     {
1261         if (s == null) {
1262             s = "null";
1263         }
1264         checkOffset(dstOffset, count);
1265         checkRange(start, end, s.length());
1266         int len = end - start;
1267         ensureCapacityInternal(count + len);
1268         shift(dstOffset, len);
1269         count += len;
1270         putCharsAt(dstOffset, s, start, end);
1271         return this;
1272     }
1273 
1274     /**
1275      * Inserts the string representation of the {@code boolean}
1276      * argument into this sequence.
1277      * <p>
1278      * The overall effect is exactly as if the second argument were
1279      * converted to a string by the method {@link String#valueOf(boolean)},
1280      * and the characters of that string were then
1281      * {@link #insert(int,String) inserted} into this character
1282      * sequence at the indicated offset.
1283      * <p>
1284      * The {@code offset} argument must be greater than or equal to
1285      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1286      * of this sequence.
1287      *
1288      * @param      offset   the offset.
1289      * @param      b        a {@code boolean}.
1290      * @return     a reference to this object.
1291      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1292      */
1293     public AbstractStringBuilder insert(int offset, boolean b) {
1294         return insert(offset, String.valueOf(b));
1295     }
1296 
1297     /**
1298      * Inserts the string representation of the {@code char}
1299      * argument into this sequence.
1300      * <p>
1301      * The overall effect is exactly as if the second argument were
1302      * converted to a string by the method {@link String#valueOf(char)},
1303      * and the character in that string were then
1304      * {@link #insert(int,String) inserted} into this character
1305      * sequence at the indicated offset.
1306      * <p>
1307      * The {@code offset} argument must be greater than or equal to
1308      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1309      * of this sequence.
1310      *
1311      * @param      offset   the offset.
1312      * @param      c        a {@code char}.
1313      * @return     a reference to this object.
1314      * @throws     IndexOutOfBoundsException  if the offset is invalid.
1315      */
1316     public AbstractStringBuilder insert(int offset, char c) {
1317         checkOffset(offset, count);
1318         ensureCapacityInternal(count + 1);
1319         shift(offset, 1);
1320         count += 1;
1321         if (isLatin1() && StringLatin1.canEncode(c)) {
1322             value[offset] = (byte)c;
1323         } else {
1324             if (isLatin1()) {
1325                 inflate();
1326             }
1327             StringUTF16.putCharSB(value, offset, c);
1328         }
1329         return this;
1330     }
1331 
1332     /**
1333      * Inserts the string representation of the second {@code int}
1334      * argument into this sequence.
1335      * <p>
1336      * The overall effect is exactly as if the second argument were
1337      * converted to a string by the method {@link String#valueOf(int)},
1338      * and the characters of that string were then
1339      * {@link #insert(int,String) inserted} into this character
1340      * sequence at the indicated offset.
1341      * <p>
1342      * The {@code offset} argument must be greater than or equal to
1343      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1344      * of this sequence.
1345      *
1346      * @param      offset   the offset.
1347      * @param      i        an {@code int}.
1348      * @return     a reference to this object.
1349      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1350      */
1351     public AbstractStringBuilder insert(int offset, int i) {
1352         return insert(offset, String.valueOf(i));
1353     }
1354 
1355     /**
1356      * Inserts the string representation of the {@code long}
1357      * argument into this sequence.
1358      * <p>
1359      * The overall effect is exactly as if the second argument were
1360      * converted to a string by the method {@link String#valueOf(long)},
1361      * and the characters of that string were then
1362      * {@link #insert(int,String) inserted} into this character
1363      * sequence at the indicated offset.
1364      * <p>
1365      * The {@code offset} argument must be greater than or equal to
1366      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1367      * of this sequence.
1368      *
1369      * @param      offset   the offset.
1370      * @param      l        a {@code long}.
1371      * @return     a reference to this object.
1372      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1373      */
1374     public AbstractStringBuilder insert(int offset, long l) {
1375         return insert(offset, String.valueOf(l));
1376     }
1377 
1378     /**
1379      * Inserts the string representation of the {@code float}
1380      * argument into this sequence.
1381      * <p>
1382      * The overall effect is exactly as if the second argument were
1383      * converted to a string by the method {@link String#valueOf(float)},
1384      * and the characters of that string were then
1385      * {@link #insert(int,String) inserted} into this character
1386      * sequence at the indicated offset.
1387      * <p>
1388      * The {@code offset} argument must be greater than or equal to
1389      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1390      * of this sequence.
1391      *
1392      * @param      offset   the offset.
1393      * @param      f        a {@code float}.
1394      * @return     a reference to this object.
1395      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1396      */
1397     public AbstractStringBuilder insert(int offset, float f) {
1398         return insert(offset, String.valueOf(f));
1399     }
1400 
1401     /**
1402      * Inserts the string representation of the {@code double}
1403      * argument into this sequence.
1404      * <p>
1405      * The overall effect is exactly as if the second argument were
1406      * converted to a string by the method {@link String#valueOf(double)},
1407      * and the characters of that string were then
1408      * {@link #insert(int,String) inserted} into this character
1409      * sequence at the indicated offset.
1410      * <p>
1411      * The {@code offset} argument must be greater than or equal to
1412      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1413      * of this sequence.
1414      *
1415      * @param      offset   the offset.
1416      * @param      d        a {@code double}.
1417      * @return     a reference to this object.
1418      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1419      */
1420     public AbstractStringBuilder insert(int offset, double d) {
1421         return insert(offset, String.valueOf(d));
1422     }
1423 
1424     /**
1425      * Returns the index within this string of the first occurrence of the
1426      * specified substring.
1427      *
1428      * <p>The returned index is the smallest value {@code k} for which:
1429      * <pre>{@code
1430      * this.toString().startsWith(str, k)
1431      * }</pre>
1432      * If no such value of {@code k} exists, then {@code -1} is returned.
1433      *
1434      * @param   str   the substring to search for.
1435      * @return  the index of the first occurrence of the specified substring,
1436      *          or {@code -1} if there is no such occurrence.
1437      */
1438     public int indexOf(String str) {
1439         return indexOf(str, 0);
1440     }
1441 
1442     /**
1443      * Returns the index within this string of the first occurrence of the
1444      * specified substring, starting at the specified index.
1445      *
1446      * <p>The returned index is the smallest value {@code k} for which:
1447      * <pre>{@code
1448      *     k >= Math.min(fromIndex, this.length()) &&
1449      *                   this.toString().startsWith(str, k)
1450      * }</pre>
1451      * If no such value of {@code k} exists, then {@code -1} is returned.
1452      *
1453      * @param   str         the substring to search for.
1454      * @param   fromIndex   the index from which to start the search.
1455      * @return  the index of the first occurrence of the specified substring,
1456      *          starting at the specified index,
1457      *          or {@code -1} if there is no such occurrence.
1458      */
1459     public int indexOf(String str, int fromIndex) {
1460         return String.indexOf(value, coder, count, str, fromIndex);
1461     }
1462 
1463     /**
1464      * Returns the index within this string of the last occurrence of the
1465      * specified substring.  The last occurrence of the empty string "" is
1466      * considered to occur at the index value {@code this.length()}.
1467      *
1468      * <p>The returned index is the largest value {@code k} for which:
1469      * <pre>{@code
1470      * this.toString().startsWith(str, k)
1471      * }</pre>
1472      * If no such value of {@code k} exists, then {@code -1} is returned.
1473      *
1474      * @param   str   the substring to search for.
1475      * @return  the index of the last occurrence of the specified substring,
1476      *          or {@code -1} if there is no such occurrence.
1477      */
1478     public int lastIndexOf(String str) {
1479         return lastIndexOf(str, count);
1480     }
1481 
1482     /**
1483      * Returns the index within this string of the last occurrence of the
1484      * specified substring, searching backward starting at the specified index.
1485      *
1486      * <p>The returned index is the largest value {@code k} for which:
1487      * <pre>{@code
1488      *     k <= Math.min(fromIndex, this.length()) &&
1489      *                   this.toString().startsWith(str, k)
1490      * }</pre>
1491      * If no such value of {@code k} exists, then {@code -1} is returned.
1492      *
1493      * @param   str         the substring to search for.
1494      * @param   fromIndex   the index to start the search from.
1495      * @return  the index of the last occurrence of the specified substring,
1496      *          searching backward from the specified index,
1497      *          or {@code -1} if there is no such occurrence.
1498      */
1499     public int lastIndexOf(String str, int fromIndex) {
1500         return String.lastIndexOf(value, coder, count, str, fromIndex);
1501     }
1502 
1503     /**
1504      * Causes this character sequence to be replaced by the reverse of
1505      * the sequence. If there are any surrogate pairs included in the
1506      * sequence, these are treated as single characters for the
1507      * reverse operation. Thus, the order of the high-low surrogates
1508      * is never reversed.
1509      *
1510      * Let <i>n</i> be the character length of this character sequence
1511      * (not the length in {@code char} values) just prior to
1512      * execution of the {@code reverse} method. Then the
1513      * character at index <i>k</i> in the new character sequence is
1514      * equal to the character at index <i>n-k-1</i> in the old
1515      * character sequence.
1516      *
1517      * <p>Note that the reverse operation may result in producing
1518      * surrogate pairs that were unpaired low-surrogates and
1519      * high-surrogates before the operation. For example, reversing
1520      * "\u005CuDC00\u005CuD800" produces "\u005CuD800\u005CuDC00" which is
1521      * a valid surrogate pair.
1522      *
1523      * @return  a reference to this object.
1524      */
1525     public AbstractStringBuilder reverse() {
1526         byte[] val = this.value;
1527         int count = this.count;
1528         int coder = this.coder;
1529         int n = count - 1;
1530         if (COMPACT_STRINGS && coder == LATIN1) {
1531             for (int j = (n-1) >> 1; j >= 0; j--) {
1532                 int k = n - j;
1533                 byte cj = val[j];
1534                 val[j] = val[k];
1535                 val[k] = cj;
1536             }
1537         } else {
1538             StringUTF16.reverse(val, count);
1539         }
1540         return this;
1541     }
1542 
1543     /**
1544      * Returns a string representing the data in this sequence.
1545      * A new {@code String} object is allocated and initialized to
1546      * contain the character sequence currently represented by this
1547      * object. This {@code String} is then returned. Subsequent
1548      * changes to this sequence do not affect the contents of the
1549      * {@code String}.
1550      *
1551      * @return  a string representation of this sequence of characters.
1552      */
1553     @Override
1554     public abstract String toString();
1555 
1556     /**
1557      * {@inheritDoc}
1558      * @since 9
1559      */
1560     @Override
1561     public IntStream chars() {
1562         // Reuse String-based spliterator. This requires a supplier to
1563         // capture the value and count when the terminal operation is executed
1564         return StreamSupport.intStream(
1565                 () -> {
1566                     // The combined set of field reads are not atomic and thread
1567                     // safe but bounds checks will ensure no unsafe reads from
1568                     // the byte array
1569                     byte[] val = this.value;
1570                     int count = this.count;
1571                     byte coder = this.coder;
1572                     return coder == LATIN1
1573                            ? new StringLatin1.CharsSpliterator(val, 0, count, 0)
1574                            : new StringUTF16.CharsSpliterator(val, 0, count, 0);
1575                 },
1576                 Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED,
1577                 false);
1578     }
1579 
1580     /**
1581      * {@inheritDoc}
1582      * @since 9
1583      */
1584     @Override
1585     public IntStream codePoints() {
1586         // Reuse String-based spliterator. This requires a supplier to
1587         // capture the value and count when the terminal operation is executed
1588         return StreamSupport.intStream(
1589                 () -> {
1590                     // The combined set of field reads are not atomic and thread
1591                     // safe but bounds checks will ensure no unsafe reads from
1592                     // the byte array
1593                     byte[] val = this.value;
1594                     int count = this.count;
1595                     byte coder = this.coder;
1596                     return coder == LATIN1
1597                            ? new StringLatin1.CharsSpliterator(val, 0, count, 0)
1598                            : new StringUTF16.CodePointsSpliterator(val, 0, count, 0);
1599                 },
1600                 Spliterator.ORDERED,
1601                 false);
1602     }
1603 
1604     /**
1605      * Needed by {@code String} for the contentEquals method.
1606      */
1607     final byte[] getValue() {
1608         return value;
1609     }
1610 
1611     /*
1612      * Invoker guarantees it is in UTF16 (inflate itself for asb), if two
1613      * coders are different and the dstBegin has enough space
1614      *
1615      * @param dstBegin  the char index, not offset of byte[]
1616      * @param coder     the coder of dst[]
1617      */
1618     void getBytes(byte dst[], int dstBegin, byte coder) {
1619         if (this.coder == coder) {
1620             System.arraycopy(value, 0, dst, dstBegin << coder, count << coder);
1621         } else {        // this.coder == LATIN && coder == UTF16
1622             StringLatin1.inflate(value, 0, dst, dstBegin, count);
1623         }
1624     }
1625 
1626     /* for readObject() */
1627     void initBytes(char[] value, int off, int len) {
1628         if (String.COMPACT_STRINGS) {
1629             this.value = StringUTF16.compress(value, off, len);
1630             if (this.value != null) {
1631                 this.coder = LATIN1;
1632                 return;
1633             }
1634         }
1635         this.coder = UTF16;
1636         this.value = StringUTF16.toBytes(value, off, len);
1637     }
1638 
1639     final byte getCoder() {
1640         return COMPACT_STRINGS ? coder : UTF16;
1641     }
1642 
1643     final boolean isLatin1() {
1644         return COMPACT_STRINGS && coder == LATIN1;
1645     }
1646 
1647     private final void putCharsAt(int index, char[] s, int off, int end) {
1648         if (isLatin1()) {
1649             byte[] val = this.value;
1650             for (int i = off, j = index; i < end; i++) {
1651                 char c = s[i];
1652                 if (StringLatin1.canEncode(c)) {
1653                     val[j++] = (byte)c;
1654                 } else {
1655                     inflate();
1656                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1657                     return;
1658                 }
1659             }
1660         } else {
1661             StringUTF16.putCharsSB(this.value, index, s, off, end);
1662         }
1663     }
1664 
1665     private final void putCharsAt(int index, CharSequence s, int off, int end) {
1666         if (isLatin1()) {
1667             byte[] val = this.value;
1668             for (int i = off, j = index; i < end; i++) {
1669                 char c = s.charAt(i);
1670                 if (StringLatin1.canEncode(c)) {
1671                     val[j++] = (byte)c;
1672                 } else {
1673                     inflate();
1674                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1675                     return;
1676                 }
1677             }
1678         } else {
1679             StringUTF16.putCharsSB(this.value, index, s, off, end);
1680         }
1681     }
1682 
1683     private final void putStringAt(int index, String str) {
1684         if (getCoder() != str.coder()) {
1685             inflate();
1686         }
1687         str.getBytes(value, index, coder);
1688     }
1689 
1690     private final void appendChars(char[] s, int off, int end) {
1691         int count = this.count;
1692         if (isLatin1()) {
1693             byte[] val = this.value;
1694             for (int i = off, j = count; i < end; i++) {
1695                 char c = s[i];
1696                 if (StringLatin1.canEncode(c)) {
1697                     val[j++] = (byte)c;
1698                 } else {
1699                     this.count = count = j;
1700                     inflate();
1701                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1702                     this.count = count + end - i;
1703                     return;
1704                 }
1705             }
1706         } else {
1707             StringUTF16.putCharsSB(this.value, count, s, off, end);
1708         }
1709         this.count = count + end - off;
1710     }
1711 
1712     private final void appendChars(CharSequence s, int off, int end) {
1713         if (isLatin1()) {
1714             byte[] val = this.value;
1715             for (int i = off, j = count; i < end; i++) {
1716                 char c = s.charAt(i);
1717                 if (StringLatin1.canEncode(c)) {
1718                     val[j++] = (byte)c;
1719                 } else {
1720                     count = j;
1721                     inflate();
1722                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1723                     count += end - i;
1724                     return;
1725                 }
1726             }
1727         } else {
1728             StringUTF16.putCharsSB(this.value, count, s, off, end);
1729         }
1730         count += end - off;
1731     }
1732 
1733     /* IndexOutOfBoundsException, if out of bounds */
1734     private static void checkRange(int start, int end, int len) {
1735         if (start < 0 || start > end || end > len) {
1736             throw new IndexOutOfBoundsException(
1737                 "start " + start + ", end " + end + ", length " + len);
1738         }
1739     }
1740 
1741     /* StringIndexOutOfBoundsException, if out of bounds */
1742     private static void checkRangeSIOOBE(int start, int end, int len) {
1743         if (start < 0 || start > end || end > len) {
1744             throw new StringIndexOutOfBoundsException(
1745                 "start " + start + ", end " + end + ", length " + len);
1746         }
1747     }
1748 
1749     /**
1750      * Determine the "coder" of the given CharSequence
1751      */
1752     static byte getCharSequenceCoder(CharSequence seq) {
1753         byte coder;
1754         if (seq instanceof String) {
1755             coder = ((String)seq).coder();
1756         } else if (seq instanceof AbstractStringBuilder) {
1757             coder = ((AbstractStringBuilder)seq).getCoder();
1758         } else if (COMPACT_STRINGS) {
1759             coder = LATIN1;
1760         } else {
1761             coder = UTF16;
1762         }
1763         return coder;
1764     }
1765 }