1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/allocationStats.hpp"
  27 #include "memory/binaryTreeDictionary.hpp"
  28 #include "memory/freeList.hpp"
  29 #include "memory/freeBlockDictionary.hpp"
  30 #include "memory/metablock.hpp"
  31 #include "memory/metachunk.hpp"
  32 #include "runtime/globals.hpp"
  33 #include "utilities/ostream.hpp"
  34 #ifndef SERIALGC
  35 #include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
  37 #include "gc_implementation/shared/spaceDecorator.hpp"
  38 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
  39 #endif // SERIALGC
  40 
  41 ////////////////////////////////////////////////////////////////////////////////
  42 // A binary tree based search structure for free blocks.
  43 // This is currently used in the Concurrent Mark&Sweep implementation.
  44 ////////////////////////////////////////////////////////////////////////////////
  45 
  46 template <class Chunk_t, template <class> class FreeList_t>
  47 size_t TreeChunk<Chunk_t, FreeList_t>::_min_tree_chunk_size = sizeof(TreeChunk<Chunk_t,  FreeList_t>)/HeapWordSize;
  48 
  49 template <class Chunk_t, template <class> class FreeList_t>
  50 TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) {
  51   // Do some assertion checking here.
  52   return (TreeChunk<Chunk_t, FreeList_t>*) fc;
  53 }
  54 
  55 template <class Chunk_t, template <class> class FreeList_t>
  56 void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const {
  57   TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next();
  58   if (prev() != NULL) { // interior list node shouldn'r have tree fields
  59     guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
  60               embedded_list()->right()  == NULL, "should be clear");
  61   }
  62   if (nextTC != NULL) {
  63     guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
  64     guarantee(nextTC->size() == size(), "wrong size");
  65     nextTC->verify_tree_chunk_list();
  66   }
  67 }
  68 
  69 template <class Chunk_t, template <class> class FreeList_t>
  70 TreeList<Chunk_t, FreeList_t>::TreeList() {}
  71 
  72 template <class Chunk_t, template <class> class FreeList_t>
  73 TreeList<Chunk_t, FreeList_t>*
  74 TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) {
  75   // This first free chunk in the list will be the tree list.
  76   assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())),
  77     "Chunk is too small for a TreeChunk");
  78   TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list();
  79   tl->initialize();
  80   tc->set_list(tl);
  81   tl->set_size(tc->size());
  82   tl->link_head(tc);
  83   tl->link_tail(tc);
  84   tl->set_count(1);
  85 
  86   return tl;
  87 }
  88 
  89 
  90 template <class Chunk_t, template <class> class FreeList_t>
  91 TreeList<Chunk_t, FreeList_t>*
  92 get_chunk(size_t size, enum FreeBlockDictionary<Chunk_t>::Dither dither) {
  93   FreeBlockDictionary<Chunk_t>::verify_par_locked();
  94   Chunk_t* res = get_chunk_from_tree(size, dither);
  95   assert(res == NULL || res->is_free(),
  96          "Should be returning a free chunk");
  97   assert(dither != FreeBlockDictionary<Chunk_t>::exactly ||
  98          res->size() == size, "Not correct size");
  99   return res;
 100 }
 101 
 102 template <class Chunk_t, template <class> class FreeList_t>
 103 TreeList<Chunk_t, FreeList_t>*
 104 TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) {
 105   TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr;
 106   assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()),
 107     "Chunk is too small for a TreeChunk");
 108   // The space will have been mangled initially but
 109   // is not remangled when a Chunk_t is returned to the free list
 110   // (since it is used to maintain the chunk on the free list).
 111   tc->assert_is_mangled();
 112   tc->set_size(size);
 113   tc->link_prev(NULL);
 114   tc->link_next(NULL);
 115   TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
 116   return tl;
 117 }
 118 
 119 
 120 #ifndef SERIALGC
 121 // Specialize for AdaptiveFreeList which tries to avoid
 122 // splitting a chunk of a size that is under populated in favor of
 123 // an over populated size.  The general get_better_list() just returns
 124 // the current list.
 125 template <>
 126 TreeList<FreeChunk, AdaptiveFreeList>*
 127 TreeList<FreeChunk, AdaptiveFreeList>::get_better_list(
 128   BinaryTreeDictionary<FreeChunk, ::AdaptiveFreeList>* dictionary) {
 129   // A candidate chunk has been found.  If it is already under
 130   // populated, get a chunk associated with the hint for this
 131   // chunk.
 132 
 133   TreeList<FreeChunk, ::AdaptiveFreeList>* curTL = this;
 134   if (surplus() <= 0) {
 135     /* Use the hint to find a size with a surplus, and reset the hint. */
 136     TreeList<FreeChunk, ::AdaptiveFreeList>* hintTL = this;
 137     while (hintTL->hint() != 0) {
 138       assert(hintTL->hint() > hintTL->size(),
 139         "hint points in the wrong direction");
 140       hintTL = dictionary->find_list(hintTL->hint());
 141       assert(curTL != hintTL, "Infinite loop");
 142       if (hintTL == NULL ||
 143           hintTL == curTL /* Should not happen but protect against it */ ) {
 144         // No useful hint.  Set the hint to NULL and go on.
 145         curTL->set_hint(0);
 146         break;
 147       }
 148       assert(hintTL->size() > curTL->size(), "hint is inconsistent");
 149       if (hintTL->surplus() > 0) {
 150         // The hint led to a list that has a surplus.  Use it.
 151         // Set the hint for the candidate to an overpopulated
 152         // size.
 153         curTL->set_hint(hintTL->size());
 154         // Change the candidate.
 155         curTL = hintTL;
 156         break;
 157       }
 158     }
 159   }
 160   return curTL;
 161 }
 162 #endif // SERIALGC
 163 
 164 template <class Chunk_t, template <class> class FreeList_t>
 165 TreeList<Chunk_t, FreeList_t>*
 166 TreeList<Chunk_t, FreeList_t>::get_better_list(
 167   BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) {
 168   return this;
 169 }
 170 
 171 template <class Chunk_t, template <class> class FreeList_t>
 172 TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) {
 173 
 174   TreeList<Chunk_t, FreeList_t>* retTL = this;
 175   Chunk_t* list = head();
 176   assert(!list || list != list->next(), "Chunk on list twice");
 177   assert(tc != NULL, "Chunk being removed is NULL");
 178   assert(parent() == NULL || this == parent()->left() ||
 179     this == parent()->right(), "list is inconsistent");
 180   assert(tc->is_free(), "Header is not marked correctly");
 181   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 182   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 183 
 184   Chunk_t* prevFC = tc->prev();
 185   TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next());
 186   assert(list != NULL, "should have at least the target chunk");
 187 
 188   // Is this the first item on the list?
 189   if (tc == list) {
 190     // The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the
 191     // first chunk in the list unless it is the last chunk in the list
 192     // because the first chunk is also acting as the tree node.
 193     // When coalescing happens, however, the first chunk in the a tree
 194     // list can be the start of a free range.  Free ranges are removed
 195     // from the free lists so that they are not available to be
 196     // allocated when the sweeper yields (giving up the free list lock)
 197     // to allow mutator activity.  If this chunk is the first in the
 198     // list and is not the last in the list, do the work to copy the
 199     // TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all
 200     // the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list.
 201     if (nextTC == NULL) {
 202       assert(prevFC == NULL, "Not last chunk in the list");
 203       set_tail(NULL);
 204       set_head(NULL);
 205     } else {
 206       // copy embedded list.
 207       nextTC->set_embedded_list(tc->embedded_list());
 208       retTL = nextTC->embedded_list();
 209       // Fix the pointer to the list in each chunk in the list.
 210       // This can be slow for a long list.  Consider having
 211       // an option that does not allow the first chunk on the
 212       // list to be coalesced.
 213       for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL;
 214           curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) {
 215         curTC->set_list(retTL);
 216       }
 217       // Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>.
 218       if (retTL->parent() != NULL) {
 219         if (this == retTL->parent()->left()) {
 220           retTL->parent()->set_left(retTL);
 221         } else {
 222           assert(this == retTL->parent()->right(), "Parent is incorrect");
 223           retTL->parent()->set_right(retTL);
 224         }
 225       }
 226       // Fix the children's parent pointers to point to the
 227       // new list.
 228       assert(right() == retTL->right(), "Should have been copied");
 229       if (retTL->right() != NULL) {
 230         retTL->right()->set_parent(retTL);
 231       }
 232       assert(left() == retTL->left(), "Should have been copied");
 233       if (retTL->left() != NULL) {
 234         retTL->left()->set_parent(retTL);
 235       }
 236       retTL->link_head(nextTC);
 237       assert(nextTC->is_free(), "Should be a free chunk");
 238     }
 239   } else {
 240     if (nextTC == NULL) {
 241       // Removing chunk at tail of list
 242       link_tail(prevFC);
 243     }
 244     // Chunk is interior to the list
 245     prevFC->link_after(nextTC);
 246   }
 247 
 248   // Below this point the embeded TreeList<Chunk_t, FreeList_t> being used for the
 249   // tree node may have changed. Don't use "this"
 250   // TreeList<Chunk_t, FreeList_t>*.
 251   // chunk should still be a free chunk (bit set in _prev)
 252   assert(!retTL->head() || retTL->size() == retTL->head()->size(),
 253     "Wrong sized chunk in list");
 254   debug_only(
 255     tc->link_prev(NULL);
 256     tc->link_next(NULL);
 257     tc->set_list(NULL);
 258     bool prev_found = false;
 259     bool next_found = false;
 260     for (Chunk_t* curFC = retTL->head();
 261          curFC != NULL; curFC = curFC->next()) {
 262       assert(curFC != tc, "Chunk is still in list");
 263       if (curFC == prevFC) {
 264         prev_found = true;
 265       }
 266       if (curFC == nextTC) {
 267         next_found = true;
 268       }
 269     }
 270     assert(prevFC == NULL || prev_found, "Chunk was lost from list");
 271     assert(nextTC == NULL || next_found, "Chunk was lost from list");
 272     assert(retTL->parent() == NULL ||
 273            retTL == retTL->parent()->left() ||
 274            retTL == retTL->parent()->right(),
 275            "list is inconsistent");
 276   )
 277   retTL->decrement_count();
 278 
 279   assert(tc->is_free(), "Should still be a free chunk");
 280   assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
 281     "list invariant");
 282   assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
 283     "list invariant");
 284   return retTL;
 285 }
 286 
 287 template <class Chunk_t, template <class> class FreeList_t>
 288 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) {
 289   assert(chunk != NULL, "returning NULL chunk");
 290   assert(chunk->list() == this, "list should be set for chunk");
 291   assert(tail() != NULL, "The tree list is embedded in the first chunk");
 292   // which means that the list can never be empty.
 293   assert(!verify_chunk_in_free_list(chunk), "Double entry");
 294   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 295   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 296 
 297   Chunk_t* fc = tail();
 298   fc->link_after(chunk);
 299   link_tail(chunk);
 300 
 301   assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
 302   FreeList_t<Chunk_t>::increment_count();
 303   debug_only(increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
 304   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 305   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 306 }
 307 
 308 // Add this chunk at the head of the list.  "At the head of the list"
 309 // is defined to be after the chunk pointer to by head().  This is
 310 // because the TreeList<Chunk_t, FreeList_t> is embedded in the first TreeChunk<Chunk_t, FreeList_t> in the
 311 // list.  See the definition of TreeChunk<Chunk_t, FreeList_t>.
 312 template <class Chunk_t, template <class> class FreeList_t>
 313 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_head(TreeChunk<Chunk_t, FreeList_t>* chunk) {
 314   assert(chunk->list() == this, "list should be set for chunk");
 315   assert(head() != NULL, "The tree list is embedded in the first chunk");
 316   assert(chunk != NULL, "returning NULL chunk");
 317   assert(!verify_chunk_in_free_list(chunk), "Double entry");
 318   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 319   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 320 
 321   Chunk_t* fc = head()->next();
 322   if (fc != NULL) {
 323     chunk->link_after(fc);
 324   } else {
 325     assert(tail() == NULL, "List is inconsistent");
 326     link_tail(chunk);
 327   }
 328   head()->link_after(chunk);
 329   assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
 330   FreeList_t<Chunk_t>::increment_count();
 331   debug_only(increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
 332   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 333   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 334 }
 335 
 336 template <class Chunk_t, template <class> class FreeList_t>
 337 void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const {
 338   assert((ZapUnusedHeapArea &&
 339           SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) &&
 340           SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) &&
 341           SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) ||
 342           (size() == 0 && prev() == NULL && next() == NULL),
 343     "Space should be clear or mangled");
 344 }
 345 
 346 template <class Chunk_t, template <class> class FreeList_t>
 347 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() {
 348   assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this),
 349     "Wrong type of chunk?");
 350   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head());
 351 }
 352 
 353 template <class Chunk_t, template <class> class FreeList_t>
 354 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() {
 355   assert(head() != NULL, "The head of the list cannot be NULL");
 356   Chunk_t* fc = head()->next();
 357   TreeChunk<Chunk_t, FreeList_t>* retTC;
 358   if (fc == NULL) {
 359     retTC = head_as_TreeChunk();
 360   } else {
 361     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
 362   }
 363   assert(retTC->list() == this, "Wrong type of chunk.");
 364   return retTC;
 365 }
 366 
 367 // Returns the block with the largest heap address amongst
 368 // those in the list for this size; potentially slow and expensive,
 369 // use with caution!
 370 template <class Chunk_t, template <class> class FreeList_t>
 371 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() {
 372   assert(head() != NULL, "The head of the list cannot be NULL");
 373   Chunk_t* fc = head()->next();
 374   TreeChunk<Chunk_t, FreeList_t>* retTC;
 375   if (fc == NULL) {
 376     retTC = head_as_TreeChunk();
 377   } else {
 378     // walk down the list and return the one with the highest
 379     // heap address among chunks of this size.
 380     Chunk_t* last = fc;
 381     while (fc->next() != NULL) {
 382       if ((HeapWord*)last < (HeapWord*)fc) {
 383         last = fc;
 384       }
 385       fc = fc->next();
 386     }
 387     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last);
 388   }
 389   assert(retTC->list() == this, "Wrong type of chunk.");
 390   return retTC;
 391 }
 392 
 393 template <class Chunk_t, template <class> class FreeList_t>
 394 BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) {
 395   assert((mr.byte_size() > min_size()), "minimum chunk size");
 396 
 397   reset(mr);
 398   assert(root()->left() == NULL, "reset check failed");
 399   assert(root()->right() == NULL, "reset check failed");
 400   assert(root()->head()->next() == NULL, "reset check failed");
 401   assert(root()->head()->prev() == NULL, "reset check failed");
 402   assert(total_size() == root()->size(), "reset check failed");
 403   assert(total_free_blocks() == 1, "reset check failed");
 404 }
 405 
 406 template <class Chunk_t, template <class> class FreeList_t>
 407 void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) {
 408   _total_size = _total_size + inc;
 409 }
 410 
 411 template <class Chunk_t, template <class> class FreeList_t>
 412 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) {
 413   _total_size = _total_size - dec;
 414 }
 415 
 416 template <class Chunk_t, template <class> class FreeList_t>
 417 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) {
 418   assert((mr.byte_size() > min_size()), "minimum chunk size");
 419   set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size()));
 420   set_total_size(mr.word_size());
 421   set_total_free_blocks(1);
 422 }
 423 
 424 template <class Chunk_t, template <class> class FreeList_t>
 425 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) {
 426   MemRegion mr(addr, heap_word_size(byte_size));
 427   reset(mr);
 428 }
 429 
 430 template <class Chunk_t, template <class> class FreeList_t>
 431 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() {
 432   set_root(NULL);
 433   set_total_size(0);
 434   set_total_free_blocks(0);
 435 }
 436 
 437 // Get a free block of size at least size from tree, or NULL.
 438 template <class Chunk_t, template <class> class FreeList_t>
 439 TreeChunk<Chunk_t, FreeList_t>*
 440 BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(
 441                               size_t size,
 442                               enum FreeBlockDictionary<Chunk_t>::Dither dither)
 443 {
 444   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
 445   TreeChunk<Chunk_t, FreeList_t>* retTC = NULL;
 446 
 447   assert((size >= min_size()), "minimum chunk size");
 448   if (FLSVerifyDictionary) {
 449     verify_tree();
 450   }
 451   // starting at the root, work downwards trying to find match.
 452   // Remember the last node of size too great or too small.
 453   for (prevTL = curTL = root(); curTL != NULL;) {
 454     if (curTL->size() == size) {        // exact match
 455       break;
 456     }
 457     prevTL = curTL;
 458     if (curTL->size() < size) {        // proceed to right sub-tree
 459       curTL = curTL->right();
 460     } else {                           // proceed to left sub-tree
 461       assert(curTL->size() > size, "size inconsistency");
 462       curTL = curTL->left();
 463     }
 464   }
 465   if (curTL == NULL) { // couldn't find exact match
 466 
 467     if (dither == FreeBlockDictionary<Chunk_t>::exactly) return NULL;
 468 
 469     // try and find the next larger size by walking back up the search path
 470     for (curTL = prevTL; curTL != NULL;) {
 471       if (curTL->size() >= size) break;
 472       else curTL = curTL->parent();
 473     }
 474     assert(curTL == NULL || curTL->count() > 0,
 475       "An empty list should not be in the tree");
 476   }
 477   if (curTL != NULL) {
 478     assert(curTL->size() >= size, "size inconsistency");
 479 
 480     curTL = curTL->get_better_list(this);
 481 
 482     retTC = curTL->first_available();
 483     assert((retTC != NULL) && (curTL->count() > 0),
 484       "A list in the binary tree should not be NULL");
 485     assert(retTC->size() >= size,
 486       "A chunk of the wrong size was found");
 487     remove_chunk_from_tree(retTC);
 488     assert(retTC->is_free(), "Header is not marked correctly");
 489   }
 490 
 491   if (FLSVerifyDictionary) {
 492     verify();
 493   }
 494   return retTC;
 495 }
 496 
 497 template <class Chunk_t, template <class> class FreeList_t>
 498 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const {
 499   TreeList<Chunk_t, FreeList_t>* curTL;
 500   for (curTL = root(); curTL != NULL;) {
 501     if (curTL->size() == size) {        // exact match
 502       break;
 503     }
 504 
 505     if (curTL->size() < size) {        // proceed to right sub-tree
 506       curTL = curTL->right();
 507     } else {                           // proceed to left sub-tree
 508       assert(curTL->size() > size, "size inconsistency");
 509       curTL = curTL->left();
 510     }
 511   }
 512   return curTL;
 513 }
 514 
 515 
 516 template <class Chunk_t, template <class> class FreeList_t>
 517 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const {
 518   size_t size = tc->size();
 519   TreeList<Chunk_t, FreeList_t>* tl = find_list(size);
 520   if (tl == NULL) {
 521     return false;
 522   } else {
 523     return tl->verify_chunk_in_free_list(tc);
 524   }
 525 }
 526 
 527 template <class Chunk_t, template <class> class FreeList_t>
 528 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const {
 529   TreeList<Chunk_t, FreeList_t> *curTL = root();
 530   if (curTL != NULL) {
 531     while(curTL->right() != NULL) curTL = curTL->right();
 532     return curTL->largest_address();
 533   } else {
 534     return NULL;
 535   }
 536 }
 537 
 538 // Remove the current chunk from the tree.  If it is not the last
 539 // chunk in a list on a tree node, just unlink it.
 540 // If it is the last chunk in the list (the next link is NULL),
 541 // remove the node and repair the tree.
 542 template <class Chunk_t, template <class> class FreeList_t>
 543 TreeChunk<Chunk_t, FreeList_t>*
 544 BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) {
 545   assert(tc != NULL, "Should not call with a NULL chunk");
 546   assert(tc->is_free(), "Header is not marked correctly");
 547 
 548   TreeList<Chunk_t, FreeList_t> *newTL, *parentTL;
 549   TreeChunk<Chunk_t, FreeList_t>* retTC;
 550   TreeList<Chunk_t, FreeList_t>* tl = tc->list();
 551   debug_only(
 552     bool removing_only_chunk = false;
 553     if (tl == _root) {
 554       if ((_root->left() == NULL) && (_root->right() == NULL)) {
 555         if (_root->count() == 1) {
 556           assert(_root->head() == tc, "Should only be this one chunk");
 557           removing_only_chunk = true;
 558         }
 559       }
 560     }
 561   )
 562   assert(tl != NULL, "List should be set");
 563   assert(tl->parent() == NULL || tl == tl->parent()->left() ||
 564          tl == tl->parent()->right(), "list is inconsistent");
 565 
 566   bool complicated_splice = false;
 567 
 568   retTC = tc;
 569   // Removing this chunk can have the side effect of changing the node
 570   // (TreeList<Chunk_t, FreeList_t>*) in the tree.  If the node is the root, update it.
 571   TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
 572   assert(tc->is_free(), "Chunk should still be free");
 573   assert(replacementTL->parent() == NULL ||
 574          replacementTL == replacementTL->parent()->left() ||
 575          replacementTL == replacementTL->parent()->right(),
 576          "list is inconsistent");
 577   if (tl == root()) {
 578     assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
 579     set_root(replacementTL);
 580   }
 581 #ifdef ASSERT
 582     if (tl != replacementTL) {
 583       assert(replacementTL->head() != NULL,
 584         "If the tree list was replaced, it should not be a NULL list");
 585       TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list();
 586       TreeList<Chunk_t, FreeList_t>* rtl =
 587         TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list();
 588       assert(rhl == replacementTL, "Broken head");
 589       assert(rtl == replacementTL, "Broken tail");
 590       assert(replacementTL->size() == tc->size(),  "Broken size");
 591     }
 592 #endif
 593 
 594   // Does the tree need to be repaired?
 595   if (replacementTL->count() == 0) {
 596     assert(replacementTL->head() == NULL &&
 597            replacementTL->tail() == NULL, "list count is incorrect");
 598     // Find the replacement node for the (soon to be empty) node being removed.
 599     // if we have a single (or no) child, splice child in our stead
 600     if (replacementTL->left() == NULL) {
 601       // left is NULL so pick right.  right may also be NULL.
 602       newTL = replacementTL->right();
 603       debug_only(replacementTL->clear_right();)
 604     } else if (replacementTL->right() == NULL) {
 605       // right is NULL
 606       newTL = replacementTL->left();
 607       debug_only(replacementTL->clear_left();)
 608     } else {  // we have both children, so, by patriarchal convention,
 609               // my replacement is least node in right sub-tree
 610       complicated_splice = true;
 611       newTL = remove_tree_minimum(replacementTL->right());
 612       assert(newTL != NULL && newTL->left() == NULL &&
 613              newTL->right() == NULL, "sub-tree minimum exists");
 614     }
 615     // newTL is the replacement for the (soon to be empty) node.
 616     // newTL may be NULL.
 617     // should verify; we just cleanly excised our replacement
 618     if (FLSVerifyDictionary) {
 619       verify_tree();
 620     }
 621     // first make newTL my parent's child
 622     if ((parentTL = replacementTL->parent()) == NULL) {
 623       // newTL should be root
 624       assert(tl == root(), "Incorrectly replacing root");
 625       set_root(newTL);
 626       if (newTL != NULL) {
 627         newTL->clear_parent();
 628       }
 629     } else if (parentTL->right() == replacementTL) {
 630       // replacementTL is a right child
 631       parentTL->set_right(newTL);
 632     } else {                                // replacementTL is a left child
 633       assert(parentTL->left() == replacementTL, "should be left child");
 634       parentTL->set_left(newTL);
 635     }
 636     debug_only(replacementTL->clear_parent();)
 637     if (complicated_splice) {  // we need newTL to get replacementTL's
 638                               // two children
 639       assert(newTL != NULL &&
 640              newTL->left() == NULL && newTL->right() == NULL,
 641             "newTL should not have encumbrances from the past");
 642       // we'd like to assert as below:
 643       // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
 644       //       "else !complicated_splice");
 645       // ... however, the above assertion is too strong because we aren't
 646       // guaranteed that replacementTL->right() is still NULL.
 647       // Recall that we removed
 648       // the right sub-tree minimum from replacementTL.
 649       // That may well have been its right
 650       // child! So we'll just assert half of the above:
 651       assert(replacementTL->left() != NULL, "else !complicated_splice");
 652       newTL->set_left(replacementTL->left());
 653       newTL->set_right(replacementTL->right());
 654       debug_only(
 655         replacementTL->clear_right();
 656         replacementTL->clear_left();
 657       )
 658     }
 659     assert(replacementTL->right() == NULL &&
 660            replacementTL->left() == NULL &&
 661            replacementTL->parent() == NULL,
 662         "delete without encumbrances");
 663   }
 664 
 665   assert(total_size() >= retTC->size(), "Incorrect total size");
 666   dec_total_size(retTC->size());     // size book-keeping
 667   assert(total_free_blocks() > 0, "Incorrect total count");
 668   set_total_free_blocks(total_free_blocks() - 1);
 669 
 670   assert(retTC != NULL, "null chunk?");
 671   assert(retTC->prev() == NULL && retTC->next() == NULL,
 672          "should return without encumbrances");
 673   if (FLSVerifyDictionary) {
 674     verify_tree();
 675   }
 676   assert(!removing_only_chunk || _root == NULL, "root should be NULL");
 677   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC);
 678 }
 679 
 680 // Remove the leftmost node (lm) in the tree and return it.
 681 // If lm has a right child, link it to the left node of
 682 // the parent of lm.
 683 template <class Chunk_t, template <class> class FreeList_t>
 684 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) {
 685   assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
 686   // locate the subtree minimum by walking down left branches
 687   TreeList<Chunk_t, FreeList_t>* curTL = tl;
 688   for (; curTL->left() != NULL; curTL = curTL->left());
 689   // obviously curTL now has at most one child, a right child
 690   if (curTL != root()) {  // Should this test just be removed?
 691     TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent();
 692     if (parentTL->left() == curTL) { // curTL is a left child
 693       parentTL->set_left(curTL->right());
 694     } else {
 695       // If the list tl has no left child, then curTL may be
 696       // the right child of parentTL.
 697       assert(parentTL->right() == curTL, "should be a right child");
 698       parentTL->set_right(curTL->right());
 699     }
 700   } else {
 701     // The only use of this method would not pass the root of the
 702     // tree (as indicated by the assertion above that the tree list
 703     // has a parent) but the specification does not explicitly exclude the
 704     // passing of the root so accomodate it.
 705     set_root(NULL);
 706   }
 707   debug_only(
 708     curTL->clear_parent();  // Test if this needs to be cleared
 709     curTL->clear_right();    // recall, above, left child is already null
 710   )
 711   // we just excised a (non-root) node, we should still verify all tree invariants
 712   if (FLSVerifyDictionary) {
 713     verify_tree();
 714   }
 715   return curTL;
 716 }
 717 
 718 template <class Chunk_t, template <class> class FreeList_t>
 719 void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) {
 720   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
 721   size_t size = fc->size();
 722 
 723   assert((size >= min_size()),
 724     err_msg(SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT,
 725       size, min_size()));
 726   if (FLSVerifyDictionary) {
 727     verify_tree();
 728   }
 729 
 730   fc->clear_next();
 731   fc->link_prev(NULL);
 732 
 733   // work down from the _root, looking for insertion point
 734   for (prevTL = curTL = root(); curTL != NULL;) {
 735     if (curTL->size() == size)  // exact match
 736       break;
 737     prevTL = curTL;
 738     if (curTL->size() > size) { // follow left branch
 739       curTL = curTL->left();
 740     } else {                    // follow right branch
 741       assert(curTL->size() < size, "size inconsistency");
 742       curTL = curTL->right();
 743     }
 744   }
 745   TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
 746   // This chunk is being returned to the binary tree.  Its embedded
 747   // TreeList<Chunk_t, FreeList_t> should be unused at this point.
 748   tc->initialize();
 749   if (curTL != NULL) {          // exact match
 750     tc->set_list(curTL);
 751     curTL->return_chunk_at_tail(tc);
 752   } else {                     // need a new node in tree
 753     tc->clear_next();
 754     tc->link_prev(NULL);
 755     TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
 756     assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL,
 757       "List was not initialized correctly");
 758     if (prevTL == NULL) {      // we are the only tree node
 759       assert(root() == NULL, "control point invariant");
 760       set_root(newTL);
 761     } else {                   // insert under prevTL ...
 762       if (prevTL->size() < size) {   // am right child
 763         assert(prevTL->right() == NULL, "control point invariant");
 764         prevTL->set_right(newTL);
 765       } else {                       // am left child
 766         assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
 767         prevTL->set_left(newTL);
 768       }
 769     }
 770   }
 771   assert(tc->list() != NULL, "Tree list should be set");
 772 
 773   inc_total_size(size);
 774   // Method 'total_size_in_tree' walks through the every block in the
 775   // tree, so it can cause significant performance loss if there are
 776   // many blocks in the tree
 777   assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
 778   set_total_free_blocks(total_free_blocks() + 1);
 779   if (FLSVerifyDictionary) {
 780     verify_tree();
 781   }
 782 }
 783 
 784 template <class Chunk_t, template <class> class FreeList_t>
 785 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const {
 786   FreeBlockDictionary<Chunk_t>::verify_par_locked();
 787   TreeList<Chunk_t, FreeList_t>* tc = root();
 788   if (tc == NULL) return 0;
 789   for (; tc->right() != NULL; tc = tc->right());
 790   return tc->size();
 791 }
 792 
 793 template <class Chunk_t, template <class> class FreeList_t>
 794 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const {
 795   size_t res;
 796   res = tl->count();
 797 #ifdef ASSERT
 798   size_t cnt;
 799   Chunk_t* tc = tl->head();
 800   for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
 801   assert(res == cnt, "The count is not being maintained correctly");
 802 #endif
 803   return res;
 804 }
 805 
 806 template <class Chunk_t, template <class> class FreeList_t>
 807 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
 808   if (tl == NULL)
 809     return 0;
 810   return (tl->size() * total_list_length(tl)) +
 811          total_size_in_tree(tl->left())    +
 812          total_size_in_tree(tl->right());
 813 }
 814 
 815 template <class Chunk_t, template <class> class FreeList_t>
 816 double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const {
 817   if (tl == NULL) {
 818     return 0.0;
 819   }
 820   double size = (double)(tl->size());
 821   double curr = size * size * total_list_length(tl);
 822   curr += sum_of_squared_block_sizes(tl->left());
 823   curr += sum_of_squared_block_sizes(tl->right());
 824   return curr;
 825 }
 826 
 827 template <class Chunk_t, template <class> class FreeList_t>
 828 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
 829   if (tl == NULL)
 830     return 0;
 831   return total_list_length(tl) +
 832          total_free_blocks_in_tree(tl->left()) +
 833          total_free_blocks_in_tree(tl->right());
 834 }
 835 
 836 template <class Chunk_t, template <class> class FreeList_t>
 837 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const {
 838   assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
 839          "_total_free_blocks inconsistency");
 840   return total_free_blocks();
 841 }
 842 
 843 template <class Chunk_t, template <class> class FreeList_t>
 844 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
 845   if (tl == NULL)
 846     return 0;
 847   return 1 + MAX2(tree_height_helper(tl->left()),
 848                   tree_height_helper(tl->right()));
 849 }
 850 
 851 template <class Chunk_t, template <class> class FreeList_t>
 852 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const {
 853   return tree_height_helper(root());
 854 }
 855 
 856 template <class Chunk_t, template <class> class FreeList_t>
 857 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
 858   if (tl == NULL) {
 859     return 0;
 860   }
 861   return 1 + total_nodes_helper(tl->left()) +
 862     total_nodes_helper(tl->right());
 863 }
 864 
 865 template <class Chunk_t, template <class> class FreeList_t>
 866 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
 867   return total_nodes_helper(root());
 868 }
 869 
 870 template <class Chunk_t, template <class> class FreeList_t>
 871 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dict_census_update(size_t size, bool split, bool birth){}
 872 
 873 #ifndef SERIALGC
 874 template <>
 875 void BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>::dict_census_update(size_t size, bool split, bool birth){
 876   TreeList<FreeChunk, AdaptiveFreeList>* nd = find_list(size);
 877   if (nd) {
 878     if (split) {
 879       if (birth) {
 880         nd->increment_split_births();
 881         nd->increment_surplus();
 882       }  else {
 883         nd->increment_split_deaths();
 884         nd->decrement_surplus();
 885       }
 886     } else {
 887       if (birth) {
 888         nd->increment_coal_births();
 889         nd->increment_surplus();
 890       } else {
 891         nd->increment_coal_deaths();
 892         nd->decrement_surplus();
 893       }
 894     }
 895   }
 896   // A list for this size may not be found (nd == 0) if
 897   //   This is a death where the appropriate list is now
 898   //     empty and has been removed from the list.
 899   //   This is a birth associated with a LinAB.  The chunk
 900   //     for the LinAB is not in the dictionary.
 901 }
 902 #endif // SERIALGC
 903 
 904 template <class Chunk_t, template <class> class FreeList_t>
 905 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::coal_dict_over_populated(size_t size) {
 906   // For the general type of freelists, encourage coalescing by
 907   // returning true.
 908   return true;
 909 }
 910 
 911 #ifndef SERIALGC
 912 template <>
 913 bool BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>::coal_dict_over_populated(size_t size) {
 914   if (FLSAlwaysCoalesceLarge) return true;
 915 
 916   TreeList<FreeChunk, AdaptiveFreeList>* list_of_size = find_list(size);
 917   // None of requested size implies overpopulated.
 918   return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
 919          list_of_size->count() > list_of_size->coal_desired();
 920 }
 921 #endif  // SERIALGC
 922 
 923 // Closures for walking the binary tree.
 924 //   do_list() walks the free list in a node applying the closure
 925 //     to each free chunk in the list
 926 //   do_tree() walks the nodes in the binary tree applying do_list()
 927 //     to each list at each node.
 928 
 929 template <class Chunk_t, template <class> class FreeList_t>
 930 class TreeCensusClosure : public StackObj {
 931  protected:
 932   virtual void do_list(FreeList_t<Chunk_t>* fl) = 0;
 933  public:
 934   virtual void do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
 935 };
 936 
 937 template <class Chunk_t, template <class> class FreeList_t>
 938 class AscendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
 939  public:
 940   void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
 941     if (tl != NULL) {
 942       do_tree(tl->left());
 943       do_list(tl);
 944       do_tree(tl->right());
 945     }
 946   }
 947 };
 948 
 949 template <class Chunk_t, template <class> class FreeList_t>
 950 class DescendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
 951  public:
 952   void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
 953     if (tl != NULL) {
 954       do_tree(tl->right());
 955       do_list(tl);
 956       do_tree(tl->left());
 957     }
 958   }
 959 };
 960 
 961 // For each list in the tree, calculate the desired, desired
 962 // coalesce, count before sweep, and surplus before sweep.
 963 template <class Chunk_t, template <class> class FreeList_t>
 964 class BeginSweepClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
 965   double _percentage;
 966   float _inter_sweep_current;
 967   float _inter_sweep_estimate;
 968   float _intra_sweep_estimate;
 969 
 970  public:
 971   BeginSweepClosure(double p, float inter_sweep_current,
 972                               float inter_sweep_estimate,
 973                               float intra_sweep_estimate) :
 974    _percentage(p),
 975    _inter_sweep_current(inter_sweep_current),
 976    _inter_sweep_estimate(inter_sweep_estimate),
 977    _intra_sweep_estimate(intra_sweep_estimate) { }
 978 
 979   void do_list(FreeList<Chunk_t>* fl) {}
 980 
 981 #ifndef SERIALGC
 982   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
 983     double coalSurplusPercent = _percentage;
 984     fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
 985     fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
 986     fl->set_before_sweep(fl->count());
 987     fl->set_bfr_surp(fl->surplus());
 988   }
 989 #endif // SERIALGC
 990 };
 991 
 992 // Used to search the tree until a condition is met.
 993 // Similar to TreeCensusClosure but searches the
 994 // tree and returns promptly when found.
 995 
 996 template <class Chunk_t, template <class> class FreeList_t>
 997 class TreeSearchClosure : public StackObj {
 998  protected:
 999   virtual bool do_list(FreeList_t<Chunk_t>* fl) = 0;
1000  public:
1001   virtual bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
1002 };
1003 
1004 #if 0 //  Don't need this yet but here for symmetry.
1005 template <class Chunk_t, template <class> class FreeList_t>
1006 class AscendTreeSearchClosure : public TreeSearchClosure<Chunk_t> {
1007  public:
1008   bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
1009     if (tl != NULL) {
1010       if (do_tree(tl->left())) return true;
1011       if (do_list(tl)) return true;
1012       if (do_tree(tl->right())) return true;
1013     }
1014     return false;
1015   }
1016 };
1017 #endif
1018 
1019 template <class Chunk_t, template <class> class FreeList_t>
1020 class DescendTreeSearchClosure : public TreeSearchClosure<Chunk_t, FreeList_t> {
1021  public:
1022   bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
1023     if (tl != NULL) {
1024       if (do_tree(tl->right())) return true;
1025       if (do_list(tl)) return true;
1026       if (do_tree(tl->left())) return true;
1027     }
1028     return false;
1029   }
1030 };
1031 
1032 // Searches the tree for a chunk that ends at the
1033 // specified address.
1034 template <class Chunk_t, template <class> class FreeList_t>
1035 class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> {
1036   HeapWord* _target;
1037   Chunk_t* _found;
1038 
1039  public:
1040   EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
1041   bool do_list(FreeList_t<Chunk_t>* fl) {
1042     Chunk_t* item = fl->head();
1043     while (item != NULL) {
1044       if (item->end() == (uintptr_t*) _target) {
1045         _found = item;
1046         return true;
1047       }
1048       item = item->next();
1049     }
1050     return false;
1051   }
1052   Chunk_t* found() { return _found; }
1053 };
1054 
1055 template <class Chunk_t, template <class> class FreeList_t>
1056 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const {
1057   EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target);
1058   bool found_target = etsc.do_tree(root());
1059   assert(found_target || etsc.found() == NULL, "Consistency check");
1060   assert(!found_target || etsc.found() != NULL, "Consistency check");
1061   return etsc.found();
1062 }
1063 
1064 template <class Chunk_t, template <class> class FreeList_t>
1065 void BinaryTreeDictionary<Chunk_t, FreeList_t>::begin_sweep_dict_census(double coalSurplusPercent,
1066   float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
1067   BeginSweepClosure<Chunk_t, FreeList_t> bsc(coalSurplusPercent, inter_sweep_current,
1068                                             inter_sweep_estimate,
1069                                             intra_sweep_estimate);
1070   bsc.do_tree(root());
1071 }
1072 
1073 // Closures and methods for calculating total bytes returned to the
1074 // free lists in the tree.
1075 #ifndef PRODUCT
1076 template <class Chunk_t, template <class> class FreeList_t>
1077 class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1078    public:
1079   void do_list(FreeList_t<Chunk_t>* fl) {
1080     fl->set_returned_bytes(0);
1081   }
1082 };
1083 
1084 template <class Chunk_t, template <class> class FreeList_t>
1085 void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() {
1086   InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb;
1087   idrb.do_tree(root());
1088 }
1089 
1090 template <class Chunk_t, template <class> class FreeList_t>
1091 class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1092   size_t _dict_returned_bytes;
1093  public:
1094   ReturnedBytesClosure() { _dict_returned_bytes = 0; }
1095   void do_list(FreeList_t<Chunk_t>* fl) {
1096     _dict_returned_bytes += fl->returned_bytes();
1097   }
1098   size_t dict_returned_bytes() { return _dict_returned_bytes; }
1099 };
1100 
1101 template <class Chunk_t, template <class> class FreeList_t>
1102 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() {
1103   ReturnedBytesClosure<Chunk_t, FreeList_t> rbc;
1104   rbc.do_tree(root());
1105 
1106   return rbc.dict_returned_bytes();
1107 }
1108 
1109 // Count the number of entries in the tree.
1110 template <class Chunk_t, template <class> class FreeList_t>
1111 class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
1112  public:
1113   uint count;
1114   treeCountClosure(uint c) { count = c; }
1115   void do_list(FreeList_t<Chunk_t>* fl) {
1116     count++;
1117   }
1118 };
1119 
1120 template <class Chunk_t, template <class> class FreeList_t>
1121 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() {
1122   treeCountClosure<Chunk_t, FreeList_t> ctc(0);
1123   ctc.do_tree(root());
1124   return ctc.count;
1125 }
1126 #endif // PRODUCT
1127 
1128 // Calculate surpluses for the lists in the tree.
1129 template <class Chunk_t, template <class> class FreeList_t>
1130 class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1131   double percentage;
1132  public:
1133   setTreeSurplusClosure(double v) { percentage = v; }
1134   void do_list(FreeList<Chunk_t>* fl) {}
1135 
1136 #ifndef SERIALGC
1137   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1138     double splitSurplusPercent = percentage;
1139     fl->set_surplus(fl->count() -
1140                    (ssize_t)((double)fl->desired() * splitSurplusPercent));
1141   }
1142 #endif // SERIALGC
1143 };
1144 
1145 template <class Chunk_t, template <class> class FreeList_t>
1146 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_surplus(double splitSurplusPercent) {
1147   setTreeSurplusClosure<Chunk_t, FreeList_t> sts(splitSurplusPercent);
1148   sts.do_tree(root());
1149 }
1150 
1151 // Set hints for the lists in the tree.
1152 template <class Chunk_t, template <class> class FreeList_t>
1153 class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
1154   size_t hint;
1155  public:
1156   setTreeHintsClosure(size_t v) { hint = v; }
1157   void do_list(FreeList<Chunk_t>* fl) {}
1158 
1159 #ifndef SERIALGC
1160   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1161     fl->set_hint(hint);
1162     assert(fl->hint() == 0 || fl->hint() > fl->size(),
1163       "Current hint is inconsistent");
1164     if (fl->surplus() > 0) {
1165       hint = fl->size();
1166     }
1167   }
1168 #endif // SERIALGC
1169 };
1170 
1171 template <class Chunk_t, template <class> class FreeList_t>
1172 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_hints(void) {
1173   setTreeHintsClosure<Chunk_t, FreeList_t> sth(0);
1174   sth.do_tree(root());
1175 }
1176 
1177 // Save count before previous sweep and splits and coalesces.
1178 template <class Chunk_t, template <class> class FreeList_t>
1179 class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1180   void do_list(FreeList<Chunk_t>* fl) {}
1181 
1182 #ifndef SERIALGC
1183   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1184     fl->set_prev_sweep(fl->count());
1185     fl->set_coal_births(0);
1186     fl->set_coal_deaths(0);
1187     fl->set_split_births(0);
1188     fl->set_split_deaths(0);
1189   }
1190 #endif  // SERIALGC
1191 };
1192 
1193 template <class Chunk_t, template <class> class FreeList_t>
1194 void BinaryTreeDictionary<Chunk_t, FreeList_t>::clear_tree_census(void) {
1195   clearTreeCensusClosure<Chunk_t, FreeList_t> ctc;
1196   ctc.do_tree(root());
1197 }
1198 
1199 // Do reporting and post sweep clean up.
1200 template <class Chunk_t, template <class> class FreeList_t>
1201 void BinaryTreeDictionary<Chunk_t, FreeList_t>::end_sweep_dict_census(double splitSurplusPercent) {
1202   // Does walking the tree 3 times hurt?
1203   set_tree_surplus(splitSurplusPercent);
1204   set_tree_hints();
1205   if (PrintGC && Verbose) {
1206     report_statistics();
1207   }
1208   clear_tree_census();
1209 }
1210 
1211 // Print summary statistics
1212 template <class Chunk_t, template <class> class FreeList_t>
1213 void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics() const {
1214   FreeBlockDictionary<Chunk_t>::verify_par_locked();
1215   gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
1216          "------------------------------------\n");
1217   size_t total_size = total_chunk_size(debug_only(NULL));
1218   size_t    free_blocks = num_free_blocks();
1219   gclog_or_tty->print("Total Free Space: %d\n", total_size);
1220   gclog_or_tty->print("Max   Chunk Size: %d\n", max_chunk_size());
1221   gclog_or_tty->print("Number of Blocks: %d\n", free_blocks);
1222   if (free_blocks > 0) {
1223     gclog_or_tty->print("Av.  Block  Size: %d\n", total_size/free_blocks);
1224   }
1225   gclog_or_tty->print("Tree      Height: %d\n", tree_height());
1226 }
1227 
1228 // Print census information - counts, births, deaths, etc.
1229 // for each list in the tree.  Also print some summary
1230 // information.
1231 template <class Chunk_t, template <class> class FreeList_t>
1232 class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1233   int _print_line;
1234   size_t _total_free;
1235   FreeList_t<Chunk_t> _total;
1236 
1237  public:
1238   PrintTreeCensusClosure() {
1239     _print_line = 0;
1240     _total_free = 0;
1241   }
1242   FreeList_t<Chunk_t>* total() { return &_total; }
1243   size_t total_free() { return _total_free; }
1244   void do_list(FreeList<Chunk_t>* fl) {
1245     if (++_print_line >= 40) {
1246       FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
1247       _print_line = 0;
1248     }
1249     fl->print_on(gclog_or_tty);
1250     _total_free +=            fl->count()            * fl->size()        ;
1251     total()->set_count(      total()->count()       + fl->count()      );
1252   }
1253 
1254 #ifndef SERIALGC
1255   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1256     if (++_print_line >= 40) {
1257       FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
1258       _print_line = 0;
1259     }
1260     fl->print_on(gclog_or_tty);
1261     _total_free +=           fl->count()             * fl->size()        ;
1262     total()->set_count(      total()->count()        + fl->count()      );
1263     total()->set_bfr_surp(   total()->bfr_surp()     + fl->bfr_surp()    );
1264     total()->set_surplus(    total()->split_deaths() + fl->surplus()    );
1265     total()->set_desired(    total()->desired()      + fl->desired()    );
1266     total()->set_prev_sweep(  total()->prev_sweep()   + fl->prev_sweep()  );
1267     total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
1268     total()->set_coal_births( total()->coal_births()  + fl->coal_births() );
1269     total()->set_coal_deaths( total()->coal_deaths()  + fl->coal_deaths() );
1270     total()->set_split_births(total()->split_births() + fl->split_births());
1271     total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
1272   }
1273 #endif  // SERIALGC
1274 };
1275 
1276 template <class Chunk_t, template <class> class FreeList_t>
1277 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_dict_census(void) const {
1278 
1279   gclog_or_tty->print("\nBinaryTree\n");
1280   FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
1281   PrintTreeCensusClosure<Chunk_t, FreeList_t> ptc;
1282   ptc.do_tree(root());
1283 
1284   FreeList_t<Chunk_t>* total = ptc.total();
1285   FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, " ");
1286 }
1287 
1288 #ifndef SERIALGC
1289 template <>
1290 void BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>::print_dict_census(void) const {
1291 
1292   gclog_or_tty->print("\nBinaryTree\n");
1293   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
1294   PrintTreeCensusClosure<FreeChunk, AdaptiveFreeList> ptc;
1295   ptc.do_tree(root());
1296 
1297   AdaptiveFreeList<FreeChunk>* total = ptc.total();
1298   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, " ");
1299   total->print_on(gclog_or_tty, "TOTAL\t");
1300   gclog_or_tty->print(
1301               "total_free(words): " SIZE_FORMAT_W(16)
1302               " growth: %8.5f  deficit: %8.5f\n",
1303               ptc.total_free(),
1304               (double)(total->split_births() + total->coal_births()
1305                      - total->split_deaths() - total->coal_deaths())
1306               /(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0),
1307              (double)(total->desired() - total->count())
1308              /(total->desired() != 0 ? (double)total->desired() : 1.0));
1309 }
1310 #endif  // SERIALGC
1311 
1312 template <class Chunk_t, template <class> class FreeList_t>
1313 class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1314   outputStream* _st;
1315   int _print_line;
1316 
1317  public:
1318   PrintFreeListsClosure(outputStream* st) {
1319     _st = st;
1320     _print_line = 0;
1321   }
1322   void do_list(FreeList_t<Chunk_t>* fl) {
1323     if (++_print_line >= 40) {
1324       FreeList_t<Chunk_t>::print_labels_on(_st, "size");
1325       _print_line = 0;
1326     }
1327     fl->print_on(gclog_or_tty);
1328     size_t sz = fl->size();
1329     for (Chunk_t* fc = fl->head(); fc != NULL;
1330          fc = fc->next()) {
1331       _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
1332                     fc, (HeapWord*)fc + sz,
1333                     fc->cantCoalesce() ? "\t CC" : "");
1334     }
1335   }
1336 };
1337 
1338 template <class Chunk_t, template <class> class FreeList_t>
1339 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const {
1340 
1341   FreeList_t<Chunk_t>::print_labels_on(st, "size");
1342   PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st);
1343   pflc.do_tree(root());
1344 }
1345 
1346 // Verify the following tree invariants:
1347 // . _root has no parent
1348 // . parent and child point to each other
1349 // . each node's key correctly related to that of its child(ren)
1350 template <class Chunk_t, template <class> class FreeList_t>
1351 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const {
1352   guarantee(root() == NULL || total_free_blocks() == 0 ||
1353     total_size() != 0, "_total_size should't be 0?");
1354   guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
1355   verify_tree_helper(root());
1356 }
1357 
1358 template <class Chunk_t, template <class> class FreeList_t>
1359 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) {
1360   size_t ct = 0;
1361   for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
1362     ct++;
1363     assert(curFC->prev() == NULL || curFC->prev()->is_free(),
1364       "Chunk should be free");
1365   }
1366   return ct;
1367 }
1368 
1369 // Note: this helper is recursive rather than iterative, so use with
1370 // caution on very deep trees; and watch out for stack overflow errors;
1371 // In general, to be used only for debugging.
1372 template <class Chunk_t, template <class> class FreeList_t>
1373 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
1374   if (tl == NULL)
1375     return;
1376   guarantee(tl->size() != 0, "A list must has a size");
1377   guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
1378          "parent<-/->left");
1379   guarantee(tl->right() == NULL || tl->right()->parent() == tl,
1380          "parent<-/->right");;
1381   guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
1382          "parent !> left");
1383   guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
1384          "parent !< left");
1385   guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
1386   guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
1387     "list inconsistency");
1388   guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
1389     "list count is inconsistent");
1390   guarantee(tl->count() > 1 || tl->head() == tl->tail(),
1391     "list is incorrectly constructed");
1392   size_t count = verify_prev_free_ptrs(tl);
1393   guarantee(count == (size_t)tl->count(), "Node count is incorrect");
1394   if (tl->head() != NULL) {
1395     tl->head_as_TreeChunk()->verify_tree_chunk_list();
1396   }
1397   verify_tree_helper(tl->left());
1398   verify_tree_helper(tl->right());
1399 }
1400 
1401 template <class Chunk_t, template <class> class FreeList_t>
1402 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const {
1403   verify_tree();
1404   guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
1405 }
1406 
1407 template class TreeList<Metablock, FreeList>;
1408 template class BinaryTreeDictionary<Metablock, FreeList>;
1409 template class TreeChunk<Metablock, FreeList>;
1410 
1411 template class TreeList<Metachunk, FreeList>;
1412 template class BinaryTreeDictionary<Metachunk, FreeList>;
1413 template class TreeChunk<Metachunk, FreeList>;
1414 
1415 
1416 #ifndef SERIALGC
1417 // Explicitly instantiate these types for FreeChunk.
1418 template class TreeList<FreeChunk, AdaptiveFreeList>;
1419 template class BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>;
1420 template class TreeChunk<FreeChunk, AdaptiveFreeList>;
1421 
1422 #endif // SERIALGC