1 /*
   2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "interpreter/templateTable.hpp"
  30 #include "memory/universe.inline.hpp"
  31 #include "oops/methodData.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "runtime/synchronizer.hpp"
  38 #include "utilities/macros.hpp"
  39 
  40 #ifndef CC_INTERP
  41 
  42 #define __ _masm->
  43 
  44 // Platform-dependent initialization
  45 
  46 void TemplateTable::pd_initialize() {
  47   // No amd64 specific initialization
  48 }
  49 
  50 // Address computation: local variables
  51 
  52 static inline Address iaddress(int n) {
  53   return Address(r14, Interpreter::local_offset_in_bytes(n));
  54 }
  55 
  56 static inline Address laddress(int n) {
  57   return iaddress(n + 1);
  58 }
  59 
  60 static inline Address faddress(int n) {
  61   return iaddress(n);
  62 }
  63 
  64 static inline Address daddress(int n) {
  65   return laddress(n);
  66 }
  67 
  68 static inline Address aaddress(int n) {
  69   return iaddress(n);
  70 }
  71 
  72 static inline Address iaddress(Register r) {
  73   return Address(r14, r, Address::times_8);
  74 }
  75 
  76 static inline Address laddress(Register r) {
  77   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
  78 }
  79 
  80 static inline Address faddress(Register r) {
  81   return iaddress(r);
  82 }
  83 
  84 static inline Address daddress(Register r) {
  85   return laddress(r);
  86 }
  87 
  88 static inline Address aaddress(Register r) {
  89   return iaddress(r);
  90 }
  91 
  92 static inline Address at_rsp() {
  93   return Address(rsp, 0);
  94 }
  95 
  96 // At top of Java expression stack which may be different than esp().  It
  97 // isn't for category 1 objects.
  98 static inline Address at_tos   () {
  99   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
 100 }
 101 
 102 static inline Address at_tos_p1() {
 103   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
 104 }
 105 
 106 static inline Address at_tos_p2() {
 107   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
 108 }
 109 
 110 static inline Address at_tos_p3() {
 111   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
 112 }
 113 
 114 // Condition conversion
 115 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 116   switch (cc) {
 117   case TemplateTable::equal        : return Assembler::notEqual;
 118   case TemplateTable::not_equal    : return Assembler::equal;
 119   case TemplateTable::less         : return Assembler::greaterEqual;
 120   case TemplateTable::less_equal   : return Assembler::greater;
 121   case TemplateTable::greater      : return Assembler::lessEqual;
 122   case TemplateTable::greater_equal: return Assembler::less;
 123   }
 124   ShouldNotReachHere();
 125   return Assembler::zero;
 126 }
 127 
 128 
 129 // Miscelaneous helper routines
 130 // Store an oop (or NULL) at the address described by obj.
 131 // If val == noreg this means store a NULL
 132 
 133 static void do_oop_store(InterpreterMacroAssembler* _masm,
 134                          Address obj,
 135                          Register val,
 136                          BarrierSet::Name barrier,
 137                          bool precise) {
 138   assert(val == noreg || val == rax, "parameter is just for looks");
 139   switch (barrier) {
 140 #if INCLUDE_ALL_GCS
 141     case BarrierSet::G1SATBCT:
 142     case BarrierSet::G1SATBCTLogging:
 143       {
 144         // flatten object address if needed
 145         if (obj.index() == noreg && obj.disp() == 0) {
 146           if (obj.base() != rdx) {
 147             __ movq(rdx, obj.base());
 148           }
 149         } else {
 150           __ leaq(rdx, obj);
 151         }
 152         __ g1_write_barrier_pre(rdx /* obj */,
 153                                 rbx /* pre_val */,
 154                                 r15_thread /* thread */,
 155                                 r8  /* tmp */,
 156                                 val != noreg /* tosca_live */,
 157                                 false /* expand_call */);
 158         if (val == noreg) {
 159           __ store_heap_oop_null(Address(rdx, 0));
 160         } else {
 161           // G1 barrier needs uncompressed oop for region cross check.
 162           Register new_val = val;
 163           if (UseCompressedOops) {
 164             new_val = rbx;
 165             __ movptr(new_val, val);
 166           }
 167           __ store_heap_oop(Address(rdx, 0), val);
 168           __ g1_write_barrier_post(rdx /* store_adr */,
 169                                    new_val /* new_val */,
 170                                    r15_thread /* thread */,
 171                                    r8 /* tmp */,
 172                                    rbx /* tmp2 */);
 173         }
 174       }
 175       break;
 176 #endif // INCLUDE_ALL_GCS
 177     case BarrierSet::CardTableModRef:
 178     case BarrierSet::CardTableExtension:
 179       {
 180         if (val == noreg) {
 181           __ store_heap_oop_null(obj);
 182         } else {
 183           __ store_heap_oop(obj, val);
 184           // flatten object address if needed
 185           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
 186             __ store_check(obj.base());
 187           } else {
 188             __ leaq(rdx, obj);
 189             __ store_check(rdx);
 190           }
 191         }
 192       }
 193       break;
 194     case BarrierSet::ModRef:
 195     case BarrierSet::Other:
 196       if (val == noreg) {
 197         __ store_heap_oop_null(obj);
 198       } else {
 199         __ store_heap_oop(obj, val);
 200       }
 201       break;
 202     default      :
 203       ShouldNotReachHere();
 204 
 205   }
 206 }
 207 
 208 Address TemplateTable::at_bcp(int offset) {
 209   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 210   return Address(r13, offset);
 211 }
 212 
 213 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 214                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 215                                    int byte_no) {
 216   if (!RewriteBytecodes)  return;
 217   Label L_patch_done;
 218 
 219   switch (bc) {
 220   case Bytecodes::_fast_aputfield:
 221   case Bytecodes::_fast_bputfield:
 222   case Bytecodes::_fast_zputfield:
 223   case Bytecodes::_fast_cputfield:
 224   case Bytecodes::_fast_dputfield:
 225   case Bytecodes::_fast_fputfield:
 226   case Bytecodes::_fast_iputfield:
 227   case Bytecodes::_fast_lputfield:
 228   case Bytecodes::_fast_sputfield:
 229     {
 230       // We skip bytecode quickening for putfield instructions when
 231       // the put_code written to the constant pool cache is zero.
 232       // This is required so that every execution of this instruction
 233       // calls out to InterpreterRuntime::resolve_get_put to do
 234       // additional, required work.
 235       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 236       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 237       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
 238       __ movl(bc_reg, bc);
 239       __ cmpl(temp_reg, (int) 0);
 240       __ jcc(Assembler::zero, L_patch_done);  // don't patch
 241     }
 242     break;
 243   default:
 244     assert(byte_no == -1, "sanity");
 245     // the pair bytecodes have already done the load.
 246     if (load_bc_into_bc_reg) {
 247       __ movl(bc_reg, bc);
 248     }
 249   }
 250 
 251   if (JvmtiExport::can_post_breakpoint()) {
 252     Label L_fast_patch;
 253     // if a breakpoint is present we can't rewrite the stream directly
 254     __ movzbl(temp_reg, at_bcp(0));
 255     __ cmpl(temp_reg, Bytecodes::_breakpoint);
 256     __ jcc(Assembler::notEqual, L_fast_patch);
 257     __ get_method(temp_reg);
 258     // Let breakpoint table handling rewrite to quicker bytecode
 259     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, r13, bc_reg);
 260 #ifndef ASSERT
 261     __ jmpb(L_patch_done);
 262 #else
 263     __ jmp(L_patch_done);
 264 #endif
 265     __ bind(L_fast_patch);
 266   }
 267 
 268 #ifdef ASSERT
 269   Label L_okay;
 270   __ load_unsigned_byte(temp_reg, at_bcp(0));
 271   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
 272   __ jcc(Assembler::equal, L_okay);
 273   __ cmpl(temp_reg, bc_reg);
 274   __ jcc(Assembler::equal, L_okay);
 275   __ stop("patching the wrong bytecode");
 276   __ bind(L_okay);
 277 #endif
 278 
 279   // patch bytecode
 280   __ movb(at_bcp(0), bc_reg);
 281   __ bind(L_patch_done);
 282 }
 283 
 284 
 285 // Individual instructions
 286 
 287 void TemplateTable::nop() {
 288   transition(vtos, vtos);
 289   // nothing to do
 290 }
 291 
 292 void TemplateTable::shouldnotreachhere() {
 293   transition(vtos, vtos);
 294   __ stop("shouldnotreachhere bytecode");
 295 }
 296 
 297 void TemplateTable::aconst_null() {
 298   transition(vtos, atos);
 299   __ xorl(rax, rax);
 300 }
 301 
 302 void TemplateTable::iconst(int value) {
 303   transition(vtos, itos);
 304   if (value == 0) {
 305     __ xorl(rax, rax);
 306   } else {
 307     __ movl(rax, value);
 308   }
 309 }
 310 
 311 void TemplateTable::lconst(int value) {
 312   transition(vtos, ltos);
 313   if (value == 0) {
 314     __ xorl(rax, rax);
 315   } else {
 316     __ movl(rax, value);
 317   }
 318 }
 319 
 320 void TemplateTable::fconst(int value) {
 321   transition(vtos, ftos);
 322   static float one = 1.0f, two = 2.0f;
 323   switch (value) {
 324   case 0:
 325     __ xorps(xmm0, xmm0);
 326     break;
 327   case 1:
 328     __ movflt(xmm0, ExternalAddress((address) &one));
 329     break;
 330   case 2:
 331     __ movflt(xmm0, ExternalAddress((address) &two));
 332     break;
 333   default:
 334     ShouldNotReachHere();
 335     break;
 336   }
 337 }
 338 
 339 void TemplateTable::dconst(int value) {
 340   transition(vtos, dtos);
 341   static double one = 1.0;
 342   switch (value) {
 343   case 0:
 344     __ xorpd(xmm0, xmm0);
 345     break;
 346   case 1:
 347     __ movdbl(xmm0, ExternalAddress((address) &one));
 348     break;
 349   default:
 350     ShouldNotReachHere();
 351     break;
 352   }
 353 }
 354 
 355 void TemplateTable::bipush() {
 356   transition(vtos, itos);
 357   __ load_signed_byte(rax, at_bcp(1));
 358 }
 359 
 360 void TemplateTable::sipush() {
 361   transition(vtos, itos);
 362   __ load_unsigned_short(rax, at_bcp(1));
 363   __ bswapl(rax);
 364   __ sarl(rax, 16);
 365 }
 366 
 367 void TemplateTable::ldc(bool wide) {
 368   transition(vtos, vtos);
 369   Label call_ldc, notFloat, notClass, Done;
 370 
 371   if (wide) {
 372     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 373   } else {
 374     __ load_unsigned_byte(rbx, at_bcp(1));
 375   }
 376 
 377   __ get_cpool_and_tags(rcx, rax);
 378   const int base_offset = ConstantPool::header_size() * wordSize;
 379   const int tags_offset = Array<u1>::base_offset_in_bytes();
 380 
 381   // get type
 382   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 383 
 384   // unresolved class - get the resolved class
 385   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 386   __ jccb(Assembler::equal, call_ldc);
 387 
 388   // unresolved class in error state - call into runtime to throw the error
 389   // from the first resolution attempt
 390   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 391   __ jccb(Assembler::equal, call_ldc);
 392 
 393   // resolved class - need to call vm to get java mirror of the class
 394   __ cmpl(rdx, JVM_CONSTANT_Class);
 395   __ jcc(Assembler::notEqual, notClass);
 396 
 397   __ bind(call_ldc);
 398   __ movl(c_rarg1, wide);
 399   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
 400   __ push_ptr(rax);
 401   __ verify_oop(rax);
 402   __ jmp(Done);
 403 
 404   __ bind(notClass);
 405   __ cmpl(rdx, JVM_CONSTANT_Float);
 406   __ jccb(Assembler::notEqual, notFloat);
 407   // ftos
 408   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
 409   __ push_f();
 410   __ jmp(Done);
 411 
 412   __ bind(notFloat);
 413 #ifdef ASSERT
 414   {
 415     Label L;
 416     __ cmpl(rdx, JVM_CONSTANT_Integer);
 417     __ jcc(Assembler::equal, L);
 418     // String and Object are rewritten to fast_aldc
 419     __ stop("unexpected tag type in ldc");
 420     __ bind(L);
 421   }
 422 #endif
 423   // itos JVM_CONSTANT_Integer only
 424   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
 425   __ push_i(rax);
 426   __ bind(Done);
 427 }
 428 
 429 // Fast path for caching oop constants.
 430 void TemplateTable::fast_aldc(bool wide) {
 431   transition(vtos, atos);
 432 
 433   Register result = rax;
 434   Register tmp = rdx;
 435   int index_size = wide ? sizeof(u2) : sizeof(u1);
 436 
 437   Label resolved;
 438 
 439   // We are resolved if the resolved reference cache entry contains a
 440   // non-null object (String, MethodType, etc.)
 441   assert_different_registers(result, tmp);
 442   __ get_cache_index_at_bcp(tmp, 1, index_size);
 443   __ load_resolved_reference_at_index(result, tmp);
 444   __ testl(result, result);
 445   __ jcc(Assembler::notZero, resolved);
 446 
 447   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 448 
 449   // first time invocation - must resolve first
 450   __ movl(tmp, (int)bytecode());
 451   __ call_VM(result, entry, tmp);
 452 
 453   __ bind(resolved);
 454 
 455   if (VerifyOops) {
 456     __ verify_oop(result);
 457   }
 458 }
 459 
 460 void TemplateTable::ldc2_w() {
 461   transition(vtos, vtos);
 462   Label Long, Done;
 463   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 464 
 465   __ get_cpool_and_tags(rcx, rax);
 466   const int base_offset = ConstantPool::header_size() * wordSize;
 467   const int tags_offset = Array<u1>::base_offset_in_bytes();
 468 
 469   // get type
 470   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
 471           JVM_CONSTANT_Double);
 472   __ jccb(Assembler::notEqual, Long);
 473   // dtos
 474   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
 475   __ push_d();
 476   __ jmpb(Done);
 477 
 478   __ bind(Long);
 479   // ltos
 480   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
 481   __ push_l();
 482 
 483   __ bind(Done);
 484 }
 485 
 486 void TemplateTable::locals_index(Register reg, int offset) {
 487   __ load_unsigned_byte(reg, at_bcp(offset));
 488   __ negptr(reg);
 489 }
 490 
 491 void TemplateTable::iload() {
 492   transition(vtos, itos);
 493   if (RewriteFrequentPairs) {
 494     Label rewrite, done;
 495     const Register bc = c_rarg3;
 496     assert(rbx != bc, "register damaged");
 497 
 498     // get next byte
 499     __ load_unsigned_byte(rbx,
 500                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 501     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 502     // last two iloads in a pair.  Comparing against fast_iload means that
 503     // the next bytecode is neither an iload or a caload, and therefore
 504     // an iload pair.
 505     __ cmpl(rbx, Bytecodes::_iload);
 506     __ jcc(Assembler::equal, done);
 507 
 508     __ cmpl(rbx, Bytecodes::_fast_iload);
 509     __ movl(bc, Bytecodes::_fast_iload2);
 510     __ jccb(Assembler::equal, rewrite);
 511 
 512     // if _caload, rewrite to fast_icaload
 513     __ cmpl(rbx, Bytecodes::_caload);
 514     __ movl(bc, Bytecodes::_fast_icaload);
 515     __ jccb(Assembler::equal, rewrite);
 516 
 517     // rewrite so iload doesn't check again.
 518     __ movl(bc, Bytecodes::_fast_iload);
 519 
 520     // rewrite
 521     // bc: fast bytecode
 522     __ bind(rewrite);
 523     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
 524     __ bind(done);
 525   }
 526 
 527   // Get the local value into tos
 528   locals_index(rbx);
 529   __ movl(rax, iaddress(rbx));
 530 }
 531 
 532 void TemplateTable::fast_iload2() {
 533   transition(vtos, itos);
 534   locals_index(rbx);
 535   __ movl(rax, iaddress(rbx));
 536   __ push(itos);
 537   locals_index(rbx, 3);
 538   __ movl(rax, iaddress(rbx));
 539 }
 540 
 541 void TemplateTable::fast_iload() {
 542   transition(vtos, itos);
 543   locals_index(rbx);
 544   __ movl(rax, iaddress(rbx));
 545 }
 546 
 547 void TemplateTable::lload() {
 548   transition(vtos, ltos);
 549   locals_index(rbx);
 550   __ movq(rax, laddress(rbx));
 551 }
 552 
 553 void TemplateTable::fload() {
 554   transition(vtos, ftos);
 555   locals_index(rbx);
 556   __ movflt(xmm0, faddress(rbx));
 557 }
 558 
 559 void TemplateTable::dload() {
 560   transition(vtos, dtos);
 561   locals_index(rbx);
 562   __ movdbl(xmm0, daddress(rbx));
 563 }
 564 
 565 void TemplateTable::aload() {
 566   transition(vtos, atos);
 567   locals_index(rbx);
 568   __ movptr(rax, aaddress(rbx));
 569 }
 570 
 571 void TemplateTable::locals_index_wide(Register reg) {
 572   __ load_unsigned_short(reg, at_bcp(2));
 573   __ bswapl(reg);
 574   __ shrl(reg, 16);
 575   __ negptr(reg);
 576 }
 577 
 578 void TemplateTable::wide_iload() {
 579   transition(vtos, itos);
 580   locals_index_wide(rbx);
 581   __ movl(rax, iaddress(rbx));
 582 }
 583 
 584 void TemplateTable::wide_lload() {
 585   transition(vtos, ltos);
 586   locals_index_wide(rbx);
 587   __ movq(rax, laddress(rbx));
 588 }
 589 
 590 void TemplateTable::wide_fload() {
 591   transition(vtos, ftos);
 592   locals_index_wide(rbx);
 593   __ movflt(xmm0, faddress(rbx));
 594 }
 595 
 596 void TemplateTable::wide_dload() {
 597   transition(vtos, dtos);
 598   locals_index_wide(rbx);
 599   __ movdbl(xmm0, daddress(rbx));
 600 }
 601 
 602 void TemplateTable::wide_aload() {
 603   transition(vtos, atos);
 604   locals_index_wide(rbx);
 605   __ movptr(rax, aaddress(rbx));
 606 }
 607 
 608 void TemplateTable::index_check(Register array, Register index) {
 609   // destroys rbx
 610   // check array
 611   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 612   // sign extend index for use by indexed load
 613   __ movl2ptr(index, index);
 614   // check index
 615   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 616   if (index != rbx) {
 617     // ??? convention: move aberrant index into ebx for exception message
 618     assert(rbx != array, "different registers");
 619     __ movl(rbx, index);
 620   }
 621   __ jump_cc(Assembler::aboveEqual,
 622              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 623 }
 624 
 625 void TemplateTable::iaload() {
 626   transition(itos, itos);
 627   __ pop_ptr(rdx);
 628   // eax: index
 629   // rdx: array
 630   index_check(rdx, rax); // kills rbx
 631   __ movl(rax, Address(rdx, rax,
 632                        Address::times_4,
 633                        arrayOopDesc::base_offset_in_bytes(T_INT)));
 634 }
 635 
 636 void TemplateTable::laload() {
 637   transition(itos, ltos);
 638   __ pop_ptr(rdx);
 639   // eax: index
 640   // rdx: array
 641   index_check(rdx, rax); // kills rbx
 642   __ movq(rax, Address(rdx, rbx,
 643                        Address::times_8,
 644                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
 645 }
 646 
 647 void TemplateTable::faload() {
 648   transition(itos, ftos);
 649   __ pop_ptr(rdx);
 650   // eax: index
 651   // rdx: array
 652   index_check(rdx, rax); // kills rbx
 653   __ movflt(xmm0, Address(rdx, rax,
 654                          Address::times_4,
 655                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 656 }
 657 
 658 void TemplateTable::daload() {
 659   transition(itos, dtos);
 660   __ pop_ptr(rdx);
 661   // eax: index
 662   // rdx: array
 663   index_check(rdx, rax); // kills rbx
 664   __ movdbl(xmm0, Address(rdx, rax,
 665                           Address::times_8,
 666                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 667 }
 668 
 669 void TemplateTable::aaload() {
 670   transition(itos, atos);
 671   __ pop_ptr(rdx);
 672   // eax: index
 673   // rdx: array
 674   index_check(rdx, rax); // kills rbx
 675   __ load_heap_oop(rax, Address(rdx, rax,
 676                                 UseCompressedOops ? Address::times_4 : Address::times_8,
 677                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 678 }
 679 
 680 void TemplateTable::baload() {
 681   transition(itos, itos);
 682   __ pop_ptr(rdx);
 683   // eax: index
 684   // rdx: array
 685   index_check(rdx, rax); // kills rbx
 686   __ load_signed_byte(rax,
 687                       Address(rdx, rax,
 688                               Address::times_1,
 689                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 690 }
 691 
 692 void TemplateTable::caload() {
 693   transition(itos, itos);
 694   __ pop_ptr(rdx);
 695   // eax: index
 696   // rdx: array
 697   index_check(rdx, rax); // kills rbx
 698   __ load_unsigned_short(rax,
 699                          Address(rdx, rax,
 700                                  Address::times_2,
 701                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 702 }
 703 
 704 // iload followed by caload frequent pair
 705 void TemplateTable::fast_icaload() {
 706   transition(vtos, itos);
 707   // load index out of locals
 708   locals_index(rbx);
 709   __ movl(rax, iaddress(rbx));
 710 
 711   // eax: index
 712   // rdx: array
 713   __ pop_ptr(rdx);
 714   index_check(rdx, rax); // kills rbx
 715   __ load_unsigned_short(rax,
 716                          Address(rdx, rax,
 717                                  Address::times_2,
 718                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 719 }
 720 
 721 void TemplateTable::saload() {
 722   transition(itos, itos);
 723   __ pop_ptr(rdx);
 724   // eax: index
 725   // rdx: array
 726   index_check(rdx, rax); // kills rbx
 727   __ load_signed_short(rax,
 728                        Address(rdx, rax,
 729                                Address::times_2,
 730                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 731 }
 732 
 733 void TemplateTable::iload(int n) {
 734   transition(vtos, itos);
 735   __ movl(rax, iaddress(n));
 736 }
 737 
 738 void TemplateTable::lload(int n) {
 739   transition(vtos, ltos);
 740   __ movq(rax, laddress(n));
 741 }
 742 
 743 void TemplateTable::fload(int n) {
 744   transition(vtos, ftos);
 745   __ movflt(xmm0, faddress(n));
 746 }
 747 
 748 void TemplateTable::dload(int n) {
 749   transition(vtos, dtos);
 750   __ movdbl(xmm0, daddress(n));
 751 }
 752 
 753 void TemplateTable::aload(int n) {
 754   transition(vtos, atos);
 755   __ movptr(rax, aaddress(n));
 756 }
 757 
 758 void TemplateTable::aload_0() {
 759   transition(vtos, atos);
 760   // According to bytecode histograms, the pairs:
 761   //
 762   // _aload_0, _fast_igetfield
 763   // _aload_0, _fast_agetfield
 764   // _aload_0, _fast_fgetfield
 765   //
 766   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 767   // _aload_0 bytecode checks if the next bytecode is either
 768   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 769   // rewrites the current bytecode into a pair bytecode; otherwise it
 770   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 771   // the pair check anymore.
 772   //
 773   // Note: If the next bytecode is _getfield, the rewrite must be
 774   //       delayed, otherwise we may miss an opportunity for a pair.
 775   //
 776   // Also rewrite frequent pairs
 777   //   aload_0, aload_1
 778   //   aload_0, iload_1
 779   // These bytecodes with a small amount of code are most profitable
 780   // to rewrite
 781   if (RewriteFrequentPairs) {
 782     Label rewrite, done;
 783     const Register bc = c_rarg3;
 784     assert(rbx != bc, "register damaged");
 785     // get next byte
 786     __ load_unsigned_byte(rbx,
 787                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 788 
 789     // do actual aload_0
 790     aload(0);
 791 
 792     // if _getfield then wait with rewrite
 793     __ cmpl(rbx, Bytecodes::_getfield);
 794     __ jcc(Assembler::equal, done);
 795 
 796     // if _igetfield then reqrite to _fast_iaccess_0
 797     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
 798            Bytecodes::_aload_0,
 799            "fix bytecode definition");
 800     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 801     __ movl(bc, Bytecodes::_fast_iaccess_0);
 802     __ jccb(Assembler::equal, rewrite);
 803 
 804     // if _agetfield then reqrite to _fast_aaccess_0
 805     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
 806            Bytecodes::_aload_0,
 807            "fix bytecode definition");
 808     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 809     __ movl(bc, Bytecodes::_fast_aaccess_0);
 810     __ jccb(Assembler::equal, rewrite);
 811 
 812     // if _fgetfield then reqrite to _fast_faccess_0
 813     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
 814            Bytecodes::_aload_0,
 815            "fix bytecode definition");
 816     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 817     __ movl(bc, Bytecodes::_fast_faccess_0);
 818     __ jccb(Assembler::equal, rewrite);
 819 
 820     // else rewrite to _fast_aload0
 821     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
 822            Bytecodes::_aload_0,
 823            "fix bytecode definition");
 824     __ movl(bc, Bytecodes::_fast_aload_0);
 825 
 826     // rewrite
 827     // bc: fast bytecode
 828     __ bind(rewrite);
 829     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
 830 
 831     __ bind(done);
 832   } else {
 833     aload(0);
 834   }
 835 }
 836 
 837 void TemplateTable::istore() {
 838   transition(itos, vtos);
 839   locals_index(rbx);
 840   __ movl(iaddress(rbx), rax);
 841 }
 842 
 843 void TemplateTable::lstore() {
 844   transition(ltos, vtos);
 845   locals_index(rbx);
 846   __ movq(laddress(rbx), rax);
 847 }
 848 
 849 void TemplateTable::fstore() {
 850   transition(ftos, vtos);
 851   locals_index(rbx);
 852   __ movflt(faddress(rbx), xmm0);
 853 }
 854 
 855 void TemplateTable::dstore() {
 856   transition(dtos, vtos);
 857   locals_index(rbx);
 858   __ movdbl(daddress(rbx), xmm0);
 859 }
 860 
 861 void TemplateTable::astore() {
 862   transition(vtos, vtos);
 863   __ pop_ptr(rax);
 864   locals_index(rbx);
 865   __ movptr(aaddress(rbx), rax);
 866 }
 867 
 868 void TemplateTable::wide_istore() {
 869   transition(vtos, vtos);
 870   __ pop_i();
 871   locals_index_wide(rbx);
 872   __ movl(iaddress(rbx), rax);
 873 }
 874 
 875 void TemplateTable::wide_lstore() {
 876   transition(vtos, vtos);
 877   __ pop_l();
 878   locals_index_wide(rbx);
 879   __ movq(laddress(rbx), rax);
 880 }
 881 
 882 void TemplateTable::wide_fstore() {
 883   transition(vtos, vtos);
 884   __ pop_f();
 885   locals_index_wide(rbx);
 886   __ movflt(faddress(rbx), xmm0);
 887 }
 888 
 889 void TemplateTable::wide_dstore() {
 890   transition(vtos, vtos);
 891   __ pop_d();
 892   locals_index_wide(rbx);
 893   __ movdbl(daddress(rbx), xmm0);
 894 }
 895 
 896 void TemplateTable::wide_astore() {
 897   transition(vtos, vtos);
 898   __ pop_ptr(rax);
 899   locals_index_wide(rbx);
 900   __ movptr(aaddress(rbx), rax);
 901 }
 902 
 903 void TemplateTable::iastore() {
 904   transition(itos, vtos);
 905   __ pop_i(rbx);
 906   __ pop_ptr(rdx);
 907   // eax: value
 908   // ebx: index
 909   // rdx: array
 910   index_check(rdx, rbx); // prefer index in ebx
 911   __ movl(Address(rdx, rbx,
 912                   Address::times_4,
 913                   arrayOopDesc::base_offset_in_bytes(T_INT)),
 914           rax);
 915 }
 916 
 917 void TemplateTable::lastore() {
 918   transition(ltos, vtos);
 919   __ pop_i(rbx);
 920   __ pop_ptr(rdx);
 921   // rax: value
 922   // ebx: index
 923   // rdx: array
 924   index_check(rdx, rbx); // prefer index in ebx
 925   __ movq(Address(rdx, rbx,
 926                   Address::times_8,
 927                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
 928           rax);
 929 }
 930 
 931 void TemplateTable::fastore() {
 932   transition(ftos, vtos);
 933   __ pop_i(rbx);
 934   __ pop_ptr(rdx);
 935   // xmm0: value
 936   // ebx:  index
 937   // rdx:  array
 938   index_check(rdx, rbx); // prefer index in ebx
 939   __ movflt(Address(rdx, rbx,
 940                    Address::times_4,
 941                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
 942            xmm0);
 943 }
 944 
 945 void TemplateTable::dastore() {
 946   transition(dtos, vtos);
 947   __ pop_i(rbx);
 948   __ pop_ptr(rdx);
 949   // xmm0: value
 950   // ebx:  index
 951   // rdx:  array
 952   index_check(rdx, rbx); // prefer index in ebx
 953   __ movdbl(Address(rdx, rbx,
 954                    Address::times_8,
 955                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
 956            xmm0);
 957 }
 958 
 959 void TemplateTable::aastore() {
 960   Label is_null, ok_is_subtype, done;
 961   transition(vtos, vtos);
 962   // stack: ..., array, index, value
 963   __ movptr(rax, at_tos());    // value
 964   __ movl(rcx, at_tos_p1()); // index
 965   __ movptr(rdx, at_tos_p2()); // array
 966 
 967   Address element_address(rdx, rcx,
 968                           UseCompressedOops? Address::times_4 : Address::times_8,
 969                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 970 
 971   index_check(rdx, rcx);     // kills rbx
 972   // do array store check - check for NULL value first
 973   __ testptr(rax, rax);
 974   __ jcc(Assembler::zero, is_null);
 975 
 976   // Move subklass into rbx
 977   __ load_klass(rbx, rax);
 978   // Move superklass into rax
 979   __ load_klass(rax, rdx);
 980   __ movptr(rax, Address(rax,
 981                          ObjArrayKlass::element_klass_offset()));
 982   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
 983   __ lea(rdx, element_address);
 984 
 985   // Generate subtype check.  Blows rcx, rdi
 986   // Superklass in rax.  Subklass in rbx.
 987   __ gen_subtype_check(rbx, ok_is_subtype);
 988 
 989   // Come here on failure
 990   // object is at TOS
 991   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
 992 
 993   // Come here on success
 994   __ bind(ok_is_subtype);
 995 
 996   // Get the value we will store
 997   __ movptr(rax, at_tos());
 998   // Now store using the appropriate barrier
 999   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
1000   __ jmp(done);
1001 
1002   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
1003   __ bind(is_null);
1004   __ profile_null_seen(rbx);
1005 
1006   // Store a NULL
1007   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
1008 
1009   // Pop stack arguments
1010   __ bind(done);
1011   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1012 }
1013 
1014 void TemplateTable::bastore() {
1015   transition(itos, vtos);
1016   __ pop_i(rbx);
1017   __ pop_ptr(rdx);
1018   // eax: value
1019   // ebx: index
1020   // rdx: array
1021   index_check(rdx, rbx); // prefer index in ebx
1022   // Need to check whether array is boolean or byte
1023   // since both types share the bastore bytecode.
1024   __ load_klass(rcx, rdx);
1025   __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
1026   int diffbit = Klass::layout_helper_boolean_diffbit();
1027   __ testl(rcx, diffbit);
1028   Label L_skip;
1029   __ jccb(Assembler::zero, L_skip);
1030   __ andl(rax, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
1031   __ bind(L_skip);
1032   __ movb(Address(rdx, rbx,
1033                   Address::times_1,
1034                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1035           rax);
1036 }
1037 
1038 void TemplateTable::castore() {
1039   transition(itos, vtos);
1040   __ pop_i(rbx);
1041   __ pop_ptr(rdx);
1042   // eax: value
1043   // ebx: index
1044   // rdx: array
1045   index_check(rdx, rbx);  // prefer index in ebx
1046   __ movw(Address(rdx, rbx,
1047                   Address::times_2,
1048                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1049           rax);
1050 }
1051 
1052 void TemplateTable::sastore() {
1053   castore();
1054 }
1055 
1056 void TemplateTable::istore(int n) {
1057   transition(itos, vtos);
1058   __ movl(iaddress(n), rax);
1059 }
1060 
1061 void TemplateTable::lstore(int n) {
1062   transition(ltos, vtos);
1063   __ movq(laddress(n), rax);
1064 }
1065 
1066 void TemplateTable::fstore(int n) {
1067   transition(ftos, vtos);
1068   __ movflt(faddress(n), xmm0);
1069 }
1070 
1071 void TemplateTable::dstore(int n) {
1072   transition(dtos, vtos);
1073   __ movdbl(daddress(n), xmm0);
1074 }
1075 
1076 void TemplateTable::astore(int n) {
1077   transition(vtos, vtos);
1078   __ pop_ptr(rax);
1079   __ movptr(aaddress(n), rax);
1080 }
1081 
1082 void TemplateTable::pop() {
1083   transition(vtos, vtos);
1084   __ addptr(rsp, Interpreter::stackElementSize);
1085 }
1086 
1087 void TemplateTable::pop2() {
1088   transition(vtos, vtos);
1089   __ addptr(rsp, 2 * Interpreter::stackElementSize);
1090 }
1091 
1092 void TemplateTable::dup() {
1093   transition(vtos, vtos);
1094   __ load_ptr(0, rax);
1095   __ push_ptr(rax);
1096   // stack: ..., a, a
1097 }
1098 
1099 void TemplateTable::dup_x1() {
1100   transition(vtos, vtos);
1101   // stack: ..., a, b
1102   __ load_ptr( 0, rax);  // load b
1103   __ load_ptr( 1, rcx);  // load a
1104   __ store_ptr(1, rax);  // store b
1105   __ store_ptr(0, rcx);  // store a
1106   __ push_ptr(rax);      // push b
1107   // stack: ..., b, a, b
1108 }
1109 
1110 void TemplateTable::dup_x2() {
1111   transition(vtos, vtos);
1112   // stack: ..., a, b, c
1113   __ load_ptr( 0, rax);  // load c
1114   __ load_ptr( 2, rcx);  // load a
1115   __ store_ptr(2, rax);  // store c in a
1116   __ push_ptr(rax);      // push c
1117   // stack: ..., c, b, c, c
1118   __ load_ptr( 2, rax);  // load b
1119   __ store_ptr(2, rcx);  // store a in b
1120   // stack: ..., c, a, c, c
1121   __ store_ptr(1, rax);  // store b in c
1122   // stack: ..., c, a, b, c
1123 }
1124 
1125 void TemplateTable::dup2() {
1126   transition(vtos, vtos);
1127   // stack: ..., a, b
1128   __ load_ptr(1, rax);  // load a
1129   __ push_ptr(rax);     // push a
1130   __ load_ptr(1, rax);  // load b
1131   __ push_ptr(rax);     // push b
1132   // stack: ..., a, b, a, b
1133 }
1134 
1135 void TemplateTable::dup2_x1() {
1136   transition(vtos, vtos);
1137   // stack: ..., a, b, c
1138   __ load_ptr( 0, rcx);  // load c
1139   __ load_ptr( 1, rax);  // load b
1140   __ push_ptr(rax);      // push b
1141   __ push_ptr(rcx);      // push c
1142   // stack: ..., a, b, c, b, c
1143   __ store_ptr(3, rcx);  // store c in b
1144   // stack: ..., a, c, c, b, c
1145   __ load_ptr( 4, rcx);  // load a
1146   __ store_ptr(2, rcx);  // store a in 2nd c
1147   // stack: ..., a, c, a, b, c
1148   __ store_ptr(4, rax);  // store b in a
1149   // stack: ..., b, c, a, b, c
1150 }
1151 
1152 void TemplateTable::dup2_x2() {
1153   transition(vtos, vtos);
1154   // stack: ..., a, b, c, d
1155   __ load_ptr( 0, rcx);  // load d
1156   __ load_ptr( 1, rax);  // load c
1157   __ push_ptr(rax);      // push c
1158   __ push_ptr(rcx);      // push d
1159   // stack: ..., a, b, c, d, c, d
1160   __ load_ptr( 4, rax);  // load b
1161   __ store_ptr(2, rax);  // store b in d
1162   __ store_ptr(4, rcx);  // store d in b
1163   // stack: ..., a, d, c, b, c, d
1164   __ load_ptr( 5, rcx);  // load a
1165   __ load_ptr( 3, rax);  // load c
1166   __ store_ptr(3, rcx);  // store a in c
1167   __ store_ptr(5, rax);  // store c in a
1168   // stack: ..., c, d, a, b, c, d
1169 }
1170 
1171 void TemplateTable::swap() {
1172   transition(vtos, vtos);
1173   // stack: ..., a, b
1174   __ load_ptr( 1, rcx);  // load a
1175   __ load_ptr( 0, rax);  // load b
1176   __ store_ptr(0, rcx);  // store a in b
1177   __ store_ptr(1, rax);  // store b in a
1178   // stack: ..., b, a
1179 }
1180 
1181 void TemplateTable::iop2(Operation op) {
1182   transition(itos, itos);
1183   switch (op) {
1184   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1185   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1186   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1187   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1188   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1189   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1190   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
1191   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
1192   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
1193   default   : ShouldNotReachHere();
1194   }
1195 }
1196 
1197 void TemplateTable::lop2(Operation op) {
1198   transition(ltos, ltos);
1199   switch (op) {
1200   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
1201   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
1202   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
1203   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
1204   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
1205   default   : ShouldNotReachHere();
1206   }
1207 }
1208 
1209 void TemplateTable::idiv() {
1210   transition(itos, itos);
1211   __ movl(rcx, rax);
1212   __ pop_i(rax);
1213   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1214   //       they are not equal, one could do a normal division (no correction
1215   //       needed), which may speed up this implementation for the common case.
1216   //       (see also JVM spec., p.243 & p.271)
1217   __ corrected_idivl(rcx);
1218 }
1219 
1220 void TemplateTable::irem() {
1221   transition(itos, itos);
1222   __ movl(rcx, rax);
1223   __ pop_i(rax);
1224   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1225   //       they are not equal, one could do a normal division (no correction
1226   //       needed), which may speed up this implementation for the common case.
1227   //       (see also JVM spec., p.243 & p.271)
1228   __ corrected_idivl(rcx);
1229   __ movl(rax, rdx);
1230 }
1231 
1232 void TemplateTable::lmul() {
1233   transition(ltos, ltos);
1234   __ pop_l(rdx);
1235   __ imulq(rax, rdx);
1236 }
1237 
1238 void TemplateTable::ldiv() {
1239   transition(ltos, ltos);
1240   __ mov(rcx, rax);
1241   __ pop_l(rax);
1242   // generate explicit div0 check
1243   __ testq(rcx, rcx);
1244   __ jump_cc(Assembler::zero,
1245              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1246   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1247   //       they are not equal, one could do a normal division (no correction
1248   //       needed), which may speed up this implementation for the common case.
1249   //       (see also JVM spec., p.243 & p.271)
1250   __ corrected_idivq(rcx); // kills rbx
1251 }
1252 
1253 void TemplateTable::lrem() {
1254   transition(ltos, ltos);
1255   __ mov(rcx, rax);
1256   __ pop_l(rax);
1257   __ testq(rcx, rcx);
1258   __ jump_cc(Assembler::zero,
1259              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1260   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1261   //       they are not equal, one could do a normal division (no correction
1262   //       needed), which may speed up this implementation for the common case.
1263   //       (see also JVM spec., p.243 & p.271)
1264   __ corrected_idivq(rcx); // kills rbx
1265   __ mov(rax, rdx);
1266 }
1267 
1268 void TemplateTable::lshl() {
1269   transition(itos, ltos);
1270   __ movl(rcx, rax);                             // get shift count
1271   __ pop_l(rax);                                 // get shift value
1272   __ shlq(rax);
1273 }
1274 
1275 void TemplateTable::lshr() {
1276   transition(itos, ltos);
1277   __ movl(rcx, rax);                             // get shift count
1278   __ pop_l(rax);                                 // get shift value
1279   __ sarq(rax);
1280 }
1281 
1282 void TemplateTable::lushr() {
1283   transition(itos, ltos);
1284   __ movl(rcx, rax);                             // get shift count
1285   __ pop_l(rax);                                 // get shift value
1286   __ shrq(rax);
1287 }
1288 
1289 void TemplateTable::fop2(Operation op) {
1290   transition(ftos, ftos);
1291   switch (op) {
1292   case add:
1293     __ addss(xmm0, at_rsp());
1294     __ addptr(rsp, Interpreter::stackElementSize);
1295     break;
1296   case sub:
1297     __ movflt(xmm1, xmm0);
1298     __ pop_f(xmm0);
1299     __ subss(xmm0, xmm1);
1300     break;
1301   case mul:
1302     __ mulss(xmm0, at_rsp());
1303     __ addptr(rsp, Interpreter::stackElementSize);
1304     break;
1305   case div:
1306     __ movflt(xmm1, xmm0);
1307     __ pop_f(xmm0);
1308     __ divss(xmm0, xmm1);
1309     break;
1310   case rem:
1311     __ movflt(xmm1, xmm0);
1312     __ pop_f(xmm0);
1313     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1314     break;
1315   default:
1316     ShouldNotReachHere();
1317     break;
1318   }
1319 }
1320 
1321 void TemplateTable::dop2(Operation op) {
1322   transition(dtos, dtos);
1323   switch (op) {
1324   case add:
1325     __ addsd(xmm0, at_rsp());
1326     __ addptr(rsp, 2 * Interpreter::stackElementSize);
1327     break;
1328   case sub:
1329     __ movdbl(xmm1, xmm0);
1330     __ pop_d(xmm0);
1331     __ subsd(xmm0, xmm1);
1332     break;
1333   case mul:
1334     __ mulsd(xmm0, at_rsp());
1335     __ addptr(rsp, 2 * Interpreter::stackElementSize);
1336     break;
1337   case div:
1338     __ movdbl(xmm1, xmm0);
1339     __ pop_d(xmm0);
1340     __ divsd(xmm0, xmm1);
1341     break;
1342   case rem:
1343     __ movdbl(xmm1, xmm0);
1344     __ pop_d(xmm0);
1345     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1346     break;
1347   default:
1348     ShouldNotReachHere();
1349     break;
1350   }
1351 }
1352 
1353 void TemplateTable::ineg() {
1354   transition(itos, itos);
1355   __ negl(rax);
1356 }
1357 
1358 void TemplateTable::lneg() {
1359   transition(ltos, ltos);
1360   __ negq(rax);
1361 }
1362 
1363 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1364 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1365   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1366   // of 128-bits operands for SSE instructions.
1367   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1368   // Store the value to a 128-bits operand.
1369   operand[0] = lo;
1370   operand[1] = hi;
1371   return operand;
1372 }
1373 
1374 // Buffer for 128-bits masks used by SSE instructions.
1375 static jlong float_signflip_pool[2*2];
1376 static jlong double_signflip_pool[2*2];
1377 
1378 void TemplateTable::fneg() {
1379   transition(ftos, ftos);
1380   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
1381   __ xorps(xmm0, ExternalAddress((address) float_signflip));
1382 }
1383 
1384 void TemplateTable::dneg() {
1385   transition(dtos, dtos);
1386   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
1387   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
1388 }
1389 
1390 void TemplateTable::iinc() {
1391   transition(vtos, vtos);
1392   __ load_signed_byte(rdx, at_bcp(2)); // get constant
1393   locals_index(rbx);
1394   __ addl(iaddress(rbx), rdx);
1395 }
1396 
1397 void TemplateTable::wide_iinc() {
1398   transition(vtos, vtos);
1399   __ movl(rdx, at_bcp(4)); // get constant
1400   locals_index_wide(rbx);
1401   __ bswapl(rdx); // swap bytes & sign-extend constant
1402   __ sarl(rdx, 16);
1403   __ addl(iaddress(rbx), rdx);
1404   // Note: should probably use only one movl to get both
1405   //       the index and the constant -> fix this
1406 }
1407 
1408 void TemplateTable::convert() {
1409   // Checking
1410 #ifdef ASSERT
1411   {
1412     TosState tos_in  = ilgl;
1413     TosState tos_out = ilgl;
1414     switch (bytecode()) {
1415     case Bytecodes::_i2l: // fall through
1416     case Bytecodes::_i2f: // fall through
1417     case Bytecodes::_i2d: // fall through
1418     case Bytecodes::_i2b: // fall through
1419     case Bytecodes::_i2c: // fall through
1420     case Bytecodes::_i2s: tos_in = itos; break;
1421     case Bytecodes::_l2i: // fall through
1422     case Bytecodes::_l2f: // fall through
1423     case Bytecodes::_l2d: tos_in = ltos; break;
1424     case Bytecodes::_f2i: // fall through
1425     case Bytecodes::_f2l: // fall through
1426     case Bytecodes::_f2d: tos_in = ftos; break;
1427     case Bytecodes::_d2i: // fall through
1428     case Bytecodes::_d2l: // fall through
1429     case Bytecodes::_d2f: tos_in = dtos; break;
1430     default             : ShouldNotReachHere();
1431     }
1432     switch (bytecode()) {
1433     case Bytecodes::_l2i: // fall through
1434     case Bytecodes::_f2i: // fall through
1435     case Bytecodes::_d2i: // fall through
1436     case Bytecodes::_i2b: // fall through
1437     case Bytecodes::_i2c: // fall through
1438     case Bytecodes::_i2s: tos_out = itos; break;
1439     case Bytecodes::_i2l: // fall through
1440     case Bytecodes::_f2l: // fall through
1441     case Bytecodes::_d2l: tos_out = ltos; break;
1442     case Bytecodes::_i2f: // fall through
1443     case Bytecodes::_l2f: // fall through
1444     case Bytecodes::_d2f: tos_out = ftos; break;
1445     case Bytecodes::_i2d: // fall through
1446     case Bytecodes::_l2d: // fall through
1447     case Bytecodes::_f2d: tos_out = dtos; break;
1448     default             : ShouldNotReachHere();
1449     }
1450     transition(tos_in, tos_out);
1451   }
1452 #endif // ASSERT
1453 
1454   static const int64_t is_nan = 0x8000000000000000L;
1455 
1456   // Conversion
1457   switch (bytecode()) {
1458   case Bytecodes::_i2l:
1459     __ movslq(rax, rax);
1460     break;
1461   case Bytecodes::_i2f:
1462     __ cvtsi2ssl(xmm0, rax);
1463     break;
1464   case Bytecodes::_i2d:
1465     __ cvtsi2sdl(xmm0, rax);
1466     break;
1467   case Bytecodes::_i2b:
1468     __ movsbl(rax, rax);
1469     break;
1470   case Bytecodes::_i2c:
1471     __ movzwl(rax, rax);
1472     break;
1473   case Bytecodes::_i2s:
1474     __ movswl(rax, rax);
1475     break;
1476   case Bytecodes::_l2i:
1477     __ movl(rax, rax);
1478     break;
1479   case Bytecodes::_l2f:
1480     __ cvtsi2ssq(xmm0, rax);
1481     break;
1482   case Bytecodes::_l2d:
1483     __ cvtsi2sdq(xmm0, rax);
1484     break;
1485   case Bytecodes::_f2i:
1486   {
1487     Label L;
1488     __ cvttss2sil(rax, xmm0);
1489     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1490     __ jcc(Assembler::notEqual, L);
1491     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1492     __ bind(L);
1493   }
1494     break;
1495   case Bytecodes::_f2l:
1496   {
1497     Label L;
1498     __ cvttss2siq(rax, xmm0);
1499     // NaN or overflow/underflow?
1500     __ cmp64(rax, ExternalAddress((address) &is_nan));
1501     __ jcc(Assembler::notEqual, L);
1502     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1503     __ bind(L);
1504   }
1505     break;
1506   case Bytecodes::_f2d:
1507     __ cvtss2sd(xmm0, xmm0);
1508     break;
1509   case Bytecodes::_d2i:
1510   {
1511     Label L;
1512     __ cvttsd2sil(rax, xmm0);
1513     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1514     __ jcc(Assembler::notEqual, L);
1515     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1516     __ bind(L);
1517   }
1518     break;
1519   case Bytecodes::_d2l:
1520   {
1521     Label L;
1522     __ cvttsd2siq(rax, xmm0);
1523     // NaN or overflow/underflow?
1524     __ cmp64(rax, ExternalAddress((address) &is_nan));
1525     __ jcc(Assembler::notEqual, L);
1526     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1527     __ bind(L);
1528   }
1529     break;
1530   case Bytecodes::_d2f:
1531     __ cvtsd2ss(xmm0, xmm0);
1532     break;
1533   default:
1534     ShouldNotReachHere();
1535   }
1536 }
1537 
1538 void TemplateTable::lcmp() {
1539   transition(ltos, itos);
1540   Label done;
1541   __ pop_l(rdx);
1542   __ cmpq(rdx, rax);
1543   __ movl(rax, -1);
1544   __ jccb(Assembler::less, done);
1545   __ setb(Assembler::notEqual, rax);
1546   __ movzbl(rax, rax);
1547   __ bind(done);
1548 }
1549 
1550 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1551   Label done;
1552   if (is_float) {
1553     // XXX get rid of pop here, use ... reg, mem32
1554     __ pop_f(xmm1);
1555     __ ucomiss(xmm1, xmm0);
1556   } else {
1557     // XXX get rid of pop here, use ... reg, mem64
1558     __ pop_d(xmm1);
1559     __ ucomisd(xmm1, xmm0);
1560   }
1561   if (unordered_result < 0) {
1562     __ movl(rax, -1);
1563     __ jccb(Assembler::parity, done);
1564     __ jccb(Assembler::below, done);
1565     __ setb(Assembler::notEqual, rdx);
1566     __ movzbl(rax, rdx);
1567   } else {
1568     __ movl(rax, 1);
1569     __ jccb(Assembler::parity, done);
1570     __ jccb(Assembler::above, done);
1571     __ movl(rax, 0);
1572     __ jccb(Assembler::equal, done);
1573     __ decrementl(rax);
1574   }
1575   __ bind(done);
1576 }
1577 
1578 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1579   __ get_method(rcx); // rcx holds method
1580   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
1581                                      // holds bumped taken count
1582 
1583   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1584                              InvocationCounter::counter_offset();
1585   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1586                               InvocationCounter::counter_offset();
1587 
1588   // Load up edx with the branch displacement
1589   if (is_wide) {
1590     __ movl(rdx, at_bcp(1));
1591   } else {
1592     __ load_signed_short(rdx, at_bcp(1));
1593   }
1594   __ bswapl(rdx);
1595 
1596   if (!is_wide) {
1597     __ sarl(rdx, 16);
1598   }
1599   __ movl2ptr(rdx, rdx);
1600 
1601   // Handle all the JSR stuff here, then exit.
1602   // It's much shorter and cleaner than intermingling with the non-JSR
1603   // normal-branch stuff occurring below.
1604   if (is_jsr) {
1605     // Pre-load the next target bytecode into rbx
1606     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
1607 
1608     // compute return address as bci in rax
1609     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
1610                         in_bytes(ConstMethod::codes_offset())));
1611     __ subptr(rax, Address(rcx, Method::const_offset()));
1612     // Adjust the bcp in r13 by the displacement in rdx
1613     __ addptr(r13, rdx);
1614     // jsr returns atos that is not an oop
1615     __ push_i(rax);
1616     __ dispatch_only(vtos);
1617     return;
1618   }
1619 
1620   // Normal (non-jsr) branch handling
1621 
1622   // Adjust the bcp in r13 by the displacement in rdx
1623   __ addptr(r13, rdx);
1624 
1625   assert(UseLoopCounter || !UseOnStackReplacement,
1626          "on-stack-replacement requires loop counters");
1627   Label backedge_counter_overflow;
1628   Label profile_method;
1629   Label dispatch;
1630   if (UseLoopCounter) {
1631     // increment backedge counter for backward branches
1632     // rax: MDO
1633     // ebx: MDO bumped taken-count
1634     // rcx: method
1635     // rdx: target offset
1636     // r13: target bcp
1637     // r14: locals pointer
1638     __ testl(rdx, rdx);             // check if forward or backward branch
1639     __ jcc(Assembler::positive, dispatch); // count only if backward branch
1640 
1641     // check if MethodCounters exists
1642     Label has_counters;
1643     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
1644     __ testptr(rax, rax);
1645     __ jcc(Assembler::notZero, has_counters);
1646     __ push(rdx);
1647     __ push(rcx);
1648     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
1649                rcx);
1650     __ pop(rcx);
1651     __ pop(rdx);
1652     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
1653     __ jcc(Assembler::zero, dispatch);
1654     __ bind(has_counters);
1655 
1656     if (TieredCompilation) {
1657       Label no_mdo;
1658       int increment = InvocationCounter::count_increment;
1659       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1660       if (ProfileInterpreter) {
1661         // Are we profiling?
1662         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
1663         __ testptr(rbx, rbx);
1664         __ jccb(Assembler::zero, no_mdo);
1665         // Increment the MDO backedge counter
1666         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
1667                                            in_bytes(InvocationCounter::counter_offset()));
1668         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1669                                    rax, false, Assembler::zero, &backedge_counter_overflow);
1670         __ jmp(dispatch);
1671       }
1672       __ bind(no_mdo);
1673       // Increment backedge counter in MethodCounters*
1674       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
1675       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
1676                                  rax, false, Assembler::zero, &backedge_counter_overflow);
1677     } else {
1678       // increment counter
1679       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
1680       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
1681       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
1682       __ movl(Address(rcx, be_offset), rax);        // store counter
1683 
1684       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
1685 
1686       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
1687       __ addl(rax, Address(rcx, be_offset));        // add both counters
1688 
1689       if (ProfileInterpreter) {
1690         // Test to see if we should create a method data oop
1691         __ cmp32(rax,
1692                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
1693         __ jcc(Assembler::less, dispatch);
1694 
1695         // if no method data exists, go to profile method
1696         __ test_method_data_pointer(rax, profile_method);
1697 
1698         if (UseOnStackReplacement) {
1699           // check for overflow against ebx which is the MDO taken count
1700           __ cmp32(rbx,
1701                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1702           __ jcc(Assembler::below, dispatch);
1703 
1704           // When ProfileInterpreter is on, the backedge_count comes
1705           // from the MethodData*, which value does not get reset on
1706           // the call to frequency_counter_overflow().  To avoid
1707           // excessive calls to the overflow routine while the method is
1708           // being compiled, add a second test to make sure the overflow
1709           // function is called only once every overflow_frequency.
1710           const int overflow_frequency = 1024;
1711           __ andl(rbx, overflow_frequency - 1);
1712           __ jcc(Assembler::zero, backedge_counter_overflow);
1713 
1714         }
1715       } else {
1716         if (UseOnStackReplacement) {
1717           // check for overflow against eax, which is the sum of the
1718           // counters
1719           __ cmp32(rax,
1720                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1721           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
1722 
1723         }
1724       }
1725     }
1726     __ bind(dispatch);
1727   }
1728 
1729   // Pre-load the next target bytecode into rbx
1730   __ load_unsigned_byte(rbx, Address(r13, 0));
1731 
1732   // continue with the bytecode @ target
1733   // eax: return bci for jsr's, unused otherwise
1734   // ebx: target bytecode
1735   // r13: target bcp
1736   __ dispatch_only(vtos);
1737 
1738   if (UseLoopCounter) {
1739     if (ProfileInterpreter) {
1740       // Out-of-line code to allocate method data oop.
1741       __ bind(profile_method);
1742       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1743       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1744       __ set_method_data_pointer_for_bcp();
1745       __ jmp(dispatch);
1746     }
1747 
1748     if (UseOnStackReplacement) {
1749       // invocation counter overflow
1750       __ bind(backedge_counter_overflow);
1751       __ negptr(rdx);
1752       __ addptr(rdx, r13); // branch bcp
1753       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1754       __ call_VM(noreg,
1755                  CAST_FROM_FN_PTR(address,
1756                                   InterpreterRuntime::frequency_counter_overflow),
1757                  rdx);
1758       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1759 
1760       // rax: osr nmethod (osr ok) or NULL (osr not possible)
1761       // ebx: target bytecode
1762       // rdx: scratch
1763       // r14: locals pointer
1764       // r13: bcp
1765       __ testptr(rax, rax);                        // test result
1766       __ jcc(Assembler::zero, dispatch);         // no osr if null
1767       // nmethod may have been invalidated (VM may block upon call_VM return)
1768       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
1769       __ cmpl(rcx, InvalidOSREntryBci);
1770       __ jcc(Assembler::equal, dispatch);
1771 
1772       // We have the address of an on stack replacement routine in eax
1773       // We need to prepare to execute the OSR method. First we must
1774       // migrate the locals and monitors off of the stack.
1775 
1776       __ mov(r13, rax);                             // save the nmethod
1777 
1778       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1779 
1780       // eax is OSR buffer, move it to expected parameter location
1781       __ mov(j_rarg0, rax);
1782 
1783       // We use j_rarg definitions here so that registers don't conflict as parameter
1784       // registers change across platforms as we are in the midst of a calling
1785       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
1786 
1787       const Register retaddr = j_rarg2;
1788       const Register sender_sp = j_rarg1;
1789 
1790       // pop the interpreter frame
1791       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1792       __ leave();                                // remove frame anchor
1793       __ pop(retaddr);                           // get return address
1794       __ mov(rsp, sender_sp);                   // set sp to sender sp
1795       // Ensure compiled code always sees stack at proper alignment
1796       __ andptr(rsp, -(StackAlignmentInBytes));
1797 
1798       // unlike x86 we need no specialized return from compiled code
1799       // to the interpreter or the call stub.
1800 
1801       // push the return address
1802       __ push(retaddr);
1803 
1804       // and begin the OSR nmethod
1805       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
1806     }
1807   }
1808 }
1809 
1810 
1811 void TemplateTable::if_0cmp(Condition cc) {
1812   transition(itos, vtos);
1813   // assume branch is more often taken than not (loops use backward branches)
1814   Label not_taken;
1815   __ testl(rax, rax);
1816   __ jcc(j_not(cc), not_taken);
1817   branch(false, false);
1818   __ bind(not_taken);
1819   __ profile_not_taken_branch(rax);
1820 }
1821 
1822 void TemplateTable::if_icmp(Condition cc) {
1823   transition(itos, vtos);
1824   // assume branch is more often taken than not (loops use backward branches)
1825   Label not_taken;
1826   __ pop_i(rdx);
1827   __ cmpl(rdx, rax);
1828   __ jcc(j_not(cc), not_taken);
1829   branch(false, false);
1830   __ bind(not_taken);
1831   __ profile_not_taken_branch(rax);
1832 }
1833 
1834 void TemplateTable::if_nullcmp(Condition cc) {
1835   transition(atos, vtos);
1836   // assume branch is more often taken than not (loops use backward branches)
1837   Label not_taken;
1838   __ testptr(rax, rax);
1839   __ jcc(j_not(cc), not_taken);
1840   branch(false, false);
1841   __ bind(not_taken);
1842   __ profile_not_taken_branch(rax);
1843 }
1844 
1845 void TemplateTable::if_acmp(Condition cc) {
1846   transition(atos, vtos);
1847   // assume branch is more often taken than not (loops use backward branches)
1848   Label not_taken;
1849   __ pop_ptr(rdx);
1850   __ cmpptr(rdx, rax);
1851   __ jcc(j_not(cc), not_taken);
1852   branch(false, false);
1853   __ bind(not_taken);
1854   __ profile_not_taken_branch(rax);
1855 }
1856 
1857 void TemplateTable::ret() {
1858   transition(vtos, vtos);
1859   locals_index(rbx);
1860   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
1861   __ profile_ret(rbx, rcx);
1862   __ get_method(rax);
1863   __ movptr(r13, Address(rax, Method::const_offset()));
1864   __ lea(r13, Address(r13, rbx, Address::times_1,
1865                       ConstMethod::codes_offset()));
1866   __ dispatch_next(vtos);
1867 }
1868 
1869 void TemplateTable::wide_ret() {
1870   transition(vtos, vtos);
1871   locals_index_wide(rbx);
1872   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
1873   __ profile_ret(rbx, rcx);
1874   __ get_method(rax);
1875   __ movptr(r13, Address(rax, Method::const_offset()));
1876   __ lea(r13, Address(r13, rbx, Address::times_1, ConstMethod::codes_offset()));
1877   __ dispatch_next(vtos);
1878 }
1879 
1880 void TemplateTable::tableswitch() {
1881   Label default_case, continue_execution;
1882   transition(itos, vtos);
1883   // align r13
1884   __ lea(rbx, at_bcp(BytesPerInt));
1885   __ andptr(rbx, -BytesPerInt);
1886   // load lo & hi
1887   __ movl(rcx, Address(rbx, BytesPerInt));
1888   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
1889   __ bswapl(rcx);
1890   __ bswapl(rdx);
1891   // check against lo & hi
1892   __ cmpl(rax, rcx);
1893   __ jcc(Assembler::less, default_case);
1894   __ cmpl(rax, rdx);
1895   __ jcc(Assembler::greater, default_case);
1896   // lookup dispatch offset
1897   __ subl(rax, rcx);
1898   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
1899   __ profile_switch_case(rax, rbx, rcx);
1900   // continue execution
1901   __ bind(continue_execution);
1902   __ bswapl(rdx);
1903   __ movl2ptr(rdx, rdx);
1904   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1905   __ addptr(r13, rdx);
1906   __ dispatch_only(vtos);
1907   // handle default
1908   __ bind(default_case);
1909   __ profile_switch_default(rax);
1910   __ movl(rdx, Address(rbx, 0));
1911   __ jmp(continue_execution);
1912 }
1913 
1914 void TemplateTable::lookupswitch() {
1915   transition(itos, itos);
1916   __ stop("lookupswitch bytecode should have been rewritten");
1917 }
1918 
1919 void TemplateTable::fast_linearswitch() {
1920   transition(itos, vtos);
1921   Label loop_entry, loop, found, continue_execution;
1922   // bswap rax so we can avoid bswapping the table entries
1923   __ bswapl(rax);
1924   // align r13
1925   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
1926                                     // this instruction (change offsets
1927                                     // below)
1928   __ andptr(rbx, -BytesPerInt);
1929   // set counter
1930   __ movl(rcx, Address(rbx, BytesPerInt));
1931   __ bswapl(rcx);
1932   __ jmpb(loop_entry);
1933   // table search
1934   __ bind(loop);
1935   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
1936   __ jcc(Assembler::equal, found);
1937   __ bind(loop_entry);
1938   __ decrementl(rcx);
1939   __ jcc(Assembler::greaterEqual, loop);
1940   // default case
1941   __ profile_switch_default(rax);
1942   __ movl(rdx, Address(rbx, 0));
1943   __ jmp(continue_execution);
1944   // entry found -> get offset
1945   __ bind(found);
1946   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
1947   __ profile_switch_case(rcx, rax, rbx);
1948   // continue execution
1949   __ bind(continue_execution);
1950   __ bswapl(rdx);
1951   __ movl2ptr(rdx, rdx);
1952   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1953   __ addptr(r13, rdx);
1954   __ dispatch_only(vtos);
1955 }
1956 
1957 void TemplateTable::fast_binaryswitch() {
1958   transition(itos, vtos);
1959   // Implementation using the following core algorithm:
1960   //
1961   // int binary_search(int key, LookupswitchPair* array, int n) {
1962   //   // Binary search according to "Methodik des Programmierens" by
1963   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1964   //   int i = 0;
1965   //   int j = n;
1966   //   while (i+1 < j) {
1967   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1968   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1969   //     // where a stands for the array and assuming that the (inexisting)
1970   //     // element a[n] is infinitely big.
1971   //     int h = (i + j) >> 1;
1972   //     // i < h < j
1973   //     if (key < array[h].fast_match()) {
1974   //       j = h;
1975   //     } else {
1976   //       i = h;
1977   //     }
1978   //   }
1979   //   // R: a[i] <= key < a[i+1] or Q
1980   //   // (i.e., if key is within array, i is the correct index)
1981   //   return i;
1982   // }
1983 
1984   // Register allocation
1985   const Register key   = rax; // already set (tosca)
1986   const Register array = rbx;
1987   const Register i     = rcx;
1988   const Register j     = rdx;
1989   const Register h     = rdi;
1990   const Register temp  = rsi;
1991 
1992   // Find array start
1993   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
1994                                           // get rid of this
1995                                           // instruction (change
1996                                           // offsets below)
1997   __ andptr(array, -BytesPerInt);
1998 
1999   // Initialize i & j
2000   __ xorl(i, i);                            // i = 0;
2001   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
2002 
2003   // Convert j into native byteordering
2004   __ bswapl(j);
2005 
2006   // And start
2007   Label entry;
2008   __ jmp(entry);
2009 
2010   // binary search loop
2011   {
2012     Label loop;
2013     __ bind(loop);
2014     // int h = (i + j) >> 1;
2015     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
2016     __ sarl(h, 1);                               // h = (i + j) >> 1;
2017     // if (key < array[h].fast_match()) {
2018     //   j = h;
2019     // } else {
2020     //   i = h;
2021     // }
2022     // Convert array[h].match to native byte-ordering before compare
2023     __ movl(temp, Address(array, h, Address::times_8));
2024     __ bswapl(temp);
2025     __ cmpl(key, temp);
2026     // j = h if (key <  array[h].fast_match())
2027     __ cmovl(Assembler::less, j, h);
2028     // i = h if (key >= array[h].fast_match())
2029     __ cmovl(Assembler::greaterEqual, i, h);
2030     // while (i+1 < j)
2031     __ bind(entry);
2032     __ leal(h, Address(i, 1)); // i+1
2033     __ cmpl(h, j);             // i+1 < j
2034     __ jcc(Assembler::less, loop);
2035   }
2036 
2037   // end of binary search, result index is i (must check again!)
2038   Label default_case;
2039   // Convert array[i].match to native byte-ordering before compare
2040   __ movl(temp, Address(array, i, Address::times_8));
2041   __ bswapl(temp);
2042   __ cmpl(key, temp);
2043   __ jcc(Assembler::notEqual, default_case);
2044 
2045   // entry found -> j = offset
2046   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2047   __ profile_switch_case(i, key, array);
2048   __ bswapl(j);
2049   __ movl2ptr(j, j);
2050   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
2051   __ addptr(r13, j);
2052   __ dispatch_only(vtos);
2053 
2054   // default case -> j = default offset
2055   __ bind(default_case);
2056   __ profile_switch_default(i);
2057   __ movl(j, Address(array, -2 * BytesPerInt));
2058   __ bswapl(j);
2059   __ movl2ptr(j, j);
2060   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
2061   __ addptr(r13, j);
2062   __ dispatch_only(vtos);
2063 }
2064 
2065 
2066 void TemplateTable::_return(TosState state) {
2067   transition(state, state);
2068   assert(_desc->calls_vm(),
2069          "inconsistent calls_vm information"); // call in remove_activation
2070 
2071   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2072     assert(state == vtos, "only valid state");
2073     __ movptr(c_rarg1, aaddress(0));
2074     __ load_klass(rdi, c_rarg1);
2075     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
2076     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2077     Label skip_register_finalizer;
2078     __ jcc(Assembler::zero, skip_register_finalizer);
2079 
2080     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2081 
2082     __ bind(skip_register_finalizer);
2083   }
2084 
2085   // Narrow result if state is itos but result type is smaller.
2086   // Need to narrow in the return bytecode rather than in generate_return_entry
2087   // since compiled code callers expect the result to already be narrowed.
2088   if (state == itos) {
2089     __ narrow(rax);
2090   }
2091   __ remove_activation(state, r13);
2092 
2093   __ jmp(r13);
2094 }
2095 
2096 // ----------------------------------------------------------------------------
2097 // Volatile variables demand their effects be made known to all CPU's
2098 // in order.  Store buffers on most chips allow reads & writes to
2099 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2100 // without some kind of memory barrier (i.e., it's not sufficient that
2101 // the interpreter does not reorder volatile references, the hardware
2102 // also must not reorder them).
2103 //
2104 // According to the new Java Memory Model (JMM):
2105 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2106 //     writes act as aquire & release, so:
2107 // (2) A read cannot let unrelated NON-volatile memory refs that
2108 //     happen after the read float up to before the read.  It's OK for
2109 //     non-volatile memory refs that happen before the volatile read to
2110 //     float down below it.
2111 // (3) Similar a volatile write cannot let unrelated NON-volatile
2112 //     memory refs that happen BEFORE the write float down to after the
2113 //     write.  It's OK for non-volatile memory refs that happen after the
2114 //     volatile write to float up before it.
2115 //
2116 // We only put in barriers around volatile refs (they are expensive),
2117 // not _between_ memory refs (that would require us to track the
2118 // flavor of the previous memory refs).  Requirements (2) and (3)
2119 // require some barriers before volatile stores and after volatile
2120 // loads.  These nearly cover requirement (1) but miss the
2121 // volatile-store-volatile-load case.  This final case is placed after
2122 // volatile-stores although it could just as well go before
2123 // volatile-loads.
2124 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
2125                                      order_constraint) {
2126   // Helper function to insert a is-volatile test and memory barrier
2127   if (os::is_MP()) { // Not needed on single CPU
2128     __ membar(order_constraint);
2129   }
2130 }
2131 
2132 void TemplateTable::resolve_cache_and_index(int byte_no,
2133                                             Register Rcache,
2134                                             Register index,
2135                                             size_t index_size) {
2136   const Register temp = rbx;
2137   assert_different_registers(Rcache, index, temp);
2138 
2139   Label resolved;
2140     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2141     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
2142     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
2143     __ jcc(Assembler::equal, resolved);
2144 
2145   // resolve first time through
2146   address entry;
2147   switch (bytecode()) {
2148   case Bytecodes::_getstatic:
2149   case Bytecodes::_putstatic:
2150   case Bytecodes::_getfield:
2151   case Bytecodes::_putfield:
2152     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
2153     break;
2154   case Bytecodes::_invokevirtual:
2155   case Bytecodes::_invokespecial:
2156   case Bytecodes::_invokestatic:
2157   case Bytecodes::_invokeinterface:
2158     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
2159     break;
2160   case Bytecodes::_invokehandle:
2161     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);
2162     break;
2163   case Bytecodes::_invokedynamic:
2164     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
2165     break;
2166   default:
2167     fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
2168     break;
2169   }
2170   __ movl(temp, (int) bytecode());
2171   __ call_VM(noreg, entry, temp);
2172 
2173   // Update registers with resolved info
2174   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2175   __ bind(resolved);
2176 }
2177 
2178 // The cache and index registers must be set before call
2179 void TemplateTable::load_field_cp_cache_entry(Register obj,
2180                                               Register cache,
2181                                               Register index,
2182                                               Register off,
2183                                               Register flags,
2184                                               bool is_static = false) {
2185   assert_different_registers(cache, index, flags, off);
2186 
2187   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2188   // Field offset
2189   __ movptr(off, Address(cache, index, Address::times_ptr,
2190                          in_bytes(cp_base_offset +
2191                                   ConstantPoolCacheEntry::f2_offset())));
2192   // Flags
2193   __ movl(flags, Address(cache, index, Address::times_ptr,
2194                          in_bytes(cp_base_offset +
2195                                   ConstantPoolCacheEntry::flags_offset())));
2196 
2197   // klass overwrite register
2198   if (is_static) {
2199     __ movptr(obj, Address(cache, index, Address::times_ptr,
2200                            in_bytes(cp_base_offset +
2201                                     ConstantPoolCacheEntry::f1_offset())));
2202     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2203     __ movptr(obj, Address(obj, mirror_offset));
2204   }
2205 }
2206 
2207 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2208                                                Register method,
2209                                                Register itable_index,
2210                                                Register flags,
2211                                                bool is_invokevirtual,
2212                                                bool is_invokevfinal, /*unused*/
2213                                                bool is_invokedynamic) {
2214   // setup registers
2215   const Register cache = rcx;
2216   const Register index = rdx;
2217   assert_different_registers(method, flags);
2218   assert_different_registers(method, cache, index);
2219   assert_different_registers(itable_index, flags);
2220   assert_different_registers(itable_index, cache, index);
2221   // determine constant pool cache field offsets
2222   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2223   const int method_offset = in_bytes(
2224     ConstantPoolCache::base_offset() +
2225       ((byte_no == f2_byte)
2226        ? ConstantPoolCacheEntry::f2_offset()
2227        : ConstantPoolCacheEntry::f1_offset()));
2228   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2229                                     ConstantPoolCacheEntry::flags_offset());
2230   // access constant pool cache fields
2231   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2232                                     ConstantPoolCacheEntry::f2_offset());
2233 
2234   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2235   resolve_cache_and_index(byte_no, cache, index, index_size);
2236     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2237 
2238   if (itable_index != noreg) {
2239     // pick up itable or appendix index from f2 also:
2240     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2241   }
2242   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2243 }
2244 
2245 // Correct values of the cache and index registers are preserved.
2246 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2247                                             bool is_static, bool has_tos) {
2248   // do the JVMTI work here to avoid disturbing the register state below
2249   // We use c_rarg registers here because we want to use the register used in
2250   // the call to the VM
2251   if (JvmtiExport::can_post_field_access()) {
2252     // Check to see if a field access watch has been set before we
2253     // take the time to call into the VM.
2254     Label L1;
2255     assert_different_registers(cache, index, rax);
2256     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2257     __ testl(rax, rax);
2258     __ jcc(Assembler::zero, L1);
2259 
2260     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
2261 
2262     // cache entry pointer
2263     __ addptr(c_rarg2, in_bytes(ConstantPoolCache::base_offset()));
2264     __ shll(c_rarg3, LogBytesPerWord);
2265     __ addptr(c_rarg2, c_rarg3);
2266     if (is_static) {
2267       __ xorl(c_rarg1, c_rarg1); // NULL object reference
2268     } else {
2269       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
2270       __ verify_oop(c_rarg1);
2271     }
2272     // c_rarg1: object pointer or NULL
2273     // c_rarg2: cache entry pointer
2274     // c_rarg3: jvalue object on the stack
2275     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2276                                        InterpreterRuntime::post_field_access),
2277                c_rarg1, c_rarg2, c_rarg3);
2278     __ get_cache_and_index_at_bcp(cache, index, 1);
2279     __ bind(L1);
2280   }
2281 }
2282 
2283 void TemplateTable::pop_and_check_object(Register r) {
2284   __ pop_ptr(r);
2285   __ null_check(r);  // for field access must check obj.
2286   __ verify_oop(r);
2287 }
2288 
2289 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2290   transition(vtos, vtos);
2291 
2292   const Register cache = rcx;
2293   const Register index = rdx;
2294   const Register obj   = c_rarg3;
2295   const Register off   = rbx;
2296   const Register flags = rax;
2297   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
2298 
2299   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2300   jvmti_post_field_access(cache, index, is_static, false);
2301   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2302 
2303   if (!is_static) {
2304     // obj is on the stack
2305     pop_and_check_object(obj);
2306   }
2307 
2308   const Address field(obj, off, Address::times_1);
2309 
2310   Label Done, notByte, notBool, notInt, notShort, notChar,
2311               notLong, notFloat, notObj, notDouble;
2312 
2313   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2314   // Make sure we don't need to mask edx after the above shift
2315   assert(btos == 0, "change code, btos != 0");
2316 
2317   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2318   __ jcc(Assembler::notZero, notByte);
2319   // btos
2320   __ load_signed_byte(rax, field);
2321   __ push(btos);
2322   // Rewrite bytecode to be faster
2323   if (!is_static) {
2324     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2325   }
2326   __ jmp(Done);
2327 
2328   __ bind(notByte);
2329   __ cmpl(flags, ztos);
2330   __ jcc(Assembler::notEqual, notBool);
2331 
2332   // ztos (same code as btos)
2333   __ load_signed_byte(rax, field);
2334   __ push(ztos);
2335   // Rewrite bytecode to be faster
2336   if (!is_static) {
2337     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2338     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2339   }
2340   __ jmp(Done);
2341 
2342   __ bind(notBool);
2343   __ cmpl(flags, atos);
2344   __ jcc(Assembler::notEqual, notObj);
2345   // atos
2346   __ load_heap_oop(rax, field);
2347   __ push(atos);
2348   if (!is_static) {
2349     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2350   }
2351   __ jmp(Done);
2352 
2353   __ bind(notObj);
2354   __ cmpl(flags, itos);
2355   __ jcc(Assembler::notEqual, notInt);
2356   // itos
2357   __ movl(rax, field);
2358   __ push(itos);
2359   // Rewrite bytecode to be faster
2360   if (!is_static) {
2361     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2362   }
2363   __ jmp(Done);
2364 
2365   __ bind(notInt);
2366   __ cmpl(flags, ctos);
2367   __ jcc(Assembler::notEqual, notChar);
2368   // ctos
2369   __ load_unsigned_short(rax, field);
2370   __ push(ctos);
2371   // Rewrite bytecode to be faster
2372   if (!is_static) {
2373     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2374   }
2375   __ jmp(Done);
2376 
2377   __ bind(notChar);
2378   __ cmpl(flags, stos);
2379   __ jcc(Assembler::notEqual, notShort);
2380   // stos
2381   __ load_signed_short(rax, field);
2382   __ push(stos);
2383   // Rewrite bytecode to be faster
2384   if (!is_static) {
2385     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2386   }
2387   __ jmp(Done);
2388 
2389   __ bind(notShort);
2390   __ cmpl(flags, ltos);
2391   __ jcc(Assembler::notEqual, notLong);
2392   // ltos
2393   __ movq(rax, field);
2394   __ push(ltos);
2395   // Rewrite bytecode to be faster
2396   if (!is_static) {
2397     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
2398   }
2399   __ jmp(Done);
2400 
2401   __ bind(notLong);
2402   __ cmpl(flags, ftos);
2403   __ jcc(Assembler::notEqual, notFloat);
2404   // ftos
2405   __ movflt(xmm0, field);
2406   __ push(ftos);
2407   // Rewrite bytecode to be faster
2408   if (!is_static) {
2409     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2410   }
2411   __ jmp(Done);
2412 
2413   __ bind(notFloat);
2414 #ifdef ASSERT
2415   __ cmpl(flags, dtos);
2416   __ jcc(Assembler::notEqual, notDouble);
2417 #endif
2418   // dtos
2419   __ movdbl(xmm0, field);
2420   __ push(dtos);
2421   // Rewrite bytecode to be faster
2422   if (!is_static) {
2423     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
2424   }
2425 #ifdef ASSERT
2426   __ jmp(Done);
2427 
2428   __ bind(notDouble);
2429   __ stop("Bad state");
2430 #endif
2431 
2432   __ bind(Done);
2433   // [jk] not needed currently
2434   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
2435   //                                              Assembler::LoadStore));
2436 }
2437 
2438 
2439 void TemplateTable::getfield(int byte_no) {
2440   getfield_or_static(byte_no, false);
2441 }
2442 
2443 void TemplateTable::getstatic(int byte_no) {
2444   getfield_or_static(byte_no, true);
2445 }
2446 
2447 // The registers cache and index expected to be set before call.
2448 // The function may destroy various registers, just not the cache and index registers.
2449 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2450   transition(vtos, vtos);
2451 
2452   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2453 
2454   if (JvmtiExport::can_post_field_modification()) {
2455     // Check to see if a field modification watch has been set before
2456     // we take the time to call into the VM.
2457     Label L1;
2458     assert_different_registers(cache, index, rax);
2459     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2460     __ testl(rax, rax);
2461     __ jcc(Assembler::zero, L1);
2462 
2463     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
2464 
2465     if (is_static) {
2466       // Life is simple.  Null out the object pointer.
2467       __ xorl(c_rarg1, c_rarg1);
2468     } else {
2469       // Life is harder. The stack holds the value on top, followed by
2470       // the object.  We don't know the size of the value, though; it
2471       // could be one or two words depending on its type. As a result,
2472       // we must find the type to determine where the object is.
2473       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
2474                            Address::times_8,
2475                            in_bytes(cp_base_offset +
2476                                      ConstantPoolCacheEntry::flags_offset())));
2477       __ shrl(c_rarg3, ConstantPoolCacheEntry::tos_state_shift);
2478       // Make sure we don't need to mask rcx after the above shift
2479       ConstantPoolCacheEntry::verify_tos_state_shift();
2480       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
2481       __ cmpl(c_rarg3, ltos);
2482       __ cmovptr(Assembler::equal,
2483                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2484       __ cmpl(c_rarg3, dtos);
2485       __ cmovptr(Assembler::equal,
2486                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
2487     }
2488     // cache entry pointer
2489     __ addptr(c_rarg2, in_bytes(cp_base_offset));
2490     __ shll(rscratch1, LogBytesPerWord);
2491     __ addptr(c_rarg2, rscratch1);
2492     // object (tos)
2493     __ mov(c_rarg3, rsp);
2494     // c_rarg1: object pointer set up above (NULL if static)
2495     // c_rarg2: cache entry pointer
2496     // c_rarg3: jvalue object on the stack
2497     __ call_VM(noreg,
2498                CAST_FROM_FN_PTR(address,
2499                                 InterpreterRuntime::post_field_modification),
2500                c_rarg1, c_rarg2, c_rarg3);
2501     __ get_cache_and_index_at_bcp(cache, index, 1);
2502     __ bind(L1);
2503   }
2504 }
2505 
2506 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2507   transition(vtos, vtos);
2508 
2509   const Register cache = rcx;
2510   const Register index = rdx;
2511   const Register obj   = rcx;
2512   const Register off   = rbx;
2513   const Register flags = rax;
2514   const Register bc    = c_rarg3;
2515 
2516   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2517   jvmti_post_field_mod(cache, index, is_static);
2518   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2519 
2520   // [jk] not needed currently
2521   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2522   //                                              Assembler::StoreStore));
2523 
2524   Label notVolatile, Done;
2525   __ movl(rdx, flags);
2526   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2527   __ andl(rdx, 0x1);
2528 
2529   // field address
2530   const Address field(obj, off, Address::times_1);
2531 
2532   Label notByte, notBool, notInt, notShort, notChar,
2533         notLong, notFloat, notObj, notDouble;
2534 
2535   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2536 
2537   assert(btos == 0, "change code, btos != 0");
2538   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2539   __ jcc(Assembler::notZero, notByte);
2540 
2541   // btos
2542   {
2543     __ pop(btos);
2544     if (!is_static) pop_and_check_object(obj);
2545     __ movb(field, rax);
2546     if (!is_static) {
2547       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
2548     }
2549     __ jmp(Done);
2550   }
2551 
2552   __ bind(notByte);
2553   __ cmpl(flags, ztos);
2554   __ jcc(Assembler::notEqual, notBool);
2555 
2556   // ztos
2557   {
2558     __ pop(ztos);
2559     if (!is_static) pop_and_check_object(obj);
2560     __ andl(rax, 0x1);
2561     __ movb(field, rax);
2562     if (!is_static) {
2563       patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no);
2564     }
2565     __ jmp(Done);
2566   }
2567 
2568   __ bind(notBool);
2569   __ cmpl(flags, atos);
2570   __ jcc(Assembler::notEqual, notObj);
2571 
2572   // atos
2573   {
2574     __ pop(atos);
2575     if (!is_static) pop_and_check_object(obj);
2576     // Store into the field
2577     do_oop_store(_masm, field, rax, _bs->kind(), false);
2578     if (!is_static) {
2579       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
2580     }
2581     __ jmp(Done);
2582   }
2583 
2584   __ bind(notObj);
2585   __ cmpl(flags, itos);
2586   __ jcc(Assembler::notEqual, notInt);
2587 
2588   // itos
2589   {
2590     __ pop(itos);
2591     if (!is_static) pop_and_check_object(obj);
2592     __ movl(field, rax);
2593     if (!is_static) {
2594       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
2595     }
2596     __ jmp(Done);
2597   }
2598 
2599   __ bind(notInt);
2600   __ cmpl(flags, ctos);
2601   __ jcc(Assembler::notEqual, notChar);
2602 
2603   // ctos
2604   {
2605     __ pop(ctos);
2606     if (!is_static) pop_and_check_object(obj);
2607     __ movw(field, rax);
2608     if (!is_static) {
2609       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
2610     }
2611     __ jmp(Done);
2612   }
2613 
2614   __ bind(notChar);
2615   __ cmpl(flags, stos);
2616   __ jcc(Assembler::notEqual, notShort);
2617 
2618   // stos
2619   {
2620     __ pop(stos);
2621     if (!is_static) pop_and_check_object(obj);
2622     __ movw(field, rax);
2623     if (!is_static) {
2624       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
2625     }
2626     __ jmp(Done);
2627   }
2628 
2629   __ bind(notShort);
2630   __ cmpl(flags, ltos);
2631   __ jcc(Assembler::notEqual, notLong);
2632 
2633   // ltos
2634   {
2635     __ pop(ltos);
2636     if (!is_static) pop_and_check_object(obj);
2637     __ movq(field, rax);
2638     if (!is_static) {
2639       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
2640     }
2641     __ jmp(Done);
2642   }
2643 
2644   __ bind(notLong);
2645   __ cmpl(flags, ftos);
2646   __ jcc(Assembler::notEqual, notFloat);
2647 
2648   // ftos
2649   {
2650     __ pop(ftos);
2651     if (!is_static) pop_and_check_object(obj);
2652     __ movflt(field, xmm0);
2653     if (!is_static) {
2654       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
2655     }
2656     __ jmp(Done);
2657   }
2658 
2659   __ bind(notFloat);
2660 #ifdef ASSERT
2661   __ cmpl(flags, dtos);
2662   __ jcc(Assembler::notEqual, notDouble);
2663 #endif
2664 
2665   // dtos
2666   {
2667     __ pop(dtos);
2668     if (!is_static) pop_and_check_object(obj);
2669     __ movdbl(field, xmm0);
2670     if (!is_static) {
2671       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
2672     }
2673   }
2674 
2675 #ifdef ASSERT
2676   __ jmp(Done);
2677 
2678   __ bind(notDouble);
2679   __ stop("Bad state");
2680 #endif
2681 
2682   __ bind(Done);
2683 
2684   // Check for volatile store
2685   __ testl(rdx, rdx);
2686   __ jcc(Assembler::zero, notVolatile);
2687   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2688                                                Assembler::StoreStore));
2689   __ bind(notVolatile);
2690 }
2691 
2692 void TemplateTable::putfield(int byte_no) {
2693   putfield_or_static(byte_no, false);
2694 }
2695 
2696 void TemplateTable::putstatic(int byte_no) {
2697   putfield_or_static(byte_no, true);
2698 }
2699 
2700 void TemplateTable::jvmti_post_fast_field_mod() {
2701   if (JvmtiExport::can_post_field_modification()) {
2702     // Check to see if a field modification watch has been set before
2703     // we take the time to call into the VM.
2704     Label L2;
2705     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2706     __ testl(c_rarg3, c_rarg3);
2707     __ jcc(Assembler::zero, L2);
2708     __ pop_ptr(rbx);                  // copy the object pointer from tos
2709     __ verify_oop(rbx);
2710     __ push_ptr(rbx);                 // put the object pointer back on tos
2711     // Save tos values before call_VM() clobbers them. Since we have
2712     // to do it for every data type, we use the saved values as the
2713     // jvalue object.
2714     switch (bytecode()) {          // load values into the jvalue object
2715     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
2716     case Bytecodes::_fast_bputfield: // fall through
2717     case Bytecodes::_fast_zputfield: // fall through
2718     case Bytecodes::_fast_sputfield: // fall through
2719     case Bytecodes::_fast_cputfield: // fall through
2720     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
2721     case Bytecodes::_fast_dputfield: __ push_d(); break;
2722     case Bytecodes::_fast_fputfield: __ push_f(); break;
2723     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
2724 
2725     default:
2726       ShouldNotReachHere();
2727     }
2728     __ mov(c_rarg3, rsp);             // points to jvalue on the stack
2729     // access constant pool cache entry
2730     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
2731     __ verify_oop(rbx);
2732     // rbx: object pointer copied above
2733     // c_rarg2: cache entry pointer
2734     // c_rarg3: jvalue object on the stack
2735     __ call_VM(noreg,
2736                CAST_FROM_FN_PTR(address,
2737                                 InterpreterRuntime::post_field_modification),
2738                rbx, c_rarg2, c_rarg3);
2739 
2740     switch (bytecode()) {             // restore tos values
2741     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
2742     case Bytecodes::_fast_bputfield: // fall through
2743     case Bytecodes::_fast_zputfield: // fall through
2744     case Bytecodes::_fast_sputfield: // fall through
2745     case Bytecodes::_fast_cputfield: // fall through
2746     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
2747     case Bytecodes::_fast_dputfield: __ pop_d(); break;
2748     case Bytecodes::_fast_fputfield: __ pop_f(); break;
2749     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
2750     }
2751     __ bind(L2);
2752   }
2753 }
2754 
2755 void TemplateTable::fast_storefield(TosState state) {
2756   transition(state, vtos);
2757 
2758   ByteSize base = ConstantPoolCache::base_offset();
2759 
2760   jvmti_post_fast_field_mod();
2761 
2762   // access constant pool cache
2763   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2764 
2765   // test for volatile with rdx
2766   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2767                        in_bytes(base +
2768                                 ConstantPoolCacheEntry::flags_offset())));
2769 
2770   // replace index with field offset from cache entry
2771   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2772                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2773 
2774   // [jk] not needed currently
2775   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2776   //                                              Assembler::StoreStore));
2777 
2778   Label notVolatile;
2779   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2780   __ andl(rdx, 0x1);
2781 
2782   // Get object from stack
2783   pop_and_check_object(rcx);
2784 
2785   // field address
2786   const Address field(rcx, rbx, Address::times_1);
2787 
2788   // access field
2789   switch (bytecode()) {
2790   case Bytecodes::_fast_aputfield:
2791     do_oop_store(_masm, field, rax, _bs->kind(), false);
2792     break;
2793   case Bytecodes::_fast_lputfield:
2794     __ movq(field, rax);
2795     break;
2796   case Bytecodes::_fast_iputfield:
2797     __ movl(field, rax);
2798     break;
2799   case Bytecodes::_fast_zputfield:
2800     __ andl(rax, 0x1);  // boolean is true if LSB is 1
2801     // fall through to bputfield
2802   case Bytecodes::_fast_bputfield:
2803     __ movb(field, rax);
2804     break;
2805   case Bytecodes::_fast_sputfield:
2806     // fall through
2807   case Bytecodes::_fast_cputfield:
2808     __ movw(field, rax);
2809     break;
2810   case Bytecodes::_fast_fputfield:
2811     __ movflt(field, xmm0);
2812     break;
2813   case Bytecodes::_fast_dputfield:
2814     __ movdbl(field, xmm0);
2815     break;
2816   default:
2817     ShouldNotReachHere();
2818   }
2819 
2820   // Check for volatile store
2821   __ testl(rdx, rdx);
2822   __ jcc(Assembler::zero, notVolatile);
2823   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2824                                                Assembler::StoreStore));
2825   __ bind(notVolatile);
2826 }
2827 
2828 
2829 void TemplateTable::fast_accessfield(TosState state) {
2830   transition(atos, state);
2831 
2832   // Do the JVMTI work here to avoid disturbing the register state below
2833   if (JvmtiExport::can_post_field_access()) {
2834     // Check to see if a field access watch has been set before we
2835     // take the time to call into the VM.
2836     Label L1;
2837     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2838     __ testl(rcx, rcx);
2839     __ jcc(Assembler::zero, L1);
2840     // access constant pool cache entry
2841     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
2842     __ verify_oop(rax);
2843     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
2844     __ mov(c_rarg1, rax);
2845     // c_rarg1: object pointer copied above
2846     // c_rarg2: cache entry pointer
2847     __ call_VM(noreg,
2848                CAST_FROM_FN_PTR(address,
2849                                 InterpreterRuntime::post_field_access),
2850                c_rarg1, c_rarg2);
2851     __ pop_ptr(rax); // restore object pointer
2852     __ bind(L1);
2853   }
2854 
2855   // access constant pool cache
2856   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2857   // replace index with field offset from cache entry
2858   // [jk] not needed currently
2859   // if (os::is_MP()) {
2860   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2861   //                        in_bytes(ConstantPoolCache::base_offset() +
2862   //                                 ConstantPoolCacheEntry::flags_offset())));
2863   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2864   //   __ andl(rdx, 0x1);
2865   // }
2866   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2867                          in_bytes(ConstantPoolCache::base_offset() +
2868                                   ConstantPoolCacheEntry::f2_offset())));
2869 
2870   // rax: object
2871   __ verify_oop(rax);
2872   __ null_check(rax);
2873   Address field(rax, rbx, Address::times_1);
2874 
2875   // access field
2876   switch (bytecode()) {
2877   case Bytecodes::_fast_agetfield:
2878     __ load_heap_oop(rax, field);
2879     __ verify_oop(rax);
2880     break;
2881   case Bytecodes::_fast_lgetfield:
2882     __ movq(rax, field);
2883     break;
2884   case Bytecodes::_fast_igetfield:
2885     __ movl(rax, field);
2886     break;
2887   case Bytecodes::_fast_bgetfield:
2888     __ movsbl(rax, field);
2889     break;
2890   case Bytecodes::_fast_sgetfield:
2891     __ load_signed_short(rax, field);
2892     break;
2893   case Bytecodes::_fast_cgetfield:
2894     __ load_unsigned_short(rax, field);
2895     break;
2896   case Bytecodes::_fast_fgetfield:
2897     __ movflt(xmm0, field);
2898     break;
2899   case Bytecodes::_fast_dgetfield:
2900     __ movdbl(xmm0, field);
2901     break;
2902   default:
2903     ShouldNotReachHere();
2904   }
2905   // [jk] not needed currently
2906   // if (os::is_MP()) {
2907   //   Label notVolatile;
2908   //   __ testl(rdx, rdx);
2909   //   __ jcc(Assembler::zero, notVolatile);
2910   //   __ membar(Assembler::LoadLoad);
2911   //   __ bind(notVolatile);
2912   //};
2913 }
2914 
2915 void TemplateTable::fast_xaccess(TosState state) {
2916   transition(vtos, state);
2917 
2918   // get receiver
2919   __ movptr(rax, aaddress(0));
2920   // access constant pool cache
2921   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
2922   __ movptr(rbx,
2923             Address(rcx, rdx, Address::times_8,
2924                     in_bytes(ConstantPoolCache::base_offset() +
2925                              ConstantPoolCacheEntry::f2_offset())));
2926   // make sure exception is reported in correct bcp range (getfield is
2927   // next instruction)
2928   __ increment(r13);
2929   __ null_check(rax);
2930   switch (state) {
2931   case itos:
2932     __ movl(rax, Address(rax, rbx, Address::times_1));
2933     break;
2934   case atos:
2935     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
2936     __ verify_oop(rax);
2937     break;
2938   case ftos:
2939     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
2940     break;
2941   default:
2942     ShouldNotReachHere();
2943   }
2944 
2945   // [jk] not needed currently
2946   // if (os::is_MP()) {
2947   //   Label notVolatile;
2948   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
2949   //                        in_bytes(ConstantPoolCache::base_offset() +
2950   //                                 ConstantPoolCacheEntry::flags_offset())));
2951   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2952   //   __ testl(rdx, 0x1);
2953   //   __ jcc(Assembler::zero, notVolatile);
2954   //   __ membar(Assembler::LoadLoad);
2955   //   __ bind(notVolatile);
2956   // }
2957 
2958   __ decrement(r13);
2959 }
2960 
2961 
2962 
2963 //-----------------------------------------------------------------------------
2964 // Calls
2965 
2966 void TemplateTable::count_calls(Register method, Register temp) {
2967   // implemented elsewhere
2968   ShouldNotReachHere();
2969 }
2970 
2971 void TemplateTable::prepare_invoke(int byte_no,
2972                                    Register method,  // linked method (or i-klass)
2973                                    Register index,   // itable index, MethodType, etc.
2974                                    Register recv,    // if caller wants to see it
2975                                    Register flags    // if caller wants to test it
2976                                    ) {
2977   // determine flags
2978   const Bytecodes::Code code = bytecode();
2979   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2980   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2981   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
2982   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2983   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2984   const bool load_receiver       = (recv  != noreg);
2985   const bool save_flags          = (flags != noreg);
2986   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
2987   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
2988   assert(flags == noreg || flags == rdx, "");
2989   assert(recv  == noreg || recv  == rcx, "");
2990 
2991   // setup registers & access constant pool cache
2992   if (recv  == noreg)  recv  = rcx;
2993   if (flags == noreg)  flags = rdx;
2994   assert_different_registers(method, index, recv, flags);
2995 
2996   // save 'interpreter return address'
2997   __ save_bcp();
2998 
2999   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
3000 
3001   // maybe push appendix to arguments (just before return address)
3002   if (is_invokedynamic || is_invokehandle) {
3003     Label L_no_push;
3004     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
3005     __ jcc(Assembler::zero, L_no_push);
3006     // Push the appendix as a trailing parameter.
3007     // This must be done before we get the receiver,
3008     // since the parameter_size includes it.
3009     __ push(rbx);
3010     __ mov(rbx, index);
3011     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
3012     __ load_resolved_reference_at_index(index, rbx);
3013     __ pop(rbx);
3014     __ push(index);  // push appendix (MethodType, CallSite, etc.)
3015     __ bind(L_no_push);
3016   }
3017 
3018   // load receiver if needed (after appendix is pushed so parameter size is correct)
3019   // Note: no return address pushed yet
3020   if (load_receiver) {
3021     __ movl(recv, flags);
3022     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
3023     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
3024     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
3025     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
3026     __ movptr(recv, recv_addr);
3027     __ verify_oop(recv);
3028   }
3029 
3030   if (save_flags) {
3031     __ movl(r13, flags);
3032   }
3033 
3034   // compute return type
3035   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3036   // Make sure we don't need to mask flags after the above shift
3037   ConstantPoolCacheEntry::verify_tos_state_shift();
3038   // load return address
3039   {
3040     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3041     ExternalAddress table(table_addr);
3042     __ lea(rscratch1, table);
3043     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
3044   }
3045 
3046   // push return address
3047   __ push(flags);
3048 
3049   // Restore flags value from the constant pool cache, and restore rsi
3050   // for later null checks.  r13 is the bytecode pointer
3051   if (save_flags) {
3052     __ movl(flags, r13);
3053     __ restore_bcp();
3054   }
3055 }
3056 
3057 
3058 void TemplateTable::invokevirtual_helper(Register index,
3059                                          Register recv,
3060                                          Register flags) {
3061   // Uses temporary registers rax, rdx
3062   assert_different_registers(index, recv, rax, rdx);
3063   assert(index == rbx, "");
3064   assert(recv  == rcx, "");
3065 
3066   // Test for an invoke of a final method
3067   Label notFinal;
3068   __ movl(rax, flags);
3069   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
3070   __ jcc(Assembler::zero, notFinal);
3071 
3072   const Register method = index;  // method must be rbx
3073   assert(method == rbx,
3074          "Method* must be rbx for interpreter calling convention");
3075 
3076   // do the call - the index is actually the method to call
3077   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3078 
3079   // It's final, need a null check here!
3080   __ null_check(recv);
3081 
3082   // profile this call
3083   __ profile_final_call(rax);
3084   __ profile_arguments_type(rax, method, r13, true);
3085 
3086   __ jump_from_interpreted(method, rax);
3087 
3088   __ bind(notFinal);
3089 
3090   // get receiver klass
3091   __ null_check(recv, oopDesc::klass_offset_in_bytes());
3092   __ load_klass(rax, recv);
3093 
3094   // profile this call
3095   __ profile_virtual_call(rax, r14, rdx);
3096 
3097   // get target Method* & entry point
3098   __ lookup_virtual_method(rax, index, method);
3099   __ profile_arguments_type(rdx, method, r13, true);
3100   __ jump_from_interpreted(method, rdx);
3101 }
3102 
3103 
3104 void TemplateTable::invokevirtual(int byte_no) {
3105   transition(vtos, vtos);
3106   assert(byte_no == f2_byte, "use this argument");
3107   prepare_invoke(byte_no,
3108                  rbx,    // method or vtable index
3109                  noreg,  // unused itable index
3110                  rcx, rdx); // recv, flags
3111 
3112   // rbx: index
3113   // rcx: receiver
3114   // rdx: flags
3115 
3116   invokevirtual_helper(rbx, rcx, rdx);
3117 }
3118 
3119 
3120 void TemplateTable::invokespecial(int byte_no) {
3121   transition(vtos, vtos);
3122   assert(byte_no == f1_byte, "use this argument");
3123   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
3124                  rcx);  // get receiver also for null check
3125   __ verify_oop(rcx);
3126   __ null_check(rcx);
3127   // do the call
3128   __ profile_call(rax);
3129   __ profile_arguments_type(rax, rbx, r13, false);
3130   __ jump_from_interpreted(rbx, rax);
3131 }
3132 
3133 
3134 void TemplateTable::invokestatic(int byte_no) {
3135   transition(vtos, vtos);
3136   assert(byte_no == f1_byte, "use this argument");
3137   prepare_invoke(byte_no, rbx);  // get f1 Method*
3138   // do the call
3139   __ profile_call(rax);
3140   __ profile_arguments_type(rax, rbx, r13, false);
3141   __ jump_from_interpreted(rbx, rax);
3142 }
3143 
3144 void TemplateTable::fast_invokevfinal(int byte_no) {
3145   transition(vtos, vtos);
3146   assert(byte_no == f2_byte, "use this argument");
3147   __ stop("fast_invokevfinal not used on amd64");
3148 }
3149 
3150 void TemplateTable::invokeinterface(int byte_no) {
3151   transition(vtos, vtos);
3152   assert(byte_no == f1_byte, "use this argument");
3153   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 Method*
3154                  rcx, rdx); // recv, flags
3155 
3156   // rax: reference klass (from f1)
3157   // rbx: method (from f2)
3158   // rcx: receiver
3159   // rdx: flags
3160 
3161   // Special case of invokeinterface called for virtual method of
3162   // java.lang.Object.  See cpCacheOop.cpp for details.
3163   // This code isn't produced by javac, but could be produced by
3164   // another compliant java compiler.
3165   Label notMethod;
3166   __ movl(r14, rdx);
3167   __ andl(r14, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
3168   __ jcc(Assembler::zero, notMethod);
3169 
3170   invokevirtual_helper(rbx, rcx, rdx);
3171   __ bind(notMethod);
3172 
3173   // Get receiver klass into rdx - also a null check
3174   __ restore_locals();  // restore r14
3175   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
3176   __ load_klass(rdx, rcx);
3177 
3178   Label no_such_interface, no_such_method;
3179 
3180   // Receiver subtype check against REFC.
3181   // Superklass in rax. Subklass in rdx. Blows rcx, rdi.
3182   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3183                              rdx, rax, noreg,
3184                              // outputs: scan temp. reg, scan temp. reg
3185                              r13, r14,
3186                              no_such_interface,
3187                              /*return_method=*/false);
3188 
3189   // profile this call
3190   __ restore_bcp(); // rbcp was destroyed by receiver type check
3191   __ profile_virtual_call(rdx, r13, r14);
3192 
3193   // Get declaring interface class from method, and itable index
3194   __ movptr(rax, Address(rbx, Method::const_offset()));
3195   __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
3196   __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
3197   __ movl(rbx, Address(rbx, Method::itable_index_offset()));
3198   __ subl(rbx, Method::itable_index_max);
3199   __ negl(rbx);
3200 
3201   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3202                              rdx, rax, rbx,
3203                              // outputs: method, scan temp. reg
3204                              rbx, r13,
3205                              no_such_interface);
3206 
3207   // rbx: Method* to call
3208   // rcx: receiver
3209   // Check for abstract method error
3210   // Note: This should be done more efficiently via a throw_abstract_method_error
3211   //       interpreter entry point and a conditional jump to it in case of a null
3212   //       method.
3213   __ testptr(rbx, rbx);
3214   __ jcc(Assembler::zero, no_such_method);
3215 
3216   __ profile_arguments_type(rdx, rbx, r13, true);
3217 
3218   // do the call
3219   // rcx: receiver
3220   // rbx,: Method*
3221   __ jump_from_interpreted(rbx, rdx);
3222   __ should_not_reach_here();
3223 
3224   // exception handling code follows...
3225   // note: must restore interpreter registers to canonical
3226   //       state for exception handling to work correctly!
3227 
3228   __ bind(no_such_method);
3229   // throw exception
3230   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3231   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3232   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3233   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3234   // the call_VM checks for exception, so we should never return here.
3235   __ should_not_reach_here();
3236 
3237   __ bind(no_such_interface);
3238   // throw exception
3239   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3240   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3241   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3242   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3243                    InterpreterRuntime::throw_IncompatibleClassChangeError));
3244   // the call_VM checks for exception, so we should never return here.
3245   __ should_not_reach_here();
3246 }
3247 
3248 
3249 void TemplateTable::invokehandle(int byte_no) {
3250   transition(vtos, vtos);
3251   assert(byte_no == f1_byte, "use this argument");
3252   const Register rbx_method = rbx;
3253   const Register rax_mtype  = rax;
3254   const Register rcx_recv   = rcx;
3255   const Register rdx_flags  = rdx;
3256 
3257   if (!EnableInvokeDynamic) {
3258     // rewriter does not generate this bytecode
3259     __ should_not_reach_here();
3260     return;
3261   }
3262 
3263   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
3264   __ verify_method_ptr(rbx_method);
3265   __ verify_oop(rcx_recv);
3266   __ null_check(rcx_recv);
3267 
3268   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
3269   // rbx: MH.invokeExact_MT method (from f2)
3270 
3271   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
3272 
3273   // FIXME: profile the LambdaForm also
3274   __ profile_final_call(rax);
3275   __ profile_arguments_type(rdx, rbx_method, r13, true);
3276 
3277   __ jump_from_interpreted(rbx_method, rdx);
3278 }
3279 
3280 
3281 void TemplateTable::invokedynamic(int byte_no) {
3282   transition(vtos, vtos);
3283   assert(byte_no == f1_byte, "use this argument");
3284 
3285   if (!EnableInvokeDynamic) {
3286     // We should not encounter this bytecode if !EnableInvokeDynamic.
3287     // The verifier will stop it.  However, if we get past the verifier,
3288     // this will stop the thread in a reasonable way, without crashing the JVM.
3289     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3290                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3291     // the call_VM checks for exception, so we should never return here.
3292     __ should_not_reach_here();
3293     return;
3294   }
3295 
3296   const Register rbx_method   = rbx;
3297   const Register rax_callsite = rax;
3298 
3299   prepare_invoke(byte_no, rbx_method, rax_callsite);
3300 
3301   // rax: CallSite object (from cpool->resolved_references[f1])
3302   // rbx: MH.linkToCallSite method (from f2)
3303 
3304   // Note:  rax_callsite is already pushed by prepare_invoke
3305 
3306   // %%% should make a type profile for any invokedynamic that takes a ref argument
3307   // profile this call
3308   __ profile_call(r13);
3309   __ profile_arguments_type(rdx, rbx_method, r13, false);
3310 
3311   __ verify_oop(rax_callsite);
3312 
3313   __ jump_from_interpreted(rbx_method, rdx);
3314 }
3315 
3316 
3317 //-----------------------------------------------------------------------------
3318 // Allocation
3319 
3320 void TemplateTable::_new() {
3321   transition(vtos, atos);
3322   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3323   Label slow_case;
3324   Label done;
3325   Label initialize_header;
3326   Label initialize_object; // including clearing the fields
3327   Label allocate_shared;
3328 
3329   __ get_cpool_and_tags(rsi, rax);
3330   // Make sure the class we're about to instantiate has been resolved.
3331   // This is done before loading InstanceKlass to be consistent with the order
3332   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3333   const int tags_offset = Array<u1>::base_offset_in_bytes();
3334   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
3335           JVM_CONSTANT_Class);
3336   __ jcc(Assembler::notEqual, slow_case);
3337 
3338   // get InstanceKlass
3339   __ movptr(rsi, Address(rsi, rdx,
3340             Address::times_8, sizeof(ConstantPool)));
3341 
3342   // make sure klass is initialized & doesn't have finalizer
3343   // make sure klass is fully initialized
3344   __ cmpb(Address(rsi,
3345                   InstanceKlass::init_state_offset()),
3346           InstanceKlass::fully_initialized);
3347   __ jcc(Assembler::notEqual, slow_case);
3348 
3349   // get instance_size in InstanceKlass (scaled to a count of bytes)
3350   __ movl(rdx,
3351           Address(rsi,
3352                   Klass::layout_helper_offset()));
3353   // test to see if it has a finalizer or is malformed in some way
3354   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3355   __ jcc(Assembler::notZero, slow_case);
3356 
3357   // Allocate the instance
3358   // 1) Try to allocate in the TLAB
3359   // 2) if fail and the object is large allocate in the shared Eden
3360   // 3) if the above fails (or is not applicable), go to a slow case
3361   // (creates a new TLAB, etc.)
3362 
3363   const bool allow_shared_alloc =
3364     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3365 
3366   if (UseTLAB) {
3367     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
3368     __ lea(rbx, Address(rax, rdx, Address::times_1));
3369     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
3370     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3371     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3372     if (ZeroTLAB) {
3373       // the fields have been already cleared
3374       __ jmp(initialize_header);
3375     } else {
3376       // initialize both the header and fields
3377       __ jmp(initialize_object);
3378     }
3379   }
3380 
3381   // Allocation in the shared Eden, if allowed.
3382   //
3383   // rdx: instance size in bytes
3384   if (allow_shared_alloc) {
3385     __ bind(allocate_shared);
3386 
3387     ExternalAddress top((address)Universe::heap()->top_addr());
3388     ExternalAddress end((address)Universe::heap()->end_addr());
3389 
3390     const Register RtopAddr = rscratch1;
3391     const Register RendAddr = rscratch2;
3392 
3393     __ lea(RtopAddr, top);
3394     __ lea(RendAddr, end);
3395     __ movptr(rax, Address(RtopAddr, 0));
3396 
3397     // For retries rax gets set by cmpxchgq
3398     Label retry;
3399     __ bind(retry);
3400     __ lea(rbx, Address(rax, rdx, Address::times_1));
3401     __ cmpptr(rbx, Address(RendAddr, 0));
3402     __ jcc(Assembler::above, slow_case);
3403 
3404     // Compare rax with the top addr, and if still equal, store the new
3405     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
3406     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3407     //
3408     // rax: object begin
3409     // rbx: object end
3410     // rdx: instance size in bytes
3411     if (os::is_MP()) {
3412       __ lock();
3413     }
3414     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
3415 
3416     // if someone beat us on the allocation, try again, otherwise continue
3417     __ jcc(Assembler::notEqual, retry);
3418 
3419     __ incr_allocated_bytes(r15_thread, rdx, 0);
3420   }
3421 
3422   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3423     // The object is initialized before the header.  If the object size is
3424     // zero, go directly to the header initialization.
3425     __ bind(initialize_object);
3426     __ decrementl(rdx, sizeof(oopDesc));
3427     __ jcc(Assembler::zero, initialize_header);
3428 
3429     // Initialize object fields
3430     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3431     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
3432     {
3433       Label loop;
3434       __ bind(loop);
3435       __ movq(Address(rax, rdx, Address::times_8,
3436                       sizeof(oopDesc) - oopSize),
3437               rcx);
3438       __ decrementl(rdx);
3439       __ jcc(Assembler::notZero, loop);
3440     }
3441 
3442     // initialize object header only.
3443     __ bind(initialize_header);
3444     if (UseBiasedLocking) {
3445       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset()));
3446       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
3447     } else {
3448       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
3449                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
3450     }
3451     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3452     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
3453     __ store_klass(rax, rsi);      // store klass last
3454 
3455     {
3456       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
3457       // Trigger dtrace event for fastpath
3458       __ push(atos); // save the return value
3459       __ call_VM_leaf(
3460            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3461       __ pop(atos); // restore the return value
3462 
3463     }
3464     __ jmp(done);
3465   }
3466 
3467 
3468   // slow case
3469   __ bind(slow_case);
3470   __ get_constant_pool(c_rarg1);
3471   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3472   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3473   __ verify_oop(rax);
3474 
3475   // continue
3476   __ bind(done);
3477 }
3478 
3479 void TemplateTable::newarray() {
3480   transition(itos, atos);
3481   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3482   __ movl(c_rarg2, rax);
3483   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3484           c_rarg1, c_rarg2);
3485 }
3486 
3487 void TemplateTable::anewarray() {
3488   transition(itos, atos);
3489   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3490   __ get_constant_pool(c_rarg1);
3491   __ movl(c_rarg3, rax);
3492   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3493           c_rarg1, c_rarg2, c_rarg3);
3494 }
3495 
3496 void TemplateTable::arraylength() {
3497   transition(atos, itos);
3498   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
3499   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3500 }
3501 
3502 void TemplateTable::checkcast() {
3503   transition(atos, atos);
3504   Label done, is_null, ok_is_subtype, quicked, resolved;
3505   __ testptr(rax, rax); // object is in rax
3506   __ jcc(Assembler::zero, is_null);
3507 
3508   // Get cpool & tags index
3509   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3510   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3511   // See if bytecode has already been quicked
3512   __ cmpb(Address(rdx, rbx,
3513                   Address::times_1,
3514                   Array<u1>::base_offset_in_bytes()),
3515           JVM_CONSTANT_Class);
3516   __ jcc(Assembler::equal, quicked);
3517   __ push(atos); // save receiver for result, and for GC
3518   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3519   // vm_result_2 has metadata result
3520   __ get_vm_result_2(rax, r15_thread);
3521   __ pop_ptr(rdx); // restore receiver
3522   __ jmpb(resolved);
3523 
3524   // Get superklass in rax and subklass in rbx
3525   __ bind(quicked);
3526   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
3527   __ movptr(rax, Address(rcx, rbx,
3528                        Address::times_8, sizeof(ConstantPool)));
3529 
3530   __ bind(resolved);
3531   __ load_klass(rbx, rdx);
3532 
3533   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
3534   // Superklass in rax.  Subklass in rbx.
3535   __ gen_subtype_check(rbx, ok_is_subtype);
3536 
3537   // Come here on failure
3538   __ push_ptr(rdx);
3539   // object is at TOS
3540   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
3541 
3542   // Come here on success
3543   __ bind(ok_is_subtype);
3544   __ mov(rax, rdx); // Restore object in rdx
3545 
3546   // Collect counts on whether this check-cast sees NULLs a lot or not.
3547   if (ProfileInterpreter) {
3548     __ jmp(done);
3549     __ bind(is_null);
3550     __ profile_null_seen(rcx);
3551   } else {
3552     __ bind(is_null);   // same as 'done'
3553   }
3554   __ bind(done);
3555 }
3556 
3557 void TemplateTable::instanceof() {
3558   transition(atos, itos);
3559   Label done, is_null, ok_is_subtype, quicked, resolved;
3560   __ testptr(rax, rax);
3561   __ jcc(Assembler::zero, is_null);
3562 
3563   // Get cpool & tags index
3564   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3565   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3566   // See if bytecode has already been quicked
3567   __ cmpb(Address(rdx, rbx,
3568                   Address::times_1,
3569                   Array<u1>::base_offset_in_bytes()),
3570           JVM_CONSTANT_Class);
3571   __ jcc(Assembler::equal, quicked);
3572 
3573   __ push(atos); // save receiver for result, and for GC
3574   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3575   // vm_result_2 has metadata result
3576   __ get_vm_result_2(rax, r15_thread);
3577   __ pop_ptr(rdx); // restore receiver
3578   __ verify_oop(rdx);
3579   __ load_klass(rdx, rdx);
3580   __ jmpb(resolved);
3581 
3582   // Get superklass in rax and subklass in rdx
3583   __ bind(quicked);
3584   __ load_klass(rdx, rax);
3585   __ movptr(rax, Address(rcx, rbx,
3586                          Address::times_8, sizeof(ConstantPool)));
3587 
3588   __ bind(resolved);
3589 
3590   // Generate subtype check.  Blows rcx, rdi
3591   // Superklass in rax.  Subklass in rdx.
3592   __ gen_subtype_check(rdx, ok_is_subtype);
3593 
3594   // Come here on failure
3595   __ xorl(rax, rax);
3596   __ jmpb(done);
3597   // Come here on success
3598   __ bind(ok_is_subtype);
3599   __ movl(rax, 1);
3600 
3601   // Collect counts on whether this test sees NULLs a lot or not.
3602   if (ProfileInterpreter) {
3603     __ jmp(done);
3604     __ bind(is_null);
3605     __ profile_null_seen(rcx);
3606   } else {
3607     __ bind(is_null);   // same as 'done'
3608   }
3609   __ bind(done);
3610   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
3611   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
3612 }
3613 
3614 //-----------------------------------------------------------------------------
3615 // Breakpoints
3616 void TemplateTable::_breakpoint() {
3617   // Note: We get here even if we are single stepping..
3618   // jbug inists on setting breakpoints at every bytecode
3619   // even if we are in single step mode.
3620 
3621   transition(vtos, vtos);
3622 
3623   // get the unpatched byte code
3624   __ get_method(c_rarg1);
3625   __ call_VM(noreg,
3626              CAST_FROM_FN_PTR(address,
3627                               InterpreterRuntime::get_original_bytecode_at),
3628              c_rarg1, r13);
3629   __ mov(rbx, rax);
3630 
3631   // post the breakpoint event
3632   __ get_method(c_rarg1);
3633   __ call_VM(noreg,
3634              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3635              c_rarg1, r13);
3636 
3637   // complete the execution of original bytecode
3638   __ dispatch_only_normal(vtos);
3639 }
3640 
3641 //-----------------------------------------------------------------------------
3642 // Exceptions
3643 
3644 void TemplateTable::athrow() {
3645   transition(atos, vtos);
3646   __ null_check(rax);
3647   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
3648 }
3649 
3650 //-----------------------------------------------------------------------------
3651 // Synchronization
3652 //
3653 // Note: monitorenter & exit are symmetric routines; which is reflected
3654 //       in the assembly code structure as well
3655 //
3656 // Stack layout:
3657 //
3658 // [expressions  ] <--- rsp               = expression stack top
3659 // ..
3660 // [expressions  ]
3661 // [monitor entry] <--- monitor block top = expression stack bot
3662 // ..
3663 // [monitor entry]
3664 // [frame data   ] <--- monitor block bot
3665 // ...
3666 // [saved rbp    ] <--- rbp
3667 void TemplateTable::monitorenter() {
3668   transition(atos, vtos);
3669 
3670   // check for NULL object
3671   __ null_check(rax);
3672 
3673   const Address monitor_block_top(
3674         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3675   const Address monitor_block_bot(
3676         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3677   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3678 
3679   Label allocated;
3680 
3681   // initialize entry pointer
3682   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
3683 
3684   // find a free slot in the monitor block (result in c_rarg1)
3685   {
3686     Label entry, loop, exit;
3687     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
3688                                      // starting with top-most entry
3689     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3690                                      // of monitor block
3691     __ jmpb(entry);
3692 
3693     __ bind(loop);
3694     // check if current entry is used
3695     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
3696     // if not used then remember entry in c_rarg1
3697     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
3698     // check if current entry is for same object
3699     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
3700     // if same object then stop searching
3701     __ jccb(Assembler::equal, exit);
3702     // otherwise advance to next entry
3703     __ addptr(c_rarg3, entry_size);
3704     __ bind(entry);
3705     // check if bottom reached
3706     __ cmpptr(c_rarg3, c_rarg2);
3707     // if not at bottom then check this entry
3708     __ jcc(Assembler::notEqual, loop);
3709     __ bind(exit);
3710   }
3711 
3712   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
3713   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
3714 
3715   // allocate one if there's no free slot
3716   {
3717     Label entry, loop;
3718     // 1. compute new pointers             // rsp: old expression stack top
3719     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
3720     __ subptr(rsp, entry_size);            // move expression stack top
3721     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
3722     __ mov(c_rarg3, rsp);                  // set start value for copy loop
3723     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
3724     __ jmp(entry);
3725     // 2. move expression stack contents
3726     __ bind(loop);
3727     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
3728                                                       // word from old location
3729     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
3730     __ addptr(c_rarg3, wordSize);                     // advance to next word
3731     __ bind(entry);
3732     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
3733     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
3734                                             // copy next word
3735   }
3736 
3737   // call run-time routine
3738   // c_rarg1: points to monitor entry
3739   __ bind(allocated);
3740 
3741   // Increment bcp to point to the next bytecode, so exception
3742   // handling for async. exceptions work correctly.
3743   // The object has already been poped from the stack, so the
3744   // expression stack looks correct.
3745   __ increment(r13);
3746 
3747   // store object
3748   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
3749   __ lock_object(c_rarg1);
3750 
3751   // check to make sure this monitor doesn't cause stack overflow after locking
3752   __ save_bcp();  // in case of exception
3753   __ generate_stack_overflow_check(0);
3754 
3755   // The bcp has already been incremented. Just need to dispatch to
3756   // next instruction.
3757   __ dispatch_next(vtos);
3758 }
3759 
3760 
3761 void TemplateTable::monitorexit() {
3762   transition(atos, vtos);
3763 
3764   // check for NULL object
3765   __ null_check(rax);
3766 
3767   const Address monitor_block_top(
3768         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3769   const Address monitor_block_bot(
3770         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3771   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3772 
3773   Label found;
3774 
3775   // find matching slot
3776   {
3777     Label entry, loop;
3778     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
3779                                      // starting with top-most entry
3780     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3781                                      // of monitor block
3782     __ jmpb(entry);
3783 
3784     __ bind(loop);
3785     // check if current entry is for same object
3786     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
3787     // if same object then stop searching
3788     __ jcc(Assembler::equal, found);
3789     // otherwise advance to next entry
3790     __ addptr(c_rarg1, entry_size);
3791     __ bind(entry);
3792     // check if bottom reached
3793     __ cmpptr(c_rarg1, c_rarg2);
3794     // if not at bottom then check this entry
3795     __ jcc(Assembler::notEqual, loop);
3796   }
3797 
3798   // error handling. Unlocking was not block-structured
3799   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3800                    InterpreterRuntime::throw_illegal_monitor_state_exception));
3801   __ should_not_reach_here();
3802 
3803   // call run-time routine
3804   // rsi: points to monitor entry
3805   __ bind(found);
3806   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
3807   __ unlock_object(c_rarg1);
3808   __ pop_ptr(rax); // discard object
3809 }
3810 
3811 
3812 // Wide instructions
3813 void TemplateTable::wide() {
3814   transition(vtos, vtos);
3815   __ load_unsigned_byte(rbx, at_bcp(1));
3816   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
3817   __ jmp(Address(rscratch1, rbx, Address::times_8));
3818   // Note: the r13 increment step is part of the individual wide
3819   // bytecode implementations
3820 }
3821 
3822 
3823 // Multi arrays
3824 void TemplateTable::multianewarray() {
3825   transition(vtos, atos);
3826   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
3827   // last dim is on top of stack; we want address of first one:
3828   // first_addr = last_addr + (ndims - 1) * wordSize
3829   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
3830   call_VM(rax,
3831           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
3832           c_rarg1);
3833   __ load_unsigned_byte(rbx, at_bcp(3));
3834   __ lea(rsp, Address(rsp, rbx, Address::times_8));
3835 }
3836 #endif // !CC_INTERP