/* * Copyright (c) 2013, Red Hat Inc. * Copyright (c) 2005, 2010, Oracle and/or its affiliates. * All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_FpuStackSim.hpp" #include "c1/c1_FrameMap.hpp" #include "utilities/array.hpp" #include "utilities/ostream.hpp" //-------------------------------------------------------- // FpuStackSim //-------------------------------------------------------- // This class maps the FPU registers to their stack locations; it computes // the offsets between individual registers and simulates the FPU stack. const int EMPTY = -1; int FpuStackSim::regs_at(int i) const { assert(i >= 0 && i < FrameMap::nof_fpu_regs, "out of bounds"); return _regs[i]; } void FpuStackSim::set_regs_at(int i, int val) { assert(i >= 0 && i < FrameMap::nof_fpu_regs, "out of bounds"); _regs[i] = val; } void FpuStackSim::dec_stack_size() { _stack_size--; assert(_stack_size >= 0, "FPU stack underflow"); } void FpuStackSim::inc_stack_size() { _stack_size++; assert(_stack_size <= FrameMap::nof_fpu_regs, "FPU stack overflow"); } FpuStackSim::FpuStackSim(Compilation* compilation) : _compilation(compilation) { _stack_size = 0; for (int i = 0; i < FrameMap::nof_fpu_regs; i++) { set_regs_at(i, EMPTY); } } void FpuStackSim::pop() { if (TraceFPUStack) { tty->print("FPU-pop "); print(); tty->cr(); } set_regs_at(tos_index(), EMPTY); dec_stack_size(); } void FpuStackSim::pop(int rnr) { if (TraceFPUStack) { tty->print("FPU-pop %d", rnr); print(); tty->cr(); } assert(regs_at(tos_index()) == rnr, "rnr is not on TOS"); set_regs_at(tos_index(), EMPTY); dec_stack_size(); } void FpuStackSim::push(int rnr) { if (TraceFPUStack) { tty->print("FPU-push %d", rnr); print(); tty->cr(); } assert(regs_at(stack_size()) == EMPTY, "should be empty"); set_regs_at(stack_size(), rnr); inc_stack_size(); } void FpuStackSim::swap(int offset) { if (TraceFPUStack) { tty->print("FPU-swap %d", offset); print(); tty->cr(); } int t = regs_at(tos_index() - offset); set_regs_at(tos_index() - offset, regs_at(tos_index())); set_regs_at(tos_index(), t); } int FpuStackSim::offset_from_tos(int rnr) const { for (int i = tos_index(); i >= 0; i--) { if (regs_at(i) == rnr) { return tos_index() - i; } } assert(false, "FpuStackSim: register not found"); BAILOUT_("FpuStackSim: register not found", 0); } int FpuStackSim::get_slot(int tos_offset) const { return regs_at(tos_index() - tos_offset); } void FpuStackSim::set_slot(int tos_offset, int rnr) { set_regs_at(tos_index() - tos_offset, rnr); } void FpuStackSim::rename(int old_rnr, int new_rnr) { if (TraceFPUStack) { tty->print("FPU-rename %d %d", old_rnr, new_rnr); print(); tty->cr(); } if (old_rnr == new_rnr) return; bool found = false; for (int i = 0; i < stack_size(); i++) { assert(regs_at(i) != new_rnr, "should not see old occurrences of new_rnr on the stack"); if (regs_at(i) == old_rnr) { set_regs_at(i, new_rnr); found = true; } } assert(found, "should have found at least one instance of old_rnr"); } bool FpuStackSim::contains(int rnr) { for (int i = 0; i < stack_size(); i++) { if (regs_at(i) == rnr) { return true; } } return false; } bool FpuStackSim::is_empty() { #ifdef ASSERT if (stack_size() == 0) { for (int i = 0; i < FrameMap::nof_fpu_regs; i++) { assert(regs_at(i) == EMPTY, "must be empty"); } } #endif return stack_size() == 0; } bool FpuStackSim::slot_is_empty(int tos_offset) { return (regs_at(tos_index() - tos_offset) == EMPTY); } void FpuStackSim::clear() { if (TraceFPUStack) { tty->print("FPU-clear"); print(); tty->cr(); } for (int i = tos_index(); i >= 0; i--) { set_regs_at(i, EMPTY); } _stack_size = 0; } intArray* FpuStackSim::write_state() { intArray* res = new intArray(1 + FrameMap::nof_fpu_regs); (*res)[0] = stack_size(); for (int i = 0; i < FrameMap::nof_fpu_regs; i++) { (*res)[1 + i] = regs_at(i); } return res; } void FpuStackSim::read_state(intArray* fpu_stack_state) { _stack_size = (*fpu_stack_state)[0]; for (int i = 0; i < FrameMap::nof_fpu_regs; i++) { set_regs_at(i, (*fpu_stack_state)[1 + i]); } } #ifndef PRODUCT void FpuStackSim::print() { tty->print(" N=%d[", stack_size());\ for (int i = 0; i < stack_size(); i++) { int reg = regs_at(i); if (reg != EMPTY) { tty->print("%d", reg); } else { tty->print("_"); } }; tty->print(" ]"); } #endif