/* * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013, Red Hat Inc. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.hpp" #include "interpreter/bytecodeHistogram.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterGenerator.hpp" #include "interpreter/interpreterRuntime.hpp" #include "interpreter/templateTable.hpp" #include "interpreter/bytecodeTracer.hpp" #include "oops/arrayOop.hpp" #include "oops/methodData.hpp" #include "oops/method.hpp" #include "oops/oop.inline.hpp" #include "prims/jvmtiExport.hpp" #include "prims/jvmtiThreadState.hpp" #include "runtime/arguments.hpp" #include "runtime/deoptimization.hpp" #include "runtime/frame.inline.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/synchronizer.hpp" #include "runtime/timer.hpp" #include "runtime/vframeArray.hpp" #include "utilities/debug.hpp" #include #ifndef PRODUCT #include "oops/method.hpp" #endif // !PRODUCT #define __ _masm-> #ifndef CC_INTERP //----------------------------------------------------------------------------- extern "C" void entry(CodeBuffer*); //----------------------------------------------------------------------------- address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { address entry = __ pc(); #ifdef ASSERT { Label L; __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize)); __ mov(rscratch2, sp); __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack // grows negative) __ br(Assembler::HS, L); // check if frame is complete __ stop ("interpreter frame not set up"); __ bind(L); } #endif // ASSERT // Restore bcp under the assumption that the current frame is still // interpreted __ restore_bcp(); // expression stack must be empty before entering the VM if an // exception happened __ empty_expression_stack(); // throw exception __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError)); return entry; } address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler( const char* name) { address entry = __ pc(); // expression stack must be empty before entering the VM if an // exception happened __ empty_expression_stack(); // setup parameters // ??? convention: expect aberrant index in register r1 __ movw(c_rarg2, r1); __ mov(c_rarg1, (address)name); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime:: throw_ArrayIndexOutOfBoundsException), c_rarg1, c_rarg2); return entry; } address TemplateInterpreterGenerator::generate_ClassCastException_handler() { address entry = __ pc(); // object is at TOS __ pop(c_rarg1); // expression stack must be empty before entering the VM if an // exception happened __ empty_expression_stack(); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime:: throw_ClassCastException), c_rarg1); return entry; } address TemplateInterpreterGenerator::generate_exception_handler_common( const char* name, const char* message, bool pass_oop) { assert(!pass_oop || message == NULL, "either oop or message but not both"); address entry = __ pc(); if (pass_oop) { // object is at TOS __ pop(c_rarg2); } // expression stack must be empty before entering the VM if an // exception happened __ empty_expression_stack(); // setup parameters __ lea(c_rarg1, Address((address)name)); if (pass_oop) { __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime:: create_klass_exception), c_rarg1, c_rarg2); } else { // kind of lame ExternalAddress can't take NULL because // external_word_Relocation will assert. if (message != NULL) { __ lea(c_rarg2, Address((address)message)); } else { __ mov(c_rarg2, NULL_WORD); } __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), c_rarg1, c_rarg2); } // throw exception __ b(address(Interpreter::throw_exception_entry())); return entry; } address TemplateInterpreterGenerator::generate_continuation_for(TosState state) { address entry = __ pc(); // NULL last_sp until next java call __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); __ dispatch_next(state); return entry; } address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { address entry = __ pc(); // Restore stack bottom in case i2c adjusted stack __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); // and NULL it as marker that esp is now tos until next java call __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); __ restore_bcp(); __ restore_locals(); __ restore_constant_pool_cache(); __ get_method(rmethod); // Pop N words from the stack __ get_cache_and_index_at_bcp(r1, r2, 1, index_size); __ ldr(r1, Address(r1, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset())); __ andr(r1, r1, ConstantPoolCacheEntry::parameter_size_mask); __ add(esp, esp, r1, Assembler::LSL, 3); // Restore machine SP __ ldr(rscratch1, Address(rmethod, Method::const_offset())); __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2); __ ldr(rscratch2, Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize)); __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3); __ andr(sp, rscratch1, -16); __ get_dispatch(); __ dispatch_next(state, step); return entry; } address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) { address entry = __ pc(); __ restore_bcp(); __ restore_locals(); __ restore_constant_pool_cache(); __ get_method(rmethod); __ get_dispatch(); // Calculate stack limit __ ldr(rscratch1, Address(rmethod, Method::const_offset())); __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + (EnableInvokeDynamic ? 2 : 0)); __ ldr(rscratch2, Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize)); __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3); __ andr(sp, rscratch1, -16); // Restore expression stack pointer __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); // NULL last_sp until next java call __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); // handle exceptions { Label L; __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); __ cbz(rscratch1, L); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception)); __ should_not_reach_here(); __ bind(L); } __ dispatch_next(state, step); return entry; } int AbstractInterpreter::BasicType_as_index(BasicType type) { int i = 0; switch (type) { case T_BOOLEAN: i = 0; break; case T_CHAR : i = 1; break; case T_BYTE : i = 2; break; case T_SHORT : i = 3; break; case T_INT : i = 4; break; case T_LONG : i = 5; break; case T_VOID : i = 6; break; case T_FLOAT : i = 7; break; case T_DOUBLE : i = 8; break; case T_OBJECT : i = 9; break; case T_ARRAY : i = 9; break; default : ShouldNotReachHere(); } assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds"); return i; } address TemplateInterpreterGenerator::generate_result_handler_for( BasicType type) { address entry = __ pc(); switch (type) { case T_BOOLEAN: __ c2bool(r0); break; case T_CHAR : __ uxth(r0, r0); break; case T_BYTE : __ sxtb(r0, r0); break; case T_SHORT : __ sxth(r0, r0); break; case T_INT : __ uxtw(r0, r0); break; // FIXME: We almost certainly don't need this case T_LONG : /* nothing to do */ break; case T_VOID : /* nothing to do */ break; case T_FLOAT : /* nothing to do */ break; case T_DOUBLE : /* nothing to do */ break; case T_OBJECT : // retrieve result from frame __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); // and verify it __ verify_oop(r0); break; default : ShouldNotReachHere(); } __ ret(lr); // return from result handler return entry; } address TemplateInterpreterGenerator::generate_safept_entry_for( TosState state, address runtime_entry) { address entry = __ pc(); __ push(state); __ call_VM(noreg, runtime_entry); __ membar(Assembler::AnyAny); __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos)); return entry; } // Helpers for commoning out cases in the various type of method entries. // // increment invocation count & check for overflow // // Note: checking for negative value instead of overflow // so we have a 'sticky' overflow test // // rmethod: method // void InterpreterGenerator::generate_counter_incr( Label* overflow, Label* profile_method, Label* profile_method_continue) { Label done; // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not. if (TieredCompilation) { int increment = InvocationCounter::count_increment; int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift; Label no_mdo; if (ProfileInterpreter) { // Are we profiling? __ ldr(r0, Address(rmethod, Method::method_data_offset())); __ cbz(r0, no_mdo); // Increment counter in the MDO const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset())); __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow); __ b(done); } __ bind(no_mdo); // Increment counter in MethodCounters const Address invocation_counter(rscratch2, MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); __ get_method_counters(rmethod, rscratch2, done); __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow); __ bind(done); } else { const Address backedge_counter(rscratch2, MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); const Address invocation_counter(rscratch2, MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); __ get_method_counters(rmethod, rscratch2, done); if (ProfileInterpreter) { // %%% Merge this into MethodData* __ ldrw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset())); __ addw(r1, r1, 1); __ strw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset())); } // Update standard invocation counters __ ldrw(r1, invocation_counter); __ ldrw(r0, backedge_counter); __ addw(r1, r1, InvocationCounter::count_increment); __ andw(r0, r0, InvocationCounter::count_mask_value); __ strw(r1, invocation_counter); __ addw(r0, r0, r1); // add both counters // profile_method is non-null only for interpreted method so // profile_method != NULL == !native_call if (ProfileInterpreter && profile_method != NULL) { // Test to see if we should create a method data oop unsigned long offset; __ adrp(rscratch2, ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit), offset); __ ldrw(rscratch2, Address(rscratch2, offset)); __ cmp(r0, rscratch2); __ br(Assembler::LT, *profile_method_continue); // if no method data exists, go to profile_method __ test_method_data_pointer(rscratch2, *profile_method); } { unsigned long offset; __ adrp(rscratch2, ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit), offset); __ ldrw(rscratch2, Address(rscratch2, offset)); __ cmpw(r0, rscratch2); __ br(Assembler::HS, *overflow); } __ bind(done); } } void InterpreterGenerator::generate_counter_overflow(Label* do_continue) { // Asm interpreter on entry // On return (i.e. jump to entry_point) [ back to invocation of interpreter ] // Everything as it was on entry // InterpreterRuntime::frequency_counter_overflow takes two // arguments, the first (thread) is passed by call_VM, the second // indicates if the counter overflow occurs at a backwards branch // (NULL bcp). We pass zero for it. The call returns the address // of the verified entry point for the method or NULL if the // compilation did not complete (either went background or bailed // out). __ mov(c_rarg1, 0); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), c_rarg1); __ b(*do_continue); } // See if we've got enough room on the stack for locals plus overhead. // The expression stack grows down incrementally, so the normal guard // page mechanism will work for that. // // NOTE: Since the additional locals are also always pushed (wasn't // obvious in generate_method_entry) so the guard should work for them // too. // // Args: // r3: number of additional locals this frame needs (what we must check) // rmethod: Method* // // Kills: // r0 void InterpreterGenerator::generate_stack_overflow_check(void) { // monitor entry size: see picture of stack set // (generate_method_entry) and frame_amd64.hpp const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; // total overhead size: entry_size + (saved rbp through expr stack // bottom). be sure to change this if you add/subtract anything // to/from the overhead area const int overhead_size = -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size; const int page_size = os::vm_page_size(); Label after_frame_check; // see if the frame is greater than one page in size. If so, // then we need to verify there is enough stack space remaining // for the additional locals. // // Note that we use SUBS rather than CMP here because the immediate // field of this instruction may overflow. SUBS can cope with this // because it is a macro that will expand to some number of MOV // instructions and a register operation. __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize); __ br(Assembler::LS, after_frame_check); // compute rsp as if this were going to be the last frame on // the stack before the red zone const Address stack_base(rthread, Thread::stack_base_offset()); const Address stack_size(rthread, Thread::stack_size_offset()); // locals + overhead, in bytes __ mov(r0, overhead_size); __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize); // 2 slots per parameter. __ ldr(rscratch1, stack_base); __ ldr(rscratch2, stack_size); #ifdef ASSERT Label stack_base_okay, stack_size_okay; // verify that thread stack base is non-zero __ cbnz(rscratch1, stack_base_okay); __ stop("stack base is zero"); __ bind(stack_base_okay); // verify that thread stack size is non-zero __ cbnz(rscratch2, stack_size_okay); __ stop("stack size is zero"); __ bind(stack_size_okay); #endif // Add stack base to locals and subtract stack size __ sub(rscratch1, rscratch1, rscratch2); // Stack limit __ add(r0, r0, rscratch1); // Use the maximum number of pages we might bang. const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages : (StackRedPages+StackYellowPages); // add in the red and yellow zone sizes __ add(r0, r0, max_pages * page_size * 2); // check against the current stack bottom __ cmp(sp, r0); __ br(Assembler::HI, after_frame_check); // Remove the incoming args, peeling the machine SP back to where it // was in the caller. This is not strictly necessary, but unless we // do so the stack frame may have a garbage FP; this ensures a // correct call stack that we can always unwind. The ANDR should be // unnecessary because the sender SP in r13 is always aligned, but // it doesn't hurt. __ andr(sp, r13, -16); // Note: the restored frame is not necessarily interpreted. // Use the shared runtime version of the StackOverflowError. assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated"); __ far_jump(RuntimeAddress(StubRoutines::throw_StackOverflowError_entry())); // all done with frame size check __ bind(after_frame_check); } // Allocate monitor and lock method (asm interpreter) // // Args: // rmethod: Method* // rlocals: locals // // Kills: // r0 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs) // rscratch1, rscratch2 (scratch regs) void InterpreterGenerator::lock_method(void) { // synchronize method const Address access_flags(rmethod, Method::access_flags_offset()); const Address monitor_block_top( rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; #ifdef ASSERT { Label L; __ ldrw(r0, access_flags); __ tst(r0, JVM_ACC_SYNCHRONIZED); __ br(Assembler::NE, L); __ stop("method doesn't need synchronization"); __ bind(L); } #endif // ASSERT // get synchronization object { const int mirror_offset = in_bytes(Klass::java_mirror_offset()); Label done; __ ldrw(r0, access_flags); __ tst(r0, JVM_ACC_STATIC); // get receiver (assume this is frequent case) __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0))); __ br(Assembler::EQ, done); __ ldr(r0, Address(rmethod, Method::const_offset())); __ ldr(r0, Address(r0, ConstMethod::constants_offset())); __ ldr(r0, Address(r0, ConstantPool::pool_holder_offset_in_bytes())); __ ldr(r0, Address(r0, mirror_offset)); #ifdef ASSERT { Label L; __ cbnz(r0, L); __ stop("synchronization object is NULL"); __ bind(L); } #endif // ASSERT __ bind(done); } // add space for monitor & lock __ sub(sp, sp, entry_size); // add space for a monitor entry __ sub(esp, esp, entry_size); __ mov(rscratch1, esp); __ str(rscratch1, monitor_block_top); // set new monitor block top // store object __ str(r0, Address(esp, BasicObjectLock::obj_offset_in_bytes())); __ mov(c_rarg1, esp); // object address __ lock_object(c_rarg1); } // Generate a fixed interpreter frame. This is identical setup for // interpreted methods and for native methods hence the shared code. // // Args: // lr: return address // rmethod: Method* // rlocals: pointer to locals // rcpool: cp cache // stack_pointer: previous sp void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { // initialize fixed part of activation frame if (native_call) { __ sub(esp, sp, 12 * wordSize); __ mov(rbcp, zr); __ stp(esp, zr, Address(__ pre(sp, -12 * wordSize))); // add 2 zero-initialized slots for native calls __ stp(zr, zr, Address(sp, 10 * wordSize)); } else { __ sub(esp, sp, 10 * wordSize); __ ldr(rscratch1, Address(rmethod, Method::const_offset())); // get ConstMethod __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase __ stp(esp, rbcp, Address(__ pre(sp, -10 * wordSize))); } if (ProfileInterpreter) { Label method_data_continue; __ ldr(rscratch1, Address(rmethod, Method::method_data_offset())); __ cbz(rscratch1, method_data_continue); __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset()))); __ bind(method_data_continue); __ stp(rscratch1, rmethod, Address(sp, 4 * wordSize)); // save Method* and mdp (method data pointer) } else { __ stp(zr, rmethod, Address(sp, 4 * wordSize)); // save Method* (no mdp) } __ ldr(rcpool, Address(rmethod, Method::const_offset())); __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset())); __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset_in_bytes())); __ stp(rlocals, rcpool, Address(sp, 2 * wordSize)); __ stp(rfp, lr, Address(sp, 8 * wordSize)); __ lea(rfp, Address(sp, 8 * wordSize)); // set sender sp // leave last_sp as null __ stp(zr, r13, Address(sp, 6 * wordSize)); // Move SP out of the way if (! native_call) { __ ldr(rscratch1, Address(rmethod, Method::const_offset())); __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + (EnableInvokeDynamic ? 2 : 0)); __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3); __ andr(sp, rscratch1, -16); } } // End of helpers // Various method entries //------------------------------------------------------------------------------------------------------------------------ // // // Call an accessor method (assuming it is resolved, otherwise drop // into vanilla (slow path) entry address InterpreterGenerator::generate_accessor_entry(void) { return NULL; } // Method entry for java.lang.ref.Reference.get. address InterpreterGenerator::generate_Reference_get_entry(void) { #if INCLUDE_ALL_GCS // Code: _aload_0, _getfield, _areturn // parameter size = 1 // // The code that gets generated by this routine is split into 2 parts: // 1. The "intrinsified" code for G1 (or any SATB based GC), // 2. The slow path - which is an expansion of the regular method entry. // // Notes:- // * In the G1 code we do not check whether we need to block for // a safepoint. If G1 is enabled then we must execute the specialized // code for Reference.get (except when the Reference object is null) // so that we can log the value in the referent field with an SATB // update buffer. // If the code for the getfield template is modified so that the // G1 pre-barrier code is executed when the current method is // Reference.get() then going through the normal method entry // will be fine. // * The G1 code can, however, check the receiver object (the instance // of java.lang.Reference) and jump to the slow path if null. If the // Reference object is null then we obviously cannot fetch the referent // and so we don't need to call the G1 pre-barrier. Thus we can use the // regular method entry code to generate the NPE. // // This code is based on generate_accessor_entry. // // rmethod: Method* // r13: senderSP must preserve for slow path, set SP to it on fast path address entry = __ pc(); const int referent_offset = java_lang_ref_Reference::referent_offset; guarantee(referent_offset > 0, "referent offset not initialized"); if (UseG1GC) { Label slow_path; const Register local_0 = c_rarg0; // Check if local 0 != NULL // If the receiver is null then it is OK to jump to the slow path. __ ldr(local_0, Address(esp, 0)); __ cbz(local_0, slow_path); // Load the value of the referent field. const Address field_address(local_0, referent_offset); __ load_heap_oop(local_0, field_address); __ mov(r19, r13); // Move senderSP to a callee-saved register // Generate the G1 pre-barrier code to log the value of // the referent field in an SATB buffer. __ enter(); // g1_write may call runtime __ g1_write_barrier_pre(noreg /* obj */, local_0 /* pre_val */, rthread /* thread */, rscratch2 /* tmp */, true /* tosca_live */, true /* expand_call */); __ leave(); // areturn __ andr(sp, r19, -16); // done with stack __ ret(lr); // generate a vanilla interpreter entry as the slow path __ bind(slow_path); (void) generate_normal_entry(false); return entry; } #endif // INCLUDE_ALL_GCS // If G1 is not enabled then attempt to go through the accessor entry point // Reference.get is an accessor return generate_accessor_entry(); } /** * Method entry for static native methods: * int java.util.zip.CRC32.update(int crc, int b) */ address InterpreterGenerator::generate_CRC32_update_entry() { if (UseCRC32Intrinsics) { address entry = __ pc(); // rmethod: Method* // r13: senderSP must preserved for slow path // esp: args Label slow_path; // If we need a safepoint check, generate full interpreter entry. ExternalAddress state(SafepointSynchronize::address_of_state()); unsigned long offset; __ adrp(rscratch1, ExternalAddress(SafepointSynchronize::address_of_state()), offset); __ ldrw(rscratch1, Address(rscratch1, offset)); assert(SafepointSynchronize::_not_synchronized == 0, "rewrite this code"); __ cbnz(rscratch1, slow_path); // We don't generate local frame and don't align stack because // we call stub code and there is no safepoint on this path. // Load parameters const Register crc = c_rarg0; // crc const Register val = c_rarg1; // source java byte value const Register tbl = c_rarg2; // scratch // Arguments are reversed on java expression stack __ ldrw(val, Address(esp, 0)); // byte value __ ldrw(crc, Address(esp, wordSize)); // Initial CRC __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset); __ add(tbl, tbl, offset); __ ornw(crc, zr, crc); // ~crc __ update_byte_crc32(crc, val, tbl); __ ornw(crc, zr, crc); // ~crc // result in c_rarg0 __ andr(sp, r13, -16); __ ret(lr); // generate a vanilla native entry as the slow path __ bind(slow_path); (void) generate_native_entry(false); return entry; } return generate_native_entry(false); } /** * Method entry for static native methods: * int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len) * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) */ address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { if (UseCRC32Intrinsics) { address entry = __ pc(); // rmethod,: Method* // r13: senderSP must preserved for slow path Label slow_path; // If we need a safepoint check, generate full interpreter entry. ExternalAddress state(SafepointSynchronize::address_of_state()); unsigned long offset; __ adrp(rscratch1, ExternalAddress(SafepointSynchronize::address_of_state()), offset); __ ldrw(rscratch1, Address(rscratch1, offset)); assert(SafepointSynchronize::_not_synchronized == 0, "rewrite this code"); __ cbnz(rscratch1, slow_path); // We don't generate local frame and don't align stack because // we call stub code and there is no safepoint on this path. // Load parameters const Register crc = c_rarg0; // crc const Register buf = c_rarg1; // source java byte array address const Register len = c_rarg2; // length const Register off = len; // offset (never overlaps with 'len') // Arguments are reversed on java expression stack // Calculate address of start element if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { __ ldr(buf, Address(esp, 2*wordSize)); // long buf __ ldrw(off, Address(esp, wordSize)); // offset __ add(buf, buf, off); // + offset __ ldrw(crc, Address(esp, 4*wordSize)); // Initial CRC } else { __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size __ ldrw(off, Address(esp, wordSize)); // offset __ add(buf, buf, off); // + offset __ ldrw(crc, Address(esp, 3*wordSize)); // Initial CRC } // Can now load 'len' since we're finished with 'off' __ ldrw(len, Address(esp, 0x0)); // Length __ andr(sp, r13, -16); // Restore the caller's SP // We are frameless so we can just jump to the stub. __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32())); // generate a vanilla native entry as the slow path __ bind(slow_path); (void) generate_native_entry(false); return entry; } return generate_native_entry(false); } void InterpreterGenerator::bang_stack_shadow_pages(bool native_call) { // Bang each page in the shadow zone. We can't assume it's been done for // an interpreter frame with greater than a page of locals, so each page // needs to be checked. Only true for non-native. if (UseStackBanging) { const int start_page = native_call ? StackShadowPages : 1; const int page_size = os::vm_page_size(); for (int pages = start_page; pages <= StackShadowPages ; pages++) { __ sub(rscratch2, sp, pages*page_size); __ str(zr, Address(rscratch2)); } } } // Interpreter stub for calling a native method. (asm interpreter) // This sets up a somewhat different looking stack for calling the // native method than the typical interpreter frame setup. address InterpreterGenerator::generate_native_entry(bool synchronized) { // determine code generation flags bool inc_counter = UseCompiler || CountCompiledCalls; // r1: Method* // rscratch1: sender sp address entry_point = __ pc(); const Address constMethod (rmethod, Method::const_offset()); const Address access_flags (rmethod, Method::access_flags_offset()); const Address size_of_parameters(r2, ConstMethod:: size_of_parameters_offset()); // get parameter size (always needed) __ ldr(r2, constMethod); __ load_unsigned_short(r2, size_of_parameters); // native calls don't need the stack size check since they have no // expression stack and the arguments are already on the stack and // we only add a handful of words to the stack // rmethod: Method* // r2: size of parameters // rscratch1: sender sp // for natives the size of locals is zero // compute beginning of parameters (rlocals) __ add(rlocals, esp, r2, ext::uxtx, 3); __ add(rlocals, rlocals, -wordSize); // Pull SP back to minimum size: this avoids holes in the stack __ andr(sp, esp, -16); // initialize fixed part of activation frame generate_fixed_frame(true); // make sure method is native & not abstract #ifdef ASSERT __ ldrw(r0, access_flags); { Label L; __ tst(r0, JVM_ACC_NATIVE); __ br(Assembler::NE, L); __ stop("tried to execute non-native method as native"); __ bind(L); } { Label L; __ tst(r0, JVM_ACC_ABSTRACT); __ br(Assembler::EQ, L); __ stop("tried to execute abstract method in interpreter"); __ bind(L); } #endif // Since at this point in the method invocation the exception // handler would try to exit the monitor of synchronized methods // which hasn't been entered yet, we set the thread local variable // _do_not_unlock_if_synchronized to true. The remove_activation // will check this flag. const Address do_not_unlock_if_synchronized(rthread, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); __ mov(rscratch2, true); __ strb(rscratch2, do_not_unlock_if_synchronized); // increment invocation count & check for overflow Label invocation_counter_overflow; if (inc_counter) { generate_counter_incr(&invocation_counter_overflow, NULL, NULL); } Label continue_after_compile; __ bind(continue_after_compile); bang_stack_shadow_pages(true); // reset the _do_not_unlock_if_synchronized flag __ strb(zr, do_not_unlock_if_synchronized); // check for synchronized methods // Must happen AFTER invocation_counter check and stack overflow check, // so method is not locked if overflows. if (synchronized) { lock_method(); } else { // no synchronization necessary #ifdef ASSERT { Label L; __ ldrw(r0, access_flags); __ tst(r0, JVM_ACC_SYNCHRONIZED); __ br(Assembler::EQ, L); __ stop("method needs synchronization"); __ bind(L); } #endif } // start execution #ifdef ASSERT { Label L; const Address monitor_block_top(rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); __ ldr(rscratch1, monitor_block_top); __ cmp(esp, rscratch1); __ br(Assembler::EQ, L); __ stop("broken stack frame setup in interpreter"); __ bind(L); } #endif // jvmti support __ notify_method_entry(); // work registers const Register t = r17; const Register result_handler = r19; // allocate space for parameters __ ldr(t, Address(rmethod, Method::const_offset())); __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset())); __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize); __ andr(sp, rscratch1, -16); __ mov(esp, rscratch1); // get signature handler { Label L; __ ldr(t, Address(rmethod, Method::signature_handler_offset())); __ cbnz(t, L); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), rmethod); __ ldr(t, Address(rmethod, Method::signature_handler_offset())); __ bind(L); } // call signature handler assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals, "adjust this code"); assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp, "adjust this code"); assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1, "adjust this code"); // The generated handlers do not touch rmethod (the method). // However, large signatures cannot be cached and are generated // each time here. The slow-path generator can do a GC on return, // so we must reload it after the call. __ blr(t); __ get_method(rmethod); // slow path can do a GC, reload rmethod // result handler is in r0 // set result handler __ mov(result_handler, r0); // pass mirror handle if static call { Label L; const int mirror_offset = in_bytes(Klass::java_mirror_offset()); __ ldrw(t, Address(rmethod, Method::access_flags_offset())); __ tst(t, JVM_ACC_STATIC); __ br(Assembler::EQ, L); // get mirror __ ldr(t, Address(rmethod, Method::const_offset())); __ ldr(t, Address(t, ConstMethod::constants_offset())); __ ldr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes())); __ ldr(t, Address(t, mirror_offset)); // copy mirror into activation frame __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize)); // pass handle to mirror __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize); __ bind(L); } // get native function entry point in r10 { Label L; __ ldr(r10, Address(rmethod, Method::native_function_offset())); address unsatisfied = (SharedRuntime::native_method_throw_unsatisfied_link_error_entry()); __ mov(rscratch2, unsatisfied); __ ldr(rscratch2, rscratch2); __ cmp(r10, rscratch2); __ br(Assembler::NE, L); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), rmethod); __ get_method(rmethod); __ ldr(r10, Address(rmethod, Method::native_function_offset())); __ bind(L); } // pass JNIEnv __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset())); // Set the last Java PC in the frame anchor to be the return address from // the call to the native method: this will allow the debugger to // generate an accurate stack trace. Label native_return; __ set_last_Java_frame(esp, rfp, native_return, rscratch1); // change thread state #ifdef ASSERT { Label L; __ ldrw(t, Address(rthread, JavaThread::thread_state_offset())); __ cmp(t, _thread_in_Java); __ br(Assembler::EQ, L); __ stop("Wrong thread state in native stub"); __ bind(L); } #endif // Change state to native __ mov(rscratch1, _thread_in_native); __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); __ stlrw(rscratch1, rscratch2); // Call the native method. __ blr(r10); __ bind(native_return); __ maybe_isb(); __ get_method(rmethod); // result potentially in r0 or v0 // make room for the pushes we're about to do __ sub(rscratch1, esp, 4 * wordSize); __ andr(sp, rscratch1, -16); // NOTE: The order of these pushes is known to frame::interpreter_frame_result // in order to extract the result of a method call. If the order of these // pushes change or anything else is added to the stack then the code in // interpreter_frame_result must also change. __ push(dtos); __ push(ltos); // change thread state __ mov(rscratch1, _thread_in_native_trans); __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); __ stlrw(rscratch1, rscratch2); if (os::is_MP()) { if (UseMembar) { // Force this write out before the read below __ dsb(Assembler::SY); } else { // Write serialization page so VM thread can do a pseudo remote membar. // We use the current thread pointer to calculate a thread specific // offset to write to within the page. This minimizes bus traffic // due to cache line collision. __ serialize_memory(rthread, rscratch2); } } // check for safepoint operation in progress and/or pending suspend requests { Label Continue; { unsigned long offset; __ adrp(rscratch2, SafepointSynchronize::address_of_state(), offset); __ ldrw(rscratch2, Address(rscratch2, offset)); } assert(SafepointSynchronize::_not_synchronized == 0, "SafepointSynchronize::_not_synchronized"); Label L; __ cbnz(rscratch2, L); __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset())); __ cbz(rscratch2, Continue); __ bind(L); // Don't use call_VM as it will see a possible pending exception // and forward it and never return here preventing us from // clearing _last_native_pc down below. Also can't use // call_VM_leaf either as it will check to see if r13 & r14 are // preserved and correspond to the bcp/locals pointers. So we do a // runtime call by hand. // __ mov(c_rarg0, rthread); __ mov(rscratch2, CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)); __ blr(rscratch2); __ maybe_isb(); __ get_method(rmethod); __ reinit_heapbase(); __ bind(Continue); } // change thread state __ mov(rscratch1, _thread_in_Java); __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); __ stlrw(rscratch1, rscratch2); // reset_last_Java_frame __ reset_last_Java_frame(true); // reset handle block __ ldr(t, Address(rthread, JavaThread::active_handles_offset())); __ str(zr, Address(t, JNIHandleBlock::top_offset_in_bytes())); // If result is an oop unbox and store it in frame where gc will see it // and result handler will pick it up { Label no_oop, not_weak, store_result; __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT))); __ cmp(t, result_handler); __ br(Assembler::NE, no_oop); // Unbox oop result, e.g. JNIHandles::resolve result. __ pop(ltos); __ cbz(r0, store_result); // Use NULL as-is. STATIC_ASSERT(JNIHandles::weak_tag_mask == 1u); __ tbz(r0, 0, not_weak); // Test for jweak tag. // Resolve jweak. __ ldr(r0, Address(r0, -JNIHandles::weak_tag_value)); #if INCLUDE_ALL_GCS if (UseG1GC) { __ enter(); // Barrier may call runtime. __ g1_write_barrier_pre(noreg /* obj */, r0 /* pre_val */, rthread /* thread */, t /* tmp */, true /* tosca_live */, true /* expand_call */); __ leave(); } #endif // INCLUDE_ALL_GCS __ b(store_result); __ bind(not_weak); // Resolve (untagged) jobject. __ ldr(r0, Address(r0, 0)); __ bind(store_result); __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); // keep stack depth as expected by pushing oop which will eventually be discarded __ push(ltos); __ bind(no_oop); } { Label no_reguard; __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset()))); __ ldrb(rscratch1, Address(rscratch1)); __ cmp(rscratch1, JavaThread::stack_guard_yellow_disabled); __ br(Assembler::NE, no_reguard); __ pusha(); // XXX only save smashed registers __ mov(c_rarg0, rthread); __ mov(rscratch2, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); __ blr(rscratch2); __ popa(); // XXX only restore smashed registers __ bind(no_reguard); } // The method register is junk from after the thread_in_native transition // until here. Also can't call_VM until the bcp has been // restored. Need bcp for throwing exception below so get it now. __ get_method(rmethod); // restore bcp to have legal interpreter frame, i.e., bci == 0 <=> // rbcp == code_base() __ ldr(rbcp, Address(rmethod, Method::const_offset())); // get ConstMethod* __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); // get codebase // handle exceptions (exception handling will handle unlocking!) { Label L; __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); __ cbz(rscratch1, L); // Note: At some point we may want to unify this with the code // used in call_VM_base(); i.e., we should use the // StubRoutines::forward_exception code. For now this doesn't work // here because the rsp is not correctly set at this point. __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception)); __ should_not_reach_here(); __ bind(L); } // do unlocking if necessary { Label L; __ ldrw(t, Address(rmethod, Method::access_flags_offset())); __ tst(t, JVM_ACC_SYNCHRONIZED); __ br(Assembler::EQ, L); // the code below should be shared with interpreter macro // assembler implementation { Label unlock; // BasicObjectLock will be first in list, since this is a // synchronized method. However, need to check that the object // has not been unlocked by an explicit monitorexit bytecode. // monitor expect in c_rarg1 for slow unlock path __ lea (c_rarg1, Address(rfp, // address of first monitor (intptr_t)(frame::interpreter_frame_initial_sp_offset * wordSize - sizeof(BasicObjectLock)))); __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); __ cbnz(t, unlock); // Entry already unlocked, need to throw exception __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); __ should_not_reach_here(); __ bind(unlock); __ unlock_object(c_rarg1); } __ bind(L); } // jvmti support // Note: This must happen _after_ handling/throwing any exceptions since // the exception handler code notifies the runtime of method exits // too. If this happens before, method entry/exit notifications are // not properly paired (was bug - gri 11/22/99). __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI); // restore potential result in r0:d0, call result handler to // restore potential result in ST0 & handle result __ pop(ltos); __ pop(dtos); __ blr(result_handler); // remove activation __ ldr(esp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp // remove frame anchor __ leave(); // resture sender sp __ mov(sp, esp); __ ret(lr); if (inc_counter) { // Handle overflow of counter and compile method __ bind(invocation_counter_overflow); generate_counter_overflow(&continue_after_compile); } return entry_point; } // // Generic interpreted method entry to (asm) interpreter // address InterpreterGenerator::generate_normal_entry(bool synchronized) { // determine code generation flags bool inc_counter = UseCompiler || CountCompiledCalls; // rscratch1: sender sp address entry_point = __ pc(); const Address constMethod(rmethod, Method::const_offset()); const Address access_flags(rmethod, Method::access_flags_offset()); const Address size_of_parameters(r3, ConstMethod::size_of_parameters_offset()); const Address size_of_locals(r3, ConstMethod::size_of_locals_offset()); // get parameter size (always needed) // need to load the const method first __ ldr(r3, constMethod); __ load_unsigned_short(r2, size_of_parameters); // r2: size of parameters __ load_unsigned_short(r3, size_of_locals); // get size of locals in words __ sub(r3, r3, r2); // r3 = no. of additional locals // see if we've got enough room on the stack for locals plus overhead. generate_stack_overflow_check(); // compute beginning of parameters (rlocals) __ add(rlocals, esp, r2, ext::uxtx, 3); __ sub(rlocals, rlocals, wordSize); // Make room for locals __ sub(rscratch1, esp, r3, ext::uxtx, 3); __ andr(sp, rscratch1, -16); // r3 - # of additional locals // allocate space for locals // explicitly initialize locals { Label exit, loop; __ ands(zr, r3, r3); __ br(Assembler::LE, exit); // do nothing if r3 <= 0 __ bind(loop); __ str(zr, Address(__ post(rscratch1, wordSize))); __ sub(r3, r3, 1); // until everything initialized __ cbnz(r3, loop); __ bind(exit); } // And the base dispatch table __ get_dispatch(); // initialize fixed part of activation frame generate_fixed_frame(false); // make sure method is not native & not abstract #ifdef ASSERT __ ldrw(r0, access_flags); { Label L; __ tst(r0, JVM_ACC_NATIVE); __ br(Assembler::EQ, L); __ stop("tried to execute native method as non-native"); __ bind(L); } { Label L; __ tst(r0, JVM_ACC_ABSTRACT); __ br(Assembler::EQ, L); __ stop("tried to execute abstract method in interpreter"); __ bind(L); } #endif // Since at this point in the method invocation the exception // handler would try to exit the monitor of synchronized methods // which hasn't been entered yet, we set the thread local variable // _do_not_unlock_if_synchronized to true. The remove_activation // will check this flag. const Address do_not_unlock_if_synchronized(rthread, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); __ mov(rscratch2, true); __ strb(rscratch2, do_not_unlock_if_synchronized); // increment invocation count & check for overflow Label invocation_counter_overflow; Label profile_method; Label profile_method_continue; if (inc_counter) { generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue); if (ProfileInterpreter) { __ bind(profile_method_continue); } } Label continue_after_compile; __ bind(continue_after_compile); bang_stack_shadow_pages(false); // reset the _do_not_unlock_if_synchronized flag __ strb(zr, do_not_unlock_if_synchronized); // check for synchronized methods // Must happen AFTER invocation_counter check and stack overflow check, // so method is not locked if overflows. if (synchronized) { // Allocate monitor and lock method lock_method(); } else { // no synchronization necessary #ifdef ASSERT { Label L; __ ldrw(r0, access_flags); __ tst(r0, JVM_ACC_SYNCHRONIZED); __ br(Assembler::EQ, L); __ stop("method needs synchronization"); __ bind(L); } #endif } // start execution #ifdef ASSERT { Label L; const Address monitor_block_top (rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); __ ldr(rscratch1, monitor_block_top); __ cmp(esp, rscratch1); __ br(Assembler::EQ, L); __ stop("broken stack frame setup in interpreter"); __ bind(L); } #endif // jvmti support __ notify_method_entry(); __ dispatch_next(vtos); // invocation counter overflow if (inc_counter) { if (ProfileInterpreter) { // We have decided to profile this method in the interpreter __ bind(profile_method); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); __ set_method_data_pointer_for_bcp(); // don't think we need this __ get_method(r1); __ b(profile_method_continue); } // Handle overflow of counter and compile method __ bind(invocation_counter_overflow); generate_counter_overflow(&continue_after_compile); } return entry_point; } // Entry points // // Here we generate the various kind of entries into the interpreter. // The two main entry type are generic bytecode methods and native // call method. These both come in synchronized and non-synchronized // versions but the frame layout they create is very similar. The // other method entry types are really just special purpose entries // that are really entry and interpretation all in one. These are for // trivial methods like accessor, empty, or special math methods. // // When control flow reaches any of the entry types for the interpreter // the following holds -> // // Arguments: // // rmethod: Method* // // Stack layout immediately at entry // // [ return address ] <--- rsp // [ parameter n ] // ... // [ parameter 1 ] // [ expression stack ] (caller's java expression stack) // Assuming that we don't go to one of the trivial specialized entries // the stack will look like below when we are ready to execute the // first bytecode (or call the native routine). The register usage // will be as the template based interpreter expects (see // interpreter_aarch64.hpp). // // local variables follow incoming parameters immediately; i.e. // the return address is moved to the end of the locals). // // [ monitor entry ] <--- esp // ... // [ monitor entry ] // [ expr. stack bottom ] // [ saved rbcp ] // [ current rlocals ] // [ Method* ] // [ saved rfp ] <--- rfp // [ return address ] // [ local variable m ] // ... // [ local variable 1 ] // [ parameter n ] // ... // [ parameter 1 ] <--- rlocals address AbstractInterpreterGenerator::generate_method_entry( AbstractInterpreter::MethodKind kind) { // determine code generation flags bool synchronized = false; address entry_point = NULL; switch (kind) { case Interpreter::zerolocals : break; case Interpreter::zerolocals_synchronized: synchronized = true; break; case Interpreter::native : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false); break; case Interpreter::native_synchronized : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(true); break; case Interpreter::empty : entry_point = ((InterpreterGenerator*) this)->generate_empty_entry(); break; case Interpreter::accessor : entry_point = ((InterpreterGenerator*) this)->generate_accessor_entry(); break; case Interpreter::abstract : entry_point = ((InterpreterGenerator*) this)->generate_abstract_entry(); break; case Interpreter::java_lang_math_sin : // fall thru case Interpreter::java_lang_math_cos : // fall thru case Interpreter::java_lang_math_tan : // fall thru case Interpreter::java_lang_math_abs : // fall thru case Interpreter::java_lang_math_log : // fall thru case Interpreter::java_lang_math_log10 : // fall thru case Interpreter::java_lang_math_sqrt : // fall thru case Interpreter::java_lang_math_pow : // fall thru case Interpreter::java_lang_math_exp : entry_point = ((InterpreterGenerator*) this)->generate_math_entry(kind); break; case Interpreter::java_lang_ref_reference_get : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break; case Interpreter::java_util_zip_CRC32_update : entry_point = ((InterpreterGenerator*)this)->generate_CRC32_update_entry(); break; case Interpreter::java_util_zip_CRC32_updateBytes : // fall thru case Interpreter::java_util_zip_CRC32_updateByteBuffer : entry_point = ((InterpreterGenerator*)this)->generate_CRC32_updateBytes_entry(kind); break; default : ShouldNotReachHere(); break; } if (entry_point) { return entry_point; } return ((InterpreterGenerator*) this)-> generate_normal_entry(synchronized); } // These should never be compiled since the interpreter will prefer // the compiled version to the intrinsic version. bool AbstractInterpreter::can_be_compiled(methodHandle m) { switch (method_kind(m)) { case Interpreter::java_lang_math_sin : // fall thru case Interpreter::java_lang_math_cos : // fall thru case Interpreter::java_lang_math_tan : // fall thru case Interpreter::java_lang_math_abs : // fall thru case Interpreter::java_lang_math_log : // fall thru case Interpreter::java_lang_math_log10 : // fall thru case Interpreter::java_lang_math_sqrt : // fall thru case Interpreter::java_lang_math_pow : // fall thru case Interpreter::java_lang_math_exp : return false; default: return true; } } // How much stack a method activation needs in words. int AbstractInterpreter::size_top_interpreter_activation(Method* method) { const int entry_size = frame::interpreter_frame_monitor_size(); // total overhead size: entry_size + (saved rfp thru expr stack // bottom). be sure to change this if you add/subtract anything // to/from the overhead area const int overhead_size = -(frame::interpreter_frame_initial_sp_offset) + entry_size; const int stub_code = frame::entry_frame_after_call_words; const int method_stack = (method->max_locals() + method->max_stack()) * Interpreter::stackElementWords; return (overhead_size + method_stack + stub_code); } // asm based interpreter deoptimization helpers int AbstractInterpreter::size_activation(int max_stack, int temps, int extra_args, int monitors, int callee_params, int callee_locals, bool is_top_frame) { // Note: This calculation must exactly parallel the frame setup // in AbstractInterpreterGenerator::generate_method_entry. // fixed size of an interpreter frame: int overhead = frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset; // Our locals were accounted for by the caller (or last_frame_adjust // on the transistion) Since the callee parameters already account // for the callee's params we only need to account for the extra // locals. int size = overhead + (callee_locals - callee_params) + monitors * frame::interpreter_frame_monitor_size() + // On the top frame, at all times SP <= ESP, and SP is // 16-aligned. We ensure this by adjusting SP on method // entry and re-entry to allow room for the maximum size of // the expression stack. When we call another method we bump // SP so that no stack space is wasted. So, only on the top // frame do we need to allow max_stack words. (is_top_frame ? max_stack : temps + extra_args); // On AArch64 we always keep the stack pointer 16-aligned, so we // must round up here. size = round_to(size, 2); return size; } void AbstractInterpreter::layout_activation(Method* method, int tempcount, int popframe_extra_args, int moncount, int caller_actual_parameters, int callee_param_count, int callee_locals, frame* caller, frame* interpreter_frame, bool is_top_frame, bool is_bottom_frame) { // The frame interpreter_frame is guaranteed to be the right size, // as determined by a previous call to the size_activation() method. // It is also guaranteed to be walkable even though it is in a // skeletal state int max_locals = method->max_locals() * Interpreter::stackElementWords; int extra_locals = (method->max_locals() - method->size_of_parameters()) * Interpreter::stackElementWords; #ifdef ASSERT assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable"); #endif interpreter_frame->interpreter_frame_set_method(method); // NOTE the difference in using sender_sp and // interpreter_frame_sender_sp interpreter_frame_sender_sp is // the original sp of the caller (the unextended_sp) and // sender_sp is fp+8/16 (32bit/64bit) XXX intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1; #ifdef ASSERT if (caller->is_interpreted_frame()) { assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement"); } #endif interpreter_frame->interpreter_frame_set_locals(locals); BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin(); BasicObjectLock* monbot = montop - moncount; interpreter_frame->interpreter_frame_set_monitor_end(monbot); // Set last_sp intptr_t* esp = (intptr_t*) monbot - tempcount*Interpreter::stackElementWords - popframe_extra_args; interpreter_frame->interpreter_frame_set_last_sp(esp); // All frames but the initial (oldest) interpreter frame we fill in have // a value for sender_sp that allows walking the stack but isn't // truly correct. Correct the value here. if (extra_locals != 0 && interpreter_frame->sender_sp() == interpreter_frame->interpreter_frame_sender_sp()) { interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() + extra_locals); } *interpreter_frame->interpreter_frame_cache_addr() = method->constants()->cache(); } //----------------------------------------------------------------------------- // Exceptions void TemplateInterpreterGenerator::generate_throw_exception() { // Entry point in previous activation (i.e., if the caller was // interpreted) Interpreter::_rethrow_exception_entry = __ pc(); // Restore sp to interpreter_frame_last_sp even though we are going // to empty the expression stack for the exception processing. __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); // r0: exception // r3: return address/pc that threw exception __ restore_bcp(); // rbcp points to call/send __ restore_locals(); __ restore_constant_pool_cache(); __ reinit_heapbase(); // restore rheapbase as heapbase. __ get_dispatch(); // Entry point for exceptions thrown within interpreter code Interpreter::_throw_exception_entry = __ pc(); // If we came here via a NullPointerException on the receiver of a // method, rmethod may be corrupt. __ get_method(rmethod); // expression stack is undefined here // r0: exception // rbcp: exception bcp __ verify_oop(r0); __ mov(c_rarg1, r0); // expression stack must be empty before entering the VM in case of // an exception __ empty_expression_stack(); // find exception handler address and preserve exception oop __ call_VM(r3, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), c_rarg1); // Calculate stack limit __ ldr(rscratch1, Address(rmethod, Method::const_offset())); __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + (EnableInvokeDynamic ? 2 : 0) + 2); __ ldr(rscratch2, Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize)); __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3); __ andr(sp, rscratch1, -16); // r0: exception handler entry point // r3: preserved exception oop // rbcp: bcp for exception handler __ push_ptr(r3); // push exception which is now the only value on the stack __ br(r0); // jump to exception handler (may be _remove_activation_entry!) // If the exception is not handled in the current frame the frame is // removed and the exception is rethrown (i.e. exception // continuation is _rethrow_exception). // // Note: At this point the bci is still the bxi for the instruction // which caused the exception and the expression stack is // empty. Thus, for any VM calls at this point, GC will find a legal // oop map (with empty expression stack). // // JVMTI PopFrame support // Interpreter::_remove_activation_preserving_args_entry = __ pc(); __ empty_expression_stack(); // Set the popframe_processing bit in pending_popframe_condition // indicating that we are currently handling popframe, so that // call_VMs that may happen later do not trigger new popframe // handling cycles. __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset())); __ orr(r3, r3, JavaThread::popframe_processing_bit); __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset())); { // Check to see whether we are returning to a deoptimized frame. // (The PopFrame call ensures that the caller of the popped frame is // either interpreted or compiled and deoptimizes it if compiled.) // In this case, we can't call dispatch_next() after the frame is // popped, but instead must save the incoming arguments and restore // them after deoptimization has occurred. // // Note that we don't compare the return PC against the // deoptimization blob's unpack entry because of the presence of // adapter frames in C2. Label caller_not_deoptimized; __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize)); __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), c_rarg1); __ cbnz(r0, caller_not_deoptimized); // Compute size of arguments for saving when returning to // deoptimized caller __ get_method(r0); __ ldr(r0, Address(r0, Method::const_offset())); __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod:: size_of_parameters_offset()))); __ lsl(r0, r0, Interpreter::logStackElementSize); __ restore_locals(); // XXX do we need this? __ sub(rlocals, rlocals, r0); __ add(rlocals, rlocals, wordSize); // Save these arguments __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization:: popframe_preserve_args), rthread, r0, rlocals); __ remove_activation(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false, /* notify_jvmdi */ false); // Inform deoptimization that it is responsible for restoring // these arguments __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit); __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); // Continue in deoptimization handler __ ret(lr); __ bind(caller_not_deoptimized); } __ remove_activation(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false, /* notify_jvmdi */ false); // Restore the last_sp and null it out __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); __ restore_bcp(); __ restore_locals(); __ restore_constant_pool_cache(); __ get_method(rmethod); __ get_dispatch(); // The method data pointer was incremented already during // call profiling. We have to restore the mdp for the current bcp. if (ProfileInterpreter) { __ set_method_data_pointer_for_bcp(); } // Clear the popframe condition flag __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset())); assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive"); #if INCLUDE_JVMTI if (EnableInvokeDynamic) { Label L_done; __ ldrb(rscratch1, Address(rbcp, 0)); __ cmpw(rscratch1, Bytecodes::_invokestatic); __ br(Assembler::NE, L_done); // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL. __ ldr(c_rarg0, Address(rlocals, 0)); __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp); __ cbz(r0, L_done); __ str(r0, Address(esp, 0)); __ bind(L_done); } #endif // INCLUDE_JVMTI // Restore machine SP __ ldr(rscratch1, Address(rmethod, Method::const_offset())); __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + (EnableInvokeDynamic ? 2 : 0)); __ ldr(rscratch2, Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize)); __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3); __ andr(sp, rscratch1, -16); __ dispatch_next(vtos); // end of PopFrame support Interpreter::_remove_activation_entry = __ pc(); // preserve exception over this code sequence __ pop_ptr(r0); __ str(r0, Address(rthread, JavaThread::vm_result_offset())); // remove the activation (without doing throws on illegalMonitorExceptions) __ remove_activation(vtos, false, true, false); // restore exception __ get_vm_result(r0, rthread); // In between activations - previous activation type unknown yet // compute continuation point - the continuation point expects the // following registers set up: // // r0: exception // lr: return address/pc that threw exception // esp: expression stack of caller // rfp: fp of caller __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize))); // save exception & return address __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, lr); __ mov(r1, r0); // save exception handler __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize))); // restore exception & return address // We might be returning to a deopt handler that expects r3 to // contain the exception pc __ mov(r3, lr); // Note that an "issuing PC" is actually the next PC after the call __ br(r1); // jump to exception // handler of caller } // // JVMTI ForceEarlyReturn support // address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { address entry = __ pc(); __ restore_bcp(); __ restore_locals(); __ empty_expression_stack(); __ load_earlyret_value(state); __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset()); // Clear the earlyret state assert(JvmtiThreadState::earlyret_inactive == 0, "should be"); __ str(zr, cond_addr); __ remove_activation(state, false, /* throw_monitor_exception */ false, /* install_monitor_exception */ true); /* notify_jvmdi */ __ ret(lr); return entry; } // end of ForceEarlyReturn support //----------------------------------------------------------------------------- // Helper for vtos entry point generation void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) { assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); Label L; aep = __ pc(); __ push_ptr(); __ b(L); fep = __ pc(); __ push_f(); __ b(L); dep = __ pc(); __ push_d(); __ b(L); lep = __ pc(); __ push_l(); __ b(L); bep = cep = sep = iep = __ pc(); __ push_i(); vep = __ pc(); __ bind(L); generate_and_dispatch(t); } //----------------------------------------------------------------------------- // Generation of individual instructions // helpers for generate_and_dispatch InterpreterGenerator::InterpreterGenerator(StubQueue* code) : TemplateInterpreterGenerator(code) { generate_all(); // down here so it can be "virtual" } //----------------------------------------------------------------------------- // Non-product code #ifndef PRODUCT address TemplateInterpreterGenerator::generate_trace_code(TosState state) { address entry = __ pc(); __ push(lr); __ push(state); __ push(RegSet::range(r0, r15), sp); __ mov(c_rarg2, r0); // Pass itos __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), c_rarg1, c_rarg2, c_rarg3); __ pop(RegSet::range(r0, r15), sp); __ pop(state); __ pop(lr); __ ret(lr); // return from result handler return entry; } void TemplateInterpreterGenerator::count_bytecode() { Register rscratch3 = r0; __ push(rscratch1); __ push(rscratch2); __ push(rscratch3); __ mov(rscratch3, (address) &BytecodeCounter::_counter_value); __ atomic_add(noreg, 1, rscratch3); __ pop(rscratch3); __ pop(rscratch2); __ pop(rscratch1); } void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { ; } void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { ; } void TemplateInterpreterGenerator::trace_bytecode(Template* t) { // Call a little run-time stub to avoid blow-up for each bytecode. // The run-time runtime saves the right registers, depending on // the tosca in-state for the given template. assert(Interpreter::trace_code(t->tos_in()) != NULL, "entry must have been generated"); __ bl(Interpreter::trace_code(t->tos_in())); __ reinit_heapbase(); } void TemplateInterpreterGenerator::stop_interpreter_at() { Label L; __ push(rscratch1); __ mov(rscratch1, (address) &BytecodeCounter::_counter_value); __ ldr(rscratch1, Address(rscratch1)); __ mov(rscratch2, StopInterpreterAt); __ cmpw(rscratch1, rscratch2); __ br(Assembler::NE, L); __ brk(0); __ bind(L); __ pop(rscratch1); } #endif // !PRODUCT #endif // ! CC_INTERP