1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2013, 2019, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/register.hpp"
  30 
  31 // definitions of various symbolic names for machine registers
  32 
  33 // First intercalls between C and Java which use 8 general registers
  34 // and 8 floating registers
  35 
  36 // we also have to copy between x86 and ARM registers but that's a
  37 // secondary complication -- not all code employing C call convention
  38 // executes as x86 code though -- we generate some of it
  39 
  40 class Argument VALUE_OBJ_CLASS_SPEC {
  41  public:
  42   enum {
  43     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  44     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  45 
  46     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  47     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  48   };
  49 };
  50 
  51 REGISTER_DECLARATION(Register, c_rarg0, r0);
  52 REGISTER_DECLARATION(Register, c_rarg1, r1);
  53 REGISTER_DECLARATION(Register, c_rarg2, r2);
  54 REGISTER_DECLARATION(Register, c_rarg3, r3);
  55 REGISTER_DECLARATION(Register, c_rarg4, r4);
  56 REGISTER_DECLARATION(Register, c_rarg5, r5);
  57 REGISTER_DECLARATION(Register, c_rarg6, r6);
  58 REGISTER_DECLARATION(Register, c_rarg7, r7);
  59 
  60 REGISTER_DECLARATION(FloatRegister, c_farg0, v0);
  61 REGISTER_DECLARATION(FloatRegister, c_farg1, v1);
  62 REGISTER_DECLARATION(FloatRegister, c_farg2, v2);
  63 REGISTER_DECLARATION(FloatRegister, c_farg3, v3);
  64 REGISTER_DECLARATION(FloatRegister, c_farg4, v4);
  65 REGISTER_DECLARATION(FloatRegister, c_farg5, v5);
  66 REGISTER_DECLARATION(FloatRegister, c_farg6, v6);
  67 REGISTER_DECLARATION(FloatRegister, c_farg7, v7);
  68 
  69 // Symbolically name the register arguments used by the Java calling convention.
  70 // We have control over the convention for java so we can do what we please.
  71 // What pleases us is to offset the java calling convention so that when
  72 // we call a suitable jni method the arguments are lined up and we don't
  73 // have to do much shuffling. A suitable jni method is non-static and a
  74 // small number of arguments
  75 //
  76 //  |--------------------------------------------------------------------|
  77 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  78 //  |--------------------------------------------------------------------|
  79 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  80 //  |--------------------------------------------------------------------|
  81 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
  82 //  |--------------------------------------------------------------------|
  83 
  84 
  85 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
  86 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
  87 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
  88 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
  89 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
  90 REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
  91 REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
  92 REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
  93 
  94 // Java floating args are passed as per C
  95 
  96 REGISTER_DECLARATION(FloatRegister, j_farg0, v0);
  97 REGISTER_DECLARATION(FloatRegister, j_farg1, v1);
  98 REGISTER_DECLARATION(FloatRegister, j_farg2, v2);
  99 REGISTER_DECLARATION(FloatRegister, j_farg3, v3);
 100 REGISTER_DECLARATION(FloatRegister, j_farg4, v4);
 101 REGISTER_DECLARATION(FloatRegister, j_farg5, v5);
 102 REGISTER_DECLARATION(FloatRegister, j_farg6, v6);
 103 REGISTER_DECLARATION(FloatRegister, j_farg7, v7);
 104 
 105 // registers used to hold VM data either temporarily within a method
 106 // or across method calls
 107 
 108 // volatile (caller-save) registers
 109 
 110 // r8 is used for indirect result location return
 111 // we use it and r9 as scratch registers
 112 REGISTER_DECLARATION(Register, rscratch1, r8);
 113 REGISTER_DECLARATION(Register, rscratch2, r9);
 114 
 115 // current method -- must be in a call-clobbered register
 116 REGISTER_DECLARATION(Register, rmethod,   r12);
 117 
 118 // non-volatile (callee-save) registers are r16-29
 119 // of which the following are dedicated global state
 120 
 121 // link register
 122 REGISTER_DECLARATION(Register, lr,        r30);
 123 // frame pointer
 124 REGISTER_DECLARATION(Register, rfp,       r29);
 125 // current thread
 126 REGISTER_DECLARATION(Register, rthread,   r28);
 127 // base of heap
 128 REGISTER_DECLARATION(Register, rheapbase, r27);
 129 // constant pool cache
 130 REGISTER_DECLARATION(Register, rcpool,    r26);
 131 // monitors allocated on stack
 132 REGISTER_DECLARATION(Register, rmonitors, r25);
 133 // locals on stack
 134 REGISTER_DECLARATION(Register, rlocals,   r24);
 135 // bytecode pointer
 136 REGISTER_DECLARATION(Register, rbcp,      r22);
 137 // Dispatch table base
 138 REGISTER_DECLARATION(Register, rdispatch,      r21);
 139 // Java stack pointer
 140 REGISTER_DECLARATION(Register, esp,      r20);
 141 
 142 // TODO : x86 uses rbp to save SP in method handle code
 143 // we may need to do the same with fp
 144 // JSR 292 fixed register usages:
 145 //REGISTER_DECLARATION(Register, r_mh_SP_save, r29);
 146 
 147 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 148 
 149 namespace asm_util {
 150   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 151 };
 152 
 153 using namespace asm_util;
 154 
 155 
 156 class Assembler;
 157 
 158 class Instruction_aarch64 {
 159   unsigned insn;
 160 #ifdef ASSERT
 161   unsigned bits;
 162 #endif
 163   Assembler *assem;
 164 
 165 public:
 166 
 167   Instruction_aarch64(class Assembler *as) {
 168 #ifdef ASSERT
 169     bits = 0;
 170 #endif
 171     insn = 0;
 172     assem = as;
 173   }
 174 
 175   inline ~Instruction_aarch64();
 176 
 177   unsigned &get_insn() { return insn; }
 178 #ifdef ASSERT
 179   unsigned &get_bits() { return bits; }
 180 #endif
 181 
 182   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 183     union {
 184       unsigned u;
 185       int n;
 186     };
 187 
 188     u = val << (31 - hi);
 189     n = n >> (31 - hi + lo);
 190     return n;
 191   }
 192 
 193   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 194     int nbits = msb - lsb + 1;
 195     assert_cond(msb >= lsb);
 196     uint32_t mask = (1U << nbits) - 1;
 197     uint32_t result = val >> lsb;
 198     result &= mask;
 199     return result;
 200   }
 201 
 202   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 203     uint32_t uval = extract(val, msb, lsb);
 204     return extend(uval, msb - lsb);
 205   }
 206 
 207   static void patch(address a, int msb, int lsb, unsigned long val) {
 208     int nbits = msb - lsb + 1;
 209     guarantee(val < (1U << nbits), "Field too big for insn");
 210     assert_cond(msb >= lsb);
 211     unsigned mask = (1U << nbits) - 1;
 212     val <<= lsb;
 213     mask <<= lsb;
 214     unsigned target = *(unsigned *)a;
 215     target &= ~mask;
 216     target |= val;
 217     *(unsigned *)a = target;
 218   }
 219 
 220   static void spatch(address a, int msb, int lsb, long val) {
 221     int nbits = msb - lsb + 1;
 222     long chk = val >> (nbits - 1);
 223     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 224     unsigned uval = val;
 225     unsigned mask = (1U << nbits) - 1;
 226     uval &= mask;
 227     uval <<= lsb;
 228     mask <<= lsb;
 229     unsigned target = *(unsigned *)a;
 230     target &= ~mask;
 231     target |= uval;
 232     *(unsigned *)a = target;
 233   }
 234 
 235   void f(unsigned val, int msb, int lsb) {
 236     int nbits = msb - lsb + 1;
 237     guarantee(val < (1U << nbits), "Field too big for insn");
 238     assert_cond(msb >= lsb);
 239     unsigned mask = (1U << nbits) - 1;
 240     val <<= lsb;
 241     mask <<= lsb;
 242     insn |= val;
 243     assert_cond((bits & mask) == 0);
 244 #ifdef ASSERT
 245     bits |= mask;
 246 #endif
 247   }
 248 
 249   void f(unsigned val, int bit) {
 250     f(val, bit, bit);
 251   }
 252 
 253   void sf(long val, int msb, int lsb) {
 254     int nbits = msb - lsb + 1;
 255     long chk = val >> (nbits - 1);
 256     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 257     unsigned uval = val;
 258     unsigned mask = (1U << nbits) - 1;
 259     uval &= mask;
 260     f(uval, lsb + nbits - 1, lsb);
 261   }
 262 
 263   void rf(Register r, int lsb) {
 264     f(r->encoding_nocheck(), lsb + 4, lsb);
 265   }
 266 
 267   // reg|ZR
 268   void zrf(Register r, int lsb) {
 269     f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb);
 270   }
 271 
 272   // reg|SP
 273   void srf(Register r, int lsb) {
 274     f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb);
 275   }
 276 
 277   void rf(FloatRegister r, int lsb) {
 278     f(r->encoding_nocheck(), lsb + 4, lsb);
 279   }
 280 
 281   unsigned get(int msb = 31, int lsb = 0) {
 282     int nbits = msb - lsb + 1;
 283     unsigned mask = ((1U << nbits) - 1) << lsb;
 284     assert_cond((bits & mask) == mask);
 285     return (insn & mask) >> lsb;
 286   }
 287 
 288   void fixed(unsigned value, unsigned mask) {
 289     assert_cond ((mask & bits) == 0);
 290 #ifdef ASSERT
 291     bits |= mask;
 292 #endif
 293     insn |= value;
 294   }
 295 };
 296 
 297 #define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use)
 298 
 299 class PrePost {
 300   int _offset;
 301   Register _r;
 302 public:
 303   PrePost(Register reg, int o) : _r(reg), _offset(o) { }
 304   int offset() { return _offset; }
 305   Register reg() { return _r; }
 306 };
 307 
 308 class Pre : public PrePost {
 309 public:
 310   Pre(Register reg, int o) : PrePost(reg, o) { }
 311 };
 312 class Post : public PrePost {
 313 public:
 314   Post(Register reg, int o) : PrePost(reg, o) { }
 315 };
 316 
 317 namespace ext
 318 {
 319   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 320 };
 321 
 322 // Addressing modes
 323 class Address VALUE_OBJ_CLASS_SPEC {
 324  public:
 325 
 326   enum mode { no_mode, base_plus_offset, pre, post, pcrel,
 327               base_plus_offset_reg, literal };
 328 
 329   // Shift and extend for base reg + reg offset addressing
 330   class extend {
 331     int _option, _shift;
 332     ext::operation _op;
 333   public:
 334     extend() { }
 335     extend(int s, int o, ext::operation op) : _shift(s), _option(o), _op(op) { }
 336     int option() const{ return _option; }
 337     int shift() const { return _shift; }
 338     ext::operation op() const { return _op; }
 339   };
 340   class uxtw : public extend {
 341   public:
 342     uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { }
 343   };
 344   class lsl : public extend {
 345   public:
 346     lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { }
 347   };
 348   class sxtw : public extend {
 349   public:
 350     sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { }
 351   };
 352   class sxtx : public extend {
 353   public:
 354     sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { }
 355   };
 356 
 357  private:
 358   Register _base;
 359   Register _index;
 360   long _offset;
 361   enum mode _mode;
 362   extend _ext;
 363 
 364   RelocationHolder _rspec;
 365 
 366   // Typically we use AddressLiterals we want to use their rval
 367   // However in some situations we want the lval (effect address) of
 368   // the item.  We provide a special factory for making those lvals.
 369   bool _is_lval;
 370 
 371   // If the target is far we'll need to load the ea of this to a
 372   // register to reach it. Otherwise if near we can do PC-relative
 373   // addressing.
 374   address          _target;
 375 
 376  public:
 377   Address()
 378     : _mode(no_mode) { }
 379   Address(Register r)
 380     : _mode(base_plus_offset), _base(r), _offset(0), _index(noreg), _target(0) { }
 381   Address(Register r, int o)
 382     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 383   Address(Register r, long o)
 384     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 385   Address(Register r, unsigned long o)
 386     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 387 #ifdef ASSERT
 388   Address(Register r, ByteSize disp)
 389     : _mode(base_plus_offset), _base(r), _offset(in_bytes(disp)),
 390       _index(noreg), _target(0) { }
 391 #endif
 392   Address(Register r, Register r1, extend ext = lsl())
 393     : _mode(base_plus_offset_reg), _base(r), _index(r1),
 394     _ext(ext), _offset(0), _target(0) { }
 395   Address(Pre p)
 396     : _mode(pre), _base(p.reg()), _offset(p.offset()) { }
 397   Address(Post p)
 398     : _mode(post), _base(p.reg()), _offset(p.offset()), _target(0) { }
 399   Address(address target, RelocationHolder const& rspec)
 400     : _mode(literal),
 401       _rspec(rspec),
 402       _is_lval(false),
 403       _target(target)  { }
 404   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 405   Address(Register base, RegisterOrConstant index, extend ext = lsl())
 406     : _base (base),
 407       _ext(ext), _offset(0), _target(0) {
 408     if (index.is_register()) {
 409       _mode = base_plus_offset_reg;
 410       _index = index.as_register();
 411     } else {
 412       guarantee(ext.option() == ext::uxtx, "should be");
 413       assert(index.is_constant(), "should be");
 414       _mode = base_plus_offset;
 415       _offset = index.as_constant() << ext.shift();
 416     }
 417   }
 418 
 419   Register base() const {
 420     guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg
 421                | _mode == post),
 422               "wrong mode");
 423     return _base;
 424   }
 425   long offset() const {
 426     return _offset;
 427   }
 428   Register index() const {
 429     return _index;
 430   }
 431   mode getMode() const {
 432     return _mode;
 433   }
 434   bool uses(Register reg) const { return _base == reg || _index == reg; }
 435   address target() const { return _target; }
 436   const RelocationHolder& rspec() const { return _rspec; }
 437 
 438   void encode(Instruction_aarch64 *i) const {
 439     i->f(0b111, 29, 27);
 440     i->srf(_base, 5);
 441 
 442     switch(_mode) {
 443     case base_plus_offset:
 444       {
 445         unsigned size = i->get(31, 30);
 446         if (i->get(26, 26) && i->get(23, 23)) {
 447           // SIMD Q Type - Size = 128 bits
 448           assert(size == 0, "bad size");
 449           size = 0b100;
 450         }
 451         unsigned mask = (1 << size) - 1;
 452         if (_offset < 0 || _offset & mask)
 453           {
 454             i->f(0b00, 25, 24);
 455             i->f(0, 21), i->f(0b00, 11, 10);
 456             i->sf(_offset, 20, 12);
 457           } else {
 458             i->f(0b01, 25, 24);
 459             i->f(_offset >> size, 21, 10);
 460           }
 461       }
 462       break;
 463 
 464     case base_plus_offset_reg:
 465       {
 466         i->f(0b00, 25, 24);
 467         i->f(1, 21);
 468         i->rf(_index, 16);
 469         i->f(_ext.option(), 15, 13);
 470         unsigned size = i->get(31, 30);
 471         if (i->get(26, 26) && i->get(23, 23)) {
 472           // SIMD Q Type - Size = 128 bits
 473           assert(size == 0, "bad size");
 474           size = 0b100;
 475         }
 476         if (size == 0) // It's a byte
 477           i->f(_ext.shift() >= 0, 12);
 478         else {
 479           if (_ext.shift() > 0)
 480             assert(_ext.shift() == (int)size, "bad shift");
 481           i->f(_ext.shift() > 0, 12);
 482         }
 483         i->f(0b10, 11, 10);
 484       }
 485       break;
 486 
 487     case pre:
 488       i->f(0b00, 25, 24);
 489       i->f(0, 21), i->f(0b11, 11, 10);
 490       i->sf(_offset, 20, 12);
 491       break;
 492 
 493     case post:
 494       i->f(0b00, 25, 24);
 495       i->f(0, 21), i->f(0b01, 11, 10);
 496       i->sf(_offset, 20, 12);
 497       break;
 498 
 499     default:
 500       ShouldNotReachHere();
 501     }
 502   }
 503 
 504   void encode_pair(Instruction_aarch64 *i) const {
 505     switch(_mode) {
 506     case base_plus_offset:
 507       i->f(0b010, 25, 23);
 508       break;
 509     case pre:
 510       i->f(0b011, 25, 23);
 511       break;
 512     case post:
 513       i->f(0b001, 25, 23);
 514       break;
 515     default:
 516       ShouldNotReachHere();
 517     }
 518 
 519     unsigned size; // Operand shift in 32-bit words
 520 
 521     if (i->get(26, 26)) { // float
 522       switch(i->get(31, 30)) {
 523       case 0b10:
 524         size = 2; break;
 525       case 0b01:
 526         size = 1; break;
 527       case 0b00:
 528         size = 0; break;
 529       default:
 530         ShouldNotReachHere();
 531       }
 532     } else {
 533       size = i->get(31, 31);
 534     }
 535 
 536     size = 4 << size;
 537     guarantee(_offset % size == 0, "bad offset");
 538     i->sf(_offset / size, 21, 15);
 539     i->srf(_base, 5);
 540   }
 541 
 542   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 543     // Only base + offset is allowed
 544     i->f(0b000, 25, 23);
 545     unsigned size = i->get(31, 31);
 546     size = 4 << size;
 547     guarantee(_offset % size == 0, "bad offset");
 548     i->sf(_offset / size, 21, 15);
 549     i->srf(_base, 5);
 550     guarantee(_mode == Address::base_plus_offset,
 551               "Bad addressing mode for non-temporal op");
 552   }
 553 
 554   void lea(MacroAssembler *, Register) const;
 555 
 556   static bool offset_ok_for_immed(long offset, int shift = 0) {
 557     unsigned mask = (1 << shift) - 1;
 558     if (offset < 0 || offset & mask) {
 559       return (uabs(offset) < (1 << (20 - 12))); // Unscaled offset
 560     } else {
 561       return ((offset >> shift) < (1 << (21 - 10 + 1))); // Scaled, unsigned offset
 562     }
 563   }
 564 };
 565 
 566 // Convience classes
 567 class RuntimeAddress: public Address {
 568 
 569   public:
 570 
 571   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 572 
 573 };
 574 
 575 class OopAddress: public Address {
 576 
 577   public:
 578 
 579   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 580 
 581 };
 582 
 583 class ExternalAddress: public Address {
 584  private:
 585   static relocInfo::relocType reloc_for_target(address target) {
 586     // Sometimes ExternalAddress is used for values which aren't
 587     // exactly addresses, like the card table base.
 588     // external_word_type can't be used for values in the first page
 589     // so just skip the reloc in that case.
 590     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 591   }
 592 
 593  public:
 594 
 595   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 596 
 597 };
 598 
 599 class InternalAddress: public Address {
 600 
 601   public:
 602 
 603   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 604 };
 605 
 606 const int FPUStateSizeInWords = 32 * 2;
 607 typedef enum {
 608   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 609   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 610   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 611 } prfop;
 612 
 613 class Assembler : public AbstractAssembler {
 614 
 615 #ifndef PRODUCT
 616   static const unsigned long asm_bp;
 617 
 618   void emit_long(jint x) {
 619     if ((unsigned long)pc() == asm_bp)
 620       asm volatile ("nop");
 621     AbstractAssembler::emit_int32(x);
 622   }
 623 #else
 624   void emit_long(jint x) {
 625     AbstractAssembler::emit_int32(x);
 626   }
 627 #endif
 628 
 629 public:
 630 
 631   enum { instruction_size = 4 };
 632 
 633   Address adjust(Register base, int offset, bool preIncrement) {
 634     if (preIncrement)
 635       return Address(Pre(base, offset));
 636     else
 637       return Address(Post(base, offset));
 638   }
 639 
 640   Address pre(Register base, int offset) {
 641     return adjust(base, offset, true);
 642   }
 643 
 644   Address post (Register base, int offset) {
 645     return adjust(base, offset, false);
 646   }
 647 
 648   Instruction_aarch64* current;
 649 
 650   void set_current(Instruction_aarch64* i) { current = i; }
 651 
 652   void f(unsigned val, int msb, int lsb) {
 653     current->f(val, msb, lsb);
 654   }
 655   void f(unsigned val, int msb) {
 656     current->f(val, msb, msb);
 657   }
 658   void sf(long val, int msb, int lsb) {
 659     current->sf(val, msb, lsb);
 660   }
 661   void rf(Register reg, int lsb) {
 662     current->rf(reg, lsb);
 663   }
 664   void srf(Register reg, int lsb) {
 665     current->srf(reg, lsb);
 666   }
 667   void zrf(Register reg, int lsb) {
 668     current->zrf(reg, lsb);
 669   }
 670   void rf(FloatRegister reg, int lsb) {
 671     current->rf(reg, lsb);
 672   }
 673   void fixed(unsigned value, unsigned mask) {
 674     current->fixed(value, mask);
 675   }
 676 
 677   void emit() {
 678     emit_long(current->get_insn());
 679     assert_cond(current->get_bits() == 0xffffffff);
 680     current = NULL;
 681   }
 682 
 683   typedef void (Assembler::* uncond_branch_insn)(address dest);
 684   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 685   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 686   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 687 
 688   void wrap_label(Label &L, uncond_branch_insn insn);
 689   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 690   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 691   void wrap_label(Label &L, prfop, prefetch_insn insn);
 692 
 693   // PC-rel. addressing
 694 
 695   void adr(Register Rd, address dest);
 696   void _adrp(Register Rd, address dest);
 697 
 698   void adr(Register Rd, const Address &dest);
 699   void _adrp(Register Rd, const Address &dest);
 700 
 701   void adr(Register Rd, Label &L) {
 702     wrap_label(Rd, L, &Assembler::Assembler::adr);
 703   }
 704   void _adrp(Register Rd, Label &L) {
 705     wrap_label(Rd, L, &Assembler::_adrp);
 706   }
 707 
 708   void adrp(Register Rd, const Address &dest, unsigned long &offset);
 709 
 710 #undef INSN
 711 
 712   void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op,
 713                          int negated_op);
 714 
 715   // Add/subtract (immediate)
 716 #define INSN(NAME, decode, negated)                                     \
 717   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 718     starti;                                                             \
 719     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 720     zrf(Rd, 0), srf(Rn, 5);                                             \
 721   }                                                                     \
 722                                                                         \
 723   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 724     starti;                                                             \
 725     add_sub_immediate(Rd, Rn, imm, decode, negated);                    \
 726   }
 727 
 728   INSN(addsw, 0b001, 0b011);
 729   INSN(subsw, 0b011, 0b001);
 730   INSN(adds,  0b101, 0b111);
 731   INSN(subs,  0b111, 0b101);
 732 
 733 #undef INSN
 734 
 735 #define INSN(NAME, decode, negated)                     \
 736   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 737     starti;                                             \
 738     add_sub_immediate(Rd, Rn, imm, decode, negated);    \
 739   }
 740 
 741   INSN(addw, 0b000, 0b010);
 742   INSN(subw, 0b010, 0b000);
 743   INSN(add,  0b100, 0b110);
 744   INSN(sub,  0b110, 0b100);
 745 
 746 #undef INSN
 747 
 748  // Logical (immediate)
 749 #define INSN(NAME, decode, is32)                                \
 750   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 751     starti;                                                     \
 752     uint32_t val = encode_logical_immediate(is32, imm);         \
 753     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 754     srf(Rd, 0), zrf(Rn, 5);                                     \
 755   }
 756 
 757   INSN(andw, 0b000, true);
 758   INSN(orrw, 0b001, true);
 759   INSN(eorw, 0b010, true);
 760   INSN(andr,  0b100, false);
 761   INSN(orr,  0b101, false);
 762   INSN(eor,  0b110, false);
 763 
 764 #undef INSN
 765 
 766 #define INSN(NAME, decode, is32)                                \
 767   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 768     starti;                                                     \
 769     uint32_t val = encode_logical_immediate(is32, imm);         \
 770     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 771     zrf(Rd, 0), zrf(Rn, 5);                                     \
 772   }
 773 
 774   INSN(ands, 0b111, false);
 775   INSN(andsw, 0b011, true);
 776 
 777 #undef INSN
 778 
 779   // Move wide (immediate)
 780 #define INSN(NAME, opcode)                                              \
 781   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 782     assert_cond((shift/16)*16 == shift);                                \
 783     starti;                                                             \
 784     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 785       f(imm, 20, 5);                                                    \
 786     rf(Rd, 0);                                                          \
 787   }
 788 
 789   INSN(movnw, 0b000);
 790   INSN(movzw, 0b010);
 791   INSN(movkw, 0b011);
 792   INSN(movn, 0b100);
 793   INSN(movz, 0b110);
 794   INSN(movk, 0b111);
 795 
 796 #undef INSN
 797 
 798   // Bitfield
 799 #define INSN(NAME, opcode)                                              \
 800   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 801     starti;                                                             \
 802     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 803     rf(Rn, 5), rf(Rd, 0);                                               \
 804   }
 805 
 806   INSN(sbfmw, 0b0001001100);
 807   INSN(bfmw,  0b0011001100);
 808   INSN(ubfmw, 0b0101001100);
 809   INSN(sbfm,  0b1001001101);
 810   INSN(bfm,   0b1011001101);
 811   INSN(ubfm,  0b1101001101);
 812 
 813 #undef INSN
 814 
 815   // Extract
 816 #define INSN(NAME, opcode)                                              \
 817   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 818     starti;                                                             \
 819     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 820     rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                                   \
 821   }
 822 
 823   INSN(extrw, 0b00010011100);
 824   INSN(extr,  0b10010011110);
 825 
 826 #undef INSN
 827 
 828   // The maximum range of a branch is fixed for the AArch64
 829   // architecture.  In debug mode we shrink it in order to test
 830   // trampolines, but not so small that branches in the interpreter
 831   // are out of range.
 832   static const unsigned long branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
 833 
 834   static bool reachable_from_branch_at(address branch, address target) {
 835     return uabs(target - branch) < branch_range;
 836   }
 837 
 838   // Unconditional branch (immediate)
 839 
 840 #define INSN(NAME, opcode)                                              \
 841   void NAME(address dest) {                                             \
 842     starti;                                                             \
 843     long offset = (dest - pc()) >> 2;                                   \
 844     DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
 845     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);               \
 846   }                                                                     \
 847   void NAME(Label &L) {                                                 \
 848     wrap_label(L, &Assembler::NAME);                                    \
 849   }                                                                     \
 850   void NAME(const Address &dest);
 851 
 852   INSN(b, 0);
 853   INSN(bl, 1);
 854 
 855 #undef INSN
 856 
 857   // Compare & branch (immediate)
 858 #define INSN(NAME, opcode)                              \
 859   void NAME(Register Rt, address dest) {                \
 860     long offset = (dest - pc()) >> 2;                     \
 861     starti;                                             \
 862     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 863   }                                                     \
 864   void NAME(Register Rt, Label &L) {                        \
 865     wrap_label(Rt, L, &Assembler::NAME);            \
 866   }
 867 
 868   INSN(cbzw,  0b00110100);
 869   INSN(cbnzw, 0b00110101);
 870   INSN(cbz,   0b10110100);
 871   INSN(cbnz,  0b10110101);
 872 
 873 #undef INSN
 874 
 875   // Test & branch (immediate)
 876 #define INSN(NAME, opcode)                                              \
 877   void NAME(Register Rt, int bitpos, address dest) {                    \
 878     long offset = (dest - pc()) >> 2;                                     \
 879     int b5 = bitpos >> 5;                                         \
 880     bitpos &= 0x1f;                                                 \
 881     starti;                                                             \
 882     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 883     rf(Rt, 0);                                                          \
 884   }                                                                     \
 885   void NAME(Register Rt, int bitpos, Label &L) {                    \
 886     wrap_label(Rt, bitpos, L, &Assembler::NAME);                    \
 887   }
 888 
 889   INSN(tbz,  0b0110110);
 890   INSN(tbnz, 0b0110111);
 891 
 892 #undef INSN
 893 
 894   // Conditional branch (immediate)
 895   enum Condition
 896     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 897 
 898   void br(Condition  cond, address dest) {
 899     long offset = (dest - pc()) >> 2;
 900     starti;
 901     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
 902   }
 903 
 904 #define INSN(NAME, cond)                        \
 905   void NAME(address dest) {                     \
 906     br(cond, dest);                             \
 907   }
 908 
 909   INSN(beq, EQ);
 910   INSN(bne, NE);
 911   INSN(bhs, HS);
 912   INSN(bcs, CS);
 913   INSN(blo, LO);
 914   INSN(bcc, CC);
 915   INSN(bmi, MI);
 916   INSN(bpl, PL);
 917   INSN(bvs, VS);
 918   INSN(bvc, VC);
 919   INSN(bhi, HI);
 920   INSN(bls, LS);
 921   INSN(bge, GE);
 922   INSN(blt, LT);
 923   INSN(bgt, GT);
 924   INSN(ble, LE);
 925   INSN(bal, AL);
 926   INSN(bnv, NV);
 927 
 928   void br(Condition cc, Label &L);
 929 
 930 #undef INSN
 931 
 932   // Exception generation
 933   void generate_exception(int opc, int op2, int LL, unsigned imm) {
 934     starti;
 935     f(0b11010100, 31, 24);
 936     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
 937   }
 938 
 939 #define INSN(NAME, opc, op2, LL)                \
 940   void NAME(unsigned imm) {                     \
 941     generate_exception(opc, op2, LL, imm);      \
 942   }
 943 
 944   INSN(svc, 0b000, 0, 0b01);
 945   INSN(hvc, 0b000, 0, 0b10);
 946   INSN(smc, 0b000, 0, 0b11);
 947   INSN(brk, 0b001, 0, 0b00);
 948   INSN(hlt, 0b010, 0, 0b00);
 949   INSN(dpcs1, 0b101, 0, 0b01);
 950   INSN(dpcs2, 0b101, 0, 0b10);
 951   INSN(dpcs3, 0b101, 0, 0b11);
 952 
 953 #undef INSN
 954 
 955   // System
 956   void system(int op0, int op1, int CRn, int CRm, int op2,
 957               Register rt = dummy_reg)
 958   {
 959     starti;
 960     f(0b11010101000, 31, 21);
 961     f(op0, 20, 19);
 962     f(op1, 18, 16);
 963     f(CRn, 15, 12);
 964     f(CRm, 11, 8);
 965     f(op2, 7, 5);
 966     rf(rt, 0);
 967   }
 968 
 969   void hint(int imm) {
 970     system(0b00, 0b011, 0b0010, imm, 0b000);
 971   }
 972 
 973   void nop() {
 974     hint(0);
 975   }
 976   // we only provide mrs and msr for the special purpose system
 977   // registers where op1 (instr[20:19]) == 11 and, (currently) only
 978   // use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
 979 
 980   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
 981     starti;
 982     f(0b1101010100011, 31, 19);
 983     f(op1, 18, 16);
 984     f(CRn, 15, 12);
 985     f(CRm, 11, 8);
 986     f(op2, 7, 5);
 987     // writing zr is ok
 988     zrf(rt, 0);
 989   }
 990 
 991   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
 992     starti;
 993     f(0b1101010100111, 31, 19);
 994     f(op1, 18, 16);
 995     f(CRn, 15, 12);
 996     f(CRm, 11, 8);
 997     f(op2, 7, 5);
 998     // reading to zr is a mistake
 999     rf(rt, 0);
1000   }
1001 
1002   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1003                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1004 
1005   void dsb(barrier imm) {
1006     system(0b00, 0b011, 0b00011, imm, 0b100);
1007   }
1008 
1009   void dmb(barrier imm) {
1010     system(0b00, 0b011, 0b00011, imm, 0b101);
1011   }
1012 
1013   void isb() {
1014     system(0b00, 0b011, 0b00011, SY, 0b110);
1015   }
1016 
1017   void sys(int op1, int CRn, int CRm, int op2,
1018            Register rt = (Register)0b11111) {
1019     system(0b01, op1, CRn, CRm, op2, rt);
1020   }
1021 
1022   // Only implement operations accessible from EL0 or higher, i.e.,
1023   //            op1    CRn    CRm    op2
1024   // IC IVAU     3      7      5      1
1025   // DC CVAC     3      7      10     1
1026   // DC CVAU     3      7      11     1
1027   // DC CIVAC    3      7      14     1
1028   // DC ZVA      3      7      4      1
1029   // So only deal with the CRm field.
1030   enum icache_maintenance {IVAU = 0b0101};
1031   enum dcache_maintenance {CVAC = 0b1010, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100};
1032 
1033   void dc(dcache_maintenance cm, Register Rt) {
1034     sys(0b011, 0b0111, cm, 0b001, Rt);
1035   }
1036 
1037   void ic(icache_maintenance cm, Register Rt) {
1038     sys(0b011, 0b0111, cm, 0b001, Rt);
1039   }
1040 
1041   // A more convenient access to dmb for our purposes
1042   enum Membar_mask_bits {
1043     // We can use ISH for a barrier because the ARM ARM says "This
1044     // architecture assumes that all Processing Elements that use the
1045     // same operating system or hypervisor are in the same Inner
1046     // Shareable shareability domain."
1047     StoreStore = ISHST,
1048     LoadStore  = ISHLD,
1049     LoadLoad   = ISHLD,
1050     StoreLoad  = ISH,
1051     AnyAny     = ISH
1052   };
1053 
1054   void membar(Membar_mask_bits order_constraint) {
1055     dmb(Assembler::barrier(order_constraint));
1056   }
1057 
1058   // Unconditional branch (register)
1059   void branch_reg(Register R, int opc) {
1060     starti;
1061     f(0b1101011, 31, 25);
1062     f(opc, 24, 21);
1063     f(0b11111000000, 20, 10);
1064     rf(R, 5);
1065     f(0b00000, 4, 0);
1066   }
1067 
1068 #define INSN(NAME, opc)                         \
1069   void NAME(Register R) {                       \
1070     branch_reg(R, opc);                         \
1071   }
1072 
1073   INSN(br, 0b0000);
1074   INSN(blr, 0b0001);
1075   INSN(ret, 0b0010);
1076 
1077   void ret(void *p); // This forces a compile-time error for ret(0)
1078 
1079 #undef INSN
1080 
1081 #define INSN(NAME, opc)                         \
1082   void NAME() {                 \
1083     branch_reg(dummy_reg, opc);         \
1084   }
1085 
1086   INSN(eret, 0b0100);
1087   INSN(drps, 0b0101);
1088 
1089 #undef INSN
1090 
1091   // Load/store exclusive
1092   enum operand_size { byte, halfword, word, xword };
1093 
1094   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1095     Register Rn, enum operand_size sz, int op, bool ordered) {
1096     starti;
1097     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1098     rf(Rs, 16), f(ordered, 15), rf(Rt2, 10), srf(Rn, 5), zrf(Rt1, 0);
1099   }
1100 
1101   void load_exclusive(Register dst, Register addr,
1102                       enum operand_size sz, bool ordered) {
1103     load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
1104                          sz, 0b010, ordered);
1105   }
1106 
1107   void store_exclusive(Register status, Register new_val, Register addr,
1108                        enum operand_size sz, bool ordered) {
1109     load_store_exclusive(status, new_val, dummy_reg, addr,
1110                          sz, 0b000, ordered);
1111   }
1112 
1113 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1114   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1115     guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1116     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1117   }
1118 
1119 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1120   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1121     guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction");       \
1122     load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
1123   }
1124 
1125 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1126   void NAME(Register Rt, Register Rn) {                                 \
1127     load_store_exclusive(dummy_reg, Rt, dummy_reg, \
1128                          Rn, sz, op, o0);                               \
1129   }
1130 
1131 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1132   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1133     guarantee(Rt1 != Rt2, "unpredictable instruction");                 \
1134     load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0);          \
1135   }
1136 
1137   // bytes
1138   INSN3(stxrb, byte, 0b000, 0);
1139   INSN3(stlxrb, byte, 0b000, 1);
1140   INSN2(ldxrb, byte, 0b010, 0);
1141   INSN2(ldaxrb, byte, 0b010, 1);
1142   INSN2(stlrb, byte, 0b100, 1);
1143   INSN2(ldarb, byte, 0b110, 1);
1144 
1145   // halfwords
1146   INSN3(stxrh, halfword, 0b000, 0);
1147   INSN3(stlxrh, halfword, 0b000, 1);
1148   INSN2(ldxrh, halfword, 0b010, 0);
1149   INSN2(ldaxrh, halfword, 0b010, 1);
1150   INSN2(stlrh, halfword, 0b100, 1);
1151   INSN2(ldarh, halfword, 0b110, 1);
1152 
1153   // words
1154   INSN3(stxrw, word, 0b000, 0);
1155   INSN3(stlxrw, word, 0b000, 1);
1156   INSN4(stxpw, word, 0b001, 0);
1157   INSN4(stlxpw, word, 0b001, 1);
1158   INSN2(ldxrw, word, 0b010, 0);
1159   INSN2(ldaxrw, word, 0b010, 1);
1160   INSN_FOO(ldxpw, word, 0b011, 0);
1161   INSN_FOO(ldaxpw, word, 0b011, 1);
1162   INSN2(stlrw, word, 0b100, 1);
1163   INSN2(ldarw, word, 0b110, 1);
1164 
1165   // xwords
1166   INSN3(stxr, xword, 0b000, 0);
1167   INSN3(stlxr, xword, 0b000, 1);
1168   INSN4(stxp, xword, 0b001, 0);
1169   INSN4(stlxp, xword, 0b001, 1);
1170   INSN2(ldxr, xword, 0b010, 0);
1171   INSN2(ldaxr, xword, 0b010, 1);
1172   INSN_FOO(ldxp, xword, 0b011, 0);
1173   INSN_FOO(ldaxp, xword, 0b011, 1);
1174   INSN2(stlr, xword, 0b100, 1);
1175   INSN2(ldar, xword, 0b110, 1);
1176 
1177 #undef INSN2
1178 #undef INSN3
1179 #undef INSN4
1180 #undef INSN_FOO
1181 
1182   // 8.1 Compare and swap extensions
1183   void lse_cas(Register Rs, Register Rt, Register Rn,
1184                         enum operand_size sz, bool a, bool r, bool not_pair) {
1185     starti;
1186     if (! not_pair) { // Pair
1187       assert(sz == word || sz == xword, "invalid size");
1188       /* The size bit is in bit 30, not 31 */
1189       sz = (operand_size)(sz == word ? 0b00:0b01);
1190     }
1191     f(sz, 31, 30), f(0b001000, 29, 24), f(1, 23), f(a, 22), f(1, 21);
1192     rf(Rs, 16), f(r, 15), f(0b11111, 14, 10), rf(Rn, 5), rf(Rt, 0);
1193   }
1194 
1195   // CAS
1196 #define INSN(NAME, a, r)                                                \
1197   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1198     assert(Rs != Rn && Rs != Rt, "unpredictable instruction");          \
1199     lse_cas(Rs, Rt, Rn, sz, a, r, true);                                \
1200   }
1201   INSN(cas,    false, false)
1202   INSN(casa,   true,  false)
1203   INSN(casl,   false, true)
1204   INSN(casal,  true,  true)
1205 #undef INSN
1206 
1207   // CASP
1208 #define INSN(NAME, a, r)                                                \
1209   void NAME(operand_size sz, Register Rs, Register Rs1,                 \
1210             Register Rt, Register Rt1, Register Rn) {                   \
1211     assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 &&    \
1212            Rs->successor() == Rs1 && Rt->successor() == Rt1 &&          \
1213            Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers");     \
1214     lse_cas(Rs, Rt, Rn, sz, a, r, false);                               \
1215   }
1216   INSN(casp,    false, false)
1217   INSN(caspa,   true,  false)
1218   INSN(caspl,   false, true)
1219   INSN(caspal,  true,  true)
1220 #undef INSN
1221 
1222   // 8.1 Atomic operations
1223   void lse_atomic(Register Rs, Register Rt, Register Rn,
1224                   enum operand_size sz, int op1, int op2, bool a, bool r) {
1225     starti;
1226     f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
1227     rf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), rf(Rn, 5), zrf(Rt, 0);
1228   }
1229 
1230 #define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2)                   \
1231   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1232     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false);                 \
1233   }                                                                     \
1234   void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1235     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false);                  \
1236   }                                                                     \
1237   void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1238     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true);                  \
1239   }                                                                     \
1240   void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
1241     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true);                   \
1242   }
1243   INSN(ldadd,  ldadda,  ldaddl,  ldaddal,  0, 0b000);
1244   INSN(ldbic,  ldbica,  ldbicl,  ldbical,  0, 0b001);
1245   INSN(ldeor,  ldeora,  ldeorl,  ldeoral,  0, 0b010);
1246   INSN(ldorr,  ldorra,  ldorrl,  ldorral,  0, 0b011);
1247   INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
1248   INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
1249   INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
1250   INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
1251   INSN(swp,    swpa,    swpl,    swpal,    1, 0b000);
1252 #undef INSN
1253 
1254   // Load register (literal)
1255 #define INSN(NAME, opc, V)                                              \
1256   void NAME(Register Rt, address dest) {                                \
1257     long offset = (dest - pc()) >> 2;                                     \
1258     starti;                                                             \
1259     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1260       sf(offset, 23, 5);                                                \
1261     rf(Rt, 0);                                                          \
1262   }                                                                     \
1263   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1264     InstructionMark im(this);                                           \
1265     guarantee(rtype == relocInfo::internal_word_type,                   \
1266               "only internal_word_type relocs make sense here");        \
1267     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1268     NAME(Rt, dest);                                                     \
1269   }                                                                     \
1270   void NAME(Register Rt, Label &L) {                                        \
1271     wrap_label(Rt, L, &Assembler::NAME);                            \
1272   }
1273 
1274   INSN(ldrw, 0b00, 0);
1275   INSN(ldr, 0b01, 0);
1276   INSN(ldrsw, 0b10, 0);
1277 
1278 #undef INSN
1279 
1280 #define INSN(NAME, opc, V)                                              \
1281   void NAME(FloatRegister Rt, address dest) {                           \
1282     long offset = (dest - pc()) >> 2;                                     \
1283     starti;                                                             \
1284     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1285       sf(offset, 23, 5);                                                \
1286     rf((Register)Rt, 0);                                                \
1287   }
1288 
1289   INSN(ldrs, 0b00, 1);
1290   INSN(ldrd, 0b01, 1);
1291   INSN(ldrq, 0x10, 1);
1292 
1293 #undef INSN
1294 
1295 #define INSN(NAME, opc, V)                                              \
1296   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1297     long offset = (dest - pc()) >> 2;                                     \
1298     starti;                                                             \
1299     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1300       sf(offset, 23, 5);                                                \
1301     f(op, 4, 0);                                                        \
1302   }                                                                     \
1303   void NAME(Label &L, prfop op = PLDL1KEEP) {                               \
1304     wrap_label(L, op, &Assembler::NAME);                            \
1305   }
1306 
1307   INSN(prfm, 0b11, 0);
1308 
1309 #undef INSN
1310 
1311   // Load/store
1312   void ld_st1(int opc, int p1, int V, int L,
1313               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1314     starti;
1315     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1316     zrf(Rt2, 10), zrf(Rt1, 0);
1317     if (no_allocate) {
1318       adr.encode_nontemporal_pair(current);
1319     } else {
1320       adr.encode_pair(current);
1321     }
1322   }
1323 
1324   // Load/store register pair (offset)
1325 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1326   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1327     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1328    }
1329 
1330   INSN(stpw, 0b00, 0b101, 0, 0, false);
1331   INSN(ldpw, 0b00, 0b101, 0, 1, false);
1332   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1333   INSN(stp, 0b10, 0b101, 0, 0, false);
1334   INSN(ldp, 0b10, 0b101, 0, 1, false);
1335 
1336   // Load/store no-allocate pair (offset)
1337   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1338   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1339   INSN(stnp, 0b10, 0b101, 0, 0, true);
1340   INSN(ldnp, 0b10, 0b101, 0, 1, true);
1341 
1342 #undef INSN
1343 
1344 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1345   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1346     ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \
1347    }
1348 
1349   INSN(stps, 0b00, 0b101, 1, 0, false);
1350   INSN(ldps, 0b00, 0b101, 1, 1, false);
1351   INSN(stpd, 0b01, 0b101, 1, 0, false);
1352   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1353   INSN(stpq, 0b10, 0b101, 1, 0, false);
1354   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1355 
1356 #undef INSN
1357 
1358   // Load/store register (all modes)
1359   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1360     starti;
1361 
1362     f(V, 26); // general reg?
1363     zrf(Rt, 0);
1364 
1365     // Encoding for literal loads is done here (rather than pushed
1366     // down into Address::encode) because the encoding of this
1367     // instruction is too different from all of the other forms to
1368     // make it worth sharing.
1369     if (adr.getMode() == Address::literal) {
1370       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1371       assert(op == 0b01, "literal form can only be used with loads");
1372       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1373       long offset = (adr.target() - pc()) >> 2;
1374       sf(offset, 23, 5);
1375       code_section()->relocate(pc(), adr.rspec());
1376       return;
1377     }
1378 
1379     f(size, 31, 30);
1380     f(op, 23, 22); // str
1381     adr.encode(current);
1382   }
1383 
1384 #define INSN(NAME, size, op)                            \
1385   void NAME(Register Rt, const Address &adr) {              \
1386     ld_st2(Rt, adr, size, op);                          \
1387   }                                                     \
1388 
1389   INSN(str, 0b11, 0b00);
1390   INSN(strw, 0b10, 0b00);
1391   INSN(strb, 0b00, 0b00);
1392   INSN(strh, 0b01, 0b00);
1393 
1394   INSN(ldr, 0b11, 0b01);
1395   INSN(ldrw, 0b10, 0b01);
1396   INSN(ldrb, 0b00, 0b01);
1397   INSN(ldrh, 0b01, 0b01);
1398 
1399   INSN(ldrsb, 0b00, 0b10);
1400   INSN(ldrsbw, 0b00, 0b11);
1401   INSN(ldrsh, 0b01, 0b10);
1402   INSN(ldrshw, 0b01, 0b11);
1403   INSN(ldrsw, 0b10, 0b10);
1404 
1405 #undef INSN
1406 
1407 #define INSN(NAME, size, op)                                    \
1408   void NAME(const Address &adr, prfop pfop = PLDL1KEEP) {   \
1409     ld_st2((Register)pfop, adr, size, op);                      \
1410   }
1411 
1412   INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with
1413                           // writeback modes, but the assembler
1414                           // doesn't enfore that.
1415 
1416 #undef INSN
1417 
1418 #define INSN(NAME, size, op)                            \
1419   void NAME(FloatRegister Rt, const Address &adr) { \
1420     ld_st2((Register)Rt, adr, size, op, 1);             \
1421   }
1422 
1423   INSN(strd, 0b11, 0b00);
1424   INSN(strs, 0b10, 0b00);
1425   INSN(ldrd, 0b11, 0b01);
1426   INSN(ldrs, 0b10, 0b01);
1427   INSN(strq, 0b00, 0b10);
1428   INSN(ldrq, 0x00, 0b11);
1429 
1430 #undef INSN
1431 
1432   enum shift_kind { LSL, LSR, ASR, ROR };
1433 
1434   void op_shifted_reg(unsigned decode,
1435                       enum shift_kind kind, unsigned shift,
1436                       unsigned size, unsigned op) {
1437     f(size, 31);
1438     f(op, 30, 29);
1439     f(decode, 28, 24);
1440     f(shift, 15, 10);
1441     f(kind, 23, 22);
1442   }
1443 
1444   // Logical (shifted register)
1445 #define INSN(NAME, size, op, N)                                 \
1446   void NAME(Register Rd, Register Rn, Register Rm,              \
1447             enum shift_kind kind = LSL, unsigned shift = 0) {   \
1448     starti;                                                     \
1449     f(N, 21);                                                   \
1450     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                        \
1451     op_shifted_reg(0b01010, kind, shift, size, op);             \
1452   }
1453 
1454   INSN(andr, 1, 0b00, 0);
1455   INSN(orr, 1, 0b01, 0);
1456   INSN(eor, 1, 0b10, 0);
1457   INSN(ands, 1, 0b11, 0);
1458   INSN(andw, 0, 0b00, 0);
1459   INSN(orrw, 0, 0b01, 0);
1460   INSN(eorw, 0, 0b10, 0);
1461   INSN(andsw, 0, 0b11, 0);
1462 
1463   INSN(bic, 1, 0b00, 1);
1464   INSN(orn, 1, 0b01, 1);
1465   INSN(eon, 1, 0b10, 1);
1466   INSN(bics, 1, 0b11, 1);
1467   INSN(bicw, 0, 0b00, 1);
1468   INSN(ornw, 0, 0b01, 1);
1469   INSN(eonw, 0, 0b10, 1);
1470   INSN(bicsw, 0, 0b11, 1);
1471 
1472 #undef INSN
1473 
1474   // Add/subtract (shifted register)
1475 #define INSN(NAME, size, op)                            \
1476   void NAME(Register Rd, Register Rn, Register Rm,      \
1477             enum shift_kind kind, unsigned shift = 0) { \
1478     starti;                                             \
1479     f(0, 21);                                           \
1480     assert_cond(kind != ROR);                           \
1481     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1482     op_shifted_reg(0b01011, kind, shift, size, op);     \
1483   }
1484 
1485   INSN(add, 1, 0b000);
1486   INSN(sub, 1, 0b10);
1487   INSN(addw, 0, 0b000);
1488   INSN(subw, 0, 0b10);
1489 
1490   INSN(adds, 1, 0b001);
1491   INSN(subs, 1, 0b11);
1492   INSN(addsw, 0, 0b001);
1493   INSN(subsw, 0, 0b11);
1494 
1495 #undef INSN
1496 
1497   // Add/subtract (extended register)
1498 #define INSN(NAME, op)                                                  \
1499   void NAME(Register Rd, Register Rn, Register Rm,                      \
1500            ext::operation option, int amount = 0) {                     \
1501     starti;                                                             \
1502     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1503     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1504   }
1505 
1506   void add_sub_extended_reg(unsigned op, unsigned decode,
1507     Register Rd, Register Rn, Register Rm,
1508     unsigned opt, ext::operation option, unsigned imm) {
1509     guarantee(imm <= 4, "shift amount must be < 4");
1510     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1511     f(option, 15, 13), f(imm, 12, 10);
1512   }
1513 
1514   INSN(addw, 0b000);
1515   INSN(subw, 0b010);
1516   INSN(add, 0b100);
1517   INSN(sub, 0b110);
1518 
1519 #undef INSN
1520 
1521 #define INSN(NAME, op)                                                  \
1522   void NAME(Register Rd, Register Rn, Register Rm,                      \
1523            ext::operation option, int amount = 0) {                     \
1524     starti;                                                             \
1525     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1526     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1527   }
1528 
1529   INSN(addsw, 0b001);
1530   INSN(subsw, 0b011);
1531   INSN(adds, 0b101);
1532   INSN(subs, 0b111);
1533 
1534 #undef INSN
1535 
1536   // Aliases for short forms of add and sub
1537 #define INSN(NAME)                                      \
1538   void NAME(Register Rd, Register Rn, Register Rm) {    \
1539     if (Rd == sp || Rn == sp)                           \
1540       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1541     else                                                \
1542       NAME(Rd, Rn, Rm, LSL);                            \
1543   }
1544 
1545   INSN(addw);
1546   INSN(subw);
1547   INSN(add);
1548   INSN(sub);
1549 
1550   INSN(addsw);
1551   INSN(subsw);
1552   INSN(adds);
1553   INSN(subs);
1554 
1555 #undef INSN
1556 
1557   // Add/subtract (with carry)
1558   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1559     starti;
1560     f(op, 31, 29);
1561     f(0b11010000, 28, 21);
1562     f(0b000000, 15, 10);
1563     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1564   }
1565 
1566   #define INSN(NAME, op)                                \
1567     void NAME(Register Rd, Register Rn, Register Rm) {  \
1568       add_sub_carry(op, Rd, Rn, Rm);                    \
1569     }
1570 
1571   INSN(adcw, 0b000);
1572   INSN(adcsw, 0b001);
1573   INSN(sbcw, 0b010);
1574   INSN(sbcsw, 0b011);
1575   INSN(adc, 0b100);
1576   INSN(adcs, 0b101);
1577   INSN(sbc,0b110);
1578   INSN(sbcs, 0b111);
1579 
1580 #undef INSN
1581 
1582   // Conditional compare (both kinds)
1583   void conditional_compare(unsigned op, int o2, int o3,
1584                            Register Rn, unsigned imm5, unsigned nzcv,
1585                            unsigned cond) {
1586     f(op, 31, 29);
1587     f(0b11010010, 28, 21);
1588     f(cond, 15, 12);
1589     f(o2, 10);
1590     f(o3, 4);
1591     f(nzcv, 3, 0);
1592     f(imm5, 20, 16), rf(Rn, 5);
1593   }
1594 
1595 #define INSN(NAME, op)                                                  \
1596   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1597     starti;                                                             \
1598     f(0, 11);                                                           \
1599     conditional_compare(op, 0, 0, Rn, (uintptr_t)Rm, imm, cond);        \
1600   }                                                                     \
1601                                                                         \
1602   void NAME(Register Rn, int imm5, int imm, Condition cond) {   \
1603     starti;                                                             \
1604     f(1, 11);                                                           \
1605     conditional_compare(op, 0, 0, Rn, imm5, imm, cond);                 \
1606   }
1607 
1608   INSN(ccmnw, 0b001);
1609   INSN(ccmpw, 0b011);
1610   INSN(ccmn, 0b101);
1611   INSN(ccmp, 0b111);
1612 
1613 #undef INSN
1614 
1615   // Conditional select
1616   void conditional_select(unsigned op, unsigned op2,
1617                           Register Rd, Register Rn, Register Rm,
1618                           unsigned cond) {
1619     starti;
1620     f(op, 31, 29);
1621     f(0b11010100, 28, 21);
1622     f(cond, 15, 12);
1623     f(op2, 11, 10);
1624     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1625   }
1626 
1627 #define INSN(NAME, op, op2)                                             \
1628   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
1629     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1630   }
1631 
1632   INSN(cselw, 0b000, 0b00);
1633   INSN(csincw, 0b000, 0b01);
1634   INSN(csinvw, 0b010, 0b00);
1635   INSN(csnegw, 0b010, 0b01);
1636   INSN(csel, 0b100, 0b00);
1637   INSN(csinc, 0b100, 0b01);
1638   INSN(csinv, 0b110, 0b00);
1639   INSN(csneg, 0b110, 0b01);
1640 
1641 #undef INSN
1642 
1643   // Data processing
1644   void data_processing(unsigned op29, unsigned opcode,
1645                        Register Rd, Register Rn) {
1646     f(op29, 31, 29), f(0b11010110, 28, 21);
1647     f(opcode, 15, 10);
1648     rf(Rn, 5), rf(Rd, 0);
1649   }
1650 
1651   // (1 source)
1652 #define INSN(NAME, op29, opcode2, opcode)       \
1653   void NAME(Register Rd, Register Rn) {         \
1654     starti;                                     \
1655     f(opcode2, 20, 16);                         \
1656     data_processing(op29, opcode, Rd, Rn);      \
1657   }
1658 
1659   INSN(rbitw,  0b010, 0b00000, 0b00000);
1660   INSN(rev16w, 0b010, 0b00000, 0b00001);
1661   INSN(revw,   0b010, 0b00000, 0b00010);
1662   INSN(clzw,   0b010, 0b00000, 0b00100);
1663   INSN(clsw,   0b010, 0b00000, 0b00101);
1664 
1665   INSN(rbit,   0b110, 0b00000, 0b00000);
1666   INSN(rev16,  0b110, 0b00000, 0b00001);
1667   INSN(rev32,  0b110, 0b00000, 0b00010);
1668   INSN(rev,    0b110, 0b00000, 0b00011);
1669   INSN(clz,    0b110, 0b00000, 0b00100);
1670   INSN(cls,    0b110, 0b00000, 0b00101);
1671 
1672 #undef INSN
1673 
1674   // (2 sources)
1675 #define INSN(NAME, op29, opcode)                        \
1676   void NAME(Register Rd, Register Rn, Register Rm) {    \
1677     starti;                                             \
1678     rf(Rm, 16);                                         \
1679     data_processing(op29, opcode, Rd, Rn);              \
1680   }
1681 
1682   INSN(udivw, 0b000, 0b000010);
1683   INSN(sdivw, 0b000, 0b000011);
1684   INSN(lslvw, 0b000, 0b001000);
1685   INSN(lsrvw, 0b000, 0b001001);
1686   INSN(asrvw, 0b000, 0b001010);
1687   INSN(rorvw, 0b000, 0b001011);
1688 
1689   INSN(udiv, 0b100, 0b000010);
1690   INSN(sdiv, 0b100, 0b000011);
1691   INSN(lslv, 0b100, 0b001000);
1692   INSN(lsrv, 0b100, 0b001001);
1693   INSN(asrv, 0b100, 0b001010);
1694   INSN(rorv, 0b100, 0b001011);
1695 
1696 #undef INSN
1697 
1698   // (3 sources)
1699   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1700                        Register Rd, Register Rn, Register Rm,
1701                        Register Ra) {
1702     starti;
1703     f(op54, 31, 29), f(0b11011, 28, 24);
1704     f(op31, 23, 21), f(o0, 15);
1705     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1706   }
1707 
1708 #define INSN(NAME, op54, op31, o0)                                      \
1709   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1710     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1711   }
1712 
1713   INSN(maddw, 0b000, 0b000, 0);
1714   INSN(msubw, 0b000, 0b000, 1);
1715   INSN(madd, 0b100, 0b000, 0);
1716   INSN(msub, 0b100, 0b000, 1);
1717   INSN(smaddl, 0b100, 0b001, 0);
1718   INSN(smsubl, 0b100, 0b001, 1);
1719   INSN(umaddl, 0b100, 0b101, 0);
1720   INSN(umsubl, 0b100, 0b101, 1);
1721 
1722 #undef INSN
1723 
1724 #define INSN(NAME, op54, op31, o0)                      \
1725   void NAME(Register Rd, Register Rn, Register Rm) {    \
1726     data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31);  \
1727   }
1728 
1729   INSN(smulh, 0b100, 0b010, 0);
1730   INSN(umulh, 0b100, 0b110, 0);
1731 
1732 #undef INSN
1733 
1734   // Floating-point data-processing (1 source)
1735   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1736                        FloatRegister Vd, FloatRegister Vn) {
1737     starti;
1738     f(op31, 31, 29);
1739     f(0b11110, 28, 24);
1740     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
1741     rf(Vn, 5), rf(Vd, 0);
1742   }
1743 
1744 #define INSN(NAME, op31, type, opcode)                  \
1745   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
1746     data_processing(op31, type, opcode, Vd, Vn);        \
1747   }
1748 
1749 private:
1750   INSN(i_fmovs, 0b000, 0b00, 0b000000);
1751 public:
1752   INSN(fabss, 0b000, 0b00, 0b000001);
1753   INSN(fnegs, 0b000, 0b00, 0b000010);
1754   INSN(fsqrts, 0b000, 0b00, 0b000011);
1755   INSN(fcvts, 0b000, 0b00, 0b000101);   // Single-precision to double-precision
1756 
1757 private:
1758   INSN(i_fmovd, 0b000, 0b01, 0b000000);
1759 public:
1760   INSN(fabsd, 0b000, 0b01, 0b000001);
1761   INSN(fnegd, 0b000, 0b01, 0b000010);
1762   INSN(fsqrtd, 0b000, 0b01, 0b000011);
1763   INSN(fcvtd, 0b000, 0b01, 0b000100);   // Double-precision to single-precision
1764 
1765   void fmovd(FloatRegister Vd, FloatRegister Vn) {
1766     assert(Vd != Vn, "should be");
1767     i_fmovd(Vd, Vn);
1768   }
1769 
1770   void fmovs(FloatRegister Vd, FloatRegister Vn) {
1771     assert(Vd != Vn, "should be");
1772     i_fmovs(Vd, Vn);
1773   }
1774 
1775 #undef INSN
1776 
1777   // Floating-point data-processing (2 source)
1778   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1779                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
1780     starti;
1781     f(op31, 31, 29);
1782     f(0b11110, 28, 24);
1783     f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10);
1784     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1785   }
1786 
1787 #define INSN(NAME, op31, type, opcode)                  \
1788   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
1789     data_processing(op31, type, opcode, Vd, Vn, Vm);    \
1790   }
1791 
1792   INSN(fmuls, 0b000, 0b00, 0b0000);
1793   INSN(fdivs, 0b000, 0b00, 0b0001);
1794   INSN(fadds, 0b000, 0b00, 0b0010);
1795   INSN(fsubs, 0b000, 0b00, 0b0011);
1796   INSN(fnmuls, 0b000, 0b00, 0b1000);
1797 
1798   INSN(fmuld, 0b000, 0b01, 0b0000);
1799   INSN(fdivd, 0b000, 0b01, 0b0001);
1800   INSN(faddd, 0b000, 0b01, 0b0010);
1801   INSN(fsubd, 0b000, 0b01, 0b0011);
1802   INSN(fnmuld, 0b000, 0b01, 0b1000);
1803 
1804 #undef INSN
1805 
1806    // Floating-point data-processing (3 source)
1807   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
1808                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
1809                        FloatRegister Va) {
1810     starti;
1811     f(op31, 31, 29);
1812     f(0b11111, 28, 24);
1813     f(type, 23, 22), f(o1, 21), f(o0, 15);
1814     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
1815   }
1816 
1817 #define INSN(NAME, op31, type, o1, o0)                                  \
1818   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
1819             FloatRegister Va) {                                         \
1820     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
1821   }
1822 
1823   INSN(fmadds, 0b000, 0b00, 0, 0);
1824   INSN(fmsubs, 0b000, 0b00, 0, 1);
1825   INSN(fnmadds, 0b000, 0b00, 1, 0);
1826   INSN(fnmsubs, 0b000, 0b00, 1, 1);
1827 
1828   INSN(fmaddd, 0b000, 0b01, 0, 0);
1829   INSN(fmsubd, 0b000, 0b01, 0, 1);
1830   INSN(fnmaddd, 0b000, 0b01, 1, 0);
1831   INSN(fnmsub, 0b000, 0b01, 1, 1);
1832 
1833 #undef INSN
1834 
1835    // Floating-point conditional select
1836   void fp_conditional_select(unsigned op31, unsigned type,
1837                              unsigned op1, unsigned op2,
1838                              Condition cond, FloatRegister Vd,
1839                              FloatRegister Vn, FloatRegister Vm) {
1840     starti;
1841     f(op31, 31, 29);
1842     f(0b11110, 28, 24);
1843     f(type, 23, 22);
1844     f(op1, 21, 21);
1845     f(op2, 11, 10);
1846     f(cond, 15, 12);
1847     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1848   }
1849 
1850 #define INSN(NAME, op31, type, op1, op2)                                \
1851   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
1852             FloatRegister Vm, Condition cond) {                         \
1853     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
1854   }
1855 
1856   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
1857   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
1858 
1859 #undef INSN
1860 
1861    // Floating-point<->integer conversions
1862   void float_int_convert(unsigned op31, unsigned type,
1863                          unsigned rmode, unsigned opcode,
1864                          Register Rd, Register Rn) {
1865     starti;
1866     f(op31, 31, 29);
1867     f(0b11110, 28, 24);
1868     f(type, 23, 22), f(1, 21), f(rmode, 20, 19);
1869     f(opcode, 18, 16), f(0b000000, 15, 10);
1870     zrf(Rn, 5), zrf(Rd, 0);
1871   }
1872 
1873 #define INSN(NAME, op31, type, rmode, opcode)                           \
1874   void NAME(Register Rd, FloatRegister Vn) {                            \
1875     float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn);     \
1876   }
1877 
1878   INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000);
1879   INSN(fcvtzs,  0b100, 0b00, 0b11, 0b000);
1880   INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000);
1881   INSN(fcvtzd,  0b100, 0b01, 0b11, 0b000);
1882 
1883   INSN(fmovs, 0b000, 0b00, 0b00, 0b110);
1884   INSN(fmovd, 0b100, 0b01, 0b00, 0b110);
1885 
1886   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b110);
1887 
1888 #undef INSN
1889 
1890 #define INSN(NAME, op31, type, rmode, opcode)                           \
1891   void NAME(FloatRegister Vd, Register Rn) {                            \
1892     float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn);     \
1893   }
1894 
1895   INSN(fmovs, 0b000, 0b00, 0b00, 0b111);
1896   INSN(fmovd, 0b100, 0b01, 0b00, 0b111);
1897 
1898   INSN(scvtfws, 0b000, 0b00, 0b00, 0b010);
1899   INSN(scvtfs,  0b100, 0b00, 0b00, 0b010);
1900   INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010);
1901   INSN(scvtfd,  0b100, 0b01, 0b00, 0b010);
1902 
1903   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
1904 
1905 #undef INSN
1906 
1907   // Floating-point compare
1908   void float_compare(unsigned op31, unsigned type,
1909                      unsigned op, unsigned op2,
1910                      FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) {
1911     starti;
1912     f(op31, 31, 29);
1913     f(0b11110, 28, 24);
1914     f(type, 23, 22), f(1, 21);
1915     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
1916     rf(Vn, 5), rf(Vm, 16);
1917   }
1918 
1919 
1920 #define INSN(NAME, op31, type, op, op2)                 \
1921   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
1922     float_compare(op31, type, op, op2, Vn, Vm);         \
1923   }
1924 
1925 #define INSN1(NAME, op31, type, op, op2)        \
1926   void NAME(FloatRegister Vn, double d) {       \
1927     assert_cond(d == 0.0);                      \
1928     float_compare(op31, type, op, op2, Vn);     \
1929   }
1930 
1931   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
1932   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
1933   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
1934   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
1935 
1936   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
1937   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
1938   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
1939   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
1940 
1941 #undef INSN
1942 #undef INSN1
1943 
1944   // Floating-point Move (immediate)
1945 private:
1946   unsigned pack(double value);
1947 
1948   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
1949     starti;
1950     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
1951     f(pack(value), 20, 13), f(0b10000000, 12, 5);
1952     rf(Vn, 0);
1953   }
1954 
1955 public:
1956 
1957   void fmovs(FloatRegister Vn, double value) {
1958     if (value)
1959       fmov_imm(Vn, value, 0b00);
1960     else
1961       fmovs(Vn, zr);
1962   }
1963   void fmovd(FloatRegister Vn, double value) {
1964     if (value)
1965       fmov_imm(Vn, value, 0b01);
1966     else
1967       fmovd(Vn, zr);
1968   }
1969 
1970 /* SIMD extensions
1971  *
1972  * We just use FloatRegister in the following. They are exactly the same
1973  * as SIMD registers.
1974  */
1975  public:
1976 
1977   enum SIMD_Arrangement {
1978        T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D
1979   };
1980 
1981   enum SIMD_RegVariant {
1982        B, H, S, D, Q
1983   };
1984 
1985 #define INSN(NAME, op)                                            \
1986   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {   \
1987     ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
1988   }                                                                      \
1989 
1990   INSN(ldr, 1);
1991   INSN(str, 0);
1992 
1993 #undef INSN
1994 
1995  private:
1996 
1997   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
1998     starti;
1999     f(0,31), f((int)T & 1, 30);
2000     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
2001     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
2002   }
2003   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2004              int imm, int op1, int op2) {
2005     starti;
2006     f(0,31), f((int)T & 1, 30);
2007     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
2008     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
2009   }
2010   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2011              Register Xm, int op1, int op2) {
2012     starti;
2013     f(0,31), f((int)T & 1, 30);
2014     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
2015     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
2016   }
2017 
2018  void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2) {
2019    switch (a.getMode()) {
2020    case Address::base_plus_offset:
2021      guarantee(a.offset() == 0, "no offset allowed here");
2022      ld_st(Vt, T, a.base(), op1, op2);
2023      break;
2024    case Address::post:
2025      ld_st(Vt, T, a.base(), a.offset(), op1, op2);
2026      break;
2027    case Address::base_plus_offset_reg:
2028      ld_st(Vt, T, a.base(), a.index(), op1, op2);
2029      break;
2030    default:
2031      ShouldNotReachHere();
2032    }
2033  }
2034 
2035  public:
2036 
2037 #define INSN1(NAME, op1, op2)                                   \
2038   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {       \
2039    ld_st(Vt, T, a, op1, op2);                                           \
2040  }
2041 
2042 #define INSN2(NAME, op1, op2)                                           \
2043   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
2044     assert(Vt->successor() == Vt2, "Registers must be ordered");     \
2045     ld_st(Vt, T, a, op1, op2);                                          \
2046   }
2047 
2048 #define INSN3(NAME, op1, op2)                                           \
2049   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2050             SIMD_Arrangement T, const Address &a) {                 \
2051     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,             \
2052            "Registers must be ordered");                                \
2053     ld_st(Vt, T, a, op1, op2);                                          \
2054   }
2055 
2056 #define INSN4(NAME, op1, op2)                                           \
2057   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2058             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {      \
2059     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&           \
2060            Vt3->successor() == Vt4, "Registers must be ordered");    \
2061     ld_st(Vt, T, a, op1, op2);                                          \
2062   }
2063 
2064   INSN1(ld1,  0b001100010, 0b0111);
2065   INSN2(ld1,  0b001100010, 0b1010);
2066   INSN3(ld1,  0b001100010, 0b0110);
2067   INSN4(ld1,  0b001100010, 0b0010);
2068 
2069   INSN2(ld2,  0b001100010, 0b1000);
2070   INSN3(ld3,  0b001100010, 0b0100);
2071   INSN4(ld4,  0b001100010, 0b0000);
2072 
2073   INSN1(st1,  0b001100000, 0b0111);
2074   INSN2(st1,  0b001100000, 0b1010);
2075   INSN3(st1,  0b001100000, 0b0110);
2076   INSN4(st1,  0b001100000, 0b0010);
2077 
2078   INSN2(st2,  0b001100000, 0b1000);
2079   INSN3(st3,  0b001100000, 0b0100);
2080   INSN4(st4,  0b001100000, 0b0000);
2081 
2082   INSN1(ld1r, 0b001101010, 0b1100);
2083   INSN2(ld2r, 0b001101011, 0b1100);
2084   INSN3(ld3r, 0b001101010, 0b1110);
2085   INSN4(ld4r, 0b001101011, 0b1110);
2086 
2087 #undef INSN1
2088 #undef INSN2
2089 #undef INSN3
2090 #undef INSN4
2091 
2092 #define INSN(NAME, opc)                                                                 \
2093   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2094     starti;                                                                             \
2095     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2096     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2097     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2098   }
2099 
2100   INSN(eor,  0b101110001);
2101   INSN(orr,  0b001110101);
2102   INSN(andr, 0b001110001);
2103   INSN(bic,  0b001110011);
2104   INSN(bif,  0b101110111);
2105   INSN(bit,  0b101110101);
2106   INSN(bsl,  0b101110011);
2107   INSN(orn,  0b001110111);
2108 
2109 #undef INSN
2110 
2111 #define INSN(NAME, opc, opc2)                                                                 \
2112   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2113     starti;                                                                             \
2114     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2115     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2116     rf(Vn, 5), rf(Vd, 0);                                                               \
2117   }
2118 
2119   INSN(addv, 0, 0b100001);
2120   INSN(subv, 1, 0b100001);
2121   INSN(mulv, 0, 0b100111);
2122   INSN(mlav, 0, 0b100101);
2123   INSN(mlsv, 1, 0b100101);
2124   INSN(sshl, 0, 0b010001);
2125   INSN(ushl, 1, 0b010001);
2126 
2127 #undef INSN
2128 
2129 #define INSN(NAME, opc, opc2) \
2130   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2131     starti;                                                                             \
2132     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2133     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2134     rf(Vn, 5), rf(Vd, 0);                                                               \
2135   }
2136 
2137   INSN(absr,  0, 0b100000101110);
2138   INSN(negr,  1, 0b100000101110);
2139   INSN(notr,  1, 0b100000010110);
2140   INSN(addv,  0, 0b110001101110);
2141   INSN(cls,   0, 0b100000010010);
2142   INSN(clz,   1, 0b100000010010);
2143   INSN(cnt,   0, 0b100000010110);
2144 
2145 #undef INSN
2146 
2147 #define INSN(NAME, op0, cmode0) \
2148   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2149     unsigned cmode = cmode0;                                                           \
2150     unsigned op = op0;                                                                 \
2151     starti;                                                                            \
2152     assert(lsl == 0 ||                                                                 \
2153            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2154            ((T == T2S || T == T4S) && ((lsl >> 3) < 4)), "invalid shift");             \
2155     cmode |= lsl >> 2;                                                                 \
2156     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2157     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2158       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2159       cmode = 0b1110;                                                                  \
2160       if (T == T1D || T == T2D) op = 1;                                                \
2161     }                                                                                  \
2162     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2163     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2164     rf(Vd, 0);                                                                         \
2165   }
2166 
2167   INSN(movi, 0, 0);
2168   INSN(orri, 0, 1);
2169   INSN(mvni, 1, 0);
2170   INSN(bici, 1, 1);
2171 
2172 #undef INSN
2173 
2174 #define INSN(NAME, op1, op2, op3) \
2175   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2176     starti;                                                                             \
2177     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                    \
2178     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23);            \
2179     f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0);    \
2180   }
2181 
2182   INSN(fadd, 0, 0, 0b110101);
2183   INSN(fdiv, 1, 0, 0b111111);
2184   INSN(fmul, 1, 0, 0b110111);
2185   INSN(fsub, 0, 1, 0b110101);
2186 
2187 #undef INSN
2188 
2189 #define INSN(NAME, opc)                                                                 \
2190   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2191     starti;                                                                             \
2192     assert(T == T4S, "arrangement must be T4S");                                        \
2193     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2194   }
2195 
2196   INSN(sha1c,     0b000000);
2197   INSN(sha1m,     0b001000);
2198   INSN(sha1p,     0b000100);
2199   INSN(sha1su0,   0b001100);
2200   INSN(sha256h2,  0b010100);
2201   INSN(sha256h,   0b010000);
2202   INSN(sha256su1, 0b011000);
2203 
2204 #undef INSN
2205 
2206 #define INSN(NAME, opc)                                                                 \
2207   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2208     starti;                                                                             \
2209     assert(T == T4S, "arrangement must be T4S");                                        \
2210     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2211   }
2212 
2213   INSN(sha1h,     0b000010);
2214   INSN(sha1su1,   0b000110);
2215   INSN(sha256su0, 0b001010);
2216 
2217 #undef INSN
2218 
2219 #define INSN(NAME, opc)                           \
2220   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2221     starti;                                       \
2222     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2223   }
2224 
2225   INSN(aese, 0b0100111000101000010010);
2226   INSN(aesd, 0b0100111000101000010110);
2227   INSN(aesmc, 0b0100111000101000011010);
2228   INSN(aesimc, 0b0100111000101000011110);
2229 
2230 #undef INSN
2231 
2232   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2233     starti;
2234     assert(T != Q, "invalid register variant");
2235     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2236     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2237   }
2238 
2239   void umov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {
2240     starti;
2241     f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21);
2242     f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001111, 15, 10);
2243     rf(Vn, 5), rf(Rd, 0);
2244   }
2245 
2246 #define INSN(NAME, opc, opc2) \
2247   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){         \
2248     starti;                                                                             \
2249     /* The encodings for the immh:immb fields (bits 22:16) are                          \
2250      *   0001 xxx       8B/16B, shift = xxx                                             \
2251      *   001x xxx       4H/8H,  shift = xxxx                                            \
2252      *   01xx xxx       2S/4S,  shift = xxxxx                                           \
2253      *   1xxx xxx       1D/2D,  shift = xxxxxx (1D is RESERVED)                         \
2254      */                                                                                 \
2255     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");                           \
2256     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),                            \
2257     f((1 << ((T>>1)+3))|shift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);          \
2258   }
2259 
2260   INSN(shl,  0, 0b010101);
2261   INSN(sshr, 0, 0b000001);
2262   INSN(ushr, 1, 0b000001);
2263 
2264 #undef INSN
2265 
2266   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2267     starti;
2268     /* The encodings for the immh:immb fields (bits 22:16) are
2269      *   0001 xxx       8H, 8B/16b shift = xxx
2270      *   001x xxx       4S, 4H/8H  shift = xxxx
2271      *   01xx xxx       2D, 2S/4S  shift = xxxxx
2272      *   1xxx xxx       RESERVED
2273      */
2274     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
2275     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
2276     f(0, 31), f(Tb & 1, 30), f(0b1011110, 29, 23), f((1 << ((Tb>>1)+3))|shift, 22, 16);
2277     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2278   }
2279   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2280     ushll(Vd, Ta, Vn, Tb, shift);
2281   }
2282 
2283   void uzp1(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,  SIMD_Arrangement T, int op = 0){
2284     starti;
2285     f(0, 31), f((T & 0x1), 30), f(0b001110, 29, 24), f((T >> 1), 23, 22), f(0, 21);
2286     rf(Vm, 16), f(0, 15), f(op, 14), f(0b0110, 13, 10), rf(Vn, 5), rf(Vd, 0);
2287   }
2288   void uzp2(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,  SIMD_Arrangement T){
2289     uzp1(Vd, Vn, Vm, T, 1);
2290   }
2291  
2292   // Move from general purpose register
2293   //   mov  Vd.T[index], Rn
2294   void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) {
2295     starti;
2296     f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16); 
2297     f(0b000111, 15, 10), rf(Xn, 5), rf(Vd, 0);
2298   }
2299 
2300   // Move to general purpose register
2301   //   mov  Rd, Vn.T[index]
2302   void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) {
2303     starti;
2304     f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21);
2305     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2306     f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
2307   }
2308 
2309   // We do not handle the 1Q arrangement.
2310   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2311     starti;
2312     assert(Ta == T8H && (Tb == T8B || Tb == T16B), "Invalid Size specifier");
2313     f(0, 31), f(Tb & 1, 30), f(0b001110001, 29, 21), rf(Vm, 16), f(0b111000, 15, 10);
2314     rf(Vn, 5), rf(Vd, 0);
2315   }
2316   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2317     pmull(Vd, Ta, Vn, Vm, Tb);
2318   }
2319 
2320   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2321     starti;
2322     int size_b = (int)Tb >> 1;
2323     int size_a = (int)Ta >> 1;
2324     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2325     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
2326     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2327   }
2328 
2329   void rev32(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn)
2330   {
2331     starti;
2332     assert(T <= T8H, "must be one of T8B, T16B, T4H, T8H");
2333     f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24);
2334     f(T <= T16B ? 0b00 : 0b01, 23, 22), f(0b100000000010, 21, 10);
2335     rf(Vn, 5), rf(Vd, 0);
2336   }
2337 
2338   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
2339   {
2340     starti;
2341     assert(T != T1D, "reserved encoding");
2342     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2343     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), rf(Xs, 5), rf(Vd, 0);
2344   }
2345 
2346   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
2347   {
2348     starti;
2349     assert(T != T1D, "reserved encoding");
2350     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2351     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2352     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2353   }
2354 
2355   // CRC32 instructions
2356 #define INSN(NAME, sf, sz)                                                \
2357   void NAME(Register Rd, Register Rn, Register Rm) {                      \
2358     starti;                                                               \
2359     f(sf, 31), f(0b0011010110, 30, 21), f(0b0100, 15, 12), f(sz, 11, 10); \
2360     rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                                     \
2361   }
2362 
2363   INSN(crc32b, 0, 0b00);
2364   INSN(crc32h, 0, 0b01);
2365   INSN(crc32w, 0, 0b10);
2366   INSN(crc32x, 1, 0b11);
2367 
2368 #undef INSN
2369 
2370   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2371   }
2372 
2373   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
2374                                                 Register tmp,
2375                                                 int offset) {
2376     ShouldNotCallThis();
2377     return RegisterOrConstant();
2378   }
2379 
2380   // Stack overflow checking
2381   virtual void bang_stack_with_offset(int offset);
2382 
2383   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
2384   static bool operand_valid_for_add_sub_immediate(long imm);
2385   static bool operand_valid_for_float_immediate(double imm);
2386 
2387   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
2388   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
2389 };
2390 
2391 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
2392                                              Assembler::Membar_mask_bits b) {
2393   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
2394 }
2395 
2396 Instruction_aarch64::~Instruction_aarch64() {
2397   assem->emit();
2398 }
2399 
2400 #undef starti
2401 
2402 // Invert a condition
2403 inline const Assembler::Condition operator~(const Assembler::Condition cond) {
2404   return Assembler::Condition(int(cond) ^ 1);
2405 }
2406 
2407 class BiasedLockingCounters;
2408 
2409 extern "C" void das(uint64_t start, int len);
2410 
2411 #endif // CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP