1 /*
   2  * Copyright (c) 2013, Red Hat Inc.
   3  * Copyright (c) 1997, 2019, Oracle and/or its affiliates.
   4  * All rights reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 #include "precompiled.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "oops/markOop.hpp"
  31 #include "oops/method.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "prims/methodHandles.hpp"
  34 #include "runtime/frame.inline.hpp"
  35 #include "runtime/handles.inline.hpp"
  36 #include "runtime/javaCalls.hpp"
  37 #include "runtime/monitorChunk.hpp"
  38 #include "runtime/os.hpp"
  39 #include "runtime/signature.hpp"
  40 #include "runtime/stubCodeGenerator.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "vmreg_aarch64.inline.hpp"
  43 #ifdef COMPILER1
  44 #include "c1/c1_Runtime1.hpp"
  45 #include "runtime/vframeArray.hpp"
  46 #endif
  47 
  48 #ifdef ASSERT
  49 void RegisterMap::check_location_valid() {
  50 }
  51 #endif
  52 
  53 
  54 // Profiling/safepoint support
  55 
  56 bool frame::safe_for_sender(JavaThread *thread) {
  57   address   sp = (address)_sp;
  58   address   fp = (address)_fp;
  59   address   unextended_sp = (address)_unextended_sp;
  60 
  61   // consider stack guards when trying to determine "safe" stack pointers
  62   static size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
  63   size_t usable_stack_size = thread->stack_size() - stack_guard_size;
  64 
  65   // sp must be within the usable part of the stack (not in guards)
  66   bool sp_safe = (sp < thread->stack_base()) &&
  67                  (sp >= thread->stack_base() - usable_stack_size);
  68 
  69 
  70   if (!sp_safe) {
  71     return false;
  72   }
  73 
  74   // When we are running interpreted code the machine stack pointer, SP, is
  75   // set low enough so that the Java expression stack can grow and shrink
  76   // without ever exceeding the machine stack bounds.  So, ESP >= SP.
  77 
  78   // When we call out of an interpreted method, SP is incremented so that
  79   // the space between SP and ESP is removed.  The SP saved in the callee's
  80   // frame is the SP *before* this increment.  So, when we walk a stack of
  81   // interpreter frames the sender's SP saved in a frame might be less than
  82   // the SP at the point of call.
  83 
  84   // So unextended sp must be within the stack but we need not to check
  85   // that unextended sp >= sp
  86 
  87   bool unextended_sp_safe = (unextended_sp < thread->stack_base());
  88 
  89   if (!unextended_sp_safe) {
  90     return false;
  91   }
  92 
  93   // an fp must be within the stack and above (but not equal) sp
  94   // second evaluation on fp+ is added to handle situation where fp is -1
  95   bool fp_safe = (fp < thread->stack_base() && (fp > sp) && (((fp + (return_addr_offset * sizeof(void*))) < thread->stack_base())));
  96 
  97   // We know sp/unextended_sp are safe only fp is questionable here
  98 
  99   // If the current frame is known to the code cache then we can attempt to
 100   // to construct the sender and do some validation of it. This goes a long way
 101   // toward eliminating issues when we get in frame construction code
 102 
 103   if (_cb != NULL ) {
 104 
 105     // First check if frame is complete and tester is reliable
 106     // Unfortunately we can only check frame complete for runtime stubs and nmethod
 107     // other generic buffer blobs are more problematic so we just assume they are
 108     // ok. adapter blobs never have a frame complete and are never ok.
 109 
 110     if (!_cb->is_frame_complete_at(_pc)) {
 111       if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
 112         return false;
 113       }
 114     }
 115 
 116     // Could just be some random pointer within the codeBlob
 117     if (!_cb->code_contains(_pc)) {
 118       return false;
 119     }
 120 
 121     // Entry frame checks
 122     if (is_entry_frame()) {
 123       // an entry frame must have a valid fp.
 124 
 125       if (!fp_safe) return false;
 126 
 127       // Validate the JavaCallWrapper an entry frame must have
 128 
 129       address jcw = (address)entry_frame_call_wrapper();
 130 
 131       bool jcw_safe = (jcw < thread->stack_base()) && ( jcw > fp);
 132 
 133       return jcw_safe;
 134 
 135     }
 136 
 137     intptr_t* sender_sp = NULL;
 138     intptr_t* sender_unextended_sp = NULL;
 139     address   sender_pc = NULL;
 140     intptr_t* saved_fp =  NULL;
 141 
 142     if (is_interpreted_frame()) {
 143       // fp must be safe
 144       if (!fp_safe) {
 145         return false;
 146       }
 147 
 148       sender_pc = (address) this->fp()[return_addr_offset];
 149       // for interpreted frames, the value below is the sender "raw" sp,
 150       // which can be different from the sender unextended sp (the sp seen
 151       // by the sender) because of current frame local variables
 152       sender_sp = (intptr_t*) addr_at(sender_sp_offset);
 153       sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset];
 154       saved_fp = (intptr_t*) this->fp()[link_offset];
 155 
 156     } else {
 157       // must be some sort of compiled/runtime frame
 158       // fp does not have to be safe (although it could be check for c1?)
 159 
 160       // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc
 161       if (_cb->frame_size() <= 0) {
 162         return false;
 163       }
 164 
 165       sender_sp = _unextended_sp + _cb->frame_size();
 166       sender_unextended_sp = sender_sp;
 167       sender_pc = (address) *(sender_sp-1);
 168       // Note: frame::sender_sp_offset is only valid for compiled frame
 169       saved_fp = (intptr_t*) *(sender_sp - frame::sender_sp_offset);
 170     }
 171 
 172 
 173     // If the potential sender is the interpreter then we can do some more checking
 174     if (Interpreter::contains(sender_pc)) {
 175 
 176       // fp is always saved in a recognizable place in any code we generate. However
 177       // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved fp
 178       // is really a frame pointer.
 179 
 180       bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
 181 
 182       if (!saved_fp_safe) {
 183         return false;
 184       }
 185 
 186       // construct the potential sender
 187 
 188       frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
 189 
 190       return sender.is_interpreted_frame_valid(thread);
 191 
 192     }
 193 
 194     // We must always be able to find a recognizable pc
 195     CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
 196     if (sender_pc == NULL ||  sender_blob == NULL) {
 197       return false;
 198     }
 199 
 200     // Could be a zombie method
 201     if (sender_blob->is_zombie() || sender_blob->is_unloaded()) {
 202       return false;
 203     }
 204 
 205     // Could just be some random pointer within the codeBlob
 206     if (!sender_blob->code_contains(sender_pc)) {
 207       return false;
 208     }
 209 
 210     // We should never be able to see an adapter if the current frame is something from code cache
 211     if (sender_blob->is_adapter_blob()) {
 212       return false;
 213     }
 214 
 215     // Could be the call_stub
 216     if (StubRoutines::returns_to_call_stub(sender_pc)) {
 217       bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
 218 
 219       if (!saved_fp_safe) {
 220         return false;
 221       }
 222 
 223       // construct the potential sender
 224 
 225       frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
 226 
 227       // Validate the JavaCallWrapper an entry frame must have
 228       address jcw = (address)sender.entry_frame_call_wrapper();
 229 
 230       bool jcw_safe = (jcw < thread->stack_base()) && ( jcw > (address)sender.fp());
 231 
 232       return jcw_safe;
 233     }
 234 
 235     if (sender_blob->is_nmethod()) {
 236         nmethod* nm = sender_blob->as_nmethod_or_null();
 237         if (nm != NULL) {
 238             if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc)) {
 239                 return false;
 240             }
 241         }
 242     }
 243 
 244     // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size
 245     // because the return address counts against the callee's frame.
 246 
 247     if (sender_blob->frame_size() <= 0) {
 248       assert(!sender_blob->is_nmethod(), "should count return address at least");
 249       return false;
 250     }
 251 
 252     // We should never be able to see anything here except an nmethod. If something in the
 253     // code cache (current frame) is called by an entity within the code cache that entity
 254     // should not be anything but the call stub (already covered), the interpreter (already covered)
 255     // or an nmethod.
 256 
 257     if (!sender_blob->is_nmethod()) {
 258         return false;
 259     }
 260 
 261     // Could put some more validation for the potential non-interpreted sender
 262     // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
 263 
 264     // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
 265 
 266     // We've validated the potential sender that would be created
 267     return true;
 268   }
 269 
 270   // Must be native-compiled frame. Since sender will try and use fp to find
 271   // linkages it must be safe
 272 
 273   if (!fp_safe) {
 274     return false;
 275   }
 276 
 277   // Will the pc we fetch be non-zero (which we'll find at the oldest frame)
 278 
 279   if ( (address) this->fp()[return_addr_offset] == NULL) return false;
 280 
 281 
 282   // could try and do some more potential verification of native frame if we could think of some...
 283 
 284   return true;
 285 
 286 }
 287 
 288 void frame::patch_pc(Thread* thread, address pc) {
 289   address* pc_addr = &(((address*) sp())[-1]);
 290   if (TracePcPatching) {
 291     tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
 292                   p2i(pc_addr), p2i(*pc_addr), p2i(pc));
 293   }
 294   // Either the return address is the original one or we are going to
 295   // patch in the same address that's already there.
 296   assert(_pc == *pc_addr || pc == *pc_addr, "must be");
 297   *pc_addr = pc;
 298   _cb = CodeCache::find_blob(pc);
 299   address original_pc = nmethod::get_deopt_original_pc(this);
 300   if (original_pc != NULL) {
 301     assert(original_pc == _pc, "expected original PC to be stored before patching");
 302     _deopt_state = is_deoptimized;
 303     // leave _pc as is
 304   } else {
 305     _deopt_state = not_deoptimized;
 306     _pc = pc;
 307   }
 308 }
 309 
 310 bool frame::is_interpreted_frame() const  {
 311   return Interpreter::contains(pc());
 312 }
 313 
 314 int frame::frame_size(RegisterMap* map) const {
 315   frame sender = this->sender(map);
 316   return sender.sp() - sp();
 317 }
 318 
 319 intptr_t* frame::entry_frame_argument_at(int offset) const {
 320   // convert offset to index to deal with tsi
 321   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
 322   // Entry frame's arguments are always in relation to unextended_sp()
 323   return &unextended_sp()[index];
 324 }
 325 
 326 // sender_sp
 327 #ifdef CC_INTERP
 328 intptr_t* frame::interpreter_frame_sender_sp() const {
 329   assert(is_interpreted_frame(), "interpreted frame expected");
 330   // QQQ why does this specialize method exist if frame::sender_sp() does same thing?
 331   // seems odd and if we always know interpreted vs. non then sender_sp() is really
 332   // doing too much work.
 333   return get_interpreterState()->sender_sp();
 334 }
 335 
 336 // monitor elements
 337 
 338 BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
 339   return get_interpreterState()->monitor_base();
 340 }
 341 
 342 BasicObjectLock* frame::interpreter_frame_monitor_end() const {
 343   return (BasicObjectLock*) get_interpreterState()->stack_base();
 344 }
 345 
 346 #else // CC_INTERP
 347 
 348 intptr_t* frame::interpreter_frame_sender_sp() const {
 349   assert(is_interpreted_frame(), "interpreted frame expected");
 350   return (intptr_t*) at(interpreter_frame_sender_sp_offset);
 351 }
 352 
 353 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
 354   assert(is_interpreted_frame(), "interpreted frame expected");
 355   ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
 356 }
 357 
 358 
 359 // monitor elements
 360 
 361 BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
 362   return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
 363 }
 364 
 365 BasicObjectLock* frame::interpreter_frame_monitor_end() const {
 366   BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset);
 367   // make sure the pointer points inside the frame
 368   assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
 369   assert((intptr_t*) result < fp(),  "monitor end should be strictly below the frame pointer");
 370   return result;
 371 }
 372 
 373 void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
 374   *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value;
 375 }
 376 
 377 // Used by template based interpreter deoptimization
 378 void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
 379     *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp;
 380 }
 381 #endif // CC_INTERP
 382 
 383 frame frame::sender_for_entry_frame(RegisterMap* map) const {
 384   assert(map != NULL, "map must be set");
 385   // Java frame called from C; skip all C frames and return top C
 386   // frame of that chunk as the sender
 387   JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
 388   assert(!entry_frame_is_first(), "next Java fp must be non zero");
 389   assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
 390   // Since we are walking the stack now this nested anchor is obviously walkable
 391   // even if it wasn't when it was stacked.
 392   if (!jfa->walkable()) {
 393     // Capture _last_Java_pc (if needed) and mark anchor walkable.
 394     jfa->capture_last_Java_pc();
 395   }
 396   map->clear();
 397   assert(map->include_argument_oops(), "should be set by clear");
 398   assert(jfa->last_Java_pc() != NULL, "not walkable");
 399   frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
 400   return fr;
 401 }
 402 
 403 //------------------------------------------------------------------------------
 404 // frame::verify_deopt_original_pc
 405 //
 406 // Verifies the calculated original PC of a deoptimization PC for the
 407 // given unextended SP.  The unextended SP might also be the saved SP
 408 // for MethodHandle call sites.
 409 #ifdef ASSERT
 410 void frame::verify_deopt_original_pc(nmethod* nm, intptr_t* unextended_sp, bool is_method_handle_return) {
 411   frame fr;
 412 
 413   // This is ugly but it's better than to change {get,set}_original_pc
 414   // to take an SP value as argument.  And it's only a debugging
 415   // method anyway.
 416   fr._unextended_sp = unextended_sp;
 417 
 418   address original_pc = nm->get_original_pc(&fr);
 419   assert(nm->insts_contains(original_pc), "original PC must be in nmethod");
 420   assert(nm->is_method_handle_return(original_pc) == is_method_handle_return, "must be");
 421 }
 422 #endif
 423 
 424 //------------------------------------------------------------------------------
 425 // frame::adjust_unextended_sp
 426 void frame::adjust_unextended_sp() {
 427   // If we are returning to a compiled MethodHandle call site, the
 428   // saved_fp will in fact be a saved value of the unextended SP.  The
 429   // simplest way to tell whether we are returning to such a call site
 430   // is as follows:
 431 
 432   nmethod* sender_nm = (_cb == NULL) ? NULL : _cb->as_nmethod_or_null();
 433   if (sender_nm != NULL) {
 434     // If the sender PC is a deoptimization point, get the original
 435     // PC.  For MethodHandle call site the unextended_sp is stored in
 436     // saved_fp.
 437     if (sender_nm->is_deopt_mh_entry(_pc)) {
 438       DEBUG_ONLY(verify_deopt_mh_original_pc(sender_nm, _fp));
 439       _unextended_sp = _fp;
 440     }
 441     else if (sender_nm->is_deopt_entry(_pc)) {
 442       DEBUG_ONLY(verify_deopt_original_pc(sender_nm, _unextended_sp));
 443     }
 444     else if (sender_nm->is_method_handle_return(_pc)) {
 445       _unextended_sp = _fp;
 446     }
 447   }
 448 }
 449 
 450 //------------------------------------------------------------------------------
 451 // frame::update_map_with_saved_link
 452 void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) {
 453   // The interpreter and compiler(s) always save fp in a known
 454   // location on entry. We must record where that location is
 455   // so that if fp was live on callout from c2 we can find
 456   // the saved copy no matter what it called.
 457 
 458   // Since the interpreter always saves fp if we record where it is then
 459   // we don't have to always save fp on entry and exit to c2 compiled
 460   // code, on entry will be enough.
 461   map->set_location(rfp->as_VMReg(), (address) link_addr);
 462   // this is weird "H" ought to be at a higher address however the
 463   // oopMaps seems to have the "H" regs at the same address and the
 464   // vanilla register.
 465   // XXXX make this go away
 466   if (true) {
 467     map->set_location(rfp->as_VMReg()->next(), (address) link_addr);
 468   }
 469 }
 470 
 471 
 472 //------------------------------------------------------------------------------
 473 // frame::sender_for_interpreter_frame
 474 frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
 475   // SP is the raw SP from the sender after adapter or interpreter
 476   // extension.
 477   intptr_t* sender_sp = this->sender_sp();
 478 
 479   // This is the sp before any possible extension (adapter/locals).
 480   intptr_t* unextended_sp = interpreter_frame_sender_sp();
 481 
 482 #ifdef COMPILER2
 483   if (map->update_map()) {
 484     update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset));
 485   }
 486 #endif // COMPILER2
 487 
 488   return frame(sender_sp, unextended_sp, link(), sender_pc());
 489 }
 490 
 491 
 492 //------------------------------------------------------------------------------
 493 // frame::sender_for_compiled_frame
 494 frame frame::sender_for_compiled_frame(RegisterMap* map) const {
 495   // we cannot rely upon the last fp having been saved to the thread
 496   // in C2 code but it will have been pushed onto the stack. so we
 497   // have to find it relative to the unextended sp
 498 
 499   assert(_cb->frame_size() >= 0, "must have non-zero frame size");
 500   intptr_t* l_sender_sp = unextended_sp() + _cb->frame_size();
 501   intptr_t* unextended_sp = l_sender_sp;
 502 
 503   // the return_address is always the word on the stack
 504   address sender_pc = (address) *(l_sender_sp-1);
 505 
 506   intptr_t** saved_fp_addr = (intptr_t**) (l_sender_sp - frame::sender_sp_offset);
 507 
 508   // assert (sender_sp() == l_sender_sp, "should be");
 509   // assert (*saved_fp_addr == link(), "should be");
 510 
 511   if (map->update_map()) {
 512     // Tell GC to use argument oopmaps for some runtime stubs that need it.
 513     // For C1, the runtime stub might not have oop maps, so set this flag
 514     // outside of update_register_map.
 515     map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
 516     if (_cb->oop_maps() != NULL) {
 517       OopMapSet::update_register_map(this, map);
 518     }
 519 
 520     // Since the prolog does the save and restore of EBP there is no oopmap
 521     // for it so we must fill in its location as if there was an oopmap entry
 522     // since if our caller was compiled code there could be live jvm state in it.
 523     update_map_with_saved_link(map, saved_fp_addr);
 524   }
 525 
 526   return frame(l_sender_sp, unextended_sp, *saved_fp_addr, sender_pc);
 527 }
 528 
 529 //------------------------------------------------------------------------------
 530 // frame::sender
 531 frame frame::sender(RegisterMap* map) const {
 532   // Default is we done have to follow them. The sender_for_xxx will
 533   // update it accordingly
 534    map->set_include_argument_oops(false);
 535 
 536   if (is_entry_frame())
 537     return sender_for_entry_frame(map);
 538   if (is_interpreted_frame())
 539     return sender_for_interpreter_frame(map);
 540   assert(_cb == CodeCache::find_blob(pc()),"Must be the same");
 541 
 542   // This test looks odd: why is it not is_compiled_frame() ?  That's
 543   // because stubs also have OOP maps.
 544   if (_cb != NULL) {
 545     return sender_for_compiled_frame(map);
 546   }
 547 
 548   // Must be native-compiled frame, i.e. the marshaling code for native
 549   // methods that exists in the core system.
 550   return frame(sender_sp(), link(), sender_pc());
 551 }
 552 
 553 bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
 554   assert(is_interpreted_frame(), "must be interpreter frame");
 555   Method* method = interpreter_frame_method();
 556   // When unpacking an optimized frame the frame pointer is
 557   // adjusted with:
 558   int diff = (method->max_locals() - method->size_of_parameters()) *
 559              Interpreter::stackElementWords;
 560   return _fp == (fp - diff);
 561 }
 562 
 563 void frame::pd_gc_epilog() {
 564   // nothing done here now
 565 }
 566 
 567 bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
 568 // QQQ
 569 #ifdef CC_INTERP
 570 #else
 571   assert(is_interpreted_frame(), "Not an interpreted frame");
 572   // These are reasonable sanity checks
 573   if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
 574     return false;
 575   }
 576   if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
 577     return false;
 578   }
 579   if (fp() + interpreter_frame_initial_sp_offset < sp()) {
 580     return false;
 581   }
 582   // These are hacks to keep us out of trouble.
 583   // The problem with these is that they mask other problems
 584   if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
 585     return false;
 586   }
 587 
 588   // do some validation of frame elements
 589 
 590   // first the method
 591 
 592   Method* m = *interpreter_frame_method_addr();
 593 
 594   // validate the method we'd find in this potential sender
 595   if (!m->is_valid_method()) return false;
 596 
 597   // stack frames shouldn't be much larger than max_stack elements
 598   // this test requires the use of unextended_sp which is the sp as seen by
 599   // the current frame, and not sp which is the "raw" pc which could point
 600   // further because of local variables of the callee method inserted after
 601   // method arguments
 602   if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
 603     return false;
 604   }
 605 
 606   // validate bci/bcx
 607 
 608   intptr_t  bcx    = interpreter_frame_bcx();
 609   if (m->validate_bci_from_bcx(bcx) < 0) {
 610     return false;
 611   }
 612 
 613   // validate constantPoolCache*
 614   ConstantPoolCache* cp = *interpreter_frame_cache_addr();
 615   if (cp == NULL || !cp->is_metaspace_object()) return false;
 616 
 617   // validate locals
 618 
 619   address locals =  (address) *interpreter_frame_locals_addr();
 620 
 621   if (locals > thread->stack_base() || locals < (address) fp()) return false;
 622 
 623   // We'd have to be pretty unlucky to be mislead at this point
 624 
 625 #endif // CC_INTERP
 626   return true;
 627 }
 628 
 629 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
 630 #ifdef CC_INTERP
 631   // Needed for JVMTI. The result should always be in the
 632   // interpreterState object
 633   interpreterState istate = get_interpreterState();
 634 #endif // CC_INTERP
 635   assert(is_interpreted_frame(), "interpreted frame expected");
 636   Method* method = interpreter_frame_method();
 637   BasicType type = method->result_type();
 638 
 639   intptr_t* tos_addr;
 640   if (method->is_native()) {
 641     // TODO : ensure AARCH64 does the same as Intel here i.e. push v0 then r0
 642     // Prior to calling into the runtime to report the method_exit the possible
 643     // return value is pushed to the native stack. If the result is a jfloat/jdouble
 644     // then ST0 is saved before EAX/EDX. See the note in generate_native_result
 645     tos_addr = (intptr_t*)sp();
 646     if (type == T_FLOAT || type == T_DOUBLE) {
 647       // This is times two because we do a push(ltos) after pushing XMM0
 648       // and that takes two interpreter stack slots.
 649       tos_addr += 2 * Interpreter::stackElementWords;
 650     }
 651   } else {
 652     tos_addr = (intptr_t*)interpreter_frame_tos_address();
 653   }
 654 
 655   switch (type) {
 656     case T_OBJECT  :
 657     case T_ARRAY   : {
 658       oop obj;
 659       if (method->is_native()) {
 660 #ifdef CC_INTERP
 661         obj = istate->_oop_temp;
 662 #else
 663         obj = cast_to_oop(at(interpreter_frame_oop_temp_offset));
 664 #endif // CC_INTERP
 665       } else {
 666         oop* obj_p = (oop*)tos_addr;
 667         obj = (obj_p == NULL) ? (oop)NULL : *obj_p;
 668       }
 669       assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
 670       *oop_result = obj;
 671       break;
 672     }
 673     case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
 674     case T_BYTE    : value_result->b = *(jbyte*)tos_addr; break;
 675     case T_CHAR    : value_result->c = *(jchar*)tos_addr; break;
 676     case T_SHORT   : value_result->s = *(jshort*)tos_addr; break;
 677     case T_INT     : value_result->i = *(jint*)tos_addr; break;
 678     case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
 679     case T_FLOAT   : {
 680         value_result->f = *(jfloat*)tos_addr;
 681       break;
 682     }
 683     case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
 684     case T_VOID    : /* Nothing to do */ break;
 685     default        : ShouldNotReachHere();
 686   }
 687 
 688   return type;
 689 }
 690 
 691 
 692 intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
 693   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
 694   return &interpreter_frame_tos_address()[index];
 695 }
 696 
 697 #ifndef PRODUCT
 698 
 699 #define DESCRIBE_FP_OFFSET(name) \
 700   values.describe(frame_no, fp() + frame::name##_offset, #name)
 701 
 702 void frame::describe_pd(FrameValues& values, int frame_no) {
 703   if (is_interpreted_frame()) {
 704     DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
 705     DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
 706     DESCRIBE_FP_OFFSET(interpreter_frame_method);
 707     DESCRIBE_FP_OFFSET(interpreter_frame_mdx);
 708     DESCRIBE_FP_OFFSET(interpreter_frame_cache);
 709     DESCRIBE_FP_OFFSET(interpreter_frame_locals);
 710     DESCRIBE_FP_OFFSET(interpreter_frame_bcx);
 711     DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
 712   }
 713 }
 714 #endif
 715 
 716 intptr_t *frame::initial_deoptimization_info() {
 717   // Not used on aarch64, but we must return something.
 718   return NULL;
 719 }
 720 
 721 intptr_t* frame::real_fp() const {
 722   if (_cb != NULL) {
 723     // use the frame size if valid
 724     int size = _cb->frame_size();
 725     if (size > 0) {
 726       return unextended_sp() + size;
 727     }
 728   }
 729   // else rely on fp()
 730   assert(! is_compiled_frame(), "unknown compiled frame size");
 731   return fp();
 732 }
 733 
 734 #undef DESCRIBE_FP_OFFSET
 735 
 736 #define DESCRIBE_FP_OFFSET(name)                                        \
 737   {                                                                     \
 738     unsigned long *p = (unsigned long *)fp;                             \
 739     printf("0x%016lx 0x%016lx %s\n", (unsigned long)(p + frame::name##_offset), \
 740            p[frame::name##_offset], #name);                             \
 741   }
 742 
 743 static __thread unsigned long nextfp;
 744 static __thread unsigned long nextpc;
 745 static __thread unsigned long nextsp;
 746 static __thread RegisterMap *reg_map;
 747 
 748 static void printbc(Method *m, intptr_t bcx) {
 749   const char *name;
 750   char buf[16];
 751   if (m->validate_bci_from_bcx(bcx) < 0
 752       || !m->contains((address)bcx)) {
 753     name = "???";
 754     snprintf(buf, sizeof buf, "(bad)");
 755   } else {
 756     int bci = m->bci_from((address)bcx);
 757     snprintf(buf, sizeof buf, "%d", bci);
 758     name = Bytecodes::name(m->code_at(bci));
 759   }
 760   ResourceMark rm;
 761   printf("%s : %s ==> %s\n", m->name_and_sig_as_C_string(), buf, name);
 762 }
 763 
 764 void internal_pf(unsigned long sp, unsigned long fp, unsigned long pc, unsigned long bcx) {
 765   if (! fp)
 766     return;
 767 
 768   DESCRIBE_FP_OFFSET(return_addr);
 769   DESCRIBE_FP_OFFSET(link);
 770   DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
 771   DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
 772   DESCRIBE_FP_OFFSET(interpreter_frame_method);
 773   DESCRIBE_FP_OFFSET(interpreter_frame_mdx);
 774   DESCRIBE_FP_OFFSET(interpreter_frame_cache);
 775   DESCRIBE_FP_OFFSET(interpreter_frame_locals);
 776   DESCRIBE_FP_OFFSET(interpreter_frame_bcx);
 777   DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
 778   unsigned long *p = (unsigned long *)fp;
 779 
 780   // We want to see all frames, native and Java.  For compiled and
 781   // interpreted frames we have special information that allows us to
 782   // unwind them; for everything else we assume that the native frame
 783   // pointer chain is intact.
 784   frame this_frame((intptr_t*)sp, (intptr_t*)fp, (address)pc);
 785   if (this_frame.is_compiled_frame() ||
 786       this_frame.is_interpreted_frame()) {
 787     frame sender = this_frame.sender(reg_map);
 788     nextfp = (unsigned long)sender.fp();
 789     nextpc = (unsigned long)sender.pc();
 790     nextsp = (unsigned long)sender.unextended_sp();
 791   } else {
 792     nextfp = p[frame::link_offset];
 793     nextpc = p[frame::return_addr_offset];
 794     nextsp = (unsigned long)&p[frame::sender_sp_offset];
 795   }
 796 
 797   if (bcx == -1ul)
 798     bcx = p[frame::interpreter_frame_bcx_offset];
 799 
 800   if (Interpreter::contains((address)pc)) {
 801     Method* m = (Method*)p[frame::interpreter_frame_method_offset];
 802     if(m && m->is_method()) {
 803       printbc(m, bcx);
 804     } else
 805       printf("not a Method\n");
 806   } else {
 807     CodeBlob *cb = CodeCache::find_blob((address)pc);
 808     if (cb != NULL) {
 809       if (cb->is_nmethod()) {
 810         ResourceMark rm;
 811         nmethod* nm = (nmethod*)cb;
 812         printf("nmethod %s\n", nm->method()->name_and_sig_as_C_string());
 813       } else if (cb->name()) {
 814         printf("CodeBlob %s\n", cb->name());
 815       }
 816     }
 817   }
 818 }
 819 
 820 extern "C" void npf() {
 821   CodeBlob *cb = CodeCache::find_blob((address)nextpc);
 822   // C2 does not always chain the frame pointers when it can, instead
 823   // preferring to use fixed offsets from SP, so a simple leave() does
 824   // not work.  Instead, it adds the frame size to SP then pops FP and
 825   // LR.  We have to do the same thing to get a good call chain.
 826   if (cb && cb->frame_size())
 827     nextfp = nextsp + wordSize * (cb->frame_size() - 2);
 828   internal_pf (nextsp, nextfp, nextpc, -1);
 829 }
 830 
 831 extern "C" void pf(unsigned long sp, unsigned long fp, unsigned long pc,
 832                    unsigned long bcx, unsigned long thread) {
 833   if (!reg_map) {
 834     reg_map = NEW_C_HEAP_OBJ(RegisterMap, mtNone);
 835     ::new (reg_map) RegisterMap((JavaThread*)thread, false);
 836   } else {
 837     *reg_map = RegisterMap((JavaThread*)thread, false);
 838   }
 839 
 840   {
 841     CodeBlob *cb = CodeCache::find_blob((address)pc);
 842     if (cb && cb->frame_size())
 843       fp = sp + wordSize * (cb->frame_size() - 2);
 844   }
 845   internal_pf(sp, fp, pc, bcx);
 846 }
 847 
 848 // support for printing out where we are in a Java method
 849 // needs to be passed current fp and bcp register values
 850 // prints method name, bc index and bytecode name
 851 extern "C" void pm(unsigned long fp, unsigned long bcx) {
 852   DESCRIBE_FP_OFFSET(interpreter_frame_method);
 853   unsigned long *p = (unsigned long *)fp;
 854   Method* m = (Method*)p[frame::interpreter_frame_method_offset];
 855   printbc(m, bcx);
 856 }
 857 
 858 #ifndef PRODUCT
 859 // This is a generic constructor which is only used by pns() in debug.cpp.
 860 frame::frame(void* sp, void* fp, void* pc) {
 861   init((intptr_t*)sp, (intptr_t*)fp, (address)pc);
 862 }
 863 #endif
 864 
 865 void JavaFrameAnchor::make_walkable(JavaThread* thread) {
 866   // last frame set?
 867   if (last_Java_sp() == NULL) return;
 868   // already walkable?
 869   if (walkable()) return;
 870   assert(Thread::current() == (Thread*)thread, "not current thread");
 871   assert(last_Java_sp() != NULL, "not called from Java code?");
 872   assert(last_Java_pc() == NULL, "already walkable");
 873   capture_last_Java_pc();
 874   assert(walkable(), "something went wrong");
 875 }
 876 
 877 void JavaFrameAnchor::capture_last_Java_pc() {
 878   assert(_last_Java_sp != NULL, "no last frame set");
 879   assert(_last_Java_pc == NULL, "already walkable");
 880   _last_Java_pc = (address)_last_Java_sp[-1];
 881 }