--- /dev/null 2021-01-19 17:38:25.908523431 +0000 +++ new/src/cpu/aarch64/vm/frame_aarch64.cpp 2021-01-25 19:31:39.880509518 +0000 @@ -0,0 +1,881 @@ +/* + * Copyright (c) 2013, Red Hat Inc. + * Copyright (c) 1997, 2019, Oracle and/or its affiliates. + * All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + * + */ + +#include "precompiled.hpp" +#include "interpreter/interpreter.hpp" +#include "memory/resourceArea.hpp" +#include "oops/markOop.hpp" +#include "oops/method.hpp" +#include "oops/oop.inline.hpp" +#include "prims/methodHandles.hpp" +#include "runtime/frame.inline.hpp" +#include "runtime/handles.inline.hpp" +#include "runtime/javaCalls.hpp" +#include "runtime/monitorChunk.hpp" +#include "runtime/os.hpp" +#include "runtime/signature.hpp" +#include "runtime/stubCodeGenerator.hpp" +#include "runtime/stubRoutines.hpp" +#include "vmreg_aarch64.inline.hpp" +#ifdef COMPILER1 +#include "c1/c1_Runtime1.hpp" +#include "runtime/vframeArray.hpp" +#endif + +#ifdef ASSERT +void RegisterMap::check_location_valid() { +} +#endif + + +// Profiling/safepoint support + +bool frame::safe_for_sender(JavaThread *thread) { + address sp = (address)_sp; + address fp = (address)_fp; + address unextended_sp = (address)_unextended_sp; + + // consider stack guards when trying to determine "safe" stack pointers + static size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0; + size_t usable_stack_size = thread->stack_size() - stack_guard_size; + + // sp must be within the usable part of the stack (not in guards) + bool sp_safe = (sp < thread->stack_base()) && + (sp >= thread->stack_base() - usable_stack_size); + + + if (!sp_safe) { + return false; + } + + // When we are running interpreted code the machine stack pointer, SP, is + // set low enough so that the Java expression stack can grow and shrink + // without ever exceeding the machine stack bounds. So, ESP >= SP. + + // When we call out of an interpreted method, SP is incremented so that + // the space between SP and ESP is removed. The SP saved in the callee's + // frame is the SP *before* this increment. So, when we walk a stack of + // interpreter frames the sender's SP saved in a frame might be less than + // the SP at the point of call. + + // So unextended sp must be within the stack but we need not to check + // that unextended sp >= sp + + bool unextended_sp_safe = (unextended_sp < thread->stack_base()); + + if (!unextended_sp_safe) { + return false; + } + + // an fp must be within the stack and above (but not equal) sp + // second evaluation on fp+ is added to handle situation where fp is -1 + bool fp_safe = (fp < thread->stack_base() && (fp > sp) && (((fp + (return_addr_offset * sizeof(void*))) < thread->stack_base()))); + + // We know sp/unextended_sp are safe only fp is questionable here + + // If the current frame is known to the code cache then we can attempt to + // to construct the sender and do some validation of it. This goes a long way + // toward eliminating issues when we get in frame construction code + + if (_cb != NULL ) { + + // First check if frame is complete and tester is reliable + // Unfortunately we can only check frame complete for runtime stubs and nmethod + // other generic buffer blobs are more problematic so we just assume they are + // ok. adapter blobs never have a frame complete and are never ok. + + if (!_cb->is_frame_complete_at(_pc)) { + if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) { + return false; + } + } + + // Could just be some random pointer within the codeBlob + if (!_cb->code_contains(_pc)) { + return false; + } + + // Entry frame checks + if (is_entry_frame()) { + // an entry frame must have a valid fp. + + if (!fp_safe) return false; + + // Validate the JavaCallWrapper an entry frame must have + + address jcw = (address)entry_frame_call_wrapper(); + + bool jcw_safe = (jcw < thread->stack_base()) && ( jcw > fp); + + return jcw_safe; + + } + + intptr_t* sender_sp = NULL; + intptr_t* sender_unextended_sp = NULL; + address sender_pc = NULL; + intptr_t* saved_fp = NULL; + + if (is_interpreted_frame()) { + // fp must be safe + if (!fp_safe) { + return false; + } + + sender_pc = (address) this->fp()[return_addr_offset]; + // for interpreted frames, the value below is the sender "raw" sp, + // which can be different from the sender unextended sp (the sp seen + // by the sender) because of current frame local variables + sender_sp = (intptr_t*) addr_at(sender_sp_offset); + sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset]; + saved_fp = (intptr_t*) this->fp()[link_offset]; + + } else { + // must be some sort of compiled/runtime frame + // fp does not have to be safe (although it could be check for c1?) + + // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc + if (_cb->frame_size() <= 0) { + return false; + } + + sender_sp = _unextended_sp + _cb->frame_size(); + sender_unextended_sp = sender_sp; + sender_pc = (address) *(sender_sp-1); + // Note: frame::sender_sp_offset is only valid for compiled frame + saved_fp = (intptr_t*) *(sender_sp - frame::sender_sp_offset); + } + + + // If the potential sender is the interpreter then we can do some more checking + if (Interpreter::contains(sender_pc)) { + + // fp is always saved in a recognizable place in any code we generate. However + // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved fp + // is really a frame pointer. + + bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp); + + if (!saved_fp_safe) { + return false; + } + + // construct the potential sender + + frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc); + + return sender.is_interpreted_frame_valid(thread); + + } + + // We must always be able to find a recognizable pc + CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc); + if (sender_pc == NULL || sender_blob == NULL) { + return false; + } + + // Could be a zombie method + if (sender_blob->is_zombie() || sender_blob->is_unloaded()) { + return false; + } + + // Could just be some random pointer within the codeBlob + if (!sender_blob->code_contains(sender_pc)) { + return false; + } + + // We should never be able to see an adapter if the current frame is something from code cache + if (sender_blob->is_adapter_blob()) { + return false; + } + + // Could be the call_stub + if (StubRoutines::returns_to_call_stub(sender_pc)) { + bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp); + + if (!saved_fp_safe) { + return false; + } + + // construct the potential sender + + frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc); + + // Validate the JavaCallWrapper an entry frame must have + address jcw = (address)sender.entry_frame_call_wrapper(); + + bool jcw_safe = (jcw < thread->stack_base()) && ( jcw > (address)sender.fp()); + + return jcw_safe; + } + + if (sender_blob->is_nmethod()) { + nmethod* nm = sender_blob->as_nmethod_or_null(); + if (nm != NULL) { + if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc)) { + return false; + } + } + } + + // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size + // because the return address counts against the callee's frame. + + if (sender_blob->frame_size() <= 0) { + assert(!sender_blob->is_nmethod(), "should count return address at least"); + return false; + } + + // We should never be able to see anything here except an nmethod. If something in the + // code cache (current frame) is called by an entity within the code cache that entity + // should not be anything but the call stub (already covered), the interpreter (already covered) + // or an nmethod. + + if (!sender_blob->is_nmethod()) { + return false; + } + + // Could put some more validation for the potential non-interpreted sender + // frame we'd create by calling sender if I could think of any. Wait for next crash in forte... + + // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb + + // We've validated the potential sender that would be created + return true; + } + + // Must be native-compiled frame. Since sender will try and use fp to find + // linkages it must be safe + + if (!fp_safe) { + return false; + } + + // Will the pc we fetch be non-zero (which we'll find at the oldest frame) + + if ( (address) this->fp()[return_addr_offset] == NULL) return false; + + + // could try and do some more potential verification of native frame if we could think of some... + + return true; + +} + +void frame::patch_pc(Thread* thread, address pc) { + address* pc_addr = &(((address*) sp())[-1]); + if (TracePcPatching) { + tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]", + p2i(pc_addr), p2i(*pc_addr), p2i(pc)); + } + // Either the return address is the original one or we are going to + // patch in the same address that's already there. + assert(_pc == *pc_addr || pc == *pc_addr, "must be"); + *pc_addr = pc; + _cb = CodeCache::find_blob(pc); + address original_pc = nmethod::get_deopt_original_pc(this); + if (original_pc != NULL) { + assert(original_pc == _pc, "expected original PC to be stored before patching"); + _deopt_state = is_deoptimized; + // leave _pc as is + } else { + _deopt_state = not_deoptimized; + _pc = pc; + } +} + +bool frame::is_interpreted_frame() const { + return Interpreter::contains(pc()); +} + +int frame::frame_size(RegisterMap* map) const { + frame sender = this->sender(map); + return sender.sp() - sp(); +} + +intptr_t* frame::entry_frame_argument_at(int offset) const { + // convert offset to index to deal with tsi + int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); + // Entry frame's arguments are always in relation to unextended_sp() + return &unextended_sp()[index]; +} + +// sender_sp +#ifdef CC_INTERP +intptr_t* frame::interpreter_frame_sender_sp() const { + assert(is_interpreted_frame(), "interpreted frame expected"); + // QQQ why does this specialize method exist if frame::sender_sp() does same thing? + // seems odd and if we always know interpreted vs. non then sender_sp() is really + // doing too much work. + return get_interpreterState()->sender_sp(); +} + +// monitor elements + +BasicObjectLock* frame::interpreter_frame_monitor_begin() const { + return get_interpreterState()->monitor_base(); +} + +BasicObjectLock* frame::interpreter_frame_monitor_end() const { + return (BasicObjectLock*) get_interpreterState()->stack_base(); +} + +#else // CC_INTERP + +intptr_t* frame::interpreter_frame_sender_sp() const { + assert(is_interpreted_frame(), "interpreted frame expected"); + return (intptr_t*) at(interpreter_frame_sender_sp_offset); +} + +void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) { + assert(is_interpreted_frame(), "interpreted frame expected"); + ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp); +} + + +// monitor elements + +BasicObjectLock* frame::interpreter_frame_monitor_begin() const { + return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset); +} + +BasicObjectLock* frame::interpreter_frame_monitor_end() const { + BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset); + // make sure the pointer points inside the frame + assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer"); + assert((intptr_t*) result < fp(), "monitor end should be strictly below the frame pointer"); + return result; +} + +void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) { + *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value; +} + +// Used by template based interpreter deoptimization +void frame::interpreter_frame_set_last_sp(intptr_t* sp) { + *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp; +} +#endif // CC_INTERP + +frame frame::sender_for_entry_frame(RegisterMap* map) const { + assert(map != NULL, "map must be set"); + // Java frame called from C; skip all C frames and return top C + // frame of that chunk as the sender + JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor(); + assert(!entry_frame_is_first(), "next Java fp must be non zero"); + assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack"); + // Since we are walking the stack now this nested anchor is obviously walkable + // even if it wasn't when it was stacked. + if (!jfa->walkable()) { + // Capture _last_Java_pc (if needed) and mark anchor walkable. + jfa->capture_last_Java_pc(); + } + map->clear(); + assert(map->include_argument_oops(), "should be set by clear"); + assert(jfa->last_Java_pc() != NULL, "not walkable"); + frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc()); + return fr; +} + +//------------------------------------------------------------------------------ +// frame::verify_deopt_original_pc +// +// Verifies the calculated original PC of a deoptimization PC for the +// given unextended SP. The unextended SP might also be the saved SP +// for MethodHandle call sites. +#ifdef ASSERT +void frame::verify_deopt_original_pc(nmethod* nm, intptr_t* unextended_sp, bool is_method_handle_return) { + frame fr; + + // This is ugly but it's better than to change {get,set}_original_pc + // to take an SP value as argument. And it's only a debugging + // method anyway. + fr._unextended_sp = unextended_sp; + + address original_pc = nm->get_original_pc(&fr); + assert(nm->insts_contains(original_pc), "original PC must be in nmethod"); + assert(nm->is_method_handle_return(original_pc) == is_method_handle_return, "must be"); +} +#endif + +//------------------------------------------------------------------------------ +// frame::adjust_unextended_sp +void frame::adjust_unextended_sp() { + // If we are returning to a compiled MethodHandle call site, the + // saved_fp will in fact be a saved value of the unextended SP. The + // simplest way to tell whether we are returning to such a call site + // is as follows: + + nmethod* sender_nm = (_cb == NULL) ? NULL : _cb->as_nmethod_or_null(); + if (sender_nm != NULL) { + // If the sender PC is a deoptimization point, get the original + // PC. For MethodHandle call site the unextended_sp is stored in + // saved_fp. + if (sender_nm->is_deopt_mh_entry(_pc)) { + DEBUG_ONLY(verify_deopt_mh_original_pc(sender_nm, _fp)); + _unextended_sp = _fp; + } + else if (sender_nm->is_deopt_entry(_pc)) { + DEBUG_ONLY(verify_deopt_original_pc(sender_nm, _unextended_sp)); + } + else if (sender_nm->is_method_handle_return(_pc)) { + _unextended_sp = _fp; + } + } +} + +//------------------------------------------------------------------------------ +// frame::update_map_with_saved_link +void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) { + // The interpreter and compiler(s) always save fp in a known + // location on entry. We must record where that location is + // so that if fp was live on callout from c2 we can find + // the saved copy no matter what it called. + + // Since the interpreter always saves fp if we record where it is then + // we don't have to always save fp on entry and exit to c2 compiled + // code, on entry will be enough. + map->set_location(rfp->as_VMReg(), (address) link_addr); + // this is weird "H" ought to be at a higher address however the + // oopMaps seems to have the "H" regs at the same address and the + // vanilla register. + // XXXX make this go away + if (true) { + map->set_location(rfp->as_VMReg()->next(), (address) link_addr); + } +} + + +//------------------------------------------------------------------------------ +// frame::sender_for_interpreter_frame +frame frame::sender_for_interpreter_frame(RegisterMap* map) const { + // SP is the raw SP from the sender after adapter or interpreter + // extension. + intptr_t* sender_sp = this->sender_sp(); + + // This is the sp before any possible extension (adapter/locals). + intptr_t* unextended_sp = interpreter_frame_sender_sp(); + +#ifdef COMPILER2 + if (map->update_map()) { + update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset)); + } +#endif // COMPILER2 + + return frame(sender_sp, unextended_sp, link(), sender_pc()); +} + + +//------------------------------------------------------------------------------ +// frame::sender_for_compiled_frame +frame frame::sender_for_compiled_frame(RegisterMap* map) const { + // we cannot rely upon the last fp having been saved to the thread + // in C2 code but it will have been pushed onto the stack. so we + // have to find it relative to the unextended sp + + assert(_cb->frame_size() >= 0, "must have non-zero frame size"); + intptr_t* l_sender_sp = unextended_sp() + _cb->frame_size(); + intptr_t* unextended_sp = l_sender_sp; + + // the return_address is always the word on the stack + address sender_pc = (address) *(l_sender_sp-1); + + intptr_t** saved_fp_addr = (intptr_t**) (l_sender_sp - frame::sender_sp_offset); + + // assert (sender_sp() == l_sender_sp, "should be"); + // assert (*saved_fp_addr == link(), "should be"); + + if (map->update_map()) { + // Tell GC to use argument oopmaps for some runtime stubs that need it. + // For C1, the runtime stub might not have oop maps, so set this flag + // outside of update_register_map. + map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread())); + if (_cb->oop_maps() != NULL) { + OopMapSet::update_register_map(this, map); + } + + // Since the prolog does the save and restore of EBP there is no oopmap + // for it so we must fill in its location as if there was an oopmap entry + // since if our caller was compiled code there could be live jvm state in it. + update_map_with_saved_link(map, saved_fp_addr); + } + + return frame(l_sender_sp, unextended_sp, *saved_fp_addr, sender_pc); +} + +//------------------------------------------------------------------------------ +// frame::sender +frame frame::sender(RegisterMap* map) const { + // Default is we done have to follow them. The sender_for_xxx will + // update it accordingly + map->set_include_argument_oops(false); + + if (is_entry_frame()) + return sender_for_entry_frame(map); + if (is_interpreted_frame()) + return sender_for_interpreter_frame(map); + assert(_cb == CodeCache::find_blob(pc()),"Must be the same"); + + // This test looks odd: why is it not is_compiled_frame() ? That's + // because stubs also have OOP maps. + if (_cb != NULL) { + return sender_for_compiled_frame(map); + } + + // Must be native-compiled frame, i.e. the marshaling code for native + // methods that exists in the core system. + return frame(sender_sp(), link(), sender_pc()); +} + +bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) { + assert(is_interpreted_frame(), "must be interpreter frame"); + Method* method = interpreter_frame_method(); + // When unpacking an optimized frame the frame pointer is + // adjusted with: + int diff = (method->max_locals() - method->size_of_parameters()) * + Interpreter::stackElementWords; + return _fp == (fp - diff); +} + +void frame::pd_gc_epilog() { + // nothing done here now +} + +bool frame::is_interpreted_frame_valid(JavaThread* thread) const { +// QQQ +#ifdef CC_INTERP +#else + assert(is_interpreted_frame(), "Not an interpreted frame"); + // These are reasonable sanity checks + if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) { + return false; + } + if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) { + return false; + } + if (fp() + interpreter_frame_initial_sp_offset < sp()) { + return false; + } + // These are hacks to keep us out of trouble. + // The problem with these is that they mask other problems + if (fp() <= sp()) { // this attempts to deal with unsigned comparison above + return false; + } + + // do some validation of frame elements + + // first the method + + Method* m = *interpreter_frame_method_addr(); + + // validate the method we'd find in this potential sender + if (!m->is_valid_method()) return false; + + // stack frames shouldn't be much larger than max_stack elements + // this test requires the use of unextended_sp which is the sp as seen by + // the current frame, and not sp which is the "raw" pc which could point + // further because of local variables of the callee method inserted after + // method arguments + if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) { + return false; + } + + // validate bci/bcx + + intptr_t bcx = interpreter_frame_bcx(); + if (m->validate_bci_from_bcx(bcx) < 0) { + return false; + } + + // validate constantPoolCache* + ConstantPoolCache* cp = *interpreter_frame_cache_addr(); + if (cp == NULL || !cp->is_metaspace_object()) return false; + + // validate locals + + address locals = (address) *interpreter_frame_locals_addr(); + + if (locals > thread->stack_base() || locals < (address) fp()) return false; + + // We'd have to be pretty unlucky to be mislead at this point + +#endif // CC_INTERP + return true; +} + +BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) { +#ifdef CC_INTERP + // Needed for JVMTI. The result should always be in the + // interpreterState object + interpreterState istate = get_interpreterState(); +#endif // CC_INTERP + assert(is_interpreted_frame(), "interpreted frame expected"); + Method* method = interpreter_frame_method(); + BasicType type = method->result_type(); + + intptr_t* tos_addr; + if (method->is_native()) { + // TODO : ensure AARCH64 does the same as Intel here i.e. push v0 then r0 + // Prior to calling into the runtime to report the method_exit the possible + // return value is pushed to the native stack. If the result is a jfloat/jdouble + // then ST0 is saved before EAX/EDX. See the note in generate_native_result + tos_addr = (intptr_t*)sp(); + if (type == T_FLOAT || type == T_DOUBLE) { + // This is times two because we do a push(ltos) after pushing XMM0 + // and that takes two interpreter stack slots. + tos_addr += 2 * Interpreter::stackElementWords; + } + } else { + tos_addr = (intptr_t*)interpreter_frame_tos_address(); + } + + switch (type) { + case T_OBJECT : + case T_ARRAY : { + oop obj; + if (method->is_native()) { +#ifdef CC_INTERP + obj = istate->_oop_temp; +#else + obj = cast_to_oop(at(interpreter_frame_oop_temp_offset)); +#endif // CC_INTERP + } else { + oop* obj_p = (oop*)tos_addr; + obj = (obj_p == NULL) ? (oop)NULL : *obj_p; + } + assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check"); + *oop_result = obj; + break; + } + case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break; + case T_BYTE : value_result->b = *(jbyte*)tos_addr; break; + case T_CHAR : value_result->c = *(jchar*)tos_addr; break; + case T_SHORT : value_result->s = *(jshort*)tos_addr; break; + case T_INT : value_result->i = *(jint*)tos_addr; break; + case T_LONG : value_result->j = *(jlong*)tos_addr; break; + case T_FLOAT : { + value_result->f = *(jfloat*)tos_addr; + break; + } + case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break; + case T_VOID : /* Nothing to do */ break; + default : ShouldNotReachHere(); + } + + return type; +} + + +intptr_t* frame::interpreter_frame_tos_at(jint offset) const { + int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); + return &interpreter_frame_tos_address()[index]; +} + +#ifndef PRODUCT + +#define DESCRIBE_FP_OFFSET(name) \ + values.describe(frame_no, fp() + frame::name##_offset, #name) + +void frame::describe_pd(FrameValues& values, int frame_no) { + if (is_interpreted_frame()) { + DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp); + DESCRIBE_FP_OFFSET(interpreter_frame_last_sp); + DESCRIBE_FP_OFFSET(interpreter_frame_method); + DESCRIBE_FP_OFFSET(interpreter_frame_mdx); + DESCRIBE_FP_OFFSET(interpreter_frame_cache); + DESCRIBE_FP_OFFSET(interpreter_frame_locals); + DESCRIBE_FP_OFFSET(interpreter_frame_bcx); + DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp); + } +} +#endif + +intptr_t *frame::initial_deoptimization_info() { + // Not used on aarch64, but we must return something. + return NULL; +} + +intptr_t* frame::real_fp() const { + if (_cb != NULL) { + // use the frame size if valid + int size = _cb->frame_size(); + if (size > 0) { + return unextended_sp() + size; + } + } + // else rely on fp() + assert(! is_compiled_frame(), "unknown compiled frame size"); + return fp(); +} + +#undef DESCRIBE_FP_OFFSET + +#define DESCRIBE_FP_OFFSET(name) \ + { \ + unsigned long *p = (unsigned long *)fp; \ + printf("0x%016lx 0x%016lx %s\n", (unsigned long)(p + frame::name##_offset), \ + p[frame::name##_offset], #name); \ + } + +static __thread unsigned long nextfp; +static __thread unsigned long nextpc; +static __thread unsigned long nextsp; +static __thread RegisterMap *reg_map; + +static void printbc(Method *m, intptr_t bcx) { + const char *name; + char buf[16]; + if (m->validate_bci_from_bcx(bcx) < 0 + || !m->contains((address)bcx)) { + name = "???"; + snprintf(buf, sizeof buf, "(bad)"); + } else { + int bci = m->bci_from((address)bcx); + snprintf(buf, sizeof buf, "%d", bci); + name = Bytecodes::name(m->code_at(bci)); + } + ResourceMark rm; + printf("%s : %s ==> %s\n", m->name_and_sig_as_C_string(), buf, name); +} + +void internal_pf(unsigned long sp, unsigned long fp, unsigned long pc, unsigned long bcx) { + if (! fp) + return; + + DESCRIBE_FP_OFFSET(return_addr); + DESCRIBE_FP_OFFSET(link); + DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp); + DESCRIBE_FP_OFFSET(interpreter_frame_last_sp); + DESCRIBE_FP_OFFSET(interpreter_frame_method); + DESCRIBE_FP_OFFSET(interpreter_frame_mdx); + DESCRIBE_FP_OFFSET(interpreter_frame_cache); + DESCRIBE_FP_OFFSET(interpreter_frame_locals); + DESCRIBE_FP_OFFSET(interpreter_frame_bcx); + DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp); + unsigned long *p = (unsigned long *)fp; + + // We want to see all frames, native and Java. For compiled and + // interpreted frames we have special information that allows us to + // unwind them; for everything else we assume that the native frame + // pointer chain is intact. + frame this_frame((intptr_t*)sp, (intptr_t*)fp, (address)pc); + if (this_frame.is_compiled_frame() || + this_frame.is_interpreted_frame()) { + frame sender = this_frame.sender(reg_map); + nextfp = (unsigned long)sender.fp(); + nextpc = (unsigned long)sender.pc(); + nextsp = (unsigned long)sender.unextended_sp(); + } else { + nextfp = p[frame::link_offset]; + nextpc = p[frame::return_addr_offset]; + nextsp = (unsigned long)&p[frame::sender_sp_offset]; + } + + if (bcx == -1ul) + bcx = p[frame::interpreter_frame_bcx_offset]; + + if (Interpreter::contains((address)pc)) { + Method* m = (Method*)p[frame::interpreter_frame_method_offset]; + if(m && m->is_method()) { + printbc(m, bcx); + } else + printf("not a Method\n"); + } else { + CodeBlob *cb = CodeCache::find_blob((address)pc); + if (cb != NULL) { + if (cb->is_nmethod()) { + ResourceMark rm; + nmethod* nm = (nmethod*)cb; + printf("nmethod %s\n", nm->method()->name_and_sig_as_C_string()); + } else if (cb->name()) { + printf("CodeBlob %s\n", cb->name()); + } + } + } +} + +extern "C" void npf() { + CodeBlob *cb = CodeCache::find_blob((address)nextpc); + // C2 does not always chain the frame pointers when it can, instead + // preferring to use fixed offsets from SP, so a simple leave() does + // not work. Instead, it adds the frame size to SP then pops FP and + // LR. We have to do the same thing to get a good call chain. + if (cb && cb->frame_size()) + nextfp = nextsp + wordSize * (cb->frame_size() - 2); + internal_pf (nextsp, nextfp, nextpc, -1); +} + +extern "C" void pf(unsigned long sp, unsigned long fp, unsigned long pc, + unsigned long bcx, unsigned long thread) { + if (!reg_map) { + reg_map = NEW_C_HEAP_OBJ(RegisterMap, mtNone); + ::new (reg_map) RegisterMap((JavaThread*)thread, false); + } else { + *reg_map = RegisterMap((JavaThread*)thread, false); + } + + { + CodeBlob *cb = CodeCache::find_blob((address)pc); + if (cb && cb->frame_size()) + fp = sp + wordSize * (cb->frame_size() - 2); + } + internal_pf(sp, fp, pc, bcx); +} + +// support for printing out where we are in a Java method +// needs to be passed current fp and bcp register values +// prints method name, bc index and bytecode name +extern "C" void pm(unsigned long fp, unsigned long bcx) { + DESCRIBE_FP_OFFSET(interpreter_frame_method); + unsigned long *p = (unsigned long *)fp; + Method* m = (Method*)p[frame::interpreter_frame_method_offset]; + printbc(m, bcx); +} + +#ifndef PRODUCT +// This is a generic constructor which is only used by pns() in debug.cpp. +frame::frame(void* sp, void* fp, void* pc) { + init((intptr_t*)sp, (intptr_t*)fp, (address)pc); +} +#endif + +void JavaFrameAnchor::make_walkable(JavaThread* thread) { + // last frame set? + if (last_Java_sp() == NULL) return; + // already walkable? + if (walkable()) return; + assert(Thread::current() == (Thread*)thread, "not current thread"); + assert(last_Java_sp() != NULL, "not called from Java code?"); + assert(last_Java_pc() == NULL, "already walkable"); + capture_last_Java_pc(); + assert(walkable(), "something went wrong"); +} + +void JavaFrameAnchor::capture_last_Java_pc() { + assert(_last_Java_sp != NULL, "no last frame set"); + assert(_last_Java_pc == NULL, "already walkable"); + _last_Java_pc = (address)_last_Java_sp[-1]; +}