1 /*
   2  * Copyright (c) 2013, Red Hat Inc.
   3  * Copyright (c) 2003, 2011, Oracle and/or its affiliates.
   4  * All rights reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 #include "precompiled.hpp"
  28 #include "asm/macroAssembler.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/templateTable.hpp"
  32 #include "memory/universe.inline.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/method.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/methodHandles.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/synchronizer.hpp"
  41 
  42 #ifndef CC_INTERP
  43 
  44 #define __ _masm->
  45 
  46 // Platform-dependent initialization
  47 
  48 void TemplateTable::pd_initialize() {
  49   // No amd64 specific initialization
  50 }
  51 
  52 // Address computation: local variables
  53 
  54 static inline Address iaddress(int n) {
  55   return Address(rlocals, Interpreter::local_offset_in_bytes(n));
  56 }
  57 
  58 static inline Address laddress(int n) {
  59   return iaddress(n + 1);
  60 }
  61 
  62 static inline Address faddress(int n) {
  63   return iaddress(n);
  64 }
  65 
  66 static inline Address daddress(int n) {
  67   return laddress(n);
  68 }
  69 
  70 static inline Address aaddress(int n) {
  71   return iaddress(n);
  72 }
  73 
  74 static inline Address iaddress(Register r) {
  75   return Address(rlocals, r, Address::lsl(3));
  76 }
  77 
  78 static inline Address laddress(Register r, Register scratch,
  79                                InterpreterMacroAssembler* _masm) {
  80   __ lea(scratch, Address(rlocals, r, Address::lsl(3)));
  81   return Address(scratch, Interpreter::local_offset_in_bytes(1));
  82 }
  83 
  84 static inline Address faddress(Register r) {
  85   return iaddress(r);
  86 }
  87 
  88 static inline Address daddress(Register r, Register scratch,
  89                                InterpreterMacroAssembler* _masm) {
  90   return laddress(r, scratch, _masm);
  91 }
  92 
  93 static inline Address aaddress(Register r) {
  94   return iaddress(r);
  95 }
  96 
  97 static inline Address at_rsp() {
  98   return Address(esp, 0);
  99 }
 100 
 101 // At top of Java expression stack which may be different than esp().  It
 102 // isn't for category 1 objects.
 103 static inline Address at_tos   () {
 104   return Address(esp,  Interpreter::expr_offset_in_bytes(0));
 105 }
 106 
 107 static inline Address at_tos_p1() {
 108   return Address(esp,  Interpreter::expr_offset_in_bytes(1));
 109 }
 110 
 111 static inline Address at_tos_p2() {
 112   return Address(esp,  Interpreter::expr_offset_in_bytes(2));
 113 }
 114 
 115 static inline Address at_tos_p3() {
 116   return Address(esp,  Interpreter::expr_offset_in_bytes(3));
 117 }
 118 
 119 static inline Address at_tos_p4() {
 120   return Address(esp,  Interpreter::expr_offset_in_bytes(4));
 121 }
 122 
 123 static inline Address at_tos_p5() {
 124   return Address(esp,  Interpreter::expr_offset_in_bytes(5));
 125 }
 126 
 127 // Condition conversion
 128 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 129   switch (cc) {
 130   case TemplateTable::equal        : return Assembler::NE;
 131   case TemplateTable::not_equal    : return Assembler::EQ;
 132   case TemplateTable::less         : return Assembler::GE;
 133   case TemplateTable::less_equal   : return Assembler::GT;
 134   case TemplateTable::greater      : return Assembler::LE;
 135   case TemplateTable::greater_equal: return Assembler::LT;
 136   }
 137   ShouldNotReachHere();
 138   return Assembler::EQ;
 139 }
 140 
 141 
 142 // Miscelaneous helper routines
 143 // Store an oop (or NULL) at the Address described by obj.
 144 // If val == noreg this means store a NULL
 145 static void do_oop_store(InterpreterMacroAssembler* _masm,
 146                          Address obj,
 147                          Register val,
 148                          BarrierSet::Name barrier,
 149                          bool precise) {
 150   assert(val == noreg || val == r0, "parameter is just for looks");
 151   switch (barrier) {
 152 #if INCLUDE_ALL_GCS
 153     case BarrierSet::G1SATBCT:
 154     case BarrierSet::G1SATBCTLogging:
 155       {
 156         // flatten object address if needed
 157         if (obj.index() == noreg && obj.offset() == 0) {
 158           if (obj.base() != r3) {
 159             __ mov(r3, obj.base());
 160           }
 161         } else {
 162           __ lea(r3, obj);
 163         }
 164         __ g1_write_barrier_pre(r3 /* obj */,
 165                                 r1 /* pre_val */,
 166                                 rthread /* thread */,
 167                                 r10  /* tmp */,
 168                                 val != noreg /* tosca_live */,
 169                                 false /* expand_call */);
 170         if (val == noreg) {
 171           __ store_heap_oop_null(Address(r3, 0));
 172         } else {
 173           // G1 barrier needs uncompressed oop for region cross check.
 174           Register new_val = val;
 175           if (UseCompressedOops) {
 176             new_val = rscratch2;
 177             __ mov(new_val, val);
 178           }
 179           __ store_heap_oop(Address(r3, 0), val);
 180           __ g1_write_barrier_post(r3 /* store_adr */,
 181                                    new_val /* new_val */,
 182                                    rthread /* thread */,
 183                                    r10 /* tmp */,
 184                                    r1 /* tmp2 */);
 185         }
 186 
 187       }
 188       break;
 189 #endif // INCLUDE_ALL_GCS
 190     case BarrierSet::CardTableModRef:
 191     case BarrierSet::CardTableExtension:
 192       {
 193         if (val == noreg) {
 194           __ store_heap_oop_null(obj);
 195         } else {
 196           __ store_heap_oop(obj, val);
 197           // flatten object address if needed
 198           if (!precise || (obj.index() == noreg && obj.offset() == 0)) {
 199             __ store_check(obj.base());
 200           } else {
 201             __ lea(r3, obj);
 202             __ store_check(r3);
 203           }
 204         }
 205       }
 206       break;
 207     case BarrierSet::ModRef:
 208     case BarrierSet::Other:
 209       if (val == noreg) {
 210         __ store_heap_oop_null(obj);
 211       } else {
 212         __ store_heap_oop(obj, val);
 213       }
 214       break;
 215     default      :
 216       ShouldNotReachHere();
 217 
 218   }
 219 }
 220 
 221 Address TemplateTable::at_bcp(int offset) {
 222   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 223   return Address(rbcp, offset);
 224 }
 225 
 226 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 227                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 228                                    int byte_no)
 229 {
 230   if (!RewriteBytecodes)  return;
 231   Label L_patch_done;
 232 
 233   switch (bc) {
 234   case Bytecodes::_fast_aputfield:
 235   case Bytecodes::_fast_bputfield:
 236   case Bytecodes::_fast_zputfield:
 237   case Bytecodes::_fast_cputfield:
 238   case Bytecodes::_fast_dputfield:
 239   case Bytecodes::_fast_fputfield:
 240   case Bytecodes::_fast_iputfield:
 241   case Bytecodes::_fast_lputfield:
 242   case Bytecodes::_fast_sputfield:
 243     {
 244       // We skip bytecode quickening for putfield instructions when
 245       // the put_code written to the constant pool cache is zero.
 246       // This is required so that every execution of this instruction
 247       // calls out to InterpreterRuntime::resolve_get_put to do
 248       // additional, required work.
 249       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 250       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 251       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
 252       __ movw(bc_reg, bc);
 253       __ cmpw(temp_reg, (unsigned) 0);
 254       __ br(Assembler::EQ, L_patch_done);  // don't patch
 255     }
 256     break;
 257   default:
 258     assert(byte_no == -1, "sanity");
 259     // the pair bytecodes have already done the load.
 260     if (load_bc_into_bc_reg) {
 261       __ movw(bc_reg, bc);
 262     }
 263   }
 264 
 265   if (JvmtiExport::can_post_breakpoint()) {
 266     Label L_fast_patch;
 267     // if a breakpoint is present we can't rewrite the stream directly
 268     __ load_unsigned_byte(temp_reg, at_bcp(0));
 269     __ cmpw(temp_reg, Bytecodes::_breakpoint);
 270     __ br(Assembler::NE, L_fast_patch);
 271     // Let breakpoint table handling rewrite to quicker bytecode
 272     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg);
 273     __ b(L_patch_done);
 274     __ bind(L_fast_patch);
 275   }
 276 
 277 #ifdef ASSERT
 278   Label L_okay;
 279   __ load_unsigned_byte(temp_reg, at_bcp(0));
 280   __ cmpw(temp_reg, (int) Bytecodes::java_code(bc));
 281   __ br(Assembler::EQ, L_okay);
 282   __ cmpw(temp_reg, bc_reg);
 283   __ br(Assembler::EQ, L_okay);
 284   __ stop("patching the wrong bytecode");
 285   __ bind(L_okay);
 286 #endif
 287 
 288   // patch bytecode
 289   __ strb(bc_reg, at_bcp(0));
 290   __ bind(L_patch_done);
 291 }
 292 
 293 
 294 // Individual instructions
 295 
 296 void TemplateTable::nop() {
 297   transition(vtos, vtos);
 298   // nothing to do
 299 }
 300 
 301 void TemplateTable::shouldnotreachhere() {
 302   transition(vtos, vtos);
 303   __ stop("shouldnotreachhere bytecode");
 304 }
 305 
 306 void TemplateTable::aconst_null()
 307 {
 308   transition(vtos, atos);
 309   __ mov(r0, 0);
 310 }
 311 
 312 void TemplateTable::iconst(int value)
 313 {
 314   transition(vtos, itos);
 315   __ mov(r0, value);
 316 }
 317 
 318 void TemplateTable::lconst(int value)
 319 {
 320   __ mov(r0, value);
 321 }
 322 
 323 void TemplateTable::fconst(int value)
 324 {
 325   transition(vtos, ftos);
 326   switch (value) {
 327   case 0:
 328     __ fmovs(v0, zr);
 329     break;
 330   case 1:
 331     __ fmovs(v0, 1.0);
 332     break;
 333   case 2:
 334     __ fmovs(v0, 2.0);
 335     break;
 336   default:
 337     ShouldNotReachHere();
 338     break;
 339   }
 340 }
 341 
 342 void TemplateTable::dconst(int value)
 343 {
 344   transition(vtos, dtos);
 345   switch (value) {
 346   case 0:
 347     __ fmovd(v0, zr);
 348     break;
 349   case 1:
 350     __ fmovd(v0, 1.0);
 351     break;
 352   case 2:
 353     __ fmovd(v0, 2.0);
 354     break;
 355   default:
 356     ShouldNotReachHere();
 357     break;
 358   }
 359 }
 360 
 361 void TemplateTable::bipush()
 362 {
 363   transition(vtos, itos);
 364   __ load_signed_byte32(r0, at_bcp(1));
 365 }
 366 
 367 void TemplateTable::sipush()
 368 {
 369   transition(vtos, itos);
 370   __ load_unsigned_short(r0, at_bcp(1));
 371   __ revw(r0, r0);
 372   __ asrw(r0, r0, 16);
 373 }
 374 
 375 void TemplateTable::ldc(bool wide)
 376 {
 377   transition(vtos, vtos);
 378   Label call_ldc, notFloat, notClass, Done;
 379 
 380   if (wide) {
 381     __ get_unsigned_2_byte_index_at_bcp(r1, 1);
 382   } else {
 383     __ load_unsigned_byte(r1, at_bcp(1));
 384   }
 385   __ get_cpool_and_tags(r2, r0);
 386 
 387   const int base_offset = ConstantPool::header_size() * wordSize;
 388   const int tags_offset = Array<u1>::base_offset_in_bytes();
 389 
 390   // get type
 391   __ add(r3, r1, tags_offset);
 392   __ lea(r3, Address(r0, r3));
 393   __ ldarb(r3, r3);
 394 
 395   // unresolved class - get the resolved class
 396   __ cmp(r3, JVM_CONSTANT_UnresolvedClass);
 397   __ br(Assembler::EQ, call_ldc);
 398 
 399   // unresolved class in error state - call into runtime to throw the error
 400   // from the first resolution attempt
 401   __ cmp(r3, JVM_CONSTANT_UnresolvedClassInError);
 402   __ br(Assembler::EQ, call_ldc);
 403 
 404   // resolved class - need to call vm to get java mirror of the class
 405   __ cmp(r3, JVM_CONSTANT_Class);
 406   __ br(Assembler::NE, notClass);
 407 
 408   __ bind(call_ldc);
 409   __ mov(c_rarg1, wide);
 410   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
 411   __ push_ptr(r0);
 412   __ verify_oop(r0);
 413   __ b(Done);
 414 
 415   __ bind(notClass);
 416   __ cmp(r3, JVM_CONSTANT_Float);
 417   __ br(Assembler::NE, notFloat);
 418   // ftos
 419   __ adds(r1, r2, r1, Assembler::LSL, 3);
 420   __ ldrs(v0, Address(r1, base_offset));
 421   __ push_f();
 422   __ b(Done);
 423 
 424   __ bind(notFloat);
 425 #ifdef ASSERT
 426   {
 427     Label L;
 428     __ cmp(r3, JVM_CONSTANT_Integer);
 429     __ br(Assembler::EQ, L);
 430     // String and Object are rewritten to fast_aldc
 431     __ stop("unexpected tag type in ldc");
 432     __ bind(L);
 433   }
 434 #endif
 435   // itos JVM_CONSTANT_Integer only
 436   __ adds(r1, r2, r1, Assembler::LSL, 3);
 437   __ ldrw(r0, Address(r1, base_offset));
 438   __ push_i(r0);
 439   __ bind(Done);
 440 }
 441 
 442 // Fast path for caching oop constants.
 443 void TemplateTable::fast_aldc(bool wide)
 444 {
 445   transition(vtos, atos);
 446 
 447   Register result = r0;
 448   Register tmp = r1;
 449   int index_size = wide ? sizeof(u2) : sizeof(u1);
 450 
 451   Label resolved;
 452 
 453   // We are resolved if the resolved reference cache entry contains a
 454   // non-null object (String, MethodType, etc.)
 455   assert_different_registers(result, tmp);
 456   __ get_cache_index_at_bcp(tmp, 1, index_size);
 457   __ load_resolved_reference_at_index(result, tmp);
 458   __ cbnz(result, resolved);
 459 
 460   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 461 
 462   // first time invocation - must resolve first
 463   __ mov(tmp, (int)bytecode());
 464   __ call_VM(result, entry, tmp);
 465 
 466   __ bind(resolved);
 467 
 468   if (VerifyOops) {
 469     __ verify_oop(result);
 470   }
 471 }
 472 
 473 void TemplateTable::ldc2_w()
 474 {
 475   transition(vtos, vtos);
 476   Label Long, Done;
 477   __ get_unsigned_2_byte_index_at_bcp(r0, 1);
 478 
 479   __ get_cpool_and_tags(r1, r2);
 480   const int base_offset = ConstantPool::header_size() * wordSize;
 481   const int tags_offset = Array<u1>::base_offset_in_bytes();
 482 
 483   // get type
 484   __ lea(r2, Address(r2, r0, Address::lsl(0)));
 485   __ load_unsigned_byte(r2, Address(r2, tags_offset));
 486   __ cmpw(r2, (int)JVM_CONSTANT_Double);
 487   __ br(Assembler::NE, Long);
 488   // dtos
 489   __ lea (r2, Address(r1, r0, Address::lsl(3)));
 490   __ ldrd(v0, Address(r2, base_offset));
 491   __ push_d();
 492   __ b(Done);
 493 
 494   __ bind(Long);
 495   // ltos
 496   __ lea(r0, Address(r1, r0, Address::lsl(3)));
 497   __ ldr(r0, Address(r0, base_offset));
 498   __ push_l();
 499 
 500   __ bind(Done);
 501 }
 502 
 503 void TemplateTable::locals_index(Register reg, int offset)
 504 {
 505   __ ldrb(reg, at_bcp(offset));
 506   __ neg(reg, reg);
 507 }
 508 
 509 void TemplateTable::iload()
 510 {
 511   transition(vtos, itos);
 512   if (RewriteFrequentPairs) {
 513     Label rewrite, done;
 514     Register bc = r4;
 515 
 516     // get next bytecode
 517     __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 518 
 519     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 520     // last two iloads in a pair.  Comparing against fast_iload means that
 521     // the next bytecode is neither an iload or a caload, and therefore
 522     // an iload pair.
 523     __ cmpw(r1, Bytecodes::_iload);
 524     __ br(Assembler::EQ, done);
 525 
 526     // if _fast_iload rewrite to _fast_iload2
 527     __ cmpw(r1, Bytecodes::_fast_iload);
 528     __ movw(bc, Bytecodes::_fast_iload2);
 529     __ br(Assembler::EQ, rewrite);
 530 
 531     // if _caload rewrite to _fast_icaload
 532     __ cmpw(r1, Bytecodes::_caload);
 533     __ movw(bc, Bytecodes::_fast_icaload);
 534     __ br(Assembler::EQ, rewrite);
 535 
 536     // else rewrite to _fast_iload
 537     __ movw(bc, Bytecodes::_fast_iload);
 538 
 539     // rewrite
 540     // bc: new bytecode
 541     __ bind(rewrite);
 542     patch_bytecode(Bytecodes::_iload, bc, r1, false);
 543     __ bind(done);
 544 
 545   }
 546 
 547   // do iload, get the local value into tos
 548   locals_index(r1);
 549   __ ldr(r0, iaddress(r1));
 550 
 551 }
 552 
 553 void TemplateTable::fast_iload2()
 554 {
 555   transition(vtos, itos);
 556   locals_index(r1);
 557   __ ldr(r0, iaddress(r1));
 558   __ push(itos);
 559   locals_index(r1, 3);
 560   __ ldr(r0, iaddress(r1));
 561 }
 562 
 563 void TemplateTable::fast_iload()
 564 {
 565   transition(vtos, itos);
 566   locals_index(r1);
 567   __ ldr(r0, iaddress(r1));
 568 }
 569 
 570 void TemplateTable::lload()
 571 {
 572   transition(vtos, ltos);
 573   __ ldrb(r1, at_bcp(1));
 574   __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
 575   __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
 576 }
 577 
 578 void TemplateTable::fload()
 579 {
 580   transition(vtos, ftos);
 581   locals_index(r1);
 582   // n.b. we use ldrd here because this is a 64 bit slot
 583   // this is comparable to the iload case
 584   __ ldrd(v0, faddress(r1));
 585 }
 586 
 587 void TemplateTable::dload()
 588 {
 589   transition(vtos, dtos);
 590   __ ldrb(r1, at_bcp(1));
 591   __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
 592   __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
 593 }
 594 
 595 void TemplateTable::aload()
 596 {
 597   transition(vtos, atos);
 598   locals_index(r1);
 599   __ ldr(r0, iaddress(r1));
 600 }
 601 
 602 void TemplateTable::locals_index_wide(Register reg) {
 603   __ ldrh(reg, at_bcp(2));
 604   __ rev16w(reg, reg);
 605   __ neg(reg, reg);
 606 }
 607 
 608 void TemplateTable::wide_iload() {
 609   transition(vtos, itos);
 610   locals_index_wide(r1);
 611   __ ldr(r0, iaddress(r1));
 612 }
 613 
 614 void TemplateTable::wide_lload()
 615 {
 616   transition(vtos, ltos);
 617   __ ldrh(r1, at_bcp(2));
 618   __ rev16w(r1, r1);
 619   __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
 620   __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
 621 }
 622 
 623 void TemplateTable::wide_fload()
 624 {
 625   transition(vtos, ftos);
 626   locals_index_wide(r1);
 627   // n.b. we use ldrd here because this is a 64 bit slot
 628   // this is comparable to the iload case
 629   __ ldrd(v0, faddress(r1));
 630 }
 631 
 632 void TemplateTable::wide_dload()
 633 {
 634   transition(vtos, dtos);
 635   __ ldrh(r1, at_bcp(2));
 636   __ rev16w(r1, r1);
 637   __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
 638   __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
 639 }
 640 
 641 void TemplateTable::wide_aload()
 642 {
 643   transition(vtos, atos);
 644   locals_index_wide(r1);
 645   __ ldr(r0, aaddress(r1));
 646 }
 647 
 648 void TemplateTable::index_check(Register array, Register index)
 649 {
 650   // destroys r1, rscratch1
 651   // check array
 652   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 653   // sign extend index for use by indexed load
 654   // __ movl2ptr(index, index);
 655   // check index
 656   Register length = rscratch1;
 657   __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
 658   __ cmpw(index, length);
 659   if (index != r1) {
 660     // ??? convention: move aberrant index into r1 for exception message
 661     assert(r1 != array, "different registers");
 662     __ mov(r1, index);
 663   }
 664   Label ok;
 665   __ br(Assembler::LO, ok);
 666   __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 667   __ br(rscratch1);
 668   __ bind(ok);
 669 }
 670 
 671 void TemplateTable::iaload()
 672 {
 673   transition(itos, itos);
 674   __ mov(r1, r0);
 675   __ pop_ptr(r0);
 676   // r0: array
 677   // r1: index
 678   index_check(r0, r1); // leaves index in r1, kills rscratch1
 679   __ lea(r1, Address(r0, r1, Address::uxtw(2)));
 680   __ ldrw(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_INT)));
 681 }
 682 
 683 void TemplateTable::laload()
 684 {
 685   transition(itos, ltos);
 686   __ mov(r1, r0);
 687   __ pop_ptr(r0);
 688   // r0: array
 689   // r1: index
 690   index_check(r0, r1); // leaves index in r1, kills rscratch1
 691   __ lea(r1, Address(r0, r1, Address::uxtw(3)));
 692   __ ldr(r0, Address(r1,  arrayOopDesc::base_offset_in_bytes(T_LONG)));
 693 }
 694 
 695 void TemplateTable::faload()
 696 {
 697   transition(itos, ftos);
 698   __ mov(r1, r0);
 699   __ pop_ptr(r0);
 700   // r0: array
 701   // r1: index
 702   index_check(r0, r1); // leaves index in r1, kills rscratch1
 703   __ lea(r1,  Address(r0, r1, Address::uxtw(2)));
 704   __ ldrs(v0, Address(r1,  arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 705 }
 706 
 707 void TemplateTable::daload()
 708 {
 709   transition(itos, dtos);
 710   __ mov(r1, r0);
 711   __ pop_ptr(r0);
 712   // r0: array
 713   // r1: index
 714   index_check(r0, r1); // leaves index in r1, kills rscratch1
 715   __ lea(r1,  Address(r0, r1, Address::uxtw(3)));
 716   __ ldrd(v0, Address(r1,  arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 717 }
 718 
 719 void TemplateTable::aaload()
 720 {
 721   transition(itos, atos);
 722   __ mov(r1, r0);
 723   __ pop_ptr(r0);
 724   // r0: array
 725   // r1: index
 726   index_check(r0, r1); // leaves index in r1, kills rscratch1
 727   int s = (UseCompressedOops ? 2 : 3);
 728   __ lea(r1, Address(r0, r1, Address::uxtw(s)));
 729   __ load_heap_oop(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 730 }
 731 
 732 void TemplateTable::baload()
 733 {
 734   transition(itos, itos);
 735   __ mov(r1, r0);
 736   __ pop_ptr(r0);
 737   // r0: array
 738   // r1: index
 739   index_check(r0, r1); // leaves index in r1, kills rscratch1
 740   __ lea(r1,  Address(r0, r1, Address::uxtw(0)));
 741   __ load_signed_byte(r0, Address(r1,  arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 742 }
 743 
 744 void TemplateTable::caload()
 745 {
 746   transition(itos, itos);
 747   __ mov(r1, r0);
 748   __ pop_ptr(r0);
 749   // r0: array
 750   // r1: index
 751   index_check(r0, r1); // leaves index in r1, kills rscratch1
 752   __ lea(r1,  Address(r0, r1, Address::uxtw(1)));
 753   __ load_unsigned_short(r0, Address(r1,  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 754 }
 755 
 756 // iload followed by caload frequent pair
 757 void TemplateTable::fast_icaload()
 758 {
 759   transition(vtos, itos);
 760   // load index out of locals
 761   locals_index(r2);
 762   __ ldr(r1, iaddress(r2));
 763 
 764   __ pop_ptr(r0);
 765 
 766   // r0: array
 767   // r1: index
 768   index_check(r0, r1); // leaves index in r1, kills rscratch1
 769   __ lea(r1,  Address(r0, r1, Address::uxtw(1)));
 770   __ load_unsigned_short(r0, Address(r1,  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 771 }
 772 
 773 void TemplateTable::saload()
 774 {
 775   transition(itos, itos);
 776   __ mov(r1, r0);
 777   __ pop_ptr(r0);
 778   // r0: array
 779   // r1: index
 780   index_check(r0, r1); // leaves index in r1, kills rscratch1
 781   __ lea(r1,  Address(r0, r1, Address::uxtw(1)));
 782   __ load_signed_short(r0, Address(r1,  arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 783 }
 784 
 785 void TemplateTable::iload(int n)
 786 {
 787   transition(vtos, itos);
 788   __ ldr(r0, iaddress(n));
 789 }
 790 
 791 void TemplateTable::lload(int n)
 792 {
 793   transition(vtos, ltos);
 794   __ ldr(r0, laddress(n));
 795 }
 796 
 797 void TemplateTable::fload(int n)
 798 {
 799   transition(vtos, ftos);
 800   __ ldrs(v0, faddress(n));
 801 }
 802 
 803 void TemplateTable::dload(int n)
 804 {
 805   transition(vtos, dtos);
 806   __ ldrd(v0, daddress(n));
 807 }
 808 
 809 void TemplateTable::aload(int n)
 810 {
 811   transition(vtos, atos);
 812   __ ldr(r0, iaddress(n));
 813 }
 814 
 815 void TemplateTable::aload_0()
 816 {
 817   // According to bytecode histograms, the pairs:
 818   //
 819   // _aload_0, _fast_igetfield
 820   // _aload_0, _fast_agetfield
 821   // _aload_0, _fast_fgetfield
 822   //
 823   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 824   // _aload_0 bytecode checks if the next bytecode is either
 825   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 826   // rewrites the current bytecode into a pair bytecode; otherwise it
 827   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 828   // the pair check anymore.
 829   //
 830   // Note: If the next bytecode is _getfield, the rewrite must be
 831   //       delayed, otherwise we may miss an opportunity for a pair.
 832   //
 833   // Also rewrite frequent pairs
 834   //   aload_0, aload_1
 835   //   aload_0, iload_1
 836   // These bytecodes with a small amount of code are most profitable
 837   // to rewrite
 838   if (RewriteFrequentPairs) {
 839     Label rewrite, done;
 840     const Register bc = r4;
 841 
 842     // get next bytecode
 843     __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 844 
 845     // do actual aload_0
 846     aload(0);
 847 
 848     // if _getfield then wait with rewrite
 849     __ cmpw(r1, Bytecodes::Bytecodes::_getfield);
 850     __ br(Assembler::EQ, done);
 851 
 852     // if _igetfield then reqrite to _fast_iaccess_0
 853     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 854     __ cmpw(r1, Bytecodes::_fast_igetfield);
 855     __ movw(bc, Bytecodes::_fast_iaccess_0);
 856     __ br(Assembler::EQ, rewrite);
 857 
 858     // if _agetfield then reqrite to _fast_aaccess_0
 859     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 860     __ cmpw(r1, Bytecodes::_fast_agetfield);
 861     __ movw(bc, Bytecodes::_fast_aaccess_0);
 862     __ br(Assembler::EQ, rewrite);
 863 
 864     // if _fgetfield then reqrite to _fast_faccess_0
 865     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 866     __ cmpw(r1, Bytecodes::_fast_fgetfield);
 867     __ movw(bc, Bytecodes::_fast_faccess_0);
 868     __ br(Assembler::EQ, rewrite);
 869 
 870     // else rewrite to _fast_aload0
 871     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
 872     __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0);
 873 
 874     // rewrite
 875     // bc: new bytecode
 876     __ bind(rewrite);
 877     patch_bytecode(Bytecodes::_aload_0, bc, r1, false);
 878 
 879     __ bind(done);
 880   } else {
 881     aload(0);
 882   }
 883 }
 884 
 885 void TemplateTable::istore()
 886 {
 887   transition(itos, vtos);
 888   locals_index(r1);
 889   // FIXME: We're being very pernickerty here storing a jint in a
 890   // local with strw, which costs an extra instruction over what we'd
 891   // be able to do with a simple str.  We should just store the whole
 892   // word.
 893   __ lea(rscratch1, iaddress(r1));
 894   __ strw(r0, Address(rscratch1));
 895 }
 896 
 897 void TemplateTable::lstore()
 898 {
 899   transition(ltos, vtos);
 900   locals_index(r1);
 901   __ str(r0, laddress(r1, rscratch1, _masm));
 902 }
 903 
 904 void TemplateTable::fstore() {
 905   transition(ftos, vtos);
 906   locals_index(r1);
 907   __ lea(rscratch1, iaddress(r1));
 908   __ strs(v0, Address(rscratch1));
 909 }
 910 
 911 void TemplateTable::dstore() {
 912   transition(dtos, vtos);
 913   locals_index(r1);
 914   __ strd(v0, daddress(r1, rscratch1, _masm));
 915 }
 916 
 917 void TemplateTable::astore()
 918 {
 919   transition(vtos, vtos);
 920   __ pop_ptr(r0);
 921   locals_index(r1);
 922   __ str(r0, aaddress(r1));
 923 }
 924 
 925 void TemplateTable::wide_istore() {
 926   transition(vtos, vtos);
 927   __ pop_i();
 928   locals_index_wide(r1);
 929   __ lea(rscratch1, iaddress(r1));
 930   __ strw(r0, Address(rscratch1));
 931 }
 932 
 933 void TemplateTable::wide_lstore() {
 934   transition(vtos, vtos);
 935   __ pop_l();
 936   locals_index_wide(r1);
 937   __ str(r0, laddress(r1, rscratch1, _masm));
 938 }
 939 
 940 void TemplateTable::wide_fstore() {
 941   transition(vtos, vtos);
 942   __ pop_f();
 943   locals_index_wide(r1);
 944   __ lea(rscratch1, faddress(r1));
 945   __ strs(v0, rscratch1);
 946 }
 947 
 948 void TemplateTable::wide_dstore() {
 949   transition(vtos, vtos);
 950   __ pop_d();
 951   locals_index_wide(r1);
 952   __ strd(v0, daddress(r1, rscratch1, _masm));
 953 }
 954 
 955 void TemplateTable::wide_astore() {
 956   transition(vtos, vtos);
 957   __ pop_ptr(r0);
 958   locals_index_wide(r1);
 959   __ str(r0, aaddress(r1));
 960 }
 961 
 962 void TemplateTable::iastore() {
 963   transition(itos, vtos);
 964   __ pop_i(r1);
 965   __ pop_ptr(r3);
 966   // r0: value
 967   // r1: index
 968   // r3: array
 969   index_check(r3, r1); // prefer index in r1
 970   __ lea(rscratch1, Address(r3, r1, Address::uxtw(2)));
 971   __ strw(r0, Address(rscratch1,
 972                       arrayOopDesc::base_offset_in_bytes(T_INT)));
 973 }
 974 
 975 void TemplateTable::lastore() {
 976   transition(ltos, vtos);
 977   __ pop_i(r1);
 978   __ pop_ptr(r3);
 979   // r0: value
 980   // r1: index
 981   // r3: array
 982   index_check(r3, r1); // prefer index in r1
 983   __ lea(rscratch1, Address(r3, r1, Address::uxtw(3)));
 984   __ str(r0, Address(rscratch1,
 985                       arrayOopDesc::base_offset_in_bytes(T_LONG)));
 986 }
 987 
 988 void TemplateTable::fastore() {
 989   transition(ftos, vtos);
 990   __ pop_i(r1);
 991   __ pop_ptr(r3);
 992   // v0: value
 993   // r1:  index
 994   // r3:  array
 995   index_check(r3, r1); // prefer index in r1
 996   __ lea(rscratch1, Address(r3, r1, Address::uxtw(2)));
 997   __ strs(v0, Address(rscratch1,
 998                       arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 999 }
1000 
1001 void TemplateTable::dastore() {
1002   transition(dtos, vtos);
1003   __ pop_i(r1);
1004   __ pop_ptr(r3);
1005   // v0: value
1006   // r1:  index
1007   // r3:  array
1008   index_check(r3, r1); // prefer index in r1
1009   __ lea(rscratch1, Address(r3, r1, Address::uxtw(3)));
1010   __ strd(v0, Address(rscratch1,
1011                       arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
1012 }
1013 
1014 void TemplateTable::aastore() {
1015   Label is_null, ok_is_subtype, done;
1016   transition(vtos, vtos);
1017   // stack: ..., array, index, value
1018   __ ldr(r0, at_tos());    // value
1019   __ ldr(r2, at_tos_p1()); // index
1020   __ ldr(r3, at_tos_p2()); // array
1021 
1022   Address element_address(r4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1023 
1024   index_check(r3, r2);     // kills r1
1025   __ lea(r4, Address(r3, r2, Address::uxtw(UseCompressedOops? 2 : 3)));
1026 
1027   // do array store check - check for NULL value first
1028   __ cbz(r0, is_null);
1029 
1030   // Move subklass into r1
1031   __ load_klass(r1, r0);
1032   // Move superklass into r0
1033   __ load_klass(r0, r3);
1034   __ ldr(r0, Address(r0,
1035                      ObjArrayKlass::element_klass_offset()));
1036   // Compress array + index*oopSize + 12 into a single register.  Frees r2.
1037 
1038   // Generate subtype check.  Blows r2, r5
1039   // Superklass in r0.  Subklass in r1.
1040   __ gen_subtype_check(r1, ok_is_subtype);
1041 
1042   // Come here on failure
1043   // object is at TOS
1044   __ b(Interpreter::_throw_ArrayStoreException_entry);
1045 
1046   // Come here on success
1047   __ bind(ok_is_subtype);
1048 
1049   // Get the value we will store
1050   __ ldr(r0, at_tos());
1051   // Now store using the appropriate barrier
1052   do_oop_store(_masm, element_address, r0, _bs->kind(), true);
1053   __ b(done);
1054 
1055   // Have a NULL in r0, r3=array, r2=index.  Store NULL at ary[idx]
1056   __ bind(is_null);
1057   __ profile_null_seen(r2);
1058 
1059   // Store a NULL
1060   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
1061 
1062   // Pop stack arguments
1063   __ bind(done);
1064   __ add(esp, esp, 3 * Interpreter::stackElementSize);
1065 }
1066 
1067 void TemplateTable::bastore()
1068 {
1069   transition(itos, vtos);
1070   __ pop_i(r1);
1071   __ pop_ptr(r3);
1072   // r0: value
1073   // r1: index
1074   // r3: array
1075   index_check(r3, r1); // prefer index in r1
1076 
1077   // Need to check whether array is boolean or byte
1078   // since both types share the bastore bytecode.
1079   __ load_klass(r2, r3);
1080   __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));
1081   int diffbit = Klass::layout_helper_boolean_diffbit();
1082   __ andw(rscratch1, r2, diffbit);
1083   Label L_skip;
1084   __ cbzw(rscratch1, L_skip);
1085   __ andw(r0, r0, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
1086   __ bind(L_skip);
1087 
1088   __ lea(rscratch1, Address(r3, r1, Address::uxtw(0)));
1089   __ strb(r0, Address(rscratch1,
1090                       arrayOopDesc::base_offset_in_bytes(T_BYTE)));
1091 }
1092 
1093 void TemplateTable::castore()
1094 {
1095   transition(itos, vtos);
1096   __ pop_i(r1);
1097   __ pop_ptr(r3);
1098   // r0: value
1099   // r1: index
1100   // r3: array
1101   index_check(r3, r1); // prefer index in r1
1102   __ lea(rscratch1, Address(r3, r1, Address::uxtw(1)));
1103   __ strh(r0, Address(rscratch1,
1104                       arrayOopDesc::base_offset_in_bytes(T_CHAR)));
1105 }
1106 
1107 void TemplateTable::sastore()
1108 {
1109   castore();
1110 }
1111 
1112 void TemplateTable::istore(int n)
1113 {
1114   transition(itos, vtos);
1115   __ str(r0, iaddress(n));
1116 }
1117 
1118 void TemplateTable::lstore(int n)
1119 {
1120   transition(ltos, vtos);
1121   __ str(r0, laddress(n));
1122 }
1123 
1124 void TemplateTable::fstore(int n)
1125 {
1126   transition(ftos, vtos);
1127   __ strs(v0, faddress(n));
1128 }
1129 
1130 void TemplateTable::dstore(int n)
1131 {
1132   transition(dtos, vtos);
1133   __ strd(v0, daddress(n));
1134 }
1135 
1136 void TemplateTable::astore(int n)
1137 {
1138   transition(vtos, vtos);
1139   __ pop_ptr(r0);
1140   __ str(r0, iaddress(n));
1141 }
1142 
1143 void TemplateTable::pop()
1144 {
1145   transition(vtos, vtos);
1146   __ add(esp, esp, Interpreter::stackElementSize);
1147 }
1148 
1149 void TemplateTable::pop2()
1150 {
1151   transition(vtos, vtos);
1152   __ add(esp, esp, 2 * Interpreter::stackElementSize);
1153 }
1154 
1155 void TemplateTable::dup()
1156 {
1157   transition(vtos, vtos);
1158   __ ldr(r0, Address(esp, 0));
1159   __ push(r0);
1160   // stack: ..., a, a
1161 }
1162 
1163 void TemplateTable::dup_x1()
1164 {
1165   transition(vtos, vtos);
1166   // stack: ..., a, b
1167   __ ldr(r0, at_tos());  // load b
1168   __ ldr(r2, at_tos_p1());  // load a
1169   __ str(r0, at_tos_p1());  // store b
1170   __ str(r2, at_tos());  // store a
1171   __ push(r0);                  // push b
1172   // stack: ..., b, a, b
1173 }
1174 
1175 void TemplateTable::dup_x2()
1176 {
1177   transition(vtos, vtos);
1178   // stack: ..., a, b, c
1179   __ ldr(r0, at_tos());  // load c
1180   __ ldr(r2, at_tos_p2());  // load a
1181   __ str(r0, at_tos_p2());  // store c in a
1182   __ push(r0);      // push c
1183   // stack: ..., c, b, c, c
1184   __ ldr(r0, at_tos_p2());  // load b
1185   __ str(r2, at_tos_p2());  // store a in b
1186   // stack: ..., c, a, c, c
1187   __ str(r0, at_tos_p1());  // store b in c
1188   // stack: ..., c, a, b, c
1189 }
1190 
1191 void TemplateTable::dup2()
1192 {
1193   transition(vtos, vtos);
1194   // stack: ..., a, b
1195   __ ldr(r0, at_tos_p1());  // load a
1196   __ push(r0);                  // push a
1197   __ ldr(r0, at_tos_p1());  // load b
1198   __ push(r0);                  // push b
1199   // stack: ..., a, b, a, b
1200 }
1201 
1202 void TemplateTable::dup2_x1()
1203 {
1204   transition(vtos, vtos);
1205   // stack: ..., a, b, c
1206   __ ldr(r2, at_tos());  // load c
1207   __ ldr(r0, at_tos_p1());  // load b
1208   __ push(r0);                  // push b
1209   __ push(r2);                  // push c
1210   // stack: ..., a, b, c, b, c
1211   __ str(r2, at_tos_p3());  // store c in b
1212   // stack: ..., a, c, c, b, c
1213   __ ldr(r2, at_tos_p4());  // load a
1214   __ str(r2, at_tos_p2());  // store a in 2nd c
1215   // stack: ..., a, c, a, b, c
1216   __ str(r0, at_tos_p4());  // store b in a
1217   // stack: ..., b, c, a, b, c
1218 }
1219 
1220 void TemplateTable::dup2_x2()
1221 {
1222   transition(vtos, vtos);
1223   // stack: ..., a, b, c, d
1224   __ ldr(r2, at_tos());  // load d
1225   __ ldr(r0, at_tos_p1());  // load c
1226   __ push(r0)            ;      // push c
1227   __ push(r2);                  // push d
1228   // stack: ..., a, b, c, d, c, d
1229   __ ldr(r0, at_tos_p4());  // load b
1230   __ str(r0, at_tos_p2());  // store b in d
1231   __ str(r2, at_tos_p4());  // store d in b
1232   // stack: ..., a, d, c, b, c, d
1233   __ ldr(r2, at_tos_p5());  // load a
1234   __ ldr(r0, at_tos_p3());  // load c
1235   __ str(r2, at_tos_p3());  // store a in c
1236   __ str(r0, at_tos_p5());  // store c in a
1237   // stack: ..., c, d, a, b, c, d
1238 }
1239 
1240 void TemplateTable::swap()
1241 {
1242   transition(vtos, vtos);
1243   // stack: ..., a, b
1244   __ ldr(r2, at_tos_p1());  // load a
1245   __ ldr(r0, at_tos());  // load b
1246   __ str(r2, at_tos());  // store a in b
1247   __ str(r0, at_tos_p1());  // store b in a
1248   // stack: ..., b, a
1249 }
1250 
1251 void TemplateTable::iop2(Operation op)
1252 {
1253   transition(itos, itos);
1254   // r0 <== r1 op r0
1255   __ pop_i(r1);
1256   switch (op) {
1257   case add  : __ addw(r0, r1, r0); break;
1258   case sub  : __ subw(r0, r1, r0); break;
1259   case mul  : __ mulw(r0, r1, r0); break;
1260   case _and : __ andw(r0, r1, r0); break;
1261   case _or  : __ orrw(r0, r1, r0); break;
1262   case _xor : __ eorw(r0, r1, r0); break;
1263   case shl  : __ lslvw(r0, r1, r0); break;
1264   case shr  : __ asrvw(r0, r1, r0); break;
1265   case ushr : __ lsrvw(r0, r1, r0);break;
1266   default   : ShouldNotReachHere();
1267   }
1268 }
1269 
1270 void TemplateTable::lop2(Operation op)
1271 {
1272   transition(ltos, ltos);
1273   // r0 <== r1 op r0
1274   __ pop_l(r1);
1275   switch (op) {
1276   case add  : __ add(r0, r1, r0); break;
1277   case sub  : __ sub(r0, r1, r0); break;
1278   case mul  : __ mul(r0, r1, r0); break;
1279   case _and : __ andr(r0, r1, r0); break;
1280   case _or  : __ orr(r0, r1, r0); break;
1281   case _xor : __ eor(r0, r1, r0); break;
1282   default   : ShouldNotReachHere();
1283   }
1284 }
1285 
1286 void TemplateTable::idiv()
1287 {
1288   transition(itos, itos);
1289   // explicitly check for div0
1290   Label no_div0;
1291   __ cbnzw(r0, no_div0);
1292   __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1293   __ br(rscratch1);
1294   __ bind(no_div0);
1295   __ pop_i(r1);
1296   // r0 <== r1 idiv r0
1297   __ corrected_idivl(r0, r1, r0, /* want_remainder */ false);
1298 }
1299 
1300 void TemplateTable::irem()
1301 {
1302   transition(itos, itos);
1303   // explicitly check for div0
1304   Label no_div0;
1305   __ cbnzw(r0, no_div0);
1306   __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1307   __ br(rscratch1);
1308   __ bind(no_div0);
1309   __ pop_i(r1);
1310   // r0 <== r1 irem r0
1311   __ corrected_idivl(r0, r1, r0, /* want_remainder */ true);
1312 }
1313 
1314 void TemplateTable::lmul()
1315 {
1316   transition(ltos, ltos);
1317   __ pop_l(r1);
1318   __ mul(r0, r0, r1);
1319 }
1320 
1321 void TemplateTable::ldiv()
1322 {
1323   transition(ltos, ltos);
1324   // explicitly check for div0
1325   Label no_div0;
1326   __ cbnz(r0, no_div0);
1327   __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1328   __ br(rscratch1);
1329   __ bind(no_div0);
1330   __ pop_l(r1);
1331   // r0 <== r1 ldiv r0
1332   __ corrected_idivq(r0, r1, r0, /* want_remainder */ false);
1333 }
1334 
1335 void TemplateTable::lrem()
1336 {
1337   transition(ltos, ltos);
1338   // explicitly check for div0
1339   Label no_div0;
1340   __ cbnz(r0, no_div0);
1341   __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1342   __ br(rscratch1);
1343   __ bind(no_div0);
1344   __ pop_l(r1);
1345   // r0 <== r1 lrem r0
1346   __ corrected_idivq(r0, r1, r0, /* want_remainder */ true);
1347 }
1348 
1349 void TemplateTable::lshl()
1350 {
1351   transition(itos, ltos);
1352   // shift count is in r0
1353   __ pop_l(r1);
1354   __ lslv(r0, r1, r0);
1355 }
1356 
1357 void TemplateTable::lshr()
1358 {
1359   transition(itos, ltos);
1360   // shift count is in r0
1361   __ pop_l(r1);
1362   __ asrv(r0, r1, r0);
1363 }
1364 
1365 void TemplateTable::lushr()
1366 {
1367   transition(itos, ltos);
1368   // shift count is in r0
1369   __ pop_l(r1);
1370   __ lsrv(r0, r1, r0);
1371 }
1372 
1373 void TemplateTable::fop2(Operation op)
1374 {
1375   transition(ftos, ftos);
1376   switch (op) {
1377   case add:
1378     // n.b. use ldrd because this is a 64 bit slot
1379     __ pop_f(v1);
1380     __ fadds(v0, v1, v0);
1381     break;
1382   case sub:
1383     __ pop_f(v1);
1384     __ fsubs(v0, v1, v0);
1385     break;
1386   case mul:
1387     __ pop_f(v1);
1388     __ fmuls(v0, v1, v0);
1389     break;
1390   case div:
1391     __ pop_f(v1);
1392     __ fdivs(v0, v1, v0);
1393     break;
1394   case rem:
1395     __ fmovs(v1, v0);
1396     __ pop_f(v0);
1397     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1398     break;
1399   default:
1400     ShouldNotReachHere();
1401     break;
1402   }
1403 }
1404 
1405 void TemplateTable::dop2(Operation op)
1406 {
1407   transition(dtos, dtos);
1408   switch (op) {
1409   case add:
1410     // n.b. use ldrd because this is a 64 bit slot
1411     __ pop_d(v1);
1412     __ faddd(v0, v1, v0);
1413     break;
1414   case sub:
1415     __ pop_d(v1);
1416     __ fsubd(v0, v1, v0);
1417     break;
1418   case mul:
1419     __ pop_d(v1);
1420     __ fmuld(v0, v1, v0);
1421     break;
1422   case div:
1423     __ pop_d(v1);
1424     __ fdivd(v0, v1, v0);
1425     break;
1426   case rem:
1427     __ fmovd(v1, v0);
1428     __ pop_d(v0);
1429     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1430     break;
1431   default:
1432     ShouldNotReachHere();
1433     break;
1434   }
1435 }
1436 
1437 void TemplateTable::ineg()
1438 {
1439   transition(itos, itos);
1440   __ negw(r0, r0);
1441 
1442 }
1443 
1444 void TemplateTable::lneg()
1445 {
1446   transition(ltos, ltos);
1447   __ neg(r0, r0);
1448 }
1449 
1450 void TemplateTable::fneg()
1451 {
1452   transition(ftos, ftos);
1453   __ fnegs(v0, v0);
1454 }
1455 
1456 void TemplateTable::dneg()
1457 {
1458   transition(dtos, dtos);
1459   __ fnegd(v0, v0);
1460 }
1461 
1462 void TemplateTable::iinc()
1463 {
1464   transition(vtos, vtos);
1465   __ load_signed_byte(r1, at_bcp(2)); // get constant
1466   locals_index(r2);
1467   __ ldr(r0, iaddress(r2));
1468   __ addw(r0, r0, r1);
1469   __ str(r0, iaddress(r2));
1470 }
1471 
1472 void TemplateTable::wide_iinc()
1473 {
1474   transition(vtos, vtos);
1475   // __ mov(r1, zr);
1476   __ ldrw(r1, at_bcp(2)); // get constant and index
1477   __ rev16(r1, r1);
1478   __ ubfx(r2, r1, 0, 16);
1479   __ neg(r2, r2);
1480   __ sbfx(r1, r1, 16, 16);
1481   __ ldr(r0, iaddress(r2));
1482   __ addw(r0, r0, r1);
1483   __ str(r0, iaddress(r2));
1484 }
1485 
1486 void TemplateTable::convert()
1487 {
1488   // Checking
1489 #ifdef ASSERT
1490   {
1491     TosState tos_in  = ilgl;
1492     TosState tos_out = ilgl;
1493     switch (bytecode()) {
1494     case Bytecodes::_i2l: // fall through
1495     case Bytecodes::_i2f: // fall through
1496     case Bytecodes::_i2d: // fall through
1497     case Bytecodes::_i2b: // fall through
1498     case Bytecodes::_i2c: // fall through
1499     case Bytecodes::_i2s: tos_in = itos; break;
1500     case Bytecodes::_l2i: // fall through
1501     case Bytecodes::_l2f: // fall through
1502     case Bytecodes::_l2d: tos_in = ltos; break;
1503     case Bytecodes::_f2i: // fall through
1504     case Bytecodes::_f2l: // fall through
1505     case Bytecodes::_f2d: tos_in = ftos; break;
1506     case Bytecodes::_d2i: // fall through
1507     case Bytecodes::_d2l: // fall through
1508     case Bytecodes::_d2f: tos_in = dtos; break;
1509     default             : ShouldNotReachHere();
1510     }
1511     switch (bytecode()) {
1512     case Bytecodes::_l2i: // fall through
1513     case Bytecodes::_f2i: // fall through
1514     case Bytecodes::_d2i: // fall through
1515     case Bytecodes::_i2b: // fall through
1516     case Bytecodes::_i2c: // fall through
1517     case Bytecodes::_i2s: tos_out = itos; break;
1518     case Bytecodes::_i2l: // fall through
1519     case Bytecodes::_f2l: // fall through
1520     case Bytecodes::_d2l: tos_out = ltos; break;
1521     case Bytecodes::_i2f: // fall through
1522     case Bytecodes::_l2f: // fall through
1523     case Bytecodes::_d2f: tos_out = ftos; break;
1524     case Bytecodes::_i2d: // fall through
1525     case Bytecodes::_l2d: // fall through
1526     case Bytecodes::_f2d: tos_out = dtos; break;
1527     default             : ShouldNotReachHere();
1528     }
1529     transition(tos_in, tos_out);
1530   }
1531 #endif // ASSERT
1532   // static const int64_t is_nan = 0x8000000000000000L;
1533 
1534   // Conversion
1535   switch (bytecode()) {
1536   case Bytecodes::_i2l:
1537     __ sxtw(r0, r0);
1538     break;
1539   case Bytecodes::_i2f:
1540     __ scvtfws(v0, r0);
1541     break;
1542   case Bytecodes::_i2d:
1543     __ scvtfwd(v0, r0);
1544     break;
1545   case Bytecodes::_i2b:
1546     __ sxtbw(r0, r0);
1547     break;
1548   case Bytecodes::_i2c:
1549     __ uxthw(r0, r0);
1550     break;
1551   case Bytecodes::_i2s:
1552     __ sxthw(r0, r0);
1553     break;
1554   case Bytecodes::_l2i:
1555     __ uxtw(r0, r0);
1556     break;
1557   case Bytecodes::_l2f:
1558     __ scvtfs(v0, r0);
1559     break;
1560   case Bytecodes::_l2d:
1561     __ scvtfd(v0, r0);
1562     break;
1563   case Bytecodes::_f2i:
1564   {
1565     Label L_Okay;
1566     __ clear_fpsr();
1567     __ fcvtzsw(r0, v0);
1568     __ get_fpsr(r1);
1569     __ cbzw(r1, L_Okay);
1570     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i));
1571     __ bind(L_Okay);
1572   }
1573     break;
1574   case Bytecodes::_f2l:
1575   {
1576     Label L_Okay;
1577     __ clear_fpsr();
1578     __ fcvtzs(r0, v0);
1579     __ get_fpsr(r1);
1580     __ cbzw(r1, L_Okay);
1581     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1582     __ bind(L_Okay);
1583   }
1584     break;
1585   case Bytecodes::_f2d:
1586     __ fcvts(v0, v0);
1587     break;
1588   case Bytecodes::_d2i:
1589   {
1590     Label L_Okay;
1591     __ clear_fpsr();
1592     __ fcvtzdw(r0, v0);
1593     __ get_fpsr(r1);
1594     __ cbzw(r1, L_Okay);
1595     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
1596     __ bind(L_Okay);
1597   }
1598     break;
1599   case Bytecodes::_d2l:
1600   {
1601     Label L_Okay;
1602     __ clear_fpsr();
1603     __ fcvtzd(r0, v0);
1604     __ get_fpsr(r1);
1605     __ cbzw(r1, L_Okay);
1606     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1607     __ bind(L_Okay);
1608   }
1609     break;
1610   case Bytecodes::_d2f:
1611     __ fcvtd(v0, v0);
1612     break;
1613   default:
1614     ShouldNotReachHere();
1615   }
1616 }
1617 
1618 void TemplateTable::lcmp()
1619 {
1620   transition(ltos, itos);
1621   Label done;
1622   __ pop_l(r1);
1623   __ cmp(r1, r0);
1624   __ mov(r0, (u_int64_t)-1L);
1625   __ br(Assembler::LT, done);
1626   // __ mov(r0, 1UL);
1627   // __ csel(r0, r0, zr, Assembler::NE);
1628   // and here is a faster way
1629   __ csinc(r0, zr, zr, Assembler::EQ);
1630   __ bind(done);
1631 }
1632 
1633 void TemplateTable::float_cmp(bool is_float, int unordered_result)
1634 {
1635   Label done;
1636   if (is_float) {
1637     // XXX get rid of pop here, use ... reg, mem32
1638     __ pop_f(v1);
1639     __ fcmps(v1, v0);
1640   } else {
1641     // XXX get rid of pop here, use ... reg, mem64
1642     __ pop_d(v1);
1643     __ fcmpd(v1, v0);
1644   }
1645   if (unordered_result < 0) {
1646     // we want -1 for unordered or less than, 0 for equal and 1 for
1647     // greater than.
1648     __ mov(r0, (u_int64_t)-1L);
1649     // for FP LT tests less than or unordered
1650     __ br(Assembler::LT, done);
1651     // install 0 for EQ otherwise 1
1652     __ csinc(r0, zr, zr, Assembler::EQ);
1653   } else {
1654     // we want -1 for less than, 0 for equal and 1 for unordered or
1655     // greater than.
1656     __ mov(r0, 1L);
1657     // for FP HI tests greater than or unordered
1658     __ br(Assembler::HI, done);
1659     // install 0 for EQ otherwise ~0
1660     __ csinv(r0, zr, zr, Assembler::EQ);
1661 
1662   }
1663   __ bind(done);
1664 }
1665 
1666 void TemplateTable::branch(bool is_jsr, bool is_wide)
1667 {
1668   // We might be moving to a safepoint.  The thread which calls
1669   // Interpreter::notice_safepoints() will effectively flush its cache
1670   // when it makes a system call, but we need to do something to
1671   // ensure that we see the changed dispatch table.
1672   __ membar(MacroAssembler::LoadLoad);
1673 
1674   __ profile_taken_branch(r0, r1);
1675   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1676                              InvocationCounter::counter_offset();
1677   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1678                               InvocationCounter::counter_offset();
1679 
1680   // load branch displacement
1681   if (!is_wide) {
1682     __ ldrh(r2, at_bcp(1));
1683     __ rev16(r2, r2);
1684     // sign extend the 16 bit value in r2
1685     __ sbfm(r2, r2, 0, 15);
1686   } else {
1687     __ ldrw(r2, at_bcp(1));
1688     __ revw(r2, r2);
1689     // sign extend the 32 bit value in r2
1690     __ sbfm(r2, r2, 0, 31);
1691   }
1692 
1693   // Handle all the JSR stuff here, then exit.
1694   // It's much shorter and cleaner than intermingling with the non-JSR
1695   // normal-branch stuff occurring below.
1696 
1697   if (is_jsr) {
1698     // Pre-load the next target bytecode into rscratch1
1699     __ load_unsigned_byte(rscratch1, Address(rbcp, r2));
1700     // compute return address as bci
1701     __ ldr(rscratch2, Address(rmethod, Method::const_offset()));
1702     __ add(rscratch2, rscratch2,
1703            in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3));
1704     __ sub(r1, rbcp, rscratch2);
1705     __ push_i(r1);
1706     // Adjust the bcp by the 16-bit displacement in r2
1707     __ add(rbcp, rbcp, r2);
1708     __ dispatch_only(vtos);
1709     return;
1710   }
1711 
1712   // Normal (non-jsr) branch handling
1713 
1714   // Adjust the bcp by the displacement in r2
1715   __ add(rbcp, rbcp, r2);
1716 
1717   assert(UseLoopCounter || !UseOnStackReplacement,
1718          "on-stack-replacement requires loop counters");
1719   Label backedge_counter_overflow;
1720   Label profile_method;
1721   Label dispatch;
1722   if (UseLoopCounter) {
1723     // increment backedge counter for backward branches
1724     // r0: MDO
1725     // w1: MDO bumped taken-count
1726     // r2: target offset
1727     __ cmp(r2, zr);
1728     __ br(Assembler::GT, dispatch); // count only if backward branch
1729 
1730     // ECN: FIXME: This code smells
1731     // check if MethodCounters exists
1732     Label has_counters;
1733     __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1734     __ cbnz(rscratch1, has_counters);
1735     __ push(r0);
1736     __ push(r1);
1737     __ push(r2);
1738     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
1739             InterpreterRuntime::build_method_counters), rmethod);
1740     __ pop(r2);
1741     __ pop(r1);
1742     __ pop(r0);
1743     __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1744     __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory
1745     __ bind(has_counters);
1746 
1747     if (TieredCompilation) {
1748       Label no_mdo;
1749       int increment = InvocationCounter::count_increment;
1750       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1751       if (ProfileInterpreter) {
1752         // Are we profiling?
1753         __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
1754         __ cbz(r1, no_mdo);
1755         // Increment the MDO backedge counter
1756         const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) +
1757                                            in_bytes(InvocationCounter::counter_offset()));
1758         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1759                                    r0, rscratch2, false, Assembler::EQ, &backedge_counter_overflow);
1760         __ b(dispatch);
1761       }
1762       __ bind(no_mdo);
1763       // Increment backedge counter in MethodCounters*
1764       __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1765       __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask,
1766                                  r0, rscratch2, false, Assembler::EQ, &backedge_counter_overflow);
1767     } else {
1768       // increment counter
1769       __ ldr(rscratch2, Address(rmethod, Method::method_counters_offset()));
1770       __ ldrw(r0, Address(rscratch2, be_offset));        // load backedge counter
1771       __ addw(rscratch1, r0, InvocationCounter::count_increment); // increment counter
1772       __ strw(rscratch1, Address(rscratch2, be_offset));        // store counter
1773 
1774       __ ldrw(r0, Address(rscratch2, inv_offset));    // load invocation counter
1775       __ andw(r0, r0, (unsigned)InvocationCounter::count_mask_value); // and the status bits
1776       __ addw(r0, r0, rscratch1);        // add both counters
1777 
1778       if (ProfileInterpreter) {
1779         // Test to see if we should create a method data oop
1780         __ lea(rscratch1, ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
1781         __ ldrw(rscratch1, rscratch1);
1782         __ cmpw(r0, rscratch1);
1783         __ br(Assembler::LT, dispatch);
1784 
1785         // if no method data exists, go to profile method
1786         __ test_method_data_pointer(r0, profile_method);
1787 
1788         if (UseOnStackReplacement) {
1789           // check for overflow against w1 which is the MDO taken count
1790           __ lea(rscratch1, ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1791           __ ldrw(rscratch1, rscratch1);
1792           __ cmpw(r1, rscratch1);
1793           __ br(Assembler::LO, dispatch); // Intel == Assembler::below
1794 
1795           // When ProfileInterpreter is on, the backedge_count comes
1796           // from the MethodData*, which value does not get reset on
1797           // the call to frequency_counter_overflow().  To avoid
1798           // excessive calls to the overflow routine while the method is
1799           // being compiled, add a second test to make sure the overflow
1800           // function is called only once every overflow_frequency.
1801           const int overflow_frequency = 1024;
1802           __ andsw(r1, r1, overflow_frequency - 1);
1803           __ br(Assembler::EQ, backedge_counter_overflow);
1804 
1805         }
1806       } else {
1807         if (UseOnStackReplacement) {
1808           // check for overflow against w0, which is the sum of the
1809           // counters
1810           __ lea(rscratch1, ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1811           __ ldrw(rscratch1, rscratch1);
1812           __ cmpw(r0, rscratch1);
1813           __ br(Assembler::HS, backedge_counter_overflow); // Intel == Assembler::aboveEqual
1814         }
1815       }
1816     }
1817   }
1818   __ bind(dispatch);
1819 
1820   // Pre-load the next target bytecode into rscratch1
1821   __ load_unsigned_byte(rscratch1, Address(rbcp, 0));
1822 
1823   // continue with the bytecode @ target
1824   // rscratch1: target bytecode
1825   // rbcp: target bcp
1826   __ dispatch_only(vtos);
1827 
1828   if (UseLoopCounter) {
1829     if (ProfileInterpreter) {
1830       // Out-of-line code to allocate method data oop.
1831       __ bind(profile_method);
1832       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1833       __ load_unsigned_byte(r1, Address(rbcp, 0));  // restore target bytecode
1834       __ set_method_data_pointer_for_bcp();
1835       __ b(dispatch);
1836     }
1837 
1838     if (TieredCompilation || UseOnStackReplacement) {
1839       // invocation counter overflow
1840       __ bind(backedge_counter_overflow);
1841       __ neg(r2, r2);
1842       __ add(r2, r2, rbcp);     // branch bcp
1843       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1844       __ call_VM(noreg,
1845                  CAST_FROM_FN_PTR(address,
1846                                   InterpreterRuntime::frequency_counter_overflow),
1847                  r2);
1848       if (!UseOnStackReplacement)
1849         __ b(dispatch);
1850     }
1851 
1852     if (UseOnStackReplacement) {
1853       __ load_unsigned_byte(r1, Address(rbcp, 0));  // restore target bytecode
1854 
1855       // r0: osr nmethod (osr ok) or NULL (osr not possible)
1856       // w1: target bytecode
1857       // r2: scratch
1858       __ cbz(r0, dispatch);     // test result -- no osr if null
1859       // nmethod may have been invalidated (VM may block upon call_VM return)
1860       __ ldrw(r2, Address(r0, nmethod::entry_bci_offset()));
1861       // InvalidOSREntryBci == -2 which overflows cmpw as unsigned
1862       // use cmnw against -InvalidOSREntryBci which does the same thing
1863       __ cmn(r2, -InvalidOSREntryBci);
1864       __ br(Assembler::EQ, dispatch);
1865 
1866       // We have the address of an on stack replacement routine in r0
1867       // We need to prepare to execute the OSR method. First we must
1868       // migrate the locals and monitors off of the stack.
1869 
1870       __ mov(r19, r0);                             // save the nmethod
1871 
1872       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1873 
1874       // r0 is OSR buffer, move it to expected parameter location
1875       __ mov(j_rarg0, r0);
1876 
1877       // remove activation
1878       // get sender esp
1879       __ ldr(esp,
1880           Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
1881       // remove frame anchor
1882       __ leave();
1883       // Ensure compiled code always sees stack at proper alignment
1884       __ andr(sp, esp, -16);
1885 
1886       // and begin the OSR nmethod
1887       __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset()));
1888       __ br(rscratch1);
1889     }
1890   }
1891 }
1892 
1893 
1894 void TemplateTable::if_0cmp(Condition cc)
1895 {
1896   transition(itos, vtos);
1897   // assume branch is more often taken than not (loops use backward branches)
1898   Label not_taken;
1899   if (cc == equal)
1900     __ cbnzw(r0, not_taken);
1901   else if (cc == not_equal)
1902     __ cbzw(r0, not_taken);
1903   else {
1904     __ andsw(zr, r0, r0);
1905     __ br(j_not(cc), not_taken);
1906   }
1907 
1908   branch(false, false);
1909   __ bind(not_taken);
1910   __ profile_not_taken_branch(r0);
1911 }
1912 
1913 void TemplateTable::if_icmp(Condition cc)
1914 {
1915   transition(itos, vtos);
1916   // assume branch is more often taken than not (loops use backward branches)
1917   Label not_taken;
1918   __ pop_i(r1);
1919   __ cmpw(r1, r0, Assembler::LSL);
1920   __ br(j_not(cc), not_taken);
1921   branch(false, false);
1922   __ bind(not_taken);
1923   __ profile_not_taken_branch(r0);
1924 }
1925 
1926 void TemplateTable::if_nullcmp(Condition cc)
1927 {
1928   transition(atos, vtos);
1929   // assume branch is more often taken than not (loops use backward branches)
1930   Label not_taken;
1931   if (cc == equal)
1932     __ cbnz(r0, not_taken);
1933   else
1934     __ cbz(r0, not_taken);
1935   branch(false, false);
1936   __ bind(not_taken);
1937   __ profile_not_taken_branch(r0);
1938 }
1939 
1940 void TemplateTable::if_acmp(Condition cc)
1941 {
1942   transition(atos, vtos);
1943   // assume branch is more often taken than not (loops use backward branches)
1944   Label not_taken;
1945   __ pop_ptr(r1);
1946   __ cmp(r1, r0);
1947   __ br(j_not(cc), not_taken);
1948   branch(false, false);
1949   __ bind(not_taken);
1950   __ profile_not_taken_branch(r0);
1951 }
1952 
1953 void TemplateTable::ret() {
1954   transition(vtos, vtos);
1955   // We might be moving to a safepoint.  The thread which calls
1956   // Interpreter::notice_safepoints() will effectively flush its cache
1957   // when it makes a system call, but we need to do something to
1958   // ensure that we see the changed dispatch table.
1959   __ membar(MacroAssembler::LoadLoad);
1960 
1961   locals_index(r1);
1962   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1963   __ profile_ret(r1, r2);
1964   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1965   __ lea(rbcp, Address(rbcp, r1));
1966   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1967   __ dispatch_next(vtos);
1968 }
1969 
1970 void TemplateTable::wide_ret() {
1971   transition(vtos, vtos);
1972   locals_index_wide(r1);
1973   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1974   __ profile_ret(r1, r2);
1975   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1976   __ lea(rbcp, Address(rbcp, r1));
1977   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1978   __ dispatch_next(vtos);
1979 }
1980 
1981 
1982 void TemplateTable::tableswitch() {
1983   Label default_case, continue_execution;
1984   transition(itos, vtos);
1985   // align rbcp
1986   __ lea(r1, at_bcp(BytesPerInt));
1987   __ andr(r1, r1, -BytesPerInt);
1988   // load lo & hi
1989   __ ldrw(r2, Address(r1, BytesPerInt));
1990   __ ldrw(r3, Address(r1, 2 * BytesPerInt));
1991   __ rev32(r2, r2);
1992   __ rev32(r3, r3);
1993   // check against lo & hi
1994   __ cmpw(r0, r2);
1995   __ br(Assembler::LT, default_case);
1996   __ cmpw(r0, r3);
1997   __ br(Assembler::GT, default_case);
1998   // lookup dispatch offset
1999   __ subw(r0, r0, r2);
2000   __ lea(r3, Address(r1, r0, Address::uxtw(2)));
2001   __ ldrw(r3, Address(r3, 3 * BytesPerInt));
2002   __ profile_switch_case(r0, r1, r2);
2003   // continue execution
2004   __ bind(continue_execution);
2005   __ rev32(r3, r3);
2006   __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0)));
2007   __ add(rbcp, rbcp, r3, ext::sxtw);
2008   __ dispatch_only(vtos);
2009   // handle default
2010   __ bind(default_case);
2011   __ profile_switch_default(r0);
2012   __ ldrw(r3, Address(r1, 0));
2013   __ b(continue_execution);
2014 }
2015 
2016 void TemplateTable::lookupswitch() {
2017   transition(itos, itos);
2018   __ stop("lookupswitch bytecode should have been rewritten");
2019 }
2020 
2021 void TemplateTable::fast_linearswitch() {
2022   transition(itos, vtos);
2023   Label loop_entry, loop, found, continue_execution;
2024   // bswap r0 so we can avoid bswapping the table entries
2025   __ rev32(r0, r0);
2026   // align rbcp
2027   __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2028                                     // this instruction (change offsets
2029                                     // below)
2030   __ andr(r19, r19, -BytesPerInt);
2031   // set counter
2032   __ ldrw(r1, Address(r19, BytesPerInt));
2033   __ rev32(r1, r1);
2034   __ b(loop_entry);
2035   // table search
2036   __ bind(loop);
2037   __ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
2038   __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt));
2039   __ cmpw(r0, rscratch1);
2040   __ br(Assembler::EQ, found);
2041   __ bind(loop_entry);
2042   __ subs(r1, r1, 1);
2043   __ br(Assembler::PL, loop);
2044   // default case
2045   __ profile_switch_default(r0);
2046   __ ldrw(r3, Address(r19, 0));
2047   __ b(continue_execution);
2048   // entry found -> get offset
2049   __ bind(found);
2050   __ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
2051   __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt));
2052   __ profile_switch_case(r1, r0, r19);
2053   // continue execution
2054   __ bind(continue_execution);
2055   __ rev32(r3, r3);
2056   __ add(rbcp, rbcp, r3, ext::sxtw);
2057   __ ldrb(rscratch1, Address(rbcp, 0));
2058   __ dispatch_only(vtos);
2059 }
2060 
2061 void TemplateTable::fast_binaryswitch() {
2062   transition(itos, vtos);
2063   // Implementation using the following core algorithm:
2064   //
2065   // int binary_search(int key, LookupswitchPair* array, int n) {
2066   //   // Binary search according to "Methodik des Programmierens" by
2067   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2068   //   int i = 0;
2069   //   int j = n;
2070   //   while (i+1 < j) {
2071   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2072   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2073   //     // where a stands for the array and assuming that the (inexisting)
2074   //     // element a[n] is infinitely big.
2075   //     int h = (i + j) >> 1;
2076   //     // i < h < j
2077   //     if (key < array[h].fast_match()) {
2078   //       j = h;
2079   //     } else {
2080   //       i = h;
2081   //     }
2082   //   }
2083   //   // R: a[i] <= key < a[i+1] or Q
2084   //   // (i.e., if key is within array, i is the correct index)
2085   //   return i;
2086   // }
2087 
2088   // Register allocation
2089   const Register key   = r0; // already set (tosca)
2090   const Register array = r1;
2091   const Register i     = r2;
2092   const Register j     = r3;
2093   const Register h     = rscratch1;
2094   const Register temp  = rscratch2;
2095 
2096   // Find array start
2097   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2098                                           // get rid of this
2099                                           // instruction (change
2100                                           // offsets below)
2101   __ andr(array, array, -BytesPerInt);
2102 
2103   // Initialize i & j
2104   __ mov(i, 0);                            // i = 0;
2105   __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array);
2106 
2107   // Convert j into native byteordering
2108   __ rev32(j, j);
2109 
2110   // And start
2111   Label entry;
2112   __ b(entry);
2113 
2114   // binary search loop
2115   {
2116     Label loop;
2117     __ bind(loop);
2118     // int h = (i + j) >> 1;
2119     __ addw(h, i, j);                           // h = i + j;
2120     __ lsrw(h, h, 1);                                   // h = (i + j) >> 1;
2121     // if (key < array[h].fast_match()) {
2122     //   j = h;
2123     // } else {
2124     //   i = h;
2125     // }
2126     // Convert array[h].match to native byte-ordering before compare
2127     __ ldr(temp, Address(array, h, Address::lsl(3)));
2128     __ rev32(temp, temp);
2129     __ cmpw(key, temp);
2130     // j = h if (key <  array[h].fast_match())
2131     __ csel(j, h, j, Assembler::LT);
2132     // i = h if (key >= array[h].fast_match())
2133     __ csel(i, h, i, Assembler::GE);
2134     // while (i+1 < j)
2135     __ bind(entry);
2136     __ addw(h, i, 1);          // i+1
2137     __ cmpw(h, j);             // i+1 < j
2138     __ br(Assembler::LT, loop);
2139   }
2140 
2141   // end of binary search, result index is i (must check again!)
2142   Label default_case;
2143   // Convert array[i].match to native byte-ordering before compare
2144   __ ldr(temp, Address(array, i, Address::lsl(3)));
2145   __ rev32(temp, temp);
2146   __ cmpw(key, temp);
2147   __ br(Assembler::NE, default_case);
2148 
2149   // entry found -> j = offset
2150   __ add(j, array, i, ext::uxtx, 3);
2151   __ ldrw(j, Address(j, BytesPerInt));
2152   __ profile_switch_case(i, key, array);
2153   __ rev32(j, j);
2154   __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
2155   __ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
2156   __ dispatch_only(vtos);
2157 
2158   // default case -> j = default offset
2159   __ bind(default_case);
2160   __ profile_switch_default(i);
2161   __ ldrw(j, Address(array, -2 * BytesPerInt));
2162   __ rev32(j, j);
2163   __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
2164   __ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
2165   __ dispatch_only(vtos);
2166 }
2167 
2168 
2169 void TemplateTable::_return(TosState state)
2170 {
2171   transition(state, state);
2172   assert(_desc->calls_vm(),
2173          "inconsistent calls_vm information"); // call in remove_activation
2174 
2175   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2176     assert(state == vtos, "only valid state");
2177 
2178     __ ldr(c_rarg1, aaddress(0));
2179     __ load_klass(r3, c_rarg1);
2180     __ ldrw(r3, Address(r3, Klass::access_flags_offset()));
2181     __ tst(r3, JVM_ACC_HAS_FINALIZER);
2182     Label skip_register_finalizer;
2183     __ br(Assembler::EQ, skip_register_finalizer);
2184 
2185     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2186 
2187     __ bind(skip_register_finalizer);
2188   }
2189 
2190   // Issue a StoreStore barrier after all stores but before return
2191   // from any constructor for any class with a final field.  We don't
2192   // know if this is a finalizer, so we always do so.
2193   if (_desc->bytecode() == Bytecodes::_return)
2194     __ membar(MacroAssembler::StoreStore);
2195 
2196   // Narrow result if state is itos but result type is smaller.
2197   // Need to narrow in the return bytecode rather than in generate_return_entry
2198   // since compiled code callers expect the result to already be narrowed.
2199   if (state == itos) {
2200     __ narrow(r0);
2201   }
2202 
2203   __ remove_activation(state);
2204   __ ret(lr);
2205 }
2206 
2207 // ----------------------------------------------------------------------------
2208 // Volatile variables demand their effects be made known to all CPU's
2209 // in order.  Store buffers on most chips allow reads & writes to
2210 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2211 // without some kind of memory barrier (i.e., it's not sufficient that
2212 // the interpreter does not reorder volatile references, the hardware
2213 // also must not reorder them).
2214 //
2215 // According to the new Java Memory Model (JMM):
2216 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2217 //     writes act as aquire & release, so:
2218 // (2) A read cannot let unrelated NON-volatile memory refs that
2219 //     happen after the read float up to before the read.  It's OK for
2220 //     non-volatile memory refs that happen before the volatile read to
2221 //     float down below it.
2222 // (3) Similar a volatile write cannot let unrelated NON-volatile
2223 //     memory refs that happen BEFORE the write float down to after the
2224 //     write.  It's OK for non-volatile memory refs that happen after the
2225 //     volatile write to float up before it.
2226 //
2227 // We only put in barriers around volatile refs (they are expensive),
2228 // not _between_ memory refs (that would require us to track the
2229 // flavor of the previous memory refs).  Requirements (2) and (3)
2230 // require some barriers before volatile stores and after volatile
2231 // loads.  These nearly cover requirement (1) but miss the
2232 // volatile-store-volatile-load case.  This final case is placed after
2233 // volatile-stores although it could just as well go before
2234 // volatile-loads.
2235 
2236 void TemplateTable::resolve_cache_and_index(int byte_no,
2237                                             Register Rcache,
2238                                             Register index,
2239                                             size_t index_size) {
2240   const Register temp = r19;
2241   assert_different_registers(Rcache, index, temp);
2242 
2243   Label resolved;
2244   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2245   __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
2246   __ cmp(temp, (int) bytecode());  // have we resolved this bytecode?
2247   __ br(Assembler::EQ, resolved);
2248 
2249   // resolve first time through
2250   address entry;
2251   switch (bytecode()) {
2252   case Bytecodes::_getstatic:
2253   case Bytecodes::_putstatic:
2254   case Bytecodes::_getfield:
2255   case Bytecodes::_putfield:
2256     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
2257     break;
2258   case Bytecodes::_invokevirtual:
2259   case Bytecodes::_invokespecial:
2260   case Bytecodes::_invokestatic:
2261   case Bytecodes::_invokeinterface:
2262     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
2263     break;
2264   case Bytecodes::_invokehandle:
2265     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);
2266     break;
2267   case Bytecodes::_invokedynamic:
2268     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
2269     break;
2270   default:
2271     fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
2272     break;
2273   }
2274   __ mov(temp, (int) bytecode());
2275   __ call_VM(noreg, entry, temp);
2276 
2277   // Update registers with resolved info
2278   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2279   // n.b. unlike x86 Rcache is now rcpool plus the indexed offset
2280   // so all clients ofthis method must be modified accordingly
2281   __ bind(resolved);
2282 }
2283 
2284 // The Rcache and index registers must be set before call
2285 // n.b unlike x86 cache already includes the index offset
2286 void TemplateTable::load_field_cp_cache_entry(Register obj,
2287                                               Register cache,
2288                                               Register index,
2289                                               Register off,
2290                                               Register flags,
2291                                               bool is_static = false) {
2292   assert_different_registers(cache, index, flags, off);
2293 
2294   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2295   // Field offset
2296   __ ldr(off, Address(cache, in_bytes(cp_base_offset +
2297                                           ConstantPoolCacheEntry::f2_offset())));
2298   // Flags
2299   __ ldrw(flags, Address(cache, in_bytes(cp_base_offset +
2300                                            ConstantPoolCacheEntry::flags_offset())));
2301 
2302   // klass overwrite register
2303   if (is_static) {
2304     __ ldr(obj, Address(cache, in_bytes(cp_base_offset +
2305                                         ConstantPoolCacheEntry::f1_offset())));
2306     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2307     __ ldr(obj, Address(obj, mirror_offset));
2308   }
2309 }
2310 
2311 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2312                                                Register method,
2313                                                Register itable_index,
2314                                                Register flags,
2315                                                bool is_invokevirtual,
2316                                                bool is_invokevfinal, /*unused*/
2317                                                bool is_invokedynamic) {
2318   // setup registers
2319   const Register cache = rscratch2;
2320   const Register index = r4;
2321   assert_different_registers(method, flags);
2322   assert_different_registers(method, cache, index);
2323   assert_different_registers(itable_index, flags);
2324   assert_different_registers(itable_index, cache, index);
2325   // determine constant pool cache field offsets
2326   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2327   const int method_offset = in_bytes(
2328     ConstantPoolCache::base_offset() +
2329       (is_invokevirtual
2330        ? ConstantPoolCacheEntry::f2_offset()
2331        : ConstantPoolCacheEntry::f1_offset()));
2332   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2333                                     ConstantPoolCacheEntry::flags_offset());
2334   // access constant pool cache fields
2335   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2336                                     ConstantPoolCacheEntry::f2_offset());
2337 
2338   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2339   resolve_cache_and_index(byte_no, cache, index, index_size);
2340   __ ldr(method, Address(cache, method_offset));
2341 
2342   if (itable_index != noreg) {
2343     __ ldr(itable_index, Address(cache, index_offset));
2344   }
2345   __ ldrw(flags, Address(cache, flags_offset));
2346 }
2347 
2348 
2349 // The registers cache and index expected to be set before call.
2350 // Correct values of the cache and index registers are preserved.
2351 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2352                                             bool is_static, bool has_tos) {
2353   // do the JVMTI work here to avoid disturbing the register state below
2354   // We use c_rarg registers here because we want to use the register used in
2355   // the call to the VM
2356   if (JvmtiExport::can_post_field_access()) {
2357     // Check to see if a field access watch has been set before we
2358     // take the time to call into the VM.
2359     Label L1;
2360     assert_different_registers(cache, index, r0);
2361     __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2362     __ ldrw(r0, Address(rscratch1));
2363     __ cbzw(r0, L1);
2364 
2365     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
2366     __ lea(c_rarg2, Address(c_rarg2, in_bytes(ConstantPoolCache::base_offset())));
2367 
2368     if (is_static) {
2369       __ mov(c_rarg1, zr); // NULL object reference
2370     } else {
2371       __ ldr(c_rarg1, at_tos()); // get object pointer without popping it
2372       __ verify_oop(c_rarg1);
2373     }
2374     // c_rarg1: object pointer or NULL
2375     // c_rarg2: cache entry pointer
2376     // c_rarg3: jvalue object on the stack
2377     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2378                                        InterpreterRuntime::post_field_access),
2379                c_rarg1, c_rarg2, c_rarg3);
2380     __ get_cache_and_index_at_bcp(cache, index, 1);
2381     __ bind(L1);
2382   }
2383 }
2384 
2385 void TemplateTable::pop_and_check_object(Register r)
2386 {
2387   __ pop_ptr(r);
2388   __ null_check(r);  // for field access must check obj.
2389   __ verify_oop(r);
2390 }
2391 
2392 void TemplateTable::getfield_or_static(int byte_no, bool is_static)
2393 {
2394   const Register cache = r2;
2395   const Register index = r3;
2396   const Register obj   = r4;
2397   const Register off   = r19;
2398   const Register flags = r0;
2399   const Register raw_flags = r6;
2400   const Register bc    = r4; // uses same reg as obj, so don't mix them
2401 
2402   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2403   jvmti_post_field_access(cache, index, is_static, false);
2404   load_field_cp_cache_entry(obj, cache, index, off, raw_flags, is_static);
2405 
2406   if (!is_static) {
2407     // obj is on the stack
2408     pop_and_check_object(obj);
2409   }
2410 
2411   // 8179954: We need to make sure that the code generated for
2412   // volatile accesses forms a sequentially-consistent set of
2413   // operations when combined with STLR and LDAR.  Without a leading
2414   // membar it's possible for a simple Dekker test to fail if loads
2415   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
2416   // the stores in one method and we interpret the loads in another.
2417   if (! UseBarriersForVolatile) {
2418     Label notVolatile;
2419     __ tbz(raw_flags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
2420     __ membar(MacroAssembler::AnyAny);
2421     __ bind(notVolatile);
2422   }
2423 
2424   const Address field(obj, off);
2425 
2426   Label Done, notByte, notBool, notInt, notShort, notChar,
2427               notLong, notFloat, notObj, notDouble;
2428 
2429   // x86 uses a shift and mask or wings it with a shift plus assert
2430   // the mask is not needed. aarch64 just uses bitfield extract
2431   __ ubfxw(flags, raw_flags, ConstantPoolCacheEntry::tos_state_shift,
2432            ConstantPoolCacheEntry::tos_state_bits);
2433 
2434   assert(btos == 0, "change code, btos != 0");
2435   __ cbnz(flags, notByte);
2436 
2437   // btos
2438   __ load_signed_byte(r0, field);
2439   __ push(btos);
2440   // Rewrite bytecode to be faster
2441   if (!is_static) {
2442     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2443   }
2444   __ b(Done);
2445 
2446   __ bind(notByte);
2447   __ cmp(flags, ztos);
2448   __ br(Assembler::NE, notBool);
2449 
2450   // ztos (same code as btos)
2451   __ ldrsb(r0, field);
2452   __ push(ztos);
2453   // Rewrite bytecode to be faster
2454   if (!is_static) {
2455     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2456     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2457   }
2458   __ b(Done);
2459 
2460   __ bind(notBool);
2461   __ cmp(flags, atos);
2462   __ br(Assembler::NE, notObj);
2463   // atos
2464   __ load_heap_oop(r0, field);
2465   __ push(atos);
2466   if (!is_static) {
2467     patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2468   }
2469   __ b(Done);
2470 
2471   __ bind(notObj);
2472   __ cmp(flags, itos);
2473   __ br(Assembler::NE, notInt);
2474   // itos
2475   __ ldrw(r0, field);
2476   __ push(itos);
2477   // Rewrite bytecode to be faster
2478   if (!is_static) {
2479     patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2480   }
2481   __ b(Done);
2482 
2483   __ bind(notInt);
2484   __ cmp(flags, ctos);
2485   __ br(Assembler::NE, notChar);
2486   // ctos
2487   __ load_unsigned_short(r0, field);
2488   __ push(ctos);
2489   // Rewrite bytecode to be faster
2490   if (!is_static) {
2491     patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1);
2492   }
2493   __ b(Done);
2494 
2495   __ bind(notChar);
2496   __ cmp(flags, stos);
2497   __ br(Assembler::NE, notShort);
2498   // stos
2499   __ load_signed_short(r0, field);
2500   __ push(stos);
2501   // Rewrite bytecode to be faster
2502   if (!is_static) {
2503     patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1);
2504   }
2505   __ b(Done);
2506 
2507   __ bind(notShort);
2508   __ cmp(flags, ltos);
2509   __ br(Assembler::NE, notLong);
2510   // ltos
2511   __ ldr(r0, field);
2512   __ push(ltos);
2513   // Rewrite bytecode to be faster
2514   if (!is_static) {
2515     patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1);
2516   }
2517   __ b(Done);
2518 
2519   __ bind(notLong);
2520   __ cmp(flags, ftos);
2521   __ br(Assembler::NE, notFloat);
2522   // ftos
2523   __ ldrs(v0, field);
2524   __ push(ftos);
2525   // Rewrite bytecode to be faster
2526   if (!is_static) {
2527     patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1);
2528   }
2529   __ b(Done);
2530 
2531   __ bind(notFloat);
2532 #ifdef ASSERT
2533   __ cmp(flags, dtos);
2534   __ br(Assembler::NE, notDouble);
2535 #endif
2536   // dtos
2537   __ ldrd(v0, field);
2538   __ push(dtos);
2539   // Rewrite bytecode to be faster
2540   if (!is_static) {
2541     patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1);
2542   }
2543 #ifdef ASSERT
2544   __ b(Done);
2545 
2546   __ bind(notDouble);
2547   __ stop("Bad state");
2548 #endif
2549 
2550   __ bind(Done);
2551 
2552   Label notVolatile;
2553   __ tbz(raw_flags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
2554   __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
2555   __ bind(notVolatile);
2556 }
2557 
2558 
2559 void TemplateTable::getfield(int byte_no)
2560 {
2561   getfield_or_static(byte_no, false);
2562 }
2563 
2564 void TemplateTable::getstatic(int byte_no)
2565 {
2566   getfield_or_static(byte_no, true);
2567 }
2568 
2569 // The registers cache and index expected to be set before call.
2570 // The function may destroy various registers, just not the cache and index registers.
2571 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2572   transition(vtos, vtos);
2573 
2574   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2575 
2576   if (JvmtiExport::can_post_field_modification()) {
2577     // Check to see if a field modification watch has been set before
2578     // we take the time to call into the VM.
2579     Label L1;
2580     assert_different_registers(cache, index, r0);
2581     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2582     __ ldrw(r0, Address(rscratch1));
2583     __ cbz(r0, L1);
2584 
2585     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
2586 
2587     if (is_static) {
2588       // Life is simple.  Null out the object pointer.
2589       __ mov(c_rarg1, zr);
2590     } else {
2591       // Life is harder. The stack holds the value on top, followed by
2592       // the object.  We don't know the size of the value, though; it
2593       // could be one or two words depending on its type. As a result,
2594       // we must find the type to determine where the object is.
2595       __ ldrw(c_rarg3, Address(c_rarg2,
2596                                in_bytes(cp_base_offset +
2597                                         ConstantPoolCacheEntry::flags_offset())));
2598       __ lsr(c_rarg3, c_rarg3,
2599              ConstantPoolCacheEntry::tos_state_shift);
2600       ConstantPoolCacheEntry::verify_tos_state_shift();
2601       Label nope2, done, ok;
2602       __ ldr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
2603       __ cmpw(c_rarg3, ltos);
2604       __ br(Assembler::EQ, ok);
2605       __ cmpw(c_rarg3, dtos);
2606       __ br(Assembler::NE, nope2);
2607       __ bind(ok);
2608       __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2609       __ bind(nope2);
2610     }
2611     // cache entry pointer
2612     __ add(c_rarg2, c_rarg2, in_bytes(cp_base_offset));
2613     // object (tos)
2614     __ mov(c_rarg3, esp);
2615     // c_rarg1: object pointer set up above (NULL if static)
2616     // c_rarg2: cache entry pointer
2617     // c_rarg3: jvalue object on the stack
2618     __ call_VM(noreg,
2619                CAST_FROM_FN_PTR(address,
2620                                 InterpreterRuntime::post_field_modification),
2621                c_rarg1, c_rarg2, c_rarg3);
2622     __ get_cache_and_index_at_bcp(cache, index, 1);
2623     __ bind(L1);
2624   }
2625 }
2626 
2627 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2628   transition(vtos, vtos);
2629 
2630   const Register cache = r2;
2631   const Register index = r3;
2632   const Register obj   = r2;
2633   const Register off   = r19;
2634   const Register flags = r0;
2635   const Register bc    = r4;
2636 
2637   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2638   jvmti_post_field_mod(cache, index, is_static);
2639   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2640 
2641   Label Done;
2642   __ mov(r5, flags);
2643 
2644   {
2645     Label notVolatile;
2646     __ tbz(r5, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
2647     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2648     __ bind(notVolatile);
2649   }
2650 
2651   // field address
2652   const Address field(obj, off);
2653 
2654   Label notByte, notBool, notInt, notShort, notChar,
2655         notLong, notFloat, notObj, notDouble;
2656 
2657   // x86 uses a shift and mask or wings it with a shift plus assert
2658   // the mask is not needed. aarch64 just uses bitfield extract
2659   __ ubfxw(flags, flags, ConstantPoolCacheEntry::tos_state_shift,  ConstantPoolCacheEntry::tos_state_bits);
2660 
2661   assert(btos == 0, "change code, btos != 0");
2662   __ cbnz(flags, notByte);
2663 
2664   // btos
2665   {
2666     __ pop(btos);
2667     if (!is_static) pop_and_check_object(obj);
2668     __ strb(r0, field);
2669     if (!is_static) {
2670       patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no);
2671     }
2672     __ b(Done);
2673   }
2674 
2675   __ bind(notByte);
2676   __ cmp(flags, ztos);
2677   __ br(Assembler::NE, notBool);
2678 
2679   // ztos
2680   {
2681     __ pop(ztos);
2682     if (!is_static) pop_and_check_object(obj);
2683     __ andw(r0, r0, 0x1);
2684     __ strb(r0, field);
2685     if (!is_static) {
2686       patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
2687     }
2688     __ b(Done);
2689   }
2690 
2691   __ bind(notBool);
2692   __ cmp(flags, atos);
2693   __ br(Assembler::NE, notObj);
2694 
2695   // atos
2696   {
2697     __ pop(atos);
2698     if (!is_static) pop_and_check_object(obj);
2699     // Store into the field
2700     do_oop_store(_masm, field, r0, _bs->kind(), false);
2701     if (!is_static) {
2702       patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
2703     }
2704     __ b(Done);
2705   }
2706 
2707   __ bind(notObj);
2708   __ cmp(flags, itos);
2709   __ br(Assembler::NE, notInt);
2710 
2711   // itos
2712   {
2713     __ pop(itos);
2714     if (!is_static) pop_and_check_object(obj);
2715     __ strw(r0, field);
2716     if (!is_static) {
2717       patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
2718     }
2719     __ b(Done);
2720   }
2721 
2722   __ bind(notInt);
2723   __ cmp(flags, ctos);
2724   __ br(Assembler::NE, notChar);
2725 
2726   // ctos
2727   {
2728     __ pop(ctos);
2729     if (!is_static) pop_and_check_object(obj);
2730     __ strh(r0, field);
2731     if (!is_static) {
2732       patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no);
2733     }
2734     __ b(Done);
2735   }
2736 
2737   __ bind(notChar);
2738   __ cmp(flags, stos);
2739   __ br(Assembler::NE, notShort);
2740 
2741   // stos
2742   {
2743     __ pop(stos);
2744     if (!is_static) pop_and_check_object(obj);
2745     __ strh(r0, field);
2746     if (!is_static) {
2747       patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no);
2748     }
2749     __ b(Done);
2750   }
2751 
2752   __ bind(notShort);
2753   __ cmp(flags, ltos);
2754   __ br(Assembler::NE, notLong);
2755 
2756   // ltos
2757   {
2758     __ pop(ltos);
2759     if (!is_static) pop_and_check_object(obj);
2760     __ str(r0, field);
2761     if (!is_static) {
2762       patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no);
2763     }
2764     __ b(Done);
2765   }
2766 
2767   __ bind(notLong);
2768   __ cmp(flags, ftos);
2769   __ br(Assembler::NE, notFloat);
2770 
2771   // ftos
2772   {
2773     __ pop(ftos);
2774     if (!is_static) pop_and_check_object(obj);
2775     __ strs(v0, field);
2776     if (!is_static) {
2777       patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no);
2778     }
2779     __ b(Done);
2780   }
2781 
2782   __ bind(notFloat);
2783 #ifdef ASSERT
2784   __ cmp(flags, dtos);
2785   __ br(Assembler::NE, notDouble);
2786 #endif
2787 
2788   // dtos
2789   {
2790     __ pop(dtos);
2791     if (!is_static) pop_and_check_object(obj);
2792     __ strd(v0, field);
2793     if (!is_static) {
2794       patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
2795     }
2796   }
2797 
2798 #ifdef ASSERT
2799   __ b(Done);
2800 
2801   __ bind(notDouble);
2802   __ stop("Bad state");
2803 #endif
2804 
2805   __ bind(Done);
2806 
2807   {
2808     Label notVolatile;
2809     __ tbz(r5, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
2810     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
2811     __ bind(notVolatile);
2812   }
2813 }
2814 
2815 void TemplateTable::putfield(int byte_no)
2816 {
2817   putfield_or_static(byte_no, false);
2818 }
2819 
2820 void TemplateTable::putstatic(int byte_no) {
2821   putfield_or_static(byte_no, true);
2822 }
2823 
2824 void TemplateTable::jvmti_post_fast_field_mod()
2825 {
2826   if (JvmtiExport::can_post_field_modification()) {
2827     // Check to see if a field modification watch has been set before
2828     // we take the time to call into the VM.
2829     Label L2;
2830     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2831     __ ldrw(c_rarg3, Address(rscratch1));
2832     __ cbzw(c_rarg3, L2);
2833     __ pop_ptr(r19);                  // copy the object pointer from tos
2834     __ verify_oop(r19);
2835     __ push_ptr(r19);                 // put the object pointer back on tos
2836     // Save tos values before call_VM() clobbers them. Since we have
2837     // to do it for every data type, we use the saved values as the
2838     // jvalue object.
2839     switch (bytecode()) {          // load values into the jvalue object
2840     case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
2841     case Bytecodes::_fast_bputfield: // fall through
2842     case Bytecodes::_fast_zputfield: // fall through
2843     case Bytecodes::_fast_sputfield: // fall through
2844     case Bytecodes::_fast_cputfield: // fall through
2845     case Bytecodes::_fast_iputfield: __ push_i(r0); break;
2846     case Bytecodes::_fast_dputfield: __ push_d(); break;
2847     case Bytecodes::_fast_fputfield: __ push_f(); break;
2848     case Bytecodes::_fast_lputfield: __ push_l(r0); break;
2849 
2850     default:
2851       ShouldNotReachHere();
2852     }
2853     __ mov(c_rarg3, esp);             // points to jvalue on the stack
2854     // access constant pool cache entry
2855     __ get_cache_entry_pointer_at_bcp(c_rarg2, r0, 1);
2856     __ verify_oop(r19);
2857     // r19: object pointer copied above
2858     // c_rarg2: cache entry pointer
2859     // c_rarg3: jvalue object on the stack
2860     __ call_VM(noreg,
2861                CAST_FROM_FN_PTR(address,
2862                                 InterpreterRuntime::post_field_modification),
2863                r19, c_rarg2, c_rarg3);
2864 
2865     switch (bytecode()) {             // restore tos values
2866     case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
2867     case Bytecodes::_fast_bputfield: // fall through
2868     case Bytecodes::_fast_zputfield: // fall through
2869     case Bytecodes::_fast_sputfield: // fall through
2870     case Bytecodes::_fast_cputfield: // fall through
2871     case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
2872     case Bytecodes::_fast_dputfield: __ pop_d(); break;
2873     case Bytecodes::_fast_fputfield: __ pop_f(); break;
2874     case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
2875     }
2876     __ bind(L2);
2877   }
2878 }
2879 
2880 void TemplateTable::fast_storefield(TosState state)
2881 {
2882   transition(state, vtos);
2883 
2884   ByteSize base = ConstantPoolCache::base_offset();
2885 
2886   jvmti_post_fast_field_mod();
2887 
2888   // access constant pool cache
2889   __ get_cache_and_index_at_bcp(r2, r1, 1);
2890 
2891   // Must prevent reordering of the following cp cache loads with bytecode load
2892   __ membar(MacroAssembler::LoadLoad);
2893 
2894   // test for volatile with r3
2895   __ ldrw(r3, Address(r2, in_bytes(base +
2896                                    ConstantPoolCacheEntry::flags_offset())));
2897 
2898   // replace index with field offset from cache entry
2899   __ ldr(r1, Address(r2, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2900 
2901   {
2902     Label notVolatile;
2903     __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
2904     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2905     __ bind(notVolatile);
2906   }
2907 
2908   Label notVolatile;
2909 
2910   // Get object from stack
2911   pop_and_check_object(r2);
2912 
2913   // field address
2914   const Address field(r2, r1);
2915 
2916   // access field
2917   switch (bytecode()) {
2918   case Bytecodes::_fast_aputfield:
2919     do_oop_store(_masm, field, r0, _bs->kind(), false);
2920     break;
2921   case Bytecodes::_fast_lputfield:
2922     __ str(r0, field);
2923     break;
2924   case Bytecodes::_fast_iputfield:
2925     __ strw(r0, field);
2926     break;
2927   case Bytecodes::_fast_zputfield:
2928     __ andw(r0, r0, 0x1);  // boolean is true if LSB is 1
2929     // fall through to bputfield
2930   case Bytecodes::_fast_bputfield:
2931     __ strb(r0, field);
2932     break;
2933   case Bytecodes::_fast_sputfield:
2934     // fall through
2935   case Bytecodes::_fast_cputfield:
2936     __ strh(r0, field);
2937     break;
2938   case Bytecodes::_fast_fputfield:
2939     __ strs(v0, field);
2940     break;
2941   case Bytecodes::_fast_dputfield:
2942     __ strd(v0, field);
2943     break;
2944   default:
2945     ShouldNotReachHere();
2946   }
2947 
2948   {
2949     Label notVolatile;
2950     __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
2951     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
2952     __ bind(notVolatile);
2953   }
2954 }
2955 
2956 
2957 void TemplateTable::fast_accessfield(TosState state)
2958 {
2959   transition(atos, state);
2960   // Do the JVMTI work here to avoid disturbing the register state below
2961   if (JvmtiExport::can_post_field_access()) {
2962     // Check to see if a field access watch has been set before we
2963     // take the time to call into the VM.
2964     Label L1;
2965     __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2966     __ ldrw(r2, Address(rscratch1));
2967     __ cbzw(r2, L1);
2968     // access constant pool cache entry
2969     __ get_cache_entry_pointer_at_bcp(c_rarg2, rscratch2, 1);
2970     __ verify_oop(r0);
2971     __ push_ptr(r0);  // save object pointer before call_VM() clobbers it
2972     __ mov(c_rarg1, r0);
2973     // c_rarg1: object pointer copied above
2974     // c_rarg2: cache entry pointer
2975     __ call_VM(noreg,
2976                CAST_FROM_FN_PTR(address,
2977                                 InterpreterRuntime::post_field_access),
2978                c_rarg1, c_rarg2);
2979     __ pop_ptr(r0); // restore object pointer
2980     __ bind(L1);
2981   }
2982 
2983   // access constant pool cache
2984   __ get_cache_and_index_at_bcp(r2, r1, 1);
2985 
2986   // Must prevent reordering of the following cp cache loads with bytecode load
2987   __ membar(MacroAssembler::LoadLoad);
2988 
2989   __ ldr(r1, Address(r2, in_bytes(ConstantPoolCache::base_offset() +
2990                                   ConstantPoolCacheEntry::f2_offset())));
2991   __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() +
2992                                    ConstantPoolCacheEntry::flags_offset())));
2993 
2994   // r0: object
2995   __ verify_oop(r0);
2996   __ null_check(r0);
2997   const Address field(r0, r1);
2998 
2999   // 8179954: We need to make sure that the code generated for
3000   // volatile accesses forms a sequentially-consistent set of
3001   // operations when combined with STLR and LDAR.  Without a leading
3002   // membar it's possible for a simple Dekker test to fail if loads
3003   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3004   // the stores in one method and we interpret the loads in another.
3005   if (! UseBarriersForVolatile) {
3006     Label notVolatile;
3007     __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3008     __ membar(MacroAssembler::AnyAny);
3009     __ bind(notVolatile);
3010   }
3011 
3012   // access field
3013   switch (bytecode()) {
3014   case Bytecodes::_fast_agetfield:
3015     __ load_heap_oop(r0, field);
3016     __ verify_oop(r0);
3017     break;
3018   case Bytecodes::_fast_lgetfield:
3019     __ ldr(r0, field);
3020     break;
3021   case Bytecodes::_fast_igetfield:
3022     __ ldrw(r0, field);
3023     break;
3024   case Bytecodes::_fast_bgetfield:
3025     __ load_signed_byte(r0, field);
3026     break;
3027   case Bytecodes::_fast_sgetfield:
3028     __ load_signed_short(r0, field);
3029     break;
3030   case Bytecodes::_fast_cgetfield:
3031     __ load_unsigned_short(r0, field);
3032     break;
3033   case Bytecodes::_fast_fgetfield:
3034     __ ldrs(v0, field);
3035     break;
3036   case Bytecodes::_fast_dgetfield:
3037     __ ldrd(v0, field);
3038     break;
3039   default:
3040     ShouldNotReachHere();
3041   }
3042   {
3043     Label notVolatile;
3044     __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3045     __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3046     __ bind(notVolatile);
3047   }
3048 }
3049 
3050 void TemplateTable::fast_xaccess(TosState state)
3051 {
3052   transition(vtos, state);
3053 
3054   // get receiver
3055   __ ldr(r0, aaddress(0));
3056   // access constant pool cache
3057   __ get_cache_and_index_at_bcp(r2, r3, 2);
3058   __ ldr(r1, Address(r2, in_bytes(ConstantPoolCache::base_offset() +
3059                                   ConstantPoolCacheEntry::f2_offset())));
3060 
3061   // 8179954: We need to make sure that the code generated for
3062   // volatile accesses forms a sequentially-consistent set of
3063   // operations when combined with STLR and LDAR.  Without a leading
3064   // membar it's possible for a simple Dekker test to fail if loads
3065   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3066   // the stores in one method and we interpret the loads in another.
3067   if (! UseBarriersForVolatile) {
3068     Label notVolatile;
3069     __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() +
3070                                      ConstantPoolCacheEntry::flags_offset())));
3071     __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3072     __ membar(MacroAssembler::AnyAny);
3073     __ bind(notVolatile);
3074   }
3075 
3076   // make sure exception is reported in correct bcp range (getfield is
3077   // next instruction)
3078   __ increment(rbcp);
3079   __ null_check(r0);
3080   switch (state) {
3081   case itos:
3082     __ ldrw(r0, Address(r0, r1, Address::lsl(0)));
3083     break;
3084   case atos:
3085     __ load_heap_oop(r0, Address(r0, r1, Address::lsl(0)));
3086     __ verify_oop(r0);
3087     break;
3088   case ftos:
3089     __ ldrs(v0, Address(r0, r1, Address::lsl(0)));
3090     break;
3091   default:
3092     ShouldNotReachHere();
3093   }
3094 
3095   {
3096     Label notVolatile;
3097     __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() +
3098                                      ConstantPoolCacheEntry::flags_offset())));
3099     __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3100     __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3101     __ bind(notVolatile);
3102   }
3103 
3104   __ decrement(rbcp);
3105 }
3106 
3107 
3108 
3109 //-----------------------------------------------------------------------------
3110 // Calls
3111 
3112 void TemplateTable::count_calls(Register method, Register temp)
3113 {
3114   __ call_Unimplemented();
3115 }
3116 
3117 void TemplateTable::prepare_invoke(int byte_no,
3118                                    Register method, // linked method (or i-klass)
3119                                    Register index,  // itable index, MethodType, etc.
3120                                    Register recv,   // if caller wants to see it
3121                                    Register flags   // if caller wants to test it
3122                                    ) {
3123   // determine flags
3124   Bytecodes::Code code = bytecode();
3125   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
3126   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
3127   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
3128   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
3129   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
3130   const bool load_receiver       = (recv  != noreg);
3131   const bool save_flags          = (flags != noreg);
3132   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3133   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
3134   assert(flags == noreg || flags == r3, "");
3135   assert(recv  == noreg || recv  == r2, "");
3136 
3137   // setup registers & access constant pool cache
3138   if (recv  == noreg)  recv  = r2;
3139   if (flags == noreg)  flags = r3;
3140   assert_different_registers(method, index, recv, flags);
3141 
3142   // save 'interpreter return address'
3143   __ save_bcp();
3144 
3145   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
3146 
3147   // maybe push appendix to arguments (just before return address)
3148   if (is_invokedynamic || is_invokehandle) {
3149     Label L_no_push;
3150     __ tbz(flags, ConstantPoolCacheEntry::has_appendix_shift, L_no_push);
3151     // Push the appendix as a trailing parameter.
3152     // This must be done before we get the receiver,
3153     // since the parameter_size includes it.
3154     __ push(r19);
3155     __ mov(r19, index);
3156     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
3157     __ load_resolved_reference_at_index(index, r19);
3158     __ pop(r19);
3159     __ push(index);  // push appendix (MethodType, CallSite, etc.)
3160     __ bind(L_no_push);
3161   }
3162 
3163   // load receiver if needed (note: no return address pushed yet)
3164   if (load_receiver) {
3165     __ andw(recv, flags, ConstantPoolCacheEntry::parameter_size_mask);
3166     // FIXME -- is this actually correct? looks like it should be 2
3167     // const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
3168     // const int receiver_is_at_end      = -1;  // back off one slot to get receiver
3169     // Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
3170     // __ movptr(recv, recv_addr);
3171     __ add(rscratch1, esp, recv, ext::uxtx, 3); // FIXME: uxtb here?
3172     __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1)));
3173     __ verify_oop(recv);
3174   }
3175 
3176   // compute return type
3177   // x86 uses a shift and mask or wings it with a shift plus assert
3178   // the mask is not needed. aarch64 just uses bitfield extract
3179   __ ubfxw(rscratch2, flags, ConstantPoolCacheEntry::tos_state_shift,  ConstantPoolCacheEntry::tos_state_bits);
3180   // load return address
3181   {
3182     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3183     __ mov(rscratch1, table_addr);
3184     __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3)));
3185   }
3186 }
3187 
3188 
3189 void TemplateTable::invokevirtual_helper(Register index,
3190                                          Register recv,
3191                                          Register flags)
3192 {
3193   // Uses temporary registers r0, r3
3194   assert_different_registers(index, recv, r0, r3);
3195   // Test for an invoke of a final method
3196   Label notFinal;
3197   __ tbz(flags, ConstantPoolCacheEntry::is_vfinal_shift, notFinal);
3198 
3199   const Register method = index;  // method must be rmethod
3200   assert(method == rmethod,
3201          "methodOop must be rmethod for interpreter calling convention");
3202 
3203   // do the call - the index is actually the method to call
3204   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3205 
3206   // It's final, need a null check here!
3207   __ null_check(recv);
3208 
3209   // profile this call
3210   __ profile_final_call(r0);
3211   __ profile_arguments_type(r0, method, r4, true);
3212 
3213   __ jump_from_interpreted(method, r0);
3214 
3215   __ bind(notFinal);
3216 
3217   // get receiver klass
3218   __ null_check(recv, oopDesc::klass_offset_in_bytes());
3219   __ load_klass(r0, recv);
3220 
3221   // profile this call
3222   __ profile_virtual_call(r0, rlocals, r3);
3223 
3224   // get target methodOop & entry point
3225   __ lookup_virtual_method(r0, index, method);
3226   __ profile_arguments_type(r3, method, r4, true);
3227   // FIXME -- this looks completely redundant. is it?
3228   // __ ldr(r3, Address(method, Method::interpreter_entry_offset()));
3229   __ jump_from_interpreted(method, r3);
3230 }
3231 
3232 void TemplateTable::invokevirtual(int byte_no)
3233 {
3234   transition(vtos, vtos);
3235   assert(byte_no == f2_byte, "use this argument");
3236 
3237   prepare_invoke(byte_no, rmethod, noreg, r2, r3);
3238 
3239   // rmethod: index (actually a Method*)
3240   // r2: receiver
3241   // r3: flags
3242 
3243   invokevirtual_helper(rmethod, r2, r3);
3244 }
3245 
3246 void TemplateTable::invokespecial(int byte_no)
3247 {
3248   transition(vtos, vtos);
3249   assert(byte_no == f1_byte, "use this argument");
3250 
3251   prepare_invoke(byte_no, rmethod, noreg,  // get f1 Method*
3252                  r2);  // get receiver also for null check
3253   __ verify_oop(r2);
3254   __ null_check(r2);
3255   // do the call
3256   __ profile_call(r0);
3257   __ profile_arguments_type(r0, rmethod, rbcp, false);
3258   __ jump_from_interpreted(rmethod, r0);
3259 }
3260 
3261 void TemplateTable::invokestatic(int byte_no)
3262 {
3263   transition(vtos, vtos);
3264   assert(byte_no == f1_byte, "use this argument");
3265 
3266   prepare_invoke(byte_no, rmethod);  // get f1 Method*
3267   // do the call
3268   __ profile_call(r0);
3269   __ profile_arguments_type(r0, rmethod, r4, false);
3270   __ jump_from_interpreted(rmethod, r0);
3271 }
3272 
3273 void TemplateTable::fast_invokevfinal(int byte_no)
3274 {
3275   __ call_Unimplemented();
3276 }
3277 
3278 void TemplateTable::invokeinterface(int byte_no) {
3279   transition(vtos, vtos);
3280   assert(byte_no == f1_byte, "use this argument");
3281 
3282   prepare_invoke(byte_no, r0, rmethod,  // get f1 Klass*, f2 Method*
3283                  r2, r3); // recv, flags
3284 
3285   // r0: interface klass (from f1)
3286   // rmethod: method (from f2)
3287   // r2: receiver
3288   // r3: flags
3289 
3290   // Special case of invokeinterface called for virtual method of
3291   // java.lang.Object.  See cpCacheOop.cpp for details.
3292   // This code isn't produced by javac, but could be produced by
3293   // another compliant java compiler.
3294   Label notMethod;
3295   __ tbz(r3, ConstantPoolCacheEntry::is_forced_virtual_shift, notMethod);
3296 
3297   invokevirtual_helper(rmethod, r2, r3);
3298   __ bind(notMethod);
3299 
3300   // Get receiver klass into r3 - also a null check
3301   __ restore_locals();
3302   __ null_check(r2, oopDesc::klass_offset_in_bytes());
3303   __ load_klass(r3, r2);
3304 
3305   Label no_such_interface, no_such_method;
3306 
3307   // Receiver subtype check against REFC.
3308   // Superklass in r0. Subklass in r3. Blows rscratch2, r13.
3309   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3310                              r3, r0, noreg,
3311                              // outputs: scan temp. reg, scan temp. reg
3312                              rscratch2, r13,
3313                              no_such_interface,
3314                              /*return_method=*/false);
3315 
3316   // profile this call
3317   __ profile_virtual_call(r3, r13, r19);
3318 
3319   // Get declaring interface class from method, and itable index
3320   __ ldr(r0, Address(rmethod, Method::const_offset()));
3321   __ ldr(r0, Address(r0, ConstMethod::constants_offset()));
3322   __ ldr(r0, Address(r0, ConstantPool::pool_holder_offset_in_bytes()));
3323   __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset()));
3324   __ subw(rmethod, rmethod, Method::itable_index_max);
3325   __ negw(rmethod, rmethod);
3326 
3327   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3328                              r3, r0, rmethod,
3329                              // outputs: method, scan temp. reg
3330                              rmethod, r13,
3331                              no_such_interface);
3332 
3333   // rmethod,: methodOop to call
3334   // r2: receiver
3335   // Check for abstract method error
3336   // Note: This should be done more efficiently via a throw_abstract_method_error
3337   //       interpreter entry point and a conditional jump to it in case of a null
3338   //       method.
3339   __ cbz(rmethod, no_such_method);
3340 
3341   __ profile_arguments_type(r3, rmethod, r13, true);
3342 
3343   // do the call
3344   // r2: receiver
3345   // rmethod,: methodOop
3346   __ jump_from_interpreted(rmethod, r3);
3347   __ should_not_reach_here();
3348 
3349   // exception handling code follows...
3350   // note: must restore interpreter registers to canonical
3351   //       state for exception handling to work correctly!
3352 
3353   __ bind(no_such_method);
3354   // throw exception
3355   __ restore_bcp();      // bcp must be correct for exception handler   (was destroyed)
3356   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3357   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3358   // the call_VM checks for exception, so we should never return here.
3359   __ should_not_reach_here();
3360 
3361   __ bind(no_such_interface);
3362   // throw exception
3363   __ restore_bcp();      // bcp must be correct for exception handler   (was destroyed)
3364   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3365   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3366                    InterpreterRuntime::throw_IncompatibleClassChangeError));
3367   // the call_VM checks for exception, so we should never return here.
3368   __ should_not_reach_here();
3369   return;
3370 }
3371 
3372 void TemplateTable::invokehandle(int byte_no) {
3373   transition(vtos, vtos);
3374   assert(byte_no == f1_byte, "use this argument");
3375 
3376   if (!EnableInvokeDynamic) {
3377     // rewriter does not generate this bytecode
3378     __ should_not_reach_here();
3379     return;
3380   }
3381 
3382   prepare_invoke(byte_no, rmethod, r0, r2);
3383   __ verify_method_ptr(r2);
3384   __ verify_oop(r2);
3385   __ null_check(r2);
3386 
3387   // FIXME: profile the LambdaForm also
3388 
3389   // r13 is safe to use here as a scratch reg because it is about to
3390   // be clobbered by jump_from_interpreted().
3391   __ profile_final_call(r13);
3392   __ profile_arguments_type(r13, rmethod, r4, true);
3393 
3394   __ jump_from_interpreted(rmethod, r0);
3395 }
3396 
3397 void TemplateTable::invokedynamic(int byte_no) {
3398   transition(vtos, vtos);
3399   assert(byte_no == f1_byte, "use this argument");
3400 
3401   if (!EnableInvokeDynamic) {
3402     // We should not encounter this bytecode if !EnableInvokeDynamic.
3403     // The verifier will stop it.  However, if we get past the verifier,
3404     // this will stop the thread in a reasonable way, without crashing the JVM.
3405     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3406                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3407     // the call_VM checks for exception, so we should never return here.
3408     __ should_not_reach_here();
3409     return;
3410   }
3411 
3412   prepare_invoke(byte_no, rmethod, r0);
3413 
3414   // r0: CallSite object (from cpool->resolved_references[])
3415   // rmethod: MH.linkToCallSite method (from f2)
3416 
3417   // Note:  r0_callsite is already pushed by prepare_invoke
3418 
3419   // %%% should make a type profile for any invokedynamic that takes a ref argument
3420   // profile this call
3421   __ profile_call(rbcp);
3422   __ profile_arguments_type(r3, rmethod, r13, false);
3423 
3424   __ verify_oop(r0);
3425 
3426   __ jump_from_interpreted(rmethod, r0);
3427 }
3428 
3429 
3430 //-----------------------------------------------------------------------------
3431 // Allocation
3432 
3433 void TemplateTable::_new() {
3434   transition(vtos, atos);
3435 
3436   __ get_unsigned_2_byte_index_at_bcp(r3, 1);
3437   Label slow_case;
3438   Label done;
3439   Label initialize_header;
3440   Label initialize_object; // including clearing the fields
3441   Label allocate_shared;
3442 
3443   __ get_cpool_and_tags(r4, r0);
3444   // Make sure the class we're about to instantiate has been resolved.
3445   // This is done before loading InstanceKlass to be consistent with the order
3446   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3447   const int tags_offset = Array<u1>::base_offset_in_bytes();
3448   __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3449   __ lea(rscratch1, Address(rscratch1, tags_offset));
3450   __ ldarb(rscratch1, rscratch1);
3451   __ cmp(rscratch1, JVM_CONSTANT_Class);
3452   __ br(Assembler::NE, slow_case);
3453 
3454   // get InstanceKlass
3455   __ lea(r4, Address(r4, r3, Address::lsl(3)));
3456   __ ldr(r4, Address(r4, sizeof(ConstantPool)));
3457 
3458   // make sure klass is initialized & doesn't have finalizer
3459   // make sure klass is fully initialized
3460   __ ldrb(rscratch1, Address(r4, InstanceKlass::init_state_offset()));
3461   __ cmp(rscratch1, InstanceKlass::fully_initialized);
3462   __ br(Assembler::NE, slow_case);
3463 
3464   // get instance_size in InstanceKlass (scaled to a count of bytes)
3465   __ ldrw(r3,
3466           Address(r4,
3467                   Klass::layout_helper_offset()));
3468   // test to see if it has a finalizer or is malformed in some way
3469   __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case);
3470 
3471   // Allocate the instance
3472   // 1) Try to allocate in the TLAB
3473   // 2) if fail and the object is large allocate in the shared Eden
3474   // 3) if the above fails (or is not applicable), go to a slow case
3475   // (creates a new TLAB, etc.)
3476 
3477   const bool allow_shared_alloc =
3478     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3479 
3480   if (UseTLAB) {
3481     __ tlab_allocate(r0, r3, 0, noreg, r1,
3482                      allow_shared_alloc ? allocate_shared : slow_case);
3483 
3484     if (ZeroTLAB) {
3485       // the fields have been already cleared
3486       __ b(initialize_header);
3487     } else {
3488       // initialize both the header and fields
3489       __ b(initialize_object);
3490     }
3491   }
3492 
3493   // Allocation in the shared Eden, if allowed.
3494   //
3495   // r3: instance size in bytes
3496   if (allow_shared_alloc) {
3497     __ bind(allocate_shared);
3498 
3499     __ eden_allocate(r0, r3, 0, r10, slow_case);
3500     __ incr_allocated_bytes(rthread, r3, 0, rscratch1);
3501   }
3502 
3503   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3504     // The object is initialized before the header.  If the object size is
3505     // zero, go directly to the header initialization.
3506     __ bind(initialize_object);
3507     __ sub(r3, r3, sizeof(oopDesc));
3508     __ cbz(r3, initialize_header);
3509 
3510     // Initialize object fields
3511     {
3512       __ add(r2, r0, sizeof(oopDesc));
3513       Label loop;
3514       __ bind(loop);
3515       __ str(zr, Address(__ post(r2, BytesPerLong)));
3516       __ sub(r3, r3, BytesPerLong);
3517       __ cbnz(r3, loop);
3518     }
3519 
3520     // initialize object header only.
3521     __ bind(initialize_header);
3522     if (UseBiasedLocking) {
3523       __ ldr(rscratch1, Address(r4, Klass::prototype_header_offset()));
3524     } else {
3525       __ mov(rscratch1, (intptr_t)markOopDesc::prototype());
3526     }
3527     __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3528     __ store_klass_gap(r0, zr);  // zero klass gap for compressed oops
3529     __ store_klass(r0, r4);      // store klass last
3530 
3531     {
3532       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
3533       // Trigger dtrace event for fastpath
3534       __ push(atos); // save the return value
3535       __ call_VM_leaf(
3536            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), r0);
3537       __ pop(atos); // restore the return value
3538 
3539     }
3540     __ b(done);
3541   }
3542 
3543   // slow case
3544   __ bind(slow_case);
3545   __ get_constant_pool(c_rarg1);
3546   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3547   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3548   __ verify_oop(r0);
3549 
3550   // continue
3551   __ bind(done);
3552   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3553   __ membar(Assembler::StoreStore);
3554 }
3555 
3556 void TemplateTable::newarray() {
3557   transition(itos, atos);
3558   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3559   __ mov(c_rarg2, r0);
3560   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3561           c_rarg1, c_rarg2);
3562   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3563   __ membar(Assembler::StoreStore);
3564 }
3565 
3566 void TemplateTable::anewarray() {
3567   transition(itos, atos);
3568   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3569   __ get_constant_pool(c_rarg1);
3570   __ mov(c_rarg3, r0);
3571   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3572           c_rarg1, c_rarg2, c_rarg3);
3573   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3574   __ membar(Assembler::StoreStore);
3575 }
3576 
3577 void TemplateTable::arraylength() {
3578   transition(atos, itos);
3579   __ null_check(r0, arrayOopDesc::length_offset_in_bytes());
3580   __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes()));
3581 }
3582 
3583 void TemplateTable::checkcast()
3584 {
3585   transition(atos, atos);
3586   Label done, is_null, ok_is_subtype, quicked, resolved;
3587   __ cbz(r0, is_null);
3588 
3589   // Get cpool & tags index
3590   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3591   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3592   // See if bytecode has already been quicked
3593   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3594   __ lea(r1, Address(rscratch1, r19));
3595   __ ldarb(r1, r1);
3596   __ cmp(r1, JVM_CONSTANT_Class);
3597   __ br(Assembler::EQ, quicked);
3598 
3599   __ push(atos); // save receiver for result, and for GC
3600   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3601   // vm_result_2 has metadata result
3602   __ get_vm_result_2(r0, rthread);
3603   __ pop(r3); // restore receiver
3604   __ b(resolved);
3605 
3606   // Get superklass in r0 and subklass in r3
3607   __ bind(quicked);
3608   __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3609   __ lea(r0, Address(r2, r19, Address::lsl(3)));
3610   __ ldr(r0, Address(r0, sizeof(ConstantPool)));
3611 
3612   __ bind(resolved);
3613   __ load_klass(r19, r3);
3614 
3615   // Generate subtype check.  Blows r2, r5.  Object in r3.
3616   // Superklass in r0.  Subklass in r19.
3617   __ gen_subtype_check(r19, ok_is_subtype);
3618 
3619   // Come here on failure
3620   __ push(r3);
3621   // object is at TOS
3622   __ b(Interpreter::_throw_ClassCastException_entry);
3623 
3624   // Come here on success
3625   __ bind(ok_is_subtype);
3626   __ mov(r0, r3); // Restore object in r3
3627 
3628   // Collect counts on whether this test sees NULLs a lot or not.
3629   if (ProfileInterpreter) {
3630     __ b(done);
3631     __ bind(is_null);
3632     __ profile_null_seen(r2);
3633   } else {
3634     __ bind(is_null);   // same as 'done'
3635   }
3636   __ bind(done);
3637 }
3638 
3639 void TemplateTable::instanceof() {
3640   transition(atos, itos);
3641   Label done, is_null, ok_is_subtype, quicked, resolved;
3642   __ cbz(r0, is_null);
3643 
3644   // Get cpool & tags index
3645   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3646   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3647   // See if bytecode has already been quicked
3648   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3649   __ lea(r1, Address(rscratch1, r19));
3650   __ ldarb(r1, r1);
3651   __ cmp(r1, JVM_CONSTANT_Class);
3652   __ br(Assembler::EQ, quicked);
3653 
3654   __ push(atos); // save receiver for result, and for GC
3655   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3656   // vm_result_2 has metadata result
3657   __ get_vm_result_2(r0, rthread);
3658   __ pop(r3); // restore receiver
3659   __ verify_oop(r3);
3660   __ load_klass(r3, r3);
3661   __ b(resolved);
3662 
3663   // Get superklass in r0 and subklass in r3
3664   __ bind(quicked);
3665   __ load_klass(r3, r0);
3666   __ lea(r0, Address(r2, r19, Address::lsl(3)));
3667   __ ldr(r0, Address(r0, sizeof(ConstantPool)));
3668 
3669   __ bind(resolved);
3670 
3671   // Generate subtype check.  Blows r2, r5
3672   // Superklass in r0.  Subklass in r3.
3673   __ gen_subtype_check(r3, ok_is_subtype);
3674 
3675   // Come here on failure
3676   __ mov(r0, 0);
3677   __ b(done);
3678   // Come here on success
3679   __ bind(ok_is_subtype);
3680   __ mov(r0, 1);
3681 
3682   // Collect counts on whether this test sees NULLs a lot or not.
3683   if (ProfileInterpreter) {
3684     __ b(done);
3685     __ bind(is_null);
3686     __ profile_null_seen(r2);
3687   } else {
3688     __ bind(is_null);   // same as 'done'
3689   }
3690   __ bind(done);
3691   // r0 = 0: obj == NULL or  obj is not an instanceof the specified klass
3692   // r0 = 1: obj != NULL and obj is     an instanceof the specified klass
3693 }
3694 
3695 //-----------------------------------------------------------------------------
3696 // Breakpoints
3697 void TemplateTable::_breakpoint() {
3698   // Note: We get here even if we are single stepping..
3699   // jbug inists on setting breakpoints at every bytecode
3700   // even if we are in single step mode.
3701 
3702   transition(vtos, vtos);
3703 
3704   // get the unpatched byte code
3705   __ get_method(c_rarg1);
3706   __ call_VM(noreg,
3707              CAST_FROM_FN_PTR(address,
3708                               InterpreterRuntime::get_original_bytecode_at),
3709              c_rarg1, rbcp);
3710   __ mov(r19, r0);
3711 
3712   // post the breakpoint event
3713   __ call_VM(noreg,
3714              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3715              rmethod, rbcp);
3716 
3717   // complete the execution of original bytecode
3718   __ mov(rscratch1, r19);
3719   __ dispatch_only_normal(vtos);
3720 }
3721 
3722 //-----------------------------------------------------------------------------
3723 // Exceptions
3724 
3725 void TemplateTable::athrow() {
3726   transition(atos, vtos);
3727   __ null_check(r0);
3728   __ b(Interpreter::throw_exception_entry());
3729 }
3730 
3731 //-----------------------------------------------------------------------------
3732 // Synchronization
3733 //
3734 // Note: monitorenter & exit are symmetric routines; which is reflected
3735 //       in the assembly code structure as well
3736 //
3737 // Stack layout:
3738 //
3739 // [expressions  ] <--- esp               = expression stack top
3740 // ..
3741 // [expressions  ]
3742 // [monitor entry] <--- monitor block top = expression stack bot
3743 // ..
3744 // [monitor entry]
3745 // [frame data   ] <--- monitor block bot
3746 // ...
3747 // [saved rbp    ] <--- rbp
3748 void TemplateTable::monitorenter()
3749 {
3750   transition(atos, vtos);
3751 
3752   // check for NULL object
3753   __ null_check(r0);
3754 
3755   const Address monitor_block_top(
3756         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3757   const Address monitor_block_bot(
3758         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3759   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3760 
3761   Label allocated;
3762 
3763   // initialize entry pointer
3764   __ mov(c_rarg1, zr); // points to free slot or NULL
3765 
3766   // find a free slot in the monitor block (result in c_rarg1)
3767   {
3768     Label entry, loop, exit;
3769     __ ldr(c_rarg3, monitor_block_top); // points to current entry,
3770                                         // starting with top-most entry
3771     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3772 
3773     __ b(entry);
3774 
3775     __ bind(loop);
3776     // check if current entry is used
3777     // if not used then remember entry in c_rarg1
3778     __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
3779     __ cmp(zr, rscratch1);
3780     __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ);
3781     // check if current entry is for same object
3782     __ cmp(r0, rscratch1);
3783     // if same object then stop searching
3784     __ br(Assembler::EQ, exit);
3785     // otherwise advance to next entry
3786     __ add(c_rarg3, c_rarg3, entry_size);
3787     __ bind(entry);
3788     // check if bottom reached
3789     __ cmp(c_rarg3, c_rarg2);
3790     // if not at bottom then check this entry
3791     __ br(Assembler::NE, loop);
3792     __ bind(exit);
3793   }
3794 
3795   __ cbnz(c_rarg1, allocated); // check if a slot has been found and
3796                             // if found, continue with that on
3797 
3798   // allocate one if there's no free slot
3799   {
3800     Label entry, loop;
3801     // 1. compute new pointers            // rsp: old expression stack top
3802     __ ldr(c_rarg1, monitor_block_bot);   // c_rarg1: old expression stack bottom
3803     __ sub(esp, esp, entry_size);         // move expression stack top
3804     __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom
3805     __ mov(c_rarg3, esp);                 // set start value for copy loop
3806     __ str(c_rarg1, monitor_block_bot);   // set new monitor block bottom
3807 
3808     __ sub(sp, sp, entry_size);           // make room for the monitor
3809 
3810     __ b(entry);
3811     // 2. move expression stack contents
3812     __ bind(loop);
3813     __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
3814                                                    // word from old location
3815     __ str(c_rarg2, Address(c_rarg3, 0));          // and store it at new location
3816     __ add(c_rarg3, c_rarg3, wordSize);            // advance to next word
3817     __ bind(entry);
3818     __ cmp(c_rarg3, c_rarg1);        // check if bottom reached
3819     __ br(Assembler::NE, loop);      // if not at bottom then
3820                                      // copy next word
3821   }
3822 
3823   // call run-time routine
3824   // c_rarg1: points to monitor entry
3825   __ bind(allocated);
3826 
3827   // Increment bcp to point to the next bytecode, so exception
3828   // handling for async. exceptions work correctly.
3829   // The object has already been poped from the stack, so the
3830   // expression stack looks correct.
3831   __ increment(rbcp);
3832 
3833   // store object
3834   __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
3835   __ lock_object(c_rarg1);
3836 
3837   // check to make sure this monitor doesn't cause stack overflow after locking
3838   __ save_bcp();  // in case of exception
3839   __ generate_stack_overflow_check(0);
3840 
3841   // The bcp has already been incremented. Just need to dispatch to
3842   // next instruction.
3843   __ dispatch_next(vtos);
3844 }
3845 
3846 
3847 void TemplateTable::monitorexit()
3848 {
3849   transition(atos, vtos);
3850 
3851   // check for NULL object
3852   __ null_check(r0);
3853 
3854   const Address monitor_block_top(
3855         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3856   const Address monitor_block_bot(
3857         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3858   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3859 
3860   Label found;
3861 
3862   // find matching slot
3863   {
3864     Label entry, loop;
3865     __ ldr(c_rarg1, monitor_block_top); // points to current entry,
3866                                         // starting with top-most entry
3867     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3868                                         // of monitor block
3869     __ b(entry);
3870 
3871     __ bind(loop);
3872     // check if current entry is for same object
3873     __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
3874     __ cmp(r0, rscratch1);
3875     // if same object then stop searching
3876     __ br(Assembler::EQ, found);
3877     // otherwise advance to next entry
3878     __ add(c_rarg1, c_rarg1, entry_size);
3879     __ bind(entry);
3880     // check if bottom reached
3881     __ cmp(c_rarg1, c_rarg2);
3882     // if not at bottom then check this entry
3883     __ br(Assembler::NE, loop);
3884   }
3885 
3886   // error handling. Unlocking was not block-structured
3887   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3888                    InterpreterRuntime::throw_illegal_monitor_state_exception));
3889   __ should_not_reach_here();
3890 
3891   // call run-time routine
3892   __ bind(found);
3893   __ push_ptr(r0); // make sure object is on stack (contract with oopMaps)
3894   __ unlock_object(c_rarg1);
3895   __ pop_ptr(r0); // discard object
3896 }
3897 
3898 
3899 // Wide instructions
3900 void TemplateTable::wide()
3901 {
3902   __ load_unsigned_byte(r19, at_bcp(1));
3903   __ mov(rscratch1, (address)Interpreter::_wentry_point);
3904   __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3)));
3905   __ br(rscratch1);
3906 }
3907 
3908 
3909 // Multi arrays
3910 void TemplateTable::multianewarray() {
3911   transition(vtos, atos);
3912   __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions
3913   // last dim is on top of stack; we want address of first one:
3914   // first_addr = last_addr + (ndims - 1) * wordSize
3915   __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3)));
3916   __ sub(c_rarg1, c_rarg1, wordSize);
3917   call_VM(r0,
3918           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
3919           c_rarg1);
3920   __ load_unsigned_byte(r1, at_bcp(3));
3921   __ lea(esp, Address(esp, r1, Address::uxtw(3)));
3922 }
3923 #endif // !CC_INTERP