--- /dev/null 2021-01-19 17:38:25.908523431 +0000 +++ new/src/cpu/aarch64/vm/templateTable_aarch64.cpp 2021-01-25 19:32:00.294724080 +0000 @@ -0,0 +1,3923 @@ +/* + * Copyright (c) 2013, Red Hat Inc. + * Copyright (c) 2003, 2011, Oracle and/or its affiliates. + * All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + * + */ + +#include "precompiled.hpp" +#include "asm/macroAssembler.hpp" +#include "interpreter/interpreter.hpp" +#include "interpreter/interpreterRuntime.hpp" +#include "interpreter/templateTable.hpp" +#include "memory/universe.inline.hpp" +#include "oops/methodData.hpp" +#include "oops/method.hpp" +#include "oops/objArrayKlass.hpp" +#include "oops/oop.inline.hpp" +#include "prims/methodHandles.hpp" +#include "runtime/sharedRuntime.hpp" +#include "runtime/stubRoutines.hpp" +#include "runtime/synchronizer.hpp" + +#ifndef CC_INTERP + +#define __ _masm-> + +// Platform-dependent initialization + +void TemplateTable::pd_initialize() { + // No amd64 specific initialization +} + +// Address computation: local variables + +static inline Address iaddress(int n) { + return Address(rlocals, Interpreter::local_offset_in_bytes(n)); +} + +static inline Address laddress(int n) { + return iaddress(n + 1); +} + +static inline Address faddress(int n) { + return iaddress(n); +} + +static inline Address daddress(int n) { + return laddress(n); +} + +static inline Address aaddress(int n) { + return iaddress(n); +} + +static inline Address iaddress(Register r) { + return Address(rlocals, r, Address::lsl(3)); +} + +static inline Address laddress(Register r, Register scratch, + InterpreterMacroAssembler* _masm) { + __ lea(scratch, Address(rlocals, r, Address::lsl(3))); + return Address(scratch, Interpreter::local_offset_in_bytes(1)); +} + +static inline Address faddress(Register r) { + return iaddress(r); +} + +static inline Address daddress(Register r, Register scratch, + InterpreterMacroAssembler* _masm) { + return laddress(r, scratch, _masm); +} + +static inline Address aaddress(Register r) { + return iaddress(r); +} + +static inline Address at_rsp() { + return Address(esp, 0); +} + +// At top of Java expression stack which may be different than esp(). It +// isn't for category 1 objects. +static inline Address at_tos () { + return Address(esp, Interpreter::expr_offset_in_bytes(0)); +} + +static inline Address at_tos_p1() { + return Address(esp, Interpreter::expr_offset_in_bytes(1)); +} + +static inline Address at_tos_p2() { + return Address(esp, Interpreter::expr_offset_in_bytes(2)); +} + +static inline Address at_tos_p3() { + return Address(esp, Interpreter::expr_offset_in_bytes(3)); +} + +static inline Address at_tos_p4() { + return Address(esp, Interpreter::expr_offset_in_bytes(4)); +} + +static inline Address at_tos_p5() { + return Address(esp, Interpreter::expr_offset_in_bytes(5)); +} + +// Condition conversion +static Assembler::Condition j_not(TemplateTable::Condition cc) { + switch (cc) { + case TemplateTable::equal : return Assembler::NE; + case TemplateTable::not_equal : return Assembler::EQ; + case TemplateTable::less : return Assembler::GE; + case TemplateTable::less_equal : return Assembler::GT; + case TemplateTable::greater : return Assembler::LE; + case TemplateTable::greater_equal: return Assembler::LT; + } + ShouldNotReachHere(); + return Assembler::EQ; +} + + +// Miscelaneous helper routines +// Store an oop (or NULL) at the Address described by obj. +// If val == noreg this means store a NULL +static void do_oop_store(InterpreterMacroAssembler* _masm, + Address obj, + Register val, + BarrierSet::Name barrier, + bool precise) { + assert(val == noreg || val == r0, "parameter is just for looks"); + switch (barrier) { +#if INCLUDE_ALL_GCS + case BarrierSet::G1SATBCT: + case BarrierSet::G1SATBCTLogging: + { + // flatten object address if needed + if (obj.index() == noreg && obj.offset() == 0) { + if (obj.base() != r3) { + __ mov(r3, obj.base()); + } + } else { + __ lea(r3, obj); + } + __ g1_write_barrier_pre(r3 /* obj */, + r1 /* pre_val */, + rthread /* thread */, + r10 /* tmp */, + val != noreg /* tosca_live */, + false /* expand_call */); + if (val == noreg) { + __ store_heap_oop_null(Address(r3, 0)); + } else { + // G1 barrier needs uncompressed oop for region cross check. + Register new_val = val; + if (UseCompressedOops) { + new_val = rscratch2; + __ mov(new_val, val); + } + __ store_heap_oop(Address(r3, 0), val); + __ g1_write_barrier_post(r3 /* store_adr */, + new_val /* new_val */, + rthread /* thread */, + r10 /* tmp */, + r1 /* tmp2 */); + } + + } + break; +#endif // INCLUDE_ALL_GCS + case BarrierSet::CardTableModRef: + case BarrierSet::CardTableExtension: + { + if (val == noreg) { + __ store_heap_oop_null(obj); + } else { + __ store_heap_oop(obj, val); + // flatten object address if needed + if (!precise || (obj.index() == noreg && obj.offset() == 0)) { + __ store_check(obj.base()); + } else { + __ lea(r3, obj); + __ store_check(r3); + } + } + } + break; + case BarrierSet::ModRef: + case BarrierSet::Other: + if (val == noreg) { + __ store_heap_oop_null(obj); + } else { + __ store_heap_oop(obj, val); + } + break; + default : + ShouldNotReachHere(); + + } +} + +Address TemplateTable::at_bcp(int offset) { + assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); + return Address(rbcp, offset); +} + +void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, + Register temp_reg, bool load_bc_into_bc_reg/*=true*/, + int byte_no) +{ + if (!RewriteBytecodes) return; + Label L_patch_done; + + switch (bc) { + case Bytecodes::_fast_aputfield: + case Bytecodes::_fast_bputfield: + case Bytecodes::_fast_zputfield: + case Bytecodes::_fast_cputfield: + case Bytecodes::_fast_dputfield: + case Bytecodes::_fast_fputfield: + case Bytecodes::_fast_iputfield: + case Bytecodes::_fast_lputfield: + case Bytecodes::_fast_sputfield: + { + // We skip bytecode quickening for putfield instructions when + // the put_code written to the constant pool cache is zero. + // This is required so that every execution of this instruction + // calls out to InterpreterRuntime::resolve_get_put to do + // additional, required work. + assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); + assert(load_bc_into_bc_reg, "we use bc_reg as temp"); + __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); + __ movw(bc_reg, bc); + __ cmpw(temp_reg, (unsigned) 0); + __ br(Assembler::EQ, L_patch_done); // don't patch + } + break; + default: + assert(byte_no == -1, "sanity"); + // the pair bytecodes have already done the load. + if (load_bc_into_bc_reg) { + __ movw(bc_reg, bc); + } + } + + if (JvmtiExport::can_post_breakpoint()) { + Label L_fast_patch; + // if a breakpoint is present we can't rewrite the stream directly + __ load_unsigned_byte(temp_reg, at_bcp(0)); + __ cmpw(temp_reg, Bytecodes::_breakpoint); + __ br(Assembler::NE, L_fast_patch); + // Let breakpoint table handling rewrite to quicker bytecode + __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg); + __ b(L_patch_done); + __ bind(L_fast_patch); + } + +#ifdef ASSERT + Label L_okay; + __ load_unsigned_byte(temp_reg, at_bcp(0)); + __ cmpw(temp_reg, (int) Bytecodes::java_code(bc)); + __ br(Assembler::EQ, L_okay); + __ cmpw(temp_reg, bc_reg); + __ br(Assembler::EQ, L_okay); + __ stop("patching the wrong bytecode"); + __ bind(L_okay); +#endif + + // patch bytecode + __ strb(bc_reg, at_bcp(0)); + __ bind(L_patch_done); +} + + +// Individual instructions + +void TemplateTable::nop() { + transition(vtos, vtos); + // nothing to do +} + +void TemplateTable::shouldnotreachhere() { + transition(vtos, vtos); + __ stop("shouldnotreachhere bytecode"); +} + +void TemplateTable::aconst_null() +{ + transition(vtos, atos); + __ mov(r0, 0); +} + +void TemplateTable::iconst(int value) +{ + transition(vtos, itos); + __ mov(r0, value); +} + +void TemplateTable::lconst(int value) +{ + __ mov(r0, value); +} + +void TemplateTable::fconst(int value) +{ + transition(vtos, ftos); + switch (value) { + case 0: + __ fmovs(v0, zr); + break; + case 1: + __ fmovs(v0, 1.0); + break; + case 2: + __ fmovs(v0, 2.0); + break; + default: + ShouldNotReachHere(); + break; + } +} + +void TemplateTable::dconst(int value) +{ + transition(vtos, dtos); + switch (value) { + case 0: + __ fmovd(v0, zr); + break; + case 1: + __ fmovd(v0, 1.0); + break; + case 2: + __ fmovd(v0, 2.0); + break; + default: + ShouldNotReachHere(); + break; + } +} + +void TemplateTable::bipush() +{ + transition(vtos, itos); + __ load_signed_byte32(r0, at_bcp(1)); +} + +void TemplateTable::sipush() +{ + transition(vtos, itos); + __ load_unsigned_short(r0, at_bcp(1)); + __ revw(r0, r0); + __ asrw(r0, r0, 16); +} + +void TemplateTable::ldc(bool wide) +{ + transition(vtos, vtos); + Label call_ldc, notFloat, notClass, Done; + + if (wide) { + __ get_unsigned_2_byte_index_at_bcp(r1, 1); + } else { + __ load_unsigned_byte(r1, at_bcp(1)); + } + __ get_cpool_and_tags(r2, r0); + + const int base_offset = ConstantPool::header_size() * wordSize; + const int tags_offset = Array::base_offset_in_bytes(); + + // get type + __ add(r3, r1, tags_offset); + __ lea(r3, Address(r0, r3)); + __ ldarb(r3, r3); + + // unresolved class - get the resolved class + __ cmp(r3, JVM_CONSTANT_UnresolvedClass); + __ br(Assembler::EQ, call_ldc); + + // unresolved class in error state - call into runtime to throw the error + // from the first resolution attempt + __ cmp(r3, JVM_CONSTANT_UnresolvedClassInError); + __ br(Assembler::EQ, call_ldc); + + // resolved class - need to call vm to get java mirror of the class + __ cmp(r3, JVM_CONSTANT_Class); + __ br(Assembler::NE, notClass); + + __ bind(call_ldc); + __ mov(c_rarg1, wide); + call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1); + __ push_ptr(r0); + __ verify_oop(r0); + __ b(Done); + + __ bind(notClass); + __ cmp(r3, JVM_CONSTANT_Float); + __ br(Assembler::NE, notFloat); + // ftos + __ adds(r1, r2, r1, Assembler::LSL, 3); + __ ldrs(v0, Address(r1, base_offset)); + __ push_f(); + __ b(Done); + + __ bind(notFloat); +#ifdef ASSERT + { + Label L; + __ cmp(r3, JVM_CONSTANT_Integer); + __ br(Assembler::EQ, L); + // String and Object are rewritten to fast_aldc + __ stop("unexpected tag type in ldc"); + __ bind(L); + } +#endif + // itos JVM_CONSTANT_Integer only + __ adds(r1, r2, r1, Assembler::LSL, 3); + __ ldrw(r0, Address(r1, base_offset)); + __ push_i(r0); + __ bind(Done); +} + +// Fast path for caching oop constants. +void TemplateTable::fast_aldc(bool wide) +{ + transition(vtos, atos); + + Register result = r0; + Register tmp = r1; + int index_size = wide ? sizeof(u2) : sizeof(u1); + + Label resolved; + + // We are resolved if the resolved reference cache entry contains a + // non-null object (String, MethodType, etc.) + assert_different_registers(result, tmp); + __ get_cache_index_at_bcp(tmp, 1, index_size); + __ load_resolved_reference_at_index(result, tmp); + __ cbnz(result, resolved); + + address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); + + // first time invocation - must resolve first + __ mov(tmp, (int)bytecode()); + __ call_VM(result, entry, tmp); + + __ bind(resolved); + + if (VerifyOops) { + __ verify_oop(result); + } +} + +void TemplateTable::ldc2_w() +{ + transition(vtos, vtos); + Label Long, Done; + __ get_unsigned_2_byte_index_at_bcp(r0, 1); + + __ get_cpool_and_tags(r1, r2); + const int base_offset = ConstantPool::header_size() * wordSize; + const int tags_offset = Array::base_offset_in_bytes(); + + // get type + __ lea(r2, Address(r2, r0, Address::lsl(0))); + __ load_unsigned_byte(r2, Address(r2, tags_offset)); + __ cmpw(r2, (int)JVM_CONSTANT_Double); + __ br(Assembler::NE, Long); + // dtos + __ lea (r2, Address(r1, r0, Address::lsl(3))); + __ ldrd(v0, Address(r2, base_offset)); + __ push_d(); + __ b(Done); + + __ bind(Long); + // ltos + __ lea(r0, Address(r1, r0, Address::lsl(3))); + __ ldr(r0, Address(r0, base_offset)); + __ push_l(); + + __ bind(Done); +} + +void TemplateTable::locals_index(Register reg, int offset) +{ + __ ldrb(reg, at_bcp(offset)); + __ neg(reg, reg); +} + +void TemplateTable::iload() +{ + transition(vtos, itos); + if (RewriteFrequentPairs) { + Label rewrite, done; + Register bc = r4; + + // get next bytecode + __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload))); + + // if _iload, wait to rewrite to iload2. We only want to rewrite the + // last two iloads in a pair. Comparing against fast_iload means that + // the next bytecode is neither an iload or a caload, and therefore + // an iload pair. + __ cmpw(r1, Bytecodes::_iload); + __ br(Assembler::EQ, done); + + // if _fast_iload rewrite to _fast_iload2 + __ cmpw(r1, Bytecodes::_fast_iload); + __ movw(bc, Bytecodes::_fast_iload2); + __ br(Assembler::EQ, rewrite); + + // if _caload rewrite to _fast_icaload + __ cmpw(r1, Bytecodes::_caload); + __ movw(bc, Bytecodes::_fast_icaload); + __ br(Assembler::EQ, rewrite); + + // else rewrite to _fast_iload + __ movw(bc, Bytecodes::_fast_iload); + + // rewrite + // bc: new bytecode + __ bind(rewrite); + patch_bytecode(Bytecodes::_iload, bc, r1, false); + __ bind(done); + + } + + // do iload, get the local value into tos + locals_index(r1); + __ ldr(r0, iaddress(r1)); + +} + +void TemplateTable::fast_iload2() +{ + transition(vtos, itos); + locals_index(r1); + __ ldr(r0, iaddress(r1)); + __ push(itos); + locals_index(r1, 3); + __ ldr(r0, iaddress(r1)); +} + +void TemplateTable::fast_iload() +{ + transition(vtos, itos); + locals_index(r1); + __ ldr(r0, iaddress(r1)); +} + +void TemplateTable::lload() +{ + transition(vtos, ltos); + __ ldrb(r1, at_bcp(1)); + __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); + __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); +} + +void TemplateTable::fload() +{ + transition(vtos, ftos); + locals_index(r1); + // n.b. we use ldrd here because this is a 64 bit slot + // this is comparable to the iload case + __ ldrd(v0, faddress(r1)); +} + +void TemplateTable::dload() +{ + transition(vtos, dtos); + __ ldrb(r1, at_bcp(1)); + __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); + __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); +} + +void TemplateTable::aload() +{ + transition(vtos, atos); + locals_index(r1); + __ ldr(r0, iaddress(r1)); +} + +void TemplateTable::locals_index_wide(Register reg) { + __ ldrh(reg, at_bcp(2)); + __ rev16w(reg, reg); + __ neg(reg, reg); +} + +void TemplateTable::wide_iload() { + transition(vtos, itos); + locals_index_wide(r1); + __ ldr(r0, iaddress(r1)); +} + +void TemplateTable::wide_lload() +{ + transition(vtos, ltos); + __ ldrh(r1, at_bcp(2)); + __ rev16w(r1, r1); + __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); + __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); +} + +void TemplateTable::wide_fload() +{ + transition(vtos, ftos); + locals_index_wide(r1); + // n.b. we use ldrd here because this is a 64 bit slot + // this is comparable to the iload case + __ ldrd(v0, faddress(r1)); +} + +void TemplateTable::wide_dload() +{ + transition(vtos, dtos); + __ ldrh(r1, at_bcp(2)); + __ rev16w(r1, r1); + __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); + __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); +} + +void TemplateTable::wide_aload() +{ + transition(vtos, atos); + locals_index_wide(r1); + __ ldr(r0, aaddress(r1)); +} + +void TemplateTable::index_check(Register array, Register index) +{ + // destroys r1, rscratch1 + // check array + __ null_check(array, arrayOopDesc::length_offset_in_bytes()); + // sign extend index for use by indexed load + // __ movl2ptr(index, index); + // check index + Register length = rscratch1; + __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes())); + __ cmpw(index, length); + if (index != r1) { + // ??? convention: move aberrant index into r1 for exception message + assert(r1 != array, "different registers"); + __ mov(r1, index); + } + Label ok; + __ br(Assembler::LO, ok); + __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); + __ br(rscratch1); + __ bind(ok); +} + +void TemplateTable::iaload() +{ + transition(itos, itos); + __ mov(r1, r0); + __ pop_ptr(r0); + // r0: array + // r1: index + index_check(r0, r1); // leaves index in r1, kills rscratch1 + __ lea(r1, Address(r0, r1, Address::uxtw(2))); + __ ldrw(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_INT))); +} + +void TemplateTable::laload() +{ + transition(itos, ltos); + __ mov(r1, r0); + __ pop_ptr(r0); + // r0: array + // r1: index + index_check(r0, r1); // leaves index in r1, kills rscratch1 + __ lea(r1, Address(r0, r1, Address::uxtw(3))); + __ ldr(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_LONG))); +} + +void TemplateTable::faload() +{ + transition(itos, ftos); + __ mov(r1, r0); + __ pop_ptr(r0); + // r0: array + // r1: index + index_check(r0, r1); // leaves index in r1, kills rscratch1 + __ lea(r1, Address(r0, r1, Address::uxtw(2))); + __ ldrs(v0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT))); +} + +void TemplateTable::daload() +{ + transition(itos, dtos); + __ mov(r1, r0); + __ pop_ptr(r0); + // r0: array + // r1: index + index_check(r0, r1); // leaves index in r1, kills rscratch1 + __ lea(r1, Address(r0, r1, Address::uxtw(3))); + __ ldrd(v0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); +} + +void TemplateTable::aaload() +{ + transition(itos, atos); + __ mov(r1, r0); + __ pop_ptr(r0); + // r0: array + // r1: index + index_check(r0, r1); // leaves index in r1, kills rscratch1 + int s = (UseCompressedOops ? 2 : 3); + __ lea(r1, Address(r0, r1, Address::uxtw(s))); + __ load_heap_oop(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT))); +} + +void TemplateTable::baload() +{ + transition(itos, itos); + __ mov(r1, r0); + __ pop_ptr(r0); + // r0: array + // r1: index + index_check(r0, r1); // leaves index in r1, kills rscratch1 + __ lea(r1, Address(r0, r1, Address::uxtw(0))); + __ load_signed_byte(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_BYTE))); +} + +void TemplateTable::caload() +{ + transition(itos, itos); + __ mov(r1, r0); + __ pop_ptr(r0); + // r0: array + // r1: index + index_check(r0, r1); // leaves index in r1, kills rscratch1 + __ lea(r1, Address(r0, r1, Address::uxtw(1))); + __ load_unsigned_short(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_CHAR))); +} + +// iload followed by caload frequent pair +void TemplateTable::fast_icaload() +{ + transition(vtos, itos); + // load index out of locals + locals_index(r2); + __ ldr(r1, iaddress(r2)); + + __ pop_ptr(r0); + + // r0: array + // r1: index + index_check(r0, r1); // leaves index in r1, kills rscratch1 + __ lea(r1, Address(r0, r1, Address::uxtw(1))); + __ load_unsigned_short(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_CHAR))); +} + +void TemplateTable::saload() +{ + transition(itos, itos); + __ mov(r1, r0); + __ pop_ptr(r0); + // r0: array + // r1: index + index_check(r0, r1); // leaves index in r1, kills rscratch1 + __ lea(r1, Address(r0, r1, Address::uxtw(1))); + __ load_signed_short(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_SHORT))); +} + +void TemplateTable::iload(int n) +{ + transition(vtos, itos); + __ ldr(r0, iaddress(n)); +} + +void TemplateTable::lload(int n) +{ + transition(vtos, ltos); + __ ldr(r0, laddress(n)); +} + +void TemplateTable::fload(int n) +{ + transition(vtos, ftos); + __ ldrs(v0, faddress(n)); +} + +void TemplateTable::dload(int n) +{ + transition(vtos, dtos); + __ ldrd(v0, daddress(n)); +} + +void TemplateTable::aload(int n) +{ + transition(vtos, atos); + __ ldr(r0, iaddress(n)); +} + +void TemplateTable::aload_0() +{ + // According to bytecode histograms, the pairs: + // + // _aload_0, _fast_igetfield + // _aload_0, _fast_agetfield + // _aload_0, _fast_fgetfield + // + // occur frequently. If RewriteFrequentPairs is set, the (slow) + // _aload_0 bytecode checks if the next bytecode is either + // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then + // rewrites the current bytecode into a pair bytecode; otherwise it + // rewrites the current bytecode into _fast_aload_0 that doesn't do + // the pair check anymore. + // + // Note: If the next bytecode is _getfield, the rewrite must be + // delayed, otherwise we may miss an opportunity for a pair. + // + // Also rewrite frequent pairs + // aload_0, aload_1 + // aload_0, iload_1 + // These bytecodes with a small amount of code are most profitable + // to rewrite + if (RewriteFrequentPairs) { + Label rewrite, done; + const Register bc = r4; + + // get next bytecode + __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); + + // do actual aload_0 + aload(0); + + // if _getfield then wait with rewrite + __ cmpw(r1, Bytecodes::Bytecodes::_getfield); + __ br(Assembler::EQ, done); + + // if _igetfield then reqrite to _fast_iaccess_0 + assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); + __ cmpw(r1, Bytecodes::_fast_igetfield); + __ movw(bc, Bytecodes::_fast_iaccess_0); + __ br(Assembler::EQ, rewrite); + + // if _agetfield then reqrite to _fast_aaccess_0 + assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); + __ cmpw(r1, Bytecodes::_fast_agetfield); + __ movw(bc, Bytecodes::_fast_aaccess_0); + __ br(Assembler::EQ, rewrite); + + // if _fgetfield then reqrite to _fast_faccess_0 + assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); + __ cmpw(r1, Bytecodes::_fast_fgetfield); + __ movw(bc, Bytecodes::_fast_faccess_0); + __ br(Assembler::EQ, rewrite); + + // else rewrite to _fast_aload0 + assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); + __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0); + + // rewrite + // bc: new bytecode + __ bind(rewrite); + patch_bytecode(Bytecodes::_aload_0, bc, r1, false); + + __ bind(done); + } else { + aload(0); + } +} + +void TemplateTable::istore() +{ + transition(itos, vtos); + locals_index(r1); + // FIXME: We're being very pernickerty here storing a jint in a + // local with strw, which costs an extra instruction over what we'd + // be able to do with a simple str. We should just store the whole + // word. + __ lea(rscratch1, iaddress(r1)); + __ strw(r0, Address(rscratch1)); +} + +void TemplateTable::lstore() +{ + transition(ltos, vtos); + locals_index(r1); + __ str(r0, laddress(r1, rscratch1, _masm)); +} + +void TemplateTable::fstore() { + transition(ftos, vtos); + locals_index(r1); + __ lea(rscratch1, iaddress(r1)); + __ strs(v0, Address(rscratch1)); +} + +void TemplateTable::dstore() { + transition(dtos, vtos); + locals_index(r1); + __ strd(v0, daddress(r1, rscratch1, _masm)); +} + +void TemplateTable::astore() +{ + transition(vtos, vtos); + __ pop_ptr(r0); + locals_index(r1); + __ str(r0, aaddress(r1)); +} + +void TemplateTable::wide_istore() { + transition(vtos, vtos); + __ pop_i(); + locals_index_wide(r1); + __ lea(rscratch1, iaddress(r1)); + __ strw(r0, Address(rscratch1)); +} + +void TemplateTable::wide_lstore() { + transition(vtos, vtos); + __ pop_l(); + locals_index_wide(r1); + __ str(r0, laddress(r1, rscratch1, _masm)); +} + +void TemplateTable::wide_fstore() { + transition(vtos, vtos); + __ pop_f(); + locals_index_wide(r1); + __ lea(rscratch1, faddress(r1)); + __ strs(v0, rscratch1); +} + +void TemplateTable::wide_dstore() { + transition(vtos, vtos); + __ pop_d(); + locals_index_wide(r1); + __ strd(v0, daddress(r1, rscratch1, _masm)); +} + +void TemplateTable::wide_astore() { + transition(vtos, vtos); + __ pop_ptr(r0); + locals_index_wide(r1); + __ str(r0, aaddress(r1)); +} + +void TemplateTable::iastore() { + transition(itos, vtos); + __ pop_i(r1); + __ pop_ptr(r3); + // r0: value + // r1: index + // r3: array + index_check(r3, r1); // prefer index in r1 + __ lea(rscratch1, Address(r3, r1, Address::uxtw(2))); + __ strw(r0, Address(rscratch1, + arrayOopDesc::base_offset_in_bytes(T_INT))); +} + +void TemplateTable::lastore() { + transition(ltos, vtos); + __ pop_i(r1); + __ pop_ptr(r3); + // r0: value + // r1: index + // r3: array + index_check(r3, r1); // prefer index in r1 + __ lea(rscratch1, Address(r3, r1, Address::uxtw(3))); + __ str(r0, Address(rscratch1, + arrayOopDesc::base_offset_in_bytes(T_LONG))); +} + +void TemplateTable::fastore() { + transition(ftos, vtos); + __ pop_i(r1); + __ pop_ptr(r3); + // v0: value + // r1: index + // r3: array + index_check(r3, r1); // prefer index in r1 + __ lea(rscratch1, Address(r3, r1, Address::uxtw(2))); + __ strs(v0, Address(rscratch1, + arrayOopDesc::base_offset_in_bytes(T_FLOAT))); +} + +void TemplateTable::dastore() { + transition(dtos, vtos); + __ pop_i(r1); + __ pop_ptr(r3); + // v0: value + // r1: index + // r3: array + index_check(r3, r1); // prefer index in r1 + __ lea(rscratch1, Address(r3, r1, Address::uxtw(3))); + __ strd(v0, Address(rscratch1, + arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); +} + +void TemplateTable::aastore() { + Label is_null, ok_is_subtype, done; + transition(vtos, vtos); + // stack: ..., array, index, value + __ ldr(r0, at_tos()); // value + __ ldr(r2, at_tos_p1()); // index + __ ldr(r3, at_tos_p2()); // array + + Address element_address(r4, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); + + index_check(r3, r2); // kills r1 + __ lea(r4, Address(r3, r2, Address::uxtw(UseCompressedOops? 2 : 3))); + + // do array store check - check for NULL value first + __ cbz(r0, is_null); + + // Move subklass into r1 + __ load_klass(r1, r0); + // Move superklass into r0 + __ load_klass(r0, r3); + __ ldr(r0, Address(r0, + ObjArrayKlass::element_klass_offset())); + // Compress array + index*oopSize + 12 into a single register. Frees r2. + + // Generate subtype check. Blows r2, r5 + // Superklass in r0. Subklass in r1. + __ gen_subtype_check(r1, ok_is_subtype); + + // Come here on failure + // object is at TOS + __ b(Interpreter::_throw_ArrayStoreException_entry); + + // Come here on success + __ bind(ok_is_subtype); + + // Get the value we will store + __ ldr(r0, at_tos()); + // Now store using the appropriate barrier + do_oop_store(_masm, element_address, r0, _bs->kind(), true); + __ b(done); + + // Have a NULL in r0, r3=array, r2=index. Store NULL at ary[idx] + __ bind(is_null); + __ profile_null_seen(r2); + + // Store a NULL + do_oop_store(_masm, element_address, noreg, _bs->kind(), true); + + // Pop stack arguments + __ bind(done); + __ add(esp, esp, 3 * Interpreter::stackElementSize); +} + +void TemplateTable::bastore() +{ + transition(itos, vtos); + __ pop_i(r1); + __ pop_ptr(r3); + // r0: value + // r1: index + // r3: array + index_check(r3, r1); // prefer index in r1 + + // Need to check whether array is boolean or byte + // since both types share the bastore bytecode. + __ load_klass(r2, r3); + __ ldrw(r2, Address(r2, Klass::layout_helper_offset())); + int diffbit = Klass::layout_helper_boolean_diffbit(); + __ andw(rscratch1, r2, diffbit); + Label L_skip; + __ cbzw(rscratch1, L_skip); + __ andw(r0, r0, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 + __ bind(L_skip); + + __ lea(rscratch1, Address(r3, r1, Address::uxtw(0))); + __ strb(r0, Address(rscratch1, + arrayOopDesc::base_offset_in_bytes(T_BYTE))); +} + +void TemplateTable::castore() +{ + transition(itos, vtos); + __ pop_i(r1); + __ pop_ptr(r3); + // r0: value + // r1: index + // r3: array + index_check(r3, r1); // prefer index in r1 + __ lea(rscratch1, Address(r3, r1, Address::uxtw(1))); + __ strh(r0, Address(rscratch1, + arrayOopDesc::base_offset_in_bytes(T_CHAR))); +} + +void TemplateTable::sastore() +{ + castore(); +} + +void TemplateTable::istore(int n) +{ + transition(itos, vtos); + __ str(r0, iaddress(n)); +} + +void TemplateTable::lstore(int n) +{ + transition(ltos, vtos); + __ str(r0, laddress(n)); +} + +void TemplateTable::fstore(int n) +{ + transition(ftos, vtos); + __ strs(v0, faddress(n)); +} + +void TemplateTable::dstore(int n) +{ + transition(dtos, vtos); + __ strd(v0, daddress(n)); +} + +void TemplateTable::astore(int n) +{ + transition(vtos, vtos); + __ pop_ptr(r0); + __ str(r0, iaddress(n)); +} + +void TemplateTable::pop() +{ + transition(vtos, vtos); + __ add(esp, esp, Interpreter::stackElementSize); +} + +void TemplateTable::pop2() +{ + transition(vtos, vtos); + __ add(esp, esp, 2 * Interpreter::stackElementSize); +} + +void TemplateTable::dup() +{ + transition(vtos, vtos); + __ ldr(r0, Address(esp, 0)); + __ push(r0); + // stack: ..., a, a +} + +void TemplateTable::dup_x1() +{ + transition(vtos, vtos); + // stack: ..., a, b + __ ldr(r0, at_tos()); // load b + __ ldr(r2, at_tos_p1()); // load a + __ str(r0, at_tos_p1()); // store b + __ str(r2, at_tos()); // store a + __ push(r0); // push b + // stack: ..., b, a, b +} + +void TemplateTable::dup_x2() +{ + transition(vtos, vtos); + // stack: ..., a, b, c + __ ldr(r0, at_tos()); // load c + __ ldr(r2, at_tos_p2()); // load a + __ str(r0, at_tos_p2()); // store c in a + __ push(r0); // push c + // stack: ..., c, b, c, c + __ ldr(r0, at_tos_p2()); // load b + __ str(r2, at_tos_p2()); // store a in b + // stack: ..., c, a, c, c + __ str(r0, at_tos_p1()); // store b in c + // stack: ..., c, a, b, c +} + +void TemplateTable::dup2() +{ + transition(vtos, vtos); + // stack: ..., a, b + __ ldr(r0, at_tos_p1()); // load a + __ push(r0); // push a + __ ldr(r0, at_tos_p1()); // load b + __ push(r0); // push b + // stack: ..., a, b, a, b +} + +void TemplateTable::dup2_x1() +{ + transition(vtos, vtos); + // stack: ..., a, b, c + __ ldr(r2, at_tos()); // load c + __ ldr(r0, at_tos_p1()); // load b + __ push(r0); // push b + __ push(r2); // push c + // stack: ..., a, b, c, b, c + __ str(r2, at_tos_p3()); // store c in b + // stack: ..., a, c, c, b, c + __ ldr(r2, at_tos_p4()); // load a + __ str(r2, at_tos_p2()); // store a in 2nd c + // stack: ..., a, c, a, b, c + __ str(r0, at_tos_p4()); // store b in a + // stack: ..., b, c, a, b, c +} + +void TemplateTable::dup2_x2() +{ + transition(vtos, vtos); + // stack: ..., a, b, c, d + __ ldr(r2, at_tos()); // load d + __ ldr(r0, at_tos_p1()); // load c + __ push(r0) ; // push c + __ push(r2); // push d + // stack: ..., a, b, c, d, c, d + __ ldr(r0, at_tos_p4()); // load b + __ str(r0, at_tos_p2()); // store b in d + __ str(r2, at_tos_p4()); // store d in b + // stack: ..., a, d, c, b, c, d + __ ldr(r2, at_tos_p5()); // load a + __ ldr(r0, at_tos_p3()); // load c + __ str(r2, at_tos_p3()); // store a in c + __ str(r0, at_tos_p5()); // store c in a + // stack: ..., c, d, a, b, c, d +} + +void TemplateTable::swap() +{ + transition(vtos, vtos); + // stack: ..., a, b + __ ldr(r2, at_tos_p1()); // load a + __ ldr(r0, at_tos()); // load b + __ str(r2, at_tos()); // store a in b + __ str(r0, at_tos_p1()); // store b in a + // stack: ..., b, a +} + +void TemplateTable::iop2(Operation op) +{ + transition(itos, itos); + // r0 <== r1 op r0 + __ pop_i(r1); + switch (op) { + case add : __ addw(r0, r1, r0); break; + case sub : __ subw(r0, r1, r0); break; + case mul : __ mulw(r0, r1, r0); break; + case _and : __ andw(r0, r1, r0); break; + case _or : __ orrw(r0, r1, r0); break; + case _xor : __ eorw(r0, r1, r0); break; + case shl : __ lslvw(r0, r1, r0); break; + case shr : __ asrvw(r0, r1, r0); break; + case ushr : __ lsrvw(r0, r1, r0);break; + default : ShouldNotReachHere(); + } +} + +void TemplateTable::lop2(Operation op) +{ + transition(ltos, ltos); + // r0 <== r1 op r0 + __ pop_l(r1); + switch (op) { + case add : __ add(r0, r1, r0); break; + case sub : __ sub(r0, r1, r0); break; + case mul : __ mul(r0, r1, r0); break; + case _and : __ andr(r0, r1, r0); break; + case _or : __ orr(r0, r1, r0); break; + case _xor : __ eor(r0, r1, r0); break; + default : ShouldNotReachHere(); + } +} + +void TemplateTable::idiv() +{ + transition(itos, itos); + // explicitly check for div0 + Label no_div0; + __ cbnzw(r0, no_div0); + __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); + __ br(rscratch1); + __ bind(no_div0); + __ pop_i(r1); + // r0 <== r1 idiv r0 + __ corrected_idivl(r0, r1, r0, /* want_remainder */ false); +} + +void TemplateTable::irem() +{ + transition(itos, itos); + // explicitly check for div0 + Label no_div0; + __ cbnzw(r0, no_div0); + __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); + __ br(rscratch1); + __ bind(no_div0); + __ pop_i(r1); + // r0 <== r1 irem r0 + __ corrected_idivl(r0, r1, r0, /* want_remainder */ true); +} + +void TemplateTable::lmul() +{ + transition(ltos, ltos); + __ pop_l(r1); + __ mul(r0, r0, r1); +} + +void TemplateTable::ldiv() +{ + transition(ltos, ltos); + // explicitly check for div0 + Label no_div0; + __ cbnz(r0, no_div0); + __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); + __ br(rscratch1); + __ bind(no_div0); + __ pop_l(r1); + // r0 <== r1 ldiv r0 + __ corrected_idivq(r0, r1, r0, /* want_remainder */ false); +} + +void TemplateTable::lrem() +{ + transition(ltos, ltos); + // explicitly check for div0 + Label no_div0; + __ cbnz(r0, no_div0); + __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); + __ br(rscratch1); + __ bind(no_div0); + __ pop_l(r1); + // r0 <== r1 lrem r0 + __ corrected_idivq(r0, r1, r0, /* want_remainder */ true); +} + +void TemplateTable::lshl() +{ + transition(itos, ltos); + // shift count is in r0 + __ pop_l(r1); + __ lslv(r0, r1, r0); +} + +void TemplateTable::lshr() +{ + transition(itos, ltos); + // shift count is in r0 + __ pop_l(r1); + __ asrv(r0, r1, r0); +} + +void TemplateTable::lushr() +{ + transition(itos, ltos); + // shift count is in r0 + __ pop_l(r1); + __ lsrv(r0, r1, r0); +} + +void TemplateTable::fop2(Operation op) +{ + transition(ftos, ftos); + switch (op) { + case add: + // n.b. use ldrd because this is a 64 bit slot + __ pop_f(v1); + __ fadds(v0, v1, v0); + break; + case sub: + __ pop_f(v1); + __ fsubs(v0, v1, v0); + break; + case mul: + __ pop_f(v1); + __ fmuls(v0, v1, v0); + break; + case div: + __ pop_f(v1); + __ fdivs(v0, v1, v0); + break; + case rem: + __ fmovs(v1, v0); + __ pop_f(v0); + __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem)); + break; + default: + ShouldNotReachHere(); + break; + } +} + +void TemplateTable::dop2(Operation op) +{ + transition(dtos, dtos); + switch (op) { + case add: + // n.b. use ldrd because this is a 64 bit slot + __ pop_d(v1); + __ faddd(v0, v1, v0); + break; + case sub: + __ pop_d(v1); + __ fsubd(v0, v1, v0); + break; + case mul: + __ pop_d(v1); + __ fmuld(v0, v1, v0); + break; + case div: + __ pop_d(v1); + __ fdivd(v0, v1, v0); + break; + case rem: + __ fmovd(v1, v0); + __ pop_d(v0); + __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem)); + break; + default: + ShouldNotReachHere(); + break; + } +} + +void TemplateTable::ineg() +{ + transition(itos, itos); + __ negw(r0, r0); + +} + +void TemplateTable::lneg() +{ + transition(ltos, ltos); + __ neg(r0, r0); +} + +void TemplateTable::fneg() +{ + transition(ftos, ftos); + __ fnegs(v0, v0); +} + +void TemplateTable::dneg() +{ + transition(dtos, dtos); + __ fnegd(v0, v0); +} + +void TemplateTable::iinc() +{ + transition(vtos, vtos); + __ load_signed_byte(r1, at_bcp(2)); // get constant + locals_index(r2); + __ ldr(r0, iaddress(r2)); + __ addw(r0, r0, r1); + __ str(r0, iaddress(r2)); +} + +void TemplateTable::wide_iinc() +{ + transition(vtos, vtos); + // __ mov(r1, zr); + __ ldrw(r1, at_bcp(2)); // get constant and index + __ rev16(r1, r1); + __ ubfx(r2, r1, 0, 16); + __ neg(r2, r2); + __ sbfx(r1, r1, 16, 16); + __ ldr(r0, iaddress(r2)); + __ addw(r0, r0, r1); + __ str(r0, iaddress(r2)); +} + +void TemplateTable::convert() +{ + // Checking +#ifdef ASSERT + { + TosState tos_in = ilgl; + TosState tos_out = ilgl; + switch (bytecode()) { + case Bytecodes::_i2l: // fall through + case Bytecodes::_i2f: // fall through + case Bytecodes::_i2d: // fall through + case Bytecodes::_i2b: // fall through + case Bytecodes::_i2c: // fall through + case Bytecodes::_i2s: tos_in = itos; break; + case Bytecodes::_l2i: // fall through + case Bytecodes::_l2f: // fall through + case Bytecodes::_l2d: tos_in = ltos; break; + case Bytecodes::_f2i: // fall through + case Bytecodes::_f2l: // fall through + case Bytecodes::_f2d: tos_in = ftos; break; + case Bytecodes::_d2i: // fall through + case Bytecodes::_d2l: // fall through + case Bytecodes::_d2f: tos_in = dtos; break; + default : ShouldNotReachHere(); + } + switch (bytecode()) { + case Bytecodes::_l2i: // fall through + case Bytecodes::_f2i: // fall through + case Bytecodes::_d2i: // fall through + case Bytecodes::_i2b: // fall through + case Bytecodes::_i2c: // fall through + case Bytecodes::_i2s: tos_out = itos; break; + case Bytecodes::_i2l: // fall through + case Bytecodes::_f2l: // fall through + case Bytecodes::_d2l: tos_out = ltos; break; + case Bytecodes::_i2f: // fall through + case Bytecodes::_l2f: // fall through + case Bytecodes::_d2f: tos_out = ftos; break; + case Bytecodes::_i2d: // fall through + case Bytecodes::_l2d: // fall through + case Bytecodes::_f2d: tos_out = dtos; break; + default : ShouldNotReachHere(); + } + transition(tos_in, tos_out); + } +#endif // ASSERT + // static const int64_t is_nan = 0x8000000000000000L; + + // Conversion + switch (bytecode()) { + case Bytecodes::_i2l: + __ sxtw(r0, r0); + break; + case Bytecodes::_i2f: + __ scvtfws(v0, r0); + break; + case Bytecodes::_i2d: + __ scvtfwd(v0, r0); + break; + case Bytecodes::_i2b: + __ sxtbw(r0, r0); + break; + case Bytecodes::_i2c: + __ uxthw(r0, r0); + break; + case Bytecodes::_i2s: + __ sxthw(r0, r0); + break; + case Bytecodes::_l2i: + __ uxtw(r0, r0); + break; + case Bytecodes::_l2f: + __ scvtfs(v0, r0); + break; + case Bytecodes::_l2d: + __ scvtfd(v0, r0); + break; + case Bytecodes::_f2i: + { + Label L_Okay; + __ clear_fpsr(); + __ fcvtzsw(r0, v0); + __ get_fpsr(r1); + __ cbzw(r1, L_Okay); + __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i)); + __ bind(L_Okay); + } + break; + case Bytecodes::_f2l: + { + Label L_Okay; + __ clear_fpsr(); + __ fcvtzs(r0, v0); + __ get_fpsr(r1); + __ cbzw(r1, L_Okay); + __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l)); + __ bind(L_Okay); + } + break; + case Bytecodes::_f2d: + __ fcvts(v0, v0); + break; + case Bytecodes::_d2i: + { + Label L_Okay; + __ clear_fpsr(); + __ fcvtzdw(r0, v0); + __ get_fpsr(r1); + __ cbzw(r1, L_Okay); + __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i)); + __ bind(L_Okay); + } + break; + case Bytecodes::_d2l: + { + Label L_Okay; + __ clear_fpsr(); + __ fcvtzd(r0, v0); + __ get_fpsr(r1); + __ cbzw(r1, L_Okay); + __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l)); + __ bind(L_Okay); + } + break; + case Bytecodes::_d2f: + __ fcvtd(v0, v0); + break; + default: + ShouldNotReachHere(); + } +} + +void TemplateTable::lcmp() +{ + transition(ltos, itos); + Label done; + __ pop_l(r1); + __ cmp(r1, r0); + __ mov(r0, (u_int64_t)-1L); + __ br(Assembler::LT, done); + // __ mov(r0, 1UL); + // __ csel(r0, r0, zr, Assembler::NE); + // and here is a faster way + __ csinc(r0, zr, zr, Assembler::EQ); + __ bind(done); +} + +void TemplateTable::float_cmp(bool is_float, int unordered_result) +{ + Label done; + if (is_float) { + // XXX get rid of pop here, use ... reg, mem32 + __ pop_f(v1); + __ fcmps(v1, v0); + } else { + // XXX get rid of pop here, use ... reg, mem64 + __ pop_d(v1); + __ fcmpd(v1, v0); + } + if (unordered_result < 0) { + // we want -1 for unordered or less than, 0 for equal and 1 for + // greater than. + __ mov(r0, (u_int64_t)-1L); + // for FP LT tests less than or unordered + __ br(Assembler::LT, done); + // install 0 for EQ otherwise 1 + __ csinc(r0, zr, zr, Assembler::EQ); + } else { + // we want -1 for less than, 0 for equal and 1 for unordered or + // greater than. + __ mov(r0, 1L); + // for FP HI tests greater than or unordered + __ br(Assembler::HI, done); + // install 0 for EQ otherwise ~0 + __ csinv(r0, zr, zr, Assembler::EQ); + + } + __ bind(done); +} + +void TemplateTable::branch(bool is_jsr, bool is_wide) +{ + // We might be moving to a safepoint. The thread which calls + // Interpreter::notice_safepoints() will effectively flush its cache + // when it makes a system call, but we need to do something to + // ensure that we see the changed dispatch table. + __ membar(MacroAssembler::LoadLoad); + + __ profile_taken_branch(r0, r1); + const ByteSize be_offset = MethodCounters::backedge_counter_offset() + + InvocationCounter::counter_offset(); + const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + + InvocationCounter::counter_offset(); + + // load branch displacement + if (!is_wide) { + __ ldrh(r2, at_bcp(1)); + __ rev16(r2, r2); + // sign extend the 16 bit value in r2 + __ sbfm(r2, r2, 0, 15); + } else { + __ ldrw(r2, at_bcp(1)); + __ revw(r2, r2); + // sign extend the 32 bit value in r2 + __ sbfm(r2, r2, 0, 31); + } + + // Handle all the JSR stuff here, then exit. + // It's much shorter and cleaner than intermingling with the non-JSR + // normal-branch stuff occurring below. + + if (is_jsr) { + // Pre-load the next target bytecode into rscratch1 + __ load_unsigned_byte(rscratch1, Address(rbcp, r2)); + // compute return address as bci + __ ldr(rscratch2, Address(rmethod, Method::const_offset())); + __ add(rscratch2, rscratch2, + in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3)); + __ sub(r1, rbcp, rscratch2); + __ push_i(r1); + // Adjust the bcp by the 16-bit displacement in r2 + __ add(rbcp, rbcp, r2); + __ dispatch_only(vtos); + return; + } + + // Normal (non-jsr) branch handling + + // Adjust the bcp by the displacement in r2 + __ add(rbcp, rbcp, r2); + + assert(UseLoopCounter || !UseOnStackReplacement, + "on-stack-replacement requires loop counters"); + Label backedge_counter_overflow; + Label profile_method; + Label dispatch; + if (UseLoopCounter) { + // increment backedge counter for backward branches + // r0: MDO + // w1: MDO bumped taken-count + // r2: target offset + __ cmp(r2, zr); + __ br(Assembler::GT, dispatch); // count only if backward branch + + // ECN: FIXME: This code smells + // check if MethodCounters exists + Label has_counters; + __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); + __ cbnz(rscratch1, has_counters); + __ push(r0); + __ push(r1); + __ push(r2); + __ call_VM(noreg, CAST_FROM_FN_PTR(address, + InterpreterRuntime::build_method_counters), rmethod); + __ pop(r2); + __ pop(r1); + __ pop(r0); + __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); + __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory + __ bind(has_counters); + + if (TieredCompilation) { + Label no_mdo; + int increment = InvocationCounter::count_increment; + int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift; + if (ProfileInterpreter) { + // Are we profiling? + __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); + __ cbz(r1, no_mdo); + // Increment the MDO backedge counter + const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) + + in_bytes(InvocationCounter::counter_offset())); + __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, + r0, rscratch2, false, Assembler::EQ, &backedge_counter_overflow); + __ b(dispatch); + } + __ bind(no_mdo); + // Increment backedge counter in MethodCounters* + __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); + __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask, + r0, rscratch2, false, Assembler::EQ, &backedge_counter_overflow); + } else { + // increment counter + __ ldr(rscratch2, Address(rmethod, Method::method_counters_offset())); + __ ldrw(r0, Address(rscratch2, be_offset)); // load backedge counter + __ addw(rscratch1, r0, InvocationCounter::count_increment); // increment counter + __ strw(rscratch1, Address(rscratch2, be_offset)); // store counter + + __ ldrw(r0, Address(rscratch2, inv_offset)); // load invocation counter + __ andw(r0, r0, (unsigned)InvocationCounter::count_mask_value); // and the status bits + __ addw(r0, r0, rscratch1); // add both counters + + if (ProfileInterpreter) { + // Test to see if we should create a method data oop + __ lea(rscratch1, ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit)); + __ ldrw(rscratch1, rscratch1); + __ cmpw(r0, rscratch1); + __ br(Assembler::LT, dispatch); + + // if no method data exists, go to profile method + __ test_method_data_pointer(r0, profile_method); + + if (UseOnStackReplacement) { + // check for overflow against w1 which is the MDO taken count + __ lea(rscratch1, ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit)); + __ ldrw(rscratch1, rscratch1); + __ cmpw(r1, rscratch1); + __ br(Assembler::LO, dispatch); // Intel == Assembler::below + + // When ProfileInterpreter is on, the backedge_count comes + // from the MethodData*, which value does not get reset on + // the call to frequency_counter_overflow(). To avoid + // excessive calls to the overflow routine while the method is + // being compiled, add a second test to make sure the overflow + // function is called only once every overflow_frequency. + const int overflow_frequency = 1024; + __ andsw(r1, r1, overflow_frequency - 1); + __ br(Assembler::EQ, backedge_counter_overflow); + + } + } else { + if (UseOnStackReplacement) { + // check for overflow against w0, which is the sum of the + // counters + __ lea(rscratch1, ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit)); + __ ldrw(rscratch1, rscratch1); + __ cmpw(r0, rscratch1); + __ br(Assembler::HS, backedge_counter_overflow); // Intel == Assembler::aboveEqual + } + } + } + } + __ bind(dispatch); + + // Pre-load the next target bytecode into rscratch1 + __ load_unsigned_byte(rscratch1, Address(rbcp, 0)); + + // continue with the bytecode @ target + // rscratch1: target bytecode + // rbcp: target bcp + __ dispatch_only(vtos); + + if (UseLoopCounter) { + if (ProfileInterpreter) { + // Out-of-line code to allocate method data oop. + __ bind(profile_method); + __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); + __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode + __ set_method_data_pointer_for_bcp(); + __ b(dispatch); + } + + if (TieredCompilation || UseOnStackReplacement) { + // invocation counter overflow + __ bind(backedge_counter_overflow); + __ neg(r2, r2); + __ add(r2, r2, rbcp); // branch bcp + // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) + __ call_VM(noreg, + CAST_FROM_FN_PTR(address, + InterpreterRuntime::frequency_counter_overflow), + r2); + if (!UseOnStackReplacement) + __ b(dispatch); + } + + if (UseOnStackReplacement) { + __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode + + // r0: osr nmethod (osr ok) or NULL (osr not possible) + // w1: target bytecode + // r2: scratch + __ cbz(r0, dispatch); // test result -- no osr if null + // nmethod may have been invalidated (VM may block upon call_VM return) + __ ldrw(r2, Address(r0, nmethod::entry_bci_offset())); + // InvalidOSREntryBci == -2 which overflows cmpw as unsigned + // use cmnw against -InvalidOSREntryBci which does the same thing + __ cmn(r2, -InvalidOSREntryBci); + __ br(Assembler::EQ, dispatch); + + // We have the address of an on stack replacement routine in r0 + // We need to prepare to execute the OSR method. First we must + // migrate the locals and monitors off of the stack. + + __ mov(r19, r0); // save the nmethod + + call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); + + // r0 is OSR buffer, move it to expected parameter location + __ mov(j_rarg0, r0); + + // remove activation + // get sender esp + __ ldr(esp, + Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); + // remove frame anchor + __ leave(); + // Ensure compiled code always sees stack at proper alignment + __ andr(sp, esp, -16); + + // and begin the OSR nmethod + __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset())); + __ br(rscratch1); + } + } +} + + +void TemplateTable::if_0cmp(Condition cc) +{ + transition(itos, vtos); + // assume branch is more often taken than not (loops use backward branches) + Label not_taken; + if (cc == equal) + __ cbnzw(r0, not_taken); + else if (cc == not_equal) + __ cbzw(r0, not_taken); + else { + __ andsw(zr, r0, r0); + __ br(j_not(cc), not_taken); + } + + branch(false, false); + __ bind(not_taken); + __ profile_not_taken_branch(r0); +} + +void TemplateTable::if_icmp(Condition cc) +{ + transition(itos, vtos); + // assume branch is more often taken than not (loops use backward branches) + Label not_taken; + __ pop_i(r1); + __ cmpw(r1, r0, Assembler::LSL); + __ br(j_not(cc), not_taken); + branch(false, false); + __ bind(not_taken); + __ profile_not_taken_branch(r0); +} + +void TemplateTable::if_nullcmp(Condition cc) +{ + transition(atos, vtos); + // assume branch is more often taken than not (loops use backward branches) + Label not_taken; + if (cc == equal) + __ cbnz(r0, not_taken); + else + __ cbz(r0, not_taken); + branch(false, false); + __ bind(not_taken); + __ profile_not_taken_branch(r0); +} + +void TemplateTable::if_acmp(Condition cc) +{ + transition(atos, vtos); + // assume branch is more often taken than not (loops use backward branches) + Label not_taken; + __ pop_ptr(r1); + __ cmp(r1, r0); + __ br(j_not(cc), not_taken); + branch(false, false); + __ bind(not_taken); + __ profile_not_taken_branch(r0); +} + +void TemplateTable::ret() { + transition(vtos, vtos); + // We might be moving to a safepoint. The thread which calls + // Interpreter::notice_safepoints() will effectively flush its cache + // when it makes a system call, but we need to do something to + // ensure that we see the changed dispatch table. + __ membar(MacroAssembler::LoadLoad); + + locals_index(r1); + __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp + __ profile_ret(r1, r2); + __ ldr(rbcp, Address(rmethod, Method::const_offset())); + __ lea(rbcp, Address(rbcp, r1)); + __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); + __ dispatch_next(vtos); +} + +void TemplateTable::wide_ret() { + transition(vtos, vtos); + locals_index_wide(r1); + __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp + __ profile_ret(r1, r2); + __ ldr(rbcp, Address(rmethod, Method::const_offset())); + __ lea(rbcp, Address(rbcp, r1)); + __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); + __ dispatch_next(vtos); +} + + +void TemplateTable::tableswitch() { + Label default_case, continue_execution; + transition(itos, vtos); + // align rbcp + __ lea(r1, at_bcp(BytesPerInt)); + __ andr(r1, r1, -BytesPerInt); + // load lo & hi + __ ldrw(r2, Address(r1, BytesPerInt)); + __ ldrw(r3, Address(r1, 2 * BytesPerInt)); + __ rev32(r2, r2); + __ rev32(r3, r3); + // check against lo & hi + __ cmpw(r0, r2); + __ br(Assembler::LT, default_case); + __ cmpw(r0, r3); + __ br(Assembler::GT, default_case); + // lookup dispatch offset + __ subw(r0, r0, r2); + __ lea(r3, Address(r1, r0, Address::uxtw(2))); + __ ldrw(r3, Address(r3, 3 * BytesPerInt)); + __ profile_switch_case(r0, r1, r2); + // continue execution + __ bind(continue_execution); + __ rev32(r3, r3); + __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0))); + __ add(rbcp, rbcp, r3, ext::sxtw); + __ dispatch_only(vtos); + // handle default + __ bind(default_case); + __ profile_switch_default(r0); + __ ldrw(r3, Address(r1, 0)); + __ b(continue_execution); +} + +void TemplateTable::lookupswitch() { + transition(itos, itos); + __ stop("lookupswitch bytecode should have been rewritten"); +} + +void TemplateTable::fast_linearswitch() { + transition(itos, vtos); + Label loop_entry, loop, found, continue_execution; + // bswap r0 so we can avoid bswapping the table entries + __ rev32(r0, r0); + // align rbcp + __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of + // this instruction (change offsets + // below) + __ andr(r19, r19, -BytesPerInt); + // set counter + __ ldrw(r1, Address(r19, BytesPerInt)); + __ rev32(r1, r1); + __ b(loop_entry); + // table search + __ bind(loop); + __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); + __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt)); + __ cmpw(r0, rscratch1); + __ br(Assembler::EQ, found); + __ bind(loop_entry); + __ subs(r1, r1, 1); + __ br(Assembler::PL, loop); + // default case + __ profile_switch_default(r0); + __ ldrw(r3, Address(r19, 0)); + __ b(continue_execution); + // entry found -> get offset + __ bind(found); + __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); + __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt)); + __ profile_switch_case(r1, r0, r19); + // continue execution + __ bind(continue_execution); + __ rev32(r3, r3); + __ add(rbcp, rbcp, r3, ext::sxtw); + __ ldrb(rscratch1, Address(rbcp, 0)); + __ dispatch_only(vtos); +} + +void TemplateTable::fast_binaryswitch() { + transition(itos, vtos); + // Implementation using the following core algorithm: + // + // int binary_search(int key, LookupswitchPair* array, int n) { + // // Binary search according to "Methodik des Programmierens" by + // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. + // int i = 0; + // int j = n; + // while (i+1 < j) { + // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) + // // with Q: for all i: 0 <= i < n: key < a[i] + // // where a stands for the array and assuming that the (inexisting) + // // element a[n] is infinitely big. + // int h = (i + j) >> 1; + // // i < h < j + // if (key < array[h].fast_match()) { + // j = h; + // } else { + // i = h; + // } + // } + // // R: a[i] <= key < a[i+1] or Q + // // (i.e., if key is within array, i is the correct index) + // return i; + // } + + // Register allocation + const Register key = r0; // already set (tosca) + const Register array = r1; + const Register i = r2; + const Register j = r3; + const Register h = rscratch1; + const Register temp = rscratch2; + + // Find array start + __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to + // get rid of this + // instruction (change + // offsets below) + __ andr(array, array, -BytesPerInt); + + // Initialize i & j + __ mov(i, 0); // i = 0; + __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array); + + // Convert j into native byteordering + __ rev32(j, j); + + // And start + Label entry; + __ b(entry); + + // binary search loop + { + Label loop; + __ bind(loop); + // int h = (i + j) >> 1; + __ addw(h, i, j); // h = i + j; + __ lsrw(h, h, 1); // h = (i + j) >> 1; + // if (key < array[h].fast_match()) { + // j = h; + // } else { + // i = h; + // } + // Convert array[h].match to native byte-ordering before compare + __ ldr(temp, Address(array, h, Address::lsl(3))); + __ rev32(temp, temp); + __ cmpw(key, temp); + // j = h if (key < array[h].fast_match()) + __ csel(j, h, j, Assembler::LT); + // i = h if (key >= array[h].fast_match()) + __ csel(i, h, i, Assembler::GE); + // while (i+1 < j) + __ bind(entry); + __ addw(h, i, 1); // i+1 + __ cmpw(h, j); // i+1 < j + __ br(Assembler::LT, loop); + } + + // end of binary search, result index is i (must check again!) + Label default_case; + // Convert array[i].match to native byte-ordering before compare + __ ldr(temp, Address(array, i, Address::lsl(3))); + __ rev32(temp, temp); + __ cmpw(key, temp); + __ br(Assembler::NE, default_case); + + // entry found -> j = offset + __ add(j, array, i, ext::uxtx, 3); + __ ldrw(j, Address(j, BytesPerInt)); + __ profile_switch_case(i, key, array); + __ rev32(j, j); + __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); + __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); + __ dispatch_only(vtos); + + // default case -> j = default offset + __ bind(default_case); + __ profile_switch_default(i); + __ ldrw(j, Address(array, -2 * BytesPerInt)); + __ rev32(j, j); + __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); + __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); + __ dispatch_only(vtos); +} + + +void TemplateTable::_return(TosState state) +{ + transition(state, state); + assert(_desc->calls_vm(), + "inconsistent calls_vm information"); // call in remove_activation + + if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { + assert(state == vtos, "only valid state"); + + __ ldr(c_rarg1, aaddress(0)); + __ load_klass(r3, c_rarg1); + __ ldrw(r3, Address(r3, Klass::access_flags_offset())); + __ tst(r3, JVM_ACC_HAS_FINALIZER); + Label skip_register_finalizer; + __ br(Assembler::EQ, skip_register_finalizer); + + __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1); + + __ bind(skip_register_finalizer); + } + + // Issue a StoreStore barrier after all stores but before return + // from any constructor for any class with a final field. We don't + // know if this is a finalizer, so we always do so. + if (_desc->bytecode() == Bytecodes::_return) + __ membar(MacroAssembler::StoreStore); + + // Narrow result if state is itos but result type is smaller. + // Need to narrow in the return bytecode rather than in generate_return_entry + // since compiled code callers expect the result to already be narrowed. + if (state == itos) { + __ narrow(r0); + } + + __ remove_activation(state); + __ ret(lr); +} + +// ---------------------------------------------------------------------------- +// Volatile variables demand their effects be made known to all CPU's +// in order. Store buffers on most chips allow reads & writes to +// reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode +// without some kind of memory barrier (i.e., it's not sufficient that +// the interpreter does not reorder volatile references, the hardware +// also must not reorder them). +// +// According to the new Java Memory Model (JMM): +// (1) All volatiles are serialized wrt to each other. ALSO reads & +// writes act as aquire & release, so: +// (2) A read cannot let unrelated NON-volatile memory refs that +// happen after the read float up to before the read. It's OK for +// non-volatile memory refs that happen before the volatile read to +// float down below it. +// (3) Similar a volatile write cannot let unrelated NON-volatile +// memory refs that happen BEFORE the write float down to after the +// write. It's OK for non-volatile memory refs that happen after the +// volatile write to float up before it. +// +// We only put in barriers around volatile refs (they are expensive), +// not _between_ memory refs (that would require us to track the +// flavor of the previous memory refs). Requirements (2) and (3) +// require some barriers before volatile stores and after volatile +// loads. These nearly cover requirement (1) but miss the +// volatile-store-volatile-load case. This final case is placed after +// volatile-stores although it could just as well go before +// volatile-loads. + +void TemplateTable::resolve_cache_and_index(int byte_no, + Register Rcache, + Register index, + size_t index_size) { + const Register temp = r19; + assert_different_registers(Rcache, index, temp); + + Label resolved; + assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); + __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size); + __ cmp(temp, (int) bytecode()); // have we resolved this bytecode? + __ br(Assembler::EQ, resolved); + + // resolve first time through + address entry; + switch (bytecode()) { + case Bytecodes::_getstatic: + case Bytecodes::_putstatic: + case Bytecodes::_getfield: + case Bytecodes::_putfield: + entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); + break; + case Bytecodes::_invokevirtual: + case Bytecodes::_invokespecial: + case Bytecodes::_invokestatic: + case Bytecodes::_invokeinterface: + entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); + break; + case Bytecodes::_invokehandle: + entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); + break; + case Bytecodes::_invokedynamic: + entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); + break; + default: + fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode()))); + break; + } + __ mov(temp, (int) bytecode()); + __ call_VM(noreg, entry, temp); + + // Update registers with resolved info + __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); + // n.b. unlike x86 Rcache is now rcpool plus the indexed offset + // so all clients ofthis method must be modified accordingly + __ bind(resolved); +} + +// The Rcache and index registers must be set before call +// n.b unlike x86 cache already includes the index offset +void TemplateTable::load_field_cp_cache_entry(Register obj, + Register cache, + Register index, + Register off, + Register flags, + bool is_static = false) { + assert_different_registers(cache, index, flags, off); + + ByteSize cp_base_offset = ConstantPoolCache::base_offset(); + // Field offset + __ ldr(off, Address(cache, in_bytes(cp_base_offset + + ConstantPoolCacheEntry::f2_offset()))); + // Flags + __ ldrw(flags, Address(cache, in_bytes(cp_base_offset + + ConstantPoolCacheEntry::flags_offset()))); + + // klass overwrite register + if (is_static) { + __ ldr(obj, Address(cache, in_bytes(cp_base_offset + + ConstantPoolCacheEntry::f1_offset()))); + const int mirror_offset = in_bytes(Klass::java_mirror_offset()); + __ ldr(obj, Address(obj, mirror_offset)); + } +} + +void TemplateTable::load_invoke_cp_cache_entry(int byte_no, + Register method, + Register itable_index, + Register flags, + bool is_invokevirtual, + bool is_invokevfinal, /*unused*/ + bool is_invokedynamic) { + // setup registers + const Register cache = rscratch2; + const Register index = r4; + assert_different_registers(method, flags); + assert_different_registers(method, cache, index); + assert_different_registers(itable_index, flags); + assert_different_registers(itable_index, cache, index); + // determine constant pool cache field offsets + assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); + const int method_offset = in_bytes( + ConstantPoolCache::base_offset() + + (is_invokevirtual + ? ConstantPoolCacheEntry::f2_offset() + : ConstantPoolCacheEntry::f1_offset())); + const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + + ConstantPoolCacheEntry::flags_offset()); + // access constant pool cache fields + const int index_offset = in_bytes(ConstantPoolCache::base_offset() + + ConstantPoolCacheEntry::f2_offset()); + + size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); + resolve_cache_and_index(byte_no, cache, index, index_size); + __ ldr(method, Address(cache, method_offset)); + + if (itable_index != noreg) { + __ ldr(itable_index, Address(cache, index_offset)); + } + __ ldrw(flags, Address(cache, flags_offset)); +} + + +// The registers cache and index expected to be set before call. +// Correct values of the cache and index registers are preserved. +void TemplateTable::jvmti_post_field_access(Register cache, Register index, + bool is_static, bool has_tos) { + // do the JVMTI work here to avoid disturbing the register state below + // We use c_rarg registers here because we want to use the register used in + // the call to the VM + if (JvmtiExport::can_post_field_access()) { + // Check to see if a field access watch has been set before we + // take the time to call into the VM. + Label L1; + assert_different_registers(cache, index, r0); + __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); + __ ldrw(r0, Address(rscratch1)); + __ cbzw(r0, L1); + + __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1); + __ lea(c_rarg2, Address(c_rarg2, in_bytes(ConstantPoolCache::base_offset()))); + + if (is_static) { + __ mov(c_rarg1, zr); // NULL object reference + } else { + __ ldr(c_rarg1, at_tos()); // get object pointer without popping it + __ verify_oop(c_rarg1); + } + // c_rarg1: object pointer or NULL + // c_rarg2: cache entry pointer + // c_rarg3: jvalue object on the stack + __ call_VM(noreg, CAST_FROM_FN_PTR(address, + InterpreterRuntime::post_field_access), + c_rarg1, c_rarg2, c_rarg3); + __ get_cache_and_index_at_bcp(cache, index, 1); + __ bind(L1); + } +} + +void TemplateTable::pop_and_check_object(Register r) +{ + __ pop_ptr(r); + __ null_check(r); // for field access must check obj. + __ verify_oop(r); +} + +void TemplateTable::getfield_or_static(int byte_no, bool is_static) +{ + const Register cache = r2; + const Register index = r3; + const Register obj = r4; + const Register off = r19; + const Register flags = r0; + const Register raw_flags = r6; + const Register bc = r4; // uses same reg as obj, so don't mix them + + resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); + jvmti_post_field_access(cache, index, is_static, false); + load_field_cp_cache_entry(obj, cache, index, off, raw_flags, is_static); + + if (!is_static) { + // obj is on the stack + pop_and_check_object(obj); + } + + // 8179954: We need to make sure that the code generated for + // volatile accesses forms a sequentially-consistent set of + // operations when combined with STLR and LDAR. Without a leading + // membar it's possible for a simple Dekker test to fail if loads + // use LDR;DMB but stores use STLR. This can happen if C2 compiles + // the stores in one method and we interpret the loads in another. + if (! UseBarriersForVolatile) { + Label notVolatile; + __ tbz(raw_flags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); + __ membar(MacroAssembler::AnyAny); + __ bind(notVolatile); + } + + const Address field(obj, off); + + Label Done, notByte, notBool, notInt, notShort, notChar, + notLong, notFloat, notObj, notDouble; + + // x86 uses a shift and mask or wings it with a shift plus assert + // the mask is not needed. aarch64 just uses bitfield extract + __ ubfxw(flags, raw_flags, ConstantPoolCacheEntry::tos_state_shift, + ConstantPoolCacheEntry::tos_state_bits); + + assert(btos == 0, "change code, btos != 0"); + __ cbnz(flags, notByte); + + // btos + __ load_signed_byte(r0, field); + __ push(btos); + // Rewrite bytecode to be faster + if (!is_static) { + patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); + } + __ b(Done); + + __ bind(notByte); + __ cmp(flags, ztos); + __ br(Assembler::NE, notBool); + + // ztos (same code as btos) + __ ldrsb(r0, field); + __ push(ztos); + // Rewrite bytecode to be faster + if (!is_static) { + // use btos rewriting, no truncating to t/f bit is needed for getfield. + patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); + } + __ b(Done); + + __ bind(notBool); + __ cmp(flags, atos); + __ br(Assembler::NE, notObj); + // atos + __ load_heap_oop(r0, field); + __ push(atos); + if (!is_static) { + patch_bytecode(Bytecodes::_fast_agetfield, bc, r1); + } + __ b(Done); + + __ bind(notObj); + __ cmp(flags, itos); + __ br(Assembler::NE, notInt); + // itos + __ ldrw(r0, field); + __ push(itos); + // Rewrite bytecode to be faster + if (!is_static) { + patch_bytecode(Bytecodes::_fast_igetfield, bc, r1); + } + __ b(Done); + + __ bind(notInt); + __ cmp(flags, ctos); + __ br(Assembler::NE, notChar); + // ctos + __ load_unsigned_short(r0, field); + __ push(ctos); + // Rewrite bytecode to be faster + if (!is_static) { + patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1); + } + __ b(Done); + + __ bind(notChar); + __ cmp(flags, stos); + __ br(Assembler::NE, notShort); + // stos + __ load_signed_short(r0, field); + __ push(stos); + // Rewrite bytecode to be faster + if (!is_static) { + patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1); + } + __ b(Done); + + __ bind(notShort); + __ cmp(flags, ltos); + __ br(Assembler::NE, notLong); + // ltos + __ ldr(r0, field); + __ push(ltos); + // Rewrite bytecode to be faster + if (!is_static) { + patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1); + } + __ b(Done); + + __ bind(notLong); + __ cmp(flags, ftos); + __ br(Assembler::NE, notFloat); + // ftos + __ ldrs(v0, field); + __ push(ftos); + // Rewrite bytecode to be faster + if (!is_static) { + patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1); + } + __ b(Done); + + __ bind(notFloat); +#ifdef ASSERT + __ cmp(flags, dtos); + __ br(Assembler::NE, notDouble); +#endif + // dtos + __ ldrd(v0, field); + __ push(dtos); + // Rewrite bytecode to be faster + if (!is_static) { + patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1); + } +#ifdef ASSERT + __ b(Done); + + __ bind(notDouble); + __ stop("Bad state"); +#endif + + __ bind(Done); + + Label notVolatile; + __ tbz(raw_flags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); + __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); + __ bind(notVolatile); +} + + +void TemplateTable::getfield(int byte_no) +{ + getfield_or_static(byte_no, false); +} + +void TemplateTable::getstatic(int byte_no) +{ + getfield_or_static(byte_no, true); +} + +// The registers cache and index expected to be set before call. +// The function may destroy various registers, just not the cache and index registers. +void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { + transition(vtos, vtos); + + ByteSize cp_base_offset = ConstantPoolCache::base_offset(); + + if (JvmtiExport::can_post_field_modification()) { + // Check to see if a field modification watch has been set before + // we take the time to call into the VM. + Label L1; + assert_different_registers(cache, index, r0); + __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); + __ ldrw(r0, Address(rscratch1)); + __ cbz(r0, L1); + + __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1); + + if (is_static) { + // Life is simple. Null out the object pointer. + __ mov(c_rarg1, zr); + } else { + // Life is harder. The stack holds the value on top, followed by + // the object. We don't know the size of the value, though; it + // could be one or two words depending on its type. As a result, + // we must find the type to determine where the object is. + __ ldrw(c_rarg3, Address(c_rarg2, + in_bytes(cp_base_offset + + ConstantPoolCacheEntry::flags_offset()))); + __ lsr(c_rarg3, c_rarg3, + ConstantPoolCacheEntry::tos_state_shift); + ConstantPoolCacheEntry::verify_tos_state_shift(); + Label nope2, done, ok; + __ ldr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue + __ cmpw(c_rarg3, ltos); + __ br(Assembler::EQ, ok); + __ cmpw(c_rarg3, dtos); + __ br(Assembler::NE, nope2); + __ bind(ok); + __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue) + __ bind(nope2); + } + // cache entry pointer + __ add(c_rarg2, c_rarg2, in_bytes(cp_base_offset)); + // object (tos) + __ mov(c_rarg3, esp); + // c_rarg1: object pointer set up above (NULL if static) + // c_rarg2: cache entry pointer + // c_rarg3: jvalue object on the stack + __ call_VM(noreg, + CAST_FROM_FN_PTR(address, + InterpreterRuntime::post_field_modification), + c_rarg1, c_rarg2, c_rarg3); + __ get_cache_and_index_at_bcp(cache, index, 1); + __ bind(L1); + } +} + +void TemplateTable::putfield_or_static(int byte_no, bool is_static) { + transition(vtos, vtos); + + const Register cache = r2; + const Register index = r3; + const Register obj = r2; + const Register off = r19; + const Register flags = r0; + const Register bc = r4; + + resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); + jvmti_post_field_mod(cache, index, is_static); + load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); + + Label Done; + __ mov(r5, flags); + + { + Label notVolatile; + __ tbz(r5, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); + __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); + __ bind(notVolatile); + } + + // field address + const Address field(obj, off); + + Label notByte, notBool, notInt, notShort, notChar, + notLong, notFloat, notObj, notDouble; + + // x86 uses a shift and mask or wings it with a shift plus assert + // the mask is not needed. aarch64 just uses bitfield extract + __ ubfxw(flags, flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits); + + assert(btos == 0, "change code, btos != 0"); + __ cbnz(flags, notByte); + + // btos + { + __ pop(btos); + if (!is_static) pop_and_check_object(obj); + __ strb(r0, field); + if (!is_static) { + patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no); + } + __ b(Done); + } + + __ bind(notByte); + __ cmp(flags, ztos); + __ br(Assembler::NE, notBool); + + // ztos + { + __ pop(ztos); + if (!is_static) pop_and_check_object(obj); + __ andw(r0, r0, 0x1); + __ strb(r0, field); + if (!is_static) { + patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no); + } + __ b(Done); + } + + __ bind(notBool); + __ cmp(flags, atos); + __ br(Assembler::NE, notObj); + + // atos + { + __ pop(atos); + if (!is_static) pop_and_check_object(obj); + // Store into the field + do_oop_store(_masm, field, r0, _bs->kind(), false); + if (!is_static) { + patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no); + } + __ b(Done); + } + + __ bind(notObj); + __ cmp(flags, itos); + __ br(Assembler::NE, notInt); + + // itos + { + __ pop(itos); + if (!is_static) pop_and_check_object(obj); + __ strw(r0, field); + if (!is_static) { + patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no); + } + __ b(Done); + } + + __ bind(notInt); + __ cmp(flags, ctos); + __ br(Assembler::NE, notChar); + + // ctos + { + __ pop(ctos); + if (!is_static) pop_and_check_object(obj); + __ strh(r0, field); + if (!is_static) { + patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no); + } + __ b(Done); + } + + __ bind(notChar); + __ cmp(flags, stos); + __ br(Assembler::NE, notShort); + + // stos + { + __ pop(stos); + if (!is_static) pop_and_check_object(obj); + __ strh(r0, field); + if (!is_static) { + patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no); + } + __ b(Done); + } + + __ bind(notShort); + __ cmp(flags, ltos); + __ br(Assembler::NE, notLong); + + // ltos + { + __ pop(ltos); + if (!is_static) pop_and_check_object(obj); + __ str(r0, field); + if (!is_static) { + patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no); + } + __ b(Done); + } + + __ bind(notLong); + __ cmp(flags, ftos); + __ br(Assembler::NE, notFloat); + + // ftos + { + __ pop(ftos); + if (!is_static) pop_and_check_object(obj); + __ strs(v0, field); + if (!is_static) { + patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no); + } + __ b(Done); + } + + __ bind(notFloat); +#ifdef ASSERT + __ cmp(flags, dtos); + __ br(Assembler::NE, notDouble); +#endif + + // dtos + { + __ pop(dtos); + if (!is_static) pop_and_check_object(obj); + __ strd(v0, field); + if (!is_static) { + patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no); + } + } + +#ifdef ASSERT + __ b(Done); + + __ bind(notDouble); + __ stop("Bad state"); +#endif + + __ bind(Done); + + { + Label notVolatile; + __ tbz(r5, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); + __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); + __ bind(notVolatile); + } +} + +void TemplateTable::putfield(int byte_no) +{ + putfield_or_static(byte_no, false); +} + +void TemplateTable::putstatic(int byte_no) { + putfield_or_static(byte_no, true); +} + +void TemplateTable::jvmti_post_fast_field_mod() +{ + if (JvmtiExport::can_post_field_modification()) { + // Check to see if a field modification watch has been set before + // we take the time to call into the VM. + Label L2; + __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); + __ ldrw(c_rarg3, Address(rscratch1)); + __ cbzw(c_rarg3, L2); + __ pop_ptr(r19); // copy the object pointer from tos + __ verify_oop(r19); + __ push_ptr(r19); // put the object pointer back on tos + // Save tos values before call_VM() clobbers them. Since we have + // to do it for every data type, we use the saved values as the + // jvalue object. + switch (bytecode()) { // load values into the jvalue object + case Bytecodes::_fast_aputfield: __ push_ptr(r0); break; + case Bytecodes::_fast_bputfield: // fall through + case Bytecodes::_fast_zputfield: // fall through + case Bytecodes::_fast_sputfield: // fall through + case Bytecodes::_fast_cputfield: // fall through + case Bytecodes::_fast_iputfield: __ push_i(r0); break; + case Bytecodes::_fast_dputfield: __ push_d(); break; + case Bytecodes::_fast_fputfield: __ push_f(); break; + case Bytecodes::_fast_lputfield: __ push_l(r0); break; + + default: + ShouldNotReachHere(); + } + __ mov(c_rarg3, esp); // points to jvalue on the stack + // access constant pool cache entry + __ get_cache_entry_pointer_at_bcp(c_rarg2, r0, 1); + __ verify_oop(r19); + // r19: object pointer copied above + // c_rarg2: cache entry pointer + // c_rarg3: jvalue object on the stack + __ call_VM(noreg, + CAST_FROM_FN_PTR(address, + InterpreterRuntime::post_field_modification), + r19, c_rarg2, c_rarg3); + + switch (bytecode()) { // restore tos values + case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break; + case Bytecodes::_fast_bputfield: // fall through + case Bytecodes::_fast_zputfield: // fall through + case Bytecodes::_fast_sputfield: // fall through + case Bytecodes::_fast_cputfield: // fall through + case Bytecodes::_fast_iputfield: __ pop_i(r0); break; + case Bytecodes::_fast_dputfield: __ pop_d(); break; + case Bytecodes::_fast_fputfield: __ pop_f(); break; + case Bytecodes::_fast_lputfield: __ pop_l(r0); break; + } + __ bind(L2); + } +} + +void TemplateTable::fast_storefield(TosState state) +{ + transition(state, vtos); + + ByteSize base = ConstantPoolCache::base_offset(); + + jvmti_post_fast_field_mod(); + + // access constant pool cache + __ get_cache_and_index_at_bcp(r2, r1, 1); + + // Must prevent reordering of the following cp cache loads with bytecode load + __ membar(MacroAssembler::LoadLoad); + + // test for volatile with r3 + __ ldrw(r3, Address(r2, in_bytes(base + + ConstantPoolCacheEntry::flags_offset()))); + + // replace index with field offset from cache entry + __ ldr(r1, Address(r2, in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); + + { + Label notVolatile; + __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); + __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); + __ bind(notVolatile); + } + + Label notVolatile; + + // Get object from stack + pop_and_check_object(r2); + + // field address + const Address field(r2, r1); + + // access field + switch (bytecode()) { + case Bytecodes::_fast_aputfield: + do_oop_store(_masm, field, r0, _bs->kind(), false); + break; + case Bytecodes::_fast_lputfield: + __ str(r0, field); + break; + case Bytecodes::_fast_iputfield: + __ strw(r0, field); + break; + case Bytecodes::_fast_zputfield: + __ andw(r0, r0, 0x1); // boolean is true if LSB is 1 + // fall through to bputfield + case Bytecodes::_fast_bputfield: + __ strb(r0, field); + break; + case Bytecodes::_fast_sputfield: + // fall through + case Bytecodes::_fast_cputfield: + __ strh(r0, field); + break; + case Bytecodes::_fast_fputfield: + __ strs(v0, field); + break; + case Bytecodes::_fast_dputfield: + __ strd(v0, field); + break; + default: + ShouldNotReachHere(); + } + + { + Label notVolatile; + __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); + __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); + __ bind(notVolatile); + } +} + + +void TemplateTable::fast_accessfield(TosState state) +{ + transition(atos, state); + // Do the JVMTI work here to avoid disturbing the register state below + if (JvmtiExport::can_post_field_access()) { + // Check to see if a field access watch has been set before we + // take the time to call into the VM. + Label L1; + __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); + __ ldrw(r2, Address(rscratch1)); + __ cbzw(r2, L1); + // access constant pool cache entry + __ get_cache_entry_pointer_at_bcp(c_rarg2, rscratch2, 1); + __ verify_oop(r0); + __ push_ptr(r0); // save object pointer before call_VM() clobbers it + __ mov(c_rarg1, r0); + // c_rarg1: object pointer copied above + // c_rarg2: cache entry pointer + __ call_VM(noreg, + CAST_FROM_FN_PTR(address, + InterpreterRuntime::post_field_access), + c_rarg1, c_rarg2); + __ pop_ptr(r0); // restore object pointer + __ bind(L1); + } + + // access constant pool cache + __ get_cache_and_index_at_bcp(r2, r1, 1); + + // Must prevent reordering of the following cp cache loads with bytecode load + __ membar(MacroAssembler::LoadLoad); + + __ ldr(r1, Address(r2, in_bytes(ConstantPoolCache::base_offset() + + ConstantPoolCacheEntry::f2_offset()))); + __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() + + ConstantPoolCacheEntry::flags_offset()))); + + // r0: object + __ verify_oop(r0); + __ null_check(r0); + const Address field(r0, r1); + + // 8179954: We need to make sure that the code generated for + // volatile accesses forms a sequentially-consistent set of + // operations when combined with STLR and LDAR. Without a leading + // membar it's possible for a simple Dekker test to fail if loads + // use LDR;DMB but stores use STLR. This can happen if C2 compiles + // the stores in one method and we interpret the loads in another. + if (! UseBarriersForVolatile) { + Label notVolatile; + __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); + __ membar(MacroAssembler::AnyAny); + __ bind(notVolatile); + } + + // access field + switch (bytecode()) { + case Bytecodes::_fast_agetfield: + __ load_heap_oop(r0, field); + __ verify_oop(r0); + break; + case Bytecodes::_fast_lgetfield: + __ ldr(r0, field); + break; + case Bytecodes::_fast_igetfield: + __ ldrw(r0, field); + break; + case Bytecodes::_fast_bgetfield: + __ load_signed_byte(r0, field); + break; + case Bytecodes::_fast_sgetfield: + __ load_signed_short(r0, field); + break; + case Bytecodes::_fast_cgetfield: + __ load_unsigned_short(r0, field); + break; + case Bytecodes::_fast_fgetfield: + __ ldrs(v0, field); + break; + case Bytecodes::_fast_dgetfield: + __ ldrd(v0, field); + break; + default: + ShouldNotReachHere(); + } + { + Label notVolatile; + __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); + __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); + __ bind(notVolatile); + } +} + +void TemplateTable::fast_xaccess(TosState state) +{ + transition(vtos, state); + + // get receiver + __ ldr(r0, aaddress(0)); + // access constant pool cache + __ get_cache_and_index_at_bcp(r2, r3, 2); + __ ldr(r1, Address(r2, in_bytes(ConstantPoolCache::base_offset() + + ConstantPoolCacheEntry::f2_offset()))); + + // 8179954: We need to make sure that the code generated for + // volatile accesses forms a sequentially-consistent set of + // operations when combined with STLR and LDAR. Without a leading + // membar it's possible for a simple Dekker test to fail if loads + // use LDR;DMB but stores use STLR. This can happen if C2 compiles + // the stores in one method and we interpret the loads in another. + if (! UseBarriersForVolatile) { + Label notVolatile; + __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() + + ConstantPoolCacheEntry::flags_offset()))); + __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); + __ membar(MacroAssembler::AnyAny); + __ bind(notVolatile); + } + + // make sure exception is reported in correct bcp range (getfield is + // next instruction) + __ increment(rbcp); + __ null_check(r0); + switch (state) { + case itos: + __ ldrw(r0, Address(r0, r1, Address::lsl(0))); + break; + case atos: + __ load_heap_oop(r0, Address(r0, r1, Address::lsl(0))); + __ verify_oop(r0); + break; + case ftos: + __ ldrs(v0, Address(r0, r1, Address::lsl(0))); + break; + default: + ShouldNotReachHere(); + } + + { + Label notVolatile; + __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() + + ConstantPoolCacheEntry::flags_offset()))); + __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); + __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); + __ bind(notVolatile); + } + + __ decrement(rbcp); +} + + + +//----------------------------------------------------------------------------- +// Calls + +void TemplateTable::count_calls(Register method, Register temp) +{ + __ call_Unimplemented(); +} + +void TemplateTable::prepare_invoke(int byte_no, + Register method, // linked method (or i-klass) + Register index, // itable index, MethodType, etc. + Register recv, // if caller wants to see it + Register flags // if caller wants to test it + ) { + // determine flags + Bytecodes::Code code = bytecode(); + const bool is_invokeinterface = code == Bytecodes::_invokeinterface; + const bool is_invokedynamic = code == Bytecodes::_invokedynamic; + const bool is_invokehandle = code == Bytecodes::_invokehandle; + const bool is_invokevirtual = code == Bytecodes::_invokevirtual; + const bool is_invokespecial = code == Bytecodes::_invokespecial; + const bool load_receiver = (recv != noreg); + const bool save_flags = (flags != noreg); + assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); + assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); + assert(flags == noreg || flags == r3, ""); + assert(recv == noreg || recv == r2, ""); + + // setup registers & access constant pool cache + if (recv == noreg) recv = r2; + if (flags == noreg) flags = r3; + assert_different_registers(method, index, recv, flags); + + // save 'interpreter return address' + __ save_bcp(); + + load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); + + // maybe push appendix to arguments (just before return address) + if (is_invokedynamic || is_invokehandle) { + Label L_no_push; + __ tbz(flags, ConstantPoolCacheEntry::has_appendix_shift, L_no_push); + // Push the appendix as a trailing parameter. + // This must be done before we get the receiver, + // since the parameter_size includes it. + __ push(r19); + __ mov(r19, index); + assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0"); + __ load_resolved_reference_at_index(index, r19); + __ pop(r19); + __ push(index); // push appendix (MethodType, CallSite, etc.) + __ bind(L_no_push); + } + + // load receiver if needed (note: no return address pushed yet) + if (load_receiver) { + __ andw(recv, flags, ConstantPoolCacheEntry::parameter_size_mask); + // FIXME -- is this actually correct? looks like it should be 2 + // const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address + // const int receiver_is_at_end = -1; // back off one slot to get receiver + // Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); + // __ movptr(recv, recv_addr); + __ add(rscratch1, esp, recv, ext::uxtx, 3); // FIXME: uxtb here? + __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1))); + __ verify_oop(recv); + } + + // compute return type + // x86 uses a shift and mask or wings it with a shift plus assert + // the mask is not needed. aarch64 just uses bitfield extract + __ ubfxw(rscratch2, flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits); + // load return address + { + const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); + __ mov(rscratch1, table_addr); + __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3))); + } +} + + +void TemplateTable::invokevirtual_helper(Register index, + Register recv, + Register flags) +{ + // Uses temporary registers r0, r3 + assert_different_registers(index, recv, r0, r3); + // Test for an invoke of a final method + Label notFinal; + __ tbz(flags, ConstantPoolCacheEntry::is_vfinal_shift, notFinal); + + const Register method = index; // method must be rmethod + assert(method == rmethod, + "methodOop must be rmethod for interpreter calling convention"); + + // do the call - the index is actually the method to call + // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* + + // It's final, need a null check here! + __ null_check(recv); + + // profile this call + __ profile_final_call(r0); + __ profile_arguments_type(r0, method, r4, true); + + __ jump_from_interpreted(method, r0); + + __ bind(notFinal); + + // get receiver klass + __ null_check(recv, oopDesc::klass_offset_in_bytes()); + __ load_klass(r0, recv); + + // profile this call + __ profile_virtual_call(r0, rlocals, r3); + + // get target methodOop & entry point + __ lookup_virtual_method(r0, index, method); + __ profile_arguments_type(r3, method, r4, true); + // FIXME -- this looks completely redundant. is it? + // __ ldr(r3, Address(method, Method::interpreter_entry_offset())); + __ jump_from_interpreted(method, r3); +} + +void TemplateTable::invokevirtual(int byte_no) +{ + transition(vtos, vtos); + assert(byte_no == f2_byte, "use this argument"); + + prepare_invoke(byte_no, rmethod, noreg, r2, r3); + + // rmethod: index (actually a Method*) + // r2: receiver + // r3: flags + + invokevirtual_helper(rmethod, r2, r3); +} + +void TemplateTable::invokespecial(int byte_no) +{ + transition(vtos, vtos); + assert(byte_no == f1_byte, "use this argument"); + + prepare_invoke(byte_no, rmethod, noreg, // get f1 Method* + r2); // get receiver also for null check + __ verify_oop(r2); + __ null_check(r2); + // do the call + __ profile_call(r0); + __ profile_arguments_type(r0, rmethod, rbcp, false); + __ jump_from_interpreted(rmethod, r0); +} + +void TemplateTable::invokestatic(int byte_no) +{ + transition(vtos, vtos); + assert(byte_no == f1_byte, "use this argument"); + + prepare_invoke(byte_no, rmethod); // get f1 Method* + // do the call + __ profile_call(r0); + __ profile_arguments_type(r0, rmethod, r4, false); + __ jump_from_interpreted(rmethod, r0); +} + +void TemplateTable::fast_invokevfinal(int byte_no) +{ + __ call_Unimplemented(); +} + +void TemplateTable::invokeinterface(int byte_no) { + transition(vtos, vtos); + assert(byte_no == f1_byte, "use this argument"); + + prepare_invoke(byte_no, r0, rmethod, // get f1 Klass*, f2 Method* + r2, r3); // recv, flags + + // r0: interface klass (from f1) + // rmethod: method (from f2) + // r2: receiver + // r3: flags + + // Special case of invokeinterface called for virtual method of + // java.lang.Object. See cpCacheOop.cpp for details. + // This code isn't produced by javac, but could be produced by + // another compliant java compiler. + Label notMethod; + __ tbz(r3, ConstantPoolCacheEntry::is_forced_virtual_shift, notMethod); + + invokevirtual_helper(rmethod, r2, r3); + __ bind(notMethod); + + // Get receiver klass into r3 - also a null check + __ restore_locals(); + __ null_check(r2, oopDesc::klass_offset_in_bytes()); + __ load_klass(r3, r2); + + Label no_such_interface, no_such_method; + + // Receiver subtype check against REFC. + // Superklass in r0. Subklass in r3. Blows rscratch2, r13. + __ lookup_interface_method(// inputs: rec. class, interface, itable index + r3, r0, noreg, + // outputs: scan temp. reg, scan temp. reg + rscratch2, r13, + no_such_interface, + /*return_method=*/false); + + // profile this call + __ profile_virtual_call(r3, r13, r19); + + // Get declaring interface class from method, and itable index + __ ldr(r0, Address(rmethod, Method::const_offset())); + __ ldr(r0, Address(r0, ConstMethod::constants_offset())); + __ ldr(r0, Address(r0, ConstantPool::pool_holder_offset_in_bytes())); + __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset())); + __ subw(rmethod, rmethod, Method::itable_index_max); + __ negw(rmethod, rmethod); + + __ lookup_interface_method(// inputs: rec. class, interface, itable index + r3, r0, rmethod, + // outputs: method, scan temp. reg + rmethod, r13, + no_such_interface); + + // rmethod,: methodOop to call + // r2: receiver + // Check for abstract method error + // Note: This should be done more efficiently via a throw_abstract_method_error + // interpreter entry point and a conditional jump to it in case of a null + // method. + __ cbz(rmethod, no_such_method); + + __ profile_arguments_type(r3, rmethod, r13, true); + + // do the call + // r2: receiver + // rmethod,: methodOop + __ jump_from_interpreted(rmethod, r3); + __ should_not_reach_here(); + + // exception handling code follows... + // note: must restore interpreter registers to canonical + // state for exception handling to work correctly! + + __ bind(no_such_method); + // throw exception + __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) + __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) + __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); + // the call_VM checks for exception, so we should never return here. + __ should_not_reach_here(); + + __ bind(no_such_interface); + // throw exception + __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) + __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) + __ call_VM(noreg, CAST_FROM_FN_PTR(address, + InterpreterRuntime::throw_IncompatibleClassChangeError)); + // the call_VM checks for exception, so we should never return here. + __ should_not_reach_here(); + return; +} + +void TemplateTable::invokehandle(int byte_no) { + transition(vtos, vtos); + assert(byte_no == f1_byte, "use this argument"); + + if (!EnableInvokeDynamic) { + // rewriter does not generate this bytecode + __ should_not_reach_here(); + return; + } + + prepare_invoke(byte_no, rmethod, r0, r2); + __ verify_method_ptr(r2); + __ verify_oop(r2); + __ null_check(r2); + + // FIXME: profile the LambdaForm also + + // r13 is safe to use here as a scratch reg because it is about to + // be clobbered by jump_from_interpreted(). + __ profile_final_call(r13); + __ profile_arguments_type(r13, rmethod, r4, true); + + __ jump_from_interpreted(rmethod, r0); +} + +void TemplateTable::invokedynamic(int byte_no) { + transition(vtos, vtos); + assert(byte_no == f1_byte, "use this argument"); + + if (!EnableInvokeDynamic) { + // We should not encounter this bytecode if !EnableInvokeDynamic. + // The verifier will stop it. However, if we get past the verifier, + // this will stop the thread in a reasonable way, without crashing the JVM. + __ call_VM(noreg, CAST_FROM_FN_PTR(address, + InterpreterRuntime::throw_IncompatibleClassChangeError)); + // the call_VM checks for exception, so we should never return here. + __ should_not_reach_here(); + return; + } + + prepare_invoke(byte_no, rmethod, r0); + + // r0: CallSite object (from cpool->resolved_references[]) + // rmethod: MH.linkToCallSite method (from f2) + + // Note: r0_callsite is already pushed by prepare_invoke + + // %%% should make a type profile for any invokedynamic that takes a ref argument + // profile this call + __ profile_call(rbcp); + __ profile_arguments_type(r3, rmethod, r13, false); + + __ verify_oop(r0); + + __ jump_from_interpreted(rmethod, r0); +} + + +//----------------------------------------------------------------------------- +// Allocation + +void TemplateTable::_new() { + transition(vtos, atos); + + __ get_unsigned_2_byte_index_at_bcp(r3, 1); + Label slow_case; + Label done; + Label initialize_header; + Label initialize_object; // including clearing the fields + Label allocate_shared; + + __ get_cpool_and_tags(r4, r0); + // Make sure the class we're about to instantiate has been resolved. + // This is done before loading InstanceKlass to be consistent with the order + // how Constant Pool is updated (see ConstantPool::klass_at_put) + const int tags_offset = Array::base_offset_in_bytes(); + __ lea(rscratch1, Address(r0, r3, Address::lsl(0))); + __ lea(rscratch1, Address(rscratch1, tags_offset)); + __ ldarb(rscratch1, rscratch1); + __ cmp(rscratch1, JVM_CONSTANT_Class); + __ br(Assembler::NE, slow_case); + + // get InstanceKlass + __ lea(r4, Address(r4, r3, Address::lsl(3))); + __ ldr(r4, Address(r4, sizeof(ConstantPool))); + + // make sure klass is initialized & doesn't have finalizer + // make sure klass is fully initialized + __ ldrb(rscratch1, Address(r4, InstanceKlass::init_state_offset())); + __ cmp(rscratch1, InstanceKlass::fully_initialized); + __ br(Assembler::NE, slow_case); + + // get instance_size in InstanceKlass (scaled to a count of bytes) + __ ldrw(r3, + Address(r4, + Klass::layout_helper_offset())); + // test to see if it has a finalizer or is malformed in some way + __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case); + + // Allocate the instance + // 1) Try to allocate in the TLAB + // 2) if fail and the object is large allocate in the shared Eden + // 3) if the above fails (or is not applicable), go to a slow case + // (creates a new TLAB, etc.) + + const bool allow_shared_alloc = + Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode; + + if (UseTLAB) { + __ tlab_allocate(r0, r3, 0, noreg, r1, + allow_shared_alloc ? allocate_shared : slow_case); + + if (ZeroTLAB) { + // the fields have been already cleared + __ b(initialize_header); + } else { + // initialize both the header and fields + __ b(initialize_object); + } + } + + // Allocation in the shared Eden, if allowed. + // + // r3: instance size in bytes + if (allow_shared_alloc) { + __ bind(allocate_shared); + + __ eden_allocate(r0, r3, 0, r10, slow_case); + __ incr_allocated_bytes(rthread, r3, 0, rscratch1); + } + + if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) { + // The object is initialized before the header. If the object size is + // zero, go directly to the header initialization. + __ bind(initialize_object); + __ sub(r3, r3, sizeof(oopDesc)); + __ cbz(r3, initialize_header); + + // Initialize object fields + { + __ add(r2, r0, sizeof(oopDesc)); + Label loop; + __ bind(loop); + __ str(zr, Address(__ post(r2, BytesPerLong))); + __ sub(r3, r3, BytesPerLong); + __ cbnz(r3, loop); + } + + // initialize object header only. + __ bind(initialize_header); + if (UseBiasedLocking) { + __ ldr(rscratch1, Address(r4, Klass::prototype_header_offset())); + } else { + __ mov(rscratch1, (intptr_t)markOopDesc::prototype()); + } + __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes())); + __ store_klass_gap(r0, zr); // zero klass gap for compressed oops + __ store_klass(r0, r4); // store klass last + + { + SkipIfEqual skip(_masm, &DTraceAllocProbes, false); + // Trigger dtrace event for fastpath + __ push(atos); // save the return value + __ call_VM_leaf( + CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), r0); + __ pop(atos); // restore the return value + + } + __ b(done); + } + + // slow case + __ bind(slow_case); + __ get_constant_pool(c_rarg1); + __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); + call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); + __ verify_oop(r0); + + // continue + __ bind(done); + // Must prevent reordering of stores for object initialization with stores that publish the new object. + __ membar(Assembler::StoreStore); +} + +void TemplateTable::newarray() { + transition(itos, atos); + __ load_unsigned_byte(c_rarg1, at_bcp(1)); + __ mov(c_rarg2, r0); + call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), + c_rarg1, c_rarg2); + // Must prevent reordering of stores for object initialization with stores that publish the new object. + __ membar(Assembler::StoreStore); +} + +void TemplateTable::anewarray() { + transition(itos, atos); + __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); + __ get_constant_pool(c_rarg1); + __ mov(c_rarg3, r0); + call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), + c_rarg1, c_rarg2, c_rarg3); + // Must prevent reordering of stores for object initialization with stores that publish the new object. + __ membar(Assembler::StoreStore); +} + +void TemplateTable::arraylength() { + transition(atos, itos); + __ null_check(r0, arrayOopDesc::length_offset_in_bytes()); + __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes())); +} + +void TemplateTable::checkcast() +{ + transition(atos, atos); + Label done, is_null, ok_is_subtype, quicked, resolved; + __ cbz(r0, is_null); + + // Get cpool & tags index + __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array + __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index + // See if bytecode has already been quicked + __ add(rscratch1, r3, Array::base_offset_in_bytes()); + __ lea(r1, Address(rscratch1, r19)); + __ ldarb(r1, r1); + __ cmp(r1, JVM_CONSTANT_Class); + __ br(Assembler::EQ, quicked); + + __ push(atos); // save receiver for result, and for GC + call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); + // vm_result_2 has metadata result + __ get_vm_result_2(r0, rthread); + __ pop(r3); // restore receiver + __ b(resolved); + + // Get superklass in r0 and subklass in r3 + __ bind(quicked); + __ mov(r3, r0); // Save object in r3; r0 needed for subtype check + __ lea(r0, Address(r2, r19, Address::lsl(3))); + __ ldr(r0, Address(r0, sizeof(ConstantPool))); + + __ bind(resolved); + __ load_klass(r19, r3); + + // Generate subtype check. Blows r2, r5. Object in r3. + // Superklass in r0. Subklass in r19. + __ gen_subtype_check(r19, ok_is_subtype); + + // Come here on failure + __ push(r3); + // object is at TOS + __ b(Interpreter::_throw_ClassCastException_entry); + + // Come here on success + __ bind(ok_is_subtype); + __ mov(r0, r3); // Restore object in r3 + + // Collect counts on whether this test sees NULLs a lot or not. + if (ProfileInterpreter) { + __ b(done); + __ bind(is_null); + __ profile_null_seen(r2); + } else { + __ bind(is_null); // same as 'done' + } + __ bind(done); +} + +void TemplateTable::instanceof() { + transition(atos, itos); + Label done, is_null, ok_is_subtype, quicked, resolved; + __ cbz(r0, is_null); + + // Get cpool & tags index + __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array + __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index + // See if bytecode has already been quicked + __ add(rscratch1, r3, Array::base_offset_in_bytes()); + __ lea(r1, Address(rscratch1, r19)); + __ ldarb(r1, r1); + __ cmp(r1, JVM_CONSTANT_Class); + __ br(Assembler::EQ, quicked); + + __ push(atos); // save receiver for result, and for GC + call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); + // vm_result_2 has metadata result + __ get_vm_result_2(r0, rthread); + __ pop(r3); // restore receiver + __ verify_oop(r3); + __ load_klass(r3, r3); + __ b(resolved); + + // Get superklass in r0 and subklass in r3 + __ bind(quicked); + __ load_klass(r3, r0); + __ lea(r0, Address(r2, r19, Address::lsl(3))); + __ ldr(r0, Address(r0, sizeof(ConstantPool))); + + __ bind(resolved); + + // Generate subtype check. Blows r2, r5 + // Superklass in r0. Subklass in r3. + __ gen_subtype_check(r3, ok_is_subtype); + + // Come here on failure + __ mov(r0, 0); + __ b(done); + // Come here on success + __ bind(ok_is_subtype); + __ mov(r0, 1); + + // Collect counts on whether this test sees NULLs a lot or not. + if (ProfileInterpreter) { + __ b(done); + __ bind(is_null); + __ profile_null_seen(r2); + } else { + __ bind(is_null); // same as 'done' + } + __ bind(done); + // r0 = 0: obj == NULL or obj is not an instanceof the specified klass + // r0 = 1: obj != NULL and obj is an instanceof the specified klass +} + +//----------------------------------------------------------------------------- +// Breakpoints +void TemplateTable::_breakpoint() { + // Note: We get here even if we are single stepping.. + // jbug inists on setting breakpoints at every bytecode + // even if we are in single step mode. + + transition(vtos, vtos); + + // get the unpatched byte code + __ get_method(c_rarg1); + __ call_VM(noreg, + CAST_FROM_FN_PTR(address, + InterpreterRuntime::get_original_bytecode_at), + c_rarg1, rbcp); + __ mov(r19, r0); + + // post the breakpoint event + __ call_VM(noreg, + CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), + rmethod, rbcp); + + // complete the execution of original bytecode + __ mov(rscratch1, r19); + __ dispatch_only_normal(vtos); +} + +//----------------------------------------------------------------------------- +// Exceptions + +void TemplateTable::athrow() { + transition(atos, vtos); + __ null_check(r0); + __ b(Interpreter::throw_exception_entry()); +} + +//----------------------------------------------------------------------------- +// Synchronization +// +// Note: monitorenter & exit are symmetric routines; which is reflected +// in the assembly code structure as well +// +// Stack layout: +// +// [expressions ] <--- esp = expression stack top +// .. +// [expressions ] +// [monitor entry] <--- monitor block top = expression stack bot +// .. +// [monitor entry] +// [frame data ] <--- monitor block bot +// ... +// [saved rbp ] <--- rbp +void TemplateTable::monitorenter() +{ + transition(atos, vtos); + + // check for NULL object + __ null_check(r0); + + const Address monitor_block_top( + rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); + const Address monitor_block_bot( + rfp, frame::interpreter_frame_initial_sp_offset * wordSize); + const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; + + Label allocated; + + // initialize entry pointer + __ mov(c_rarg1, zr); // points to free slot or NULL + + // find a free slot in the monitor block (result in c_rarg1) + { + Label entry, loop, exit; + __ ldr(c_rarg3, monitor_block_top); // points to current entry, + // starting with top-most entry + __ lea(c_rarg2, monitor_block_bot); // points to word before bottom + + __ b(entry); + + __ bind(loop); + // check if current entry is used + // if not used then remember entry in c_rarg1 + __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes())); + __ cmp(zr, rscratch1); + __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ); + // check if current entry is for same object + __ cmp(r0, rscratch1); + // if same object then stop searching + __ br(Assembler::EQ, exit); + // otherwise advance to next entry + __ add(c_rarg3, c_rarg3, entry_size); + __ bind(entry); + // check if bottom reached + __ cmp(c_rarg3, c_rarg2); + // if not at bottom then check this entry + __ br(Assembler::NE, loop); + __ bind(exit); + } + + __ cbnz(c_rarg1, allocated); // check if a slot has been found and + // if found, continue with that on + + // allocate one if there's no free slot + { + Label entry, loop; + // 1. compute new pointers // rsp: old expression stack top + __ ldr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom + __ sub(esp, esp, entry_size); // move expression stack top + __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom + __ mov(c_rarg3, esp); // set start value for copy loop + __ str(c_rarg1, monitor_block_bot); // set new monitor block bottom + + __ sub(sp, sp, entry_size); // make room for the monitor + + __ b(entry); + // 2. move expression stack contents + __ bind(loop); + __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack + // word from old location + __ str(c_rarg2, Address(c_rarg3, 0)); // and store it at new location + __ add(c_rarg3, c_rarg3, wordSize); // advance to next word + __ bind(entry); + __ cmp(c_rarg3, c_rarg1); // check if bottom reached + __ br(Assembler::NE, loop); // if not at bottom then + // copy next word + } + + // call run-time routine + // c_rarg1: points to monitor entry + __ bind(allocated); + + // Increment bcp to point to the next bytecode, so exception + // handling for async. exceptions work correctly. + // The object has already been poped from the stack, so the + // expression stack looks correct. + __ increment(rbcp); + + // store object + __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); + __ lock_object(c_rarg1); + + // check to make sure this monitor doesn't cause stack overflow after locking + __ save_bcp(); // in case of exception + __ generate_stack_overflow_check(0); + + // The bcp has already been incremented. Just need to dispatch to + // next instruction. + __ dispatch_next(vtos); +} + + +void TemplateTable::monitorexit() +{ + transition(atos, vtos); + + // check for NULL object + __ null_check(r0); + + const Address monitor_block_top( + rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); + const Address monitor_block_bot( + rfp, frame::interpreter_frame_initial_sp_offset * wordSize); + const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; + + Label found; + + // find matching slot + { + Label entry, loop; + __ ldr(c_rarg1, monitor_block_top); // points to current entry, + // starting with top-most entry + __ lea(c_rarg2, monitor_block_bot); // points to word before bottom + // of monitor block + __ b(entry); + + __ bind(loop); + // check if current entry is for same object + __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); + __ cmp(r0, rscratch1); + // if same object then stop searching + __ br(Assembler::EQ, found); + // otherwise advance to next entry + __ add(c_rarg1, c_rarg1, entry_size); + __ bind(entry); + // check if bottom reached + __ cmp(c_rarg1, c_rarg2); + // if not at bottom then check this entry + __ br(Assembler::NE, loop); + } + + // error handling. Unlocking was not block-structured + __ call_VM(noreg, CAST_FROM_FN_PTR(address, + InterpreterRuntime::throw_illegal_monitor_state_exception)); + __ should_not_reach_here(); + + // call run-time routine + __ bind(found); + __ push_ptr(r0); // make sure object is on stack (contract with oopMaps) + __ unlock_object(c_rarg1); + __ pop_ptr(r0); // discard object +} + + +// Wide instructions +void TemplateTable::wide() +{ + __ load_unsigned_byte(r19, at_bcp(1)); + __ mov(rscratch1, (address)Interpreter::_wentry_point); + __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3))); + __ br(rscratch1); +} + + +// Multi arrays +void TemplateTable::multianewarray() { + transition(vtos, atos); + __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions + // last dim is on top of stack; we want address of first one: + // first_addr = last_addr + (ndims - 1) * wordSize + __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3))); + __ sub(c_rarg1, c_rarg1, wordSize); + call_VM(r0, + CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), + c_rarg1); + __ load_unsigned_byte(r1, at_bcp(3)); + __ lea(esp, Address(esp, r1, Address::uxtw(3))); +} +#endif // !CC_INTERP