1 /*
   2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
  26 #include "adlc.hpp"
  27 
  28 //==============================Instructions===================================
  29 //------------------------------InstructForm-----------------------------------
  30 InstructForm::InstructForm(const char *id, bool ideal_only)
  31   : _ident(id), _ideal_only(ideal_only),
  32     _localNames(cmpstr, hashstr, Form::arena),
  33     _effects(cmpstr, hashstr, Form::arena),
  34     _is_mach_constant(false),
  35     _needs_constant_base(false),
  36     _has_call(false)
  37 {
  38       _ftype = Form::INS;
  39 
  40       _matrule              = NULL;
  41       _insencode            = NULL;
  42       _constant             = NULL;
  43       _is_postalloc_expand  = false;
  44       _opcode               = NULL;
  45       _size                 = NULL;
  46       _attribs              = NULL;
  47       _predicate            = NULL;
  48       _exprule              = NULL;
  49       _rewrule              = NULL;
  50       _format               = NULL;
  51       _peephole             = NULL;
  52       _ins_pipe             = NULL;
  53       _uniq_idx             = NULL;
  54       _num_uniq             = 0;
  55       _cisc_spill_operand   = Not_cisc_spillable;// Which operand may cisc-spill
  56       _cisc_spill_alternate = NULL;            // possible cisc replacement
  57       _cisc_reg_mask_name   = NULL;
  58       _is_cisc_alternate    = false;
  59       _is_short_branch      = false;
  60       _short_branch_form    = NULL;
  61       _alignment            = 1;
  62 }
  63 
  64 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
  65   : _ident(id), _ideal_only(false),
  66     _localNames(instr->_localNames),
  67     _effects(instr->_effects),
  68     _is_mach_constant(false),
  69     _needs_constant_base(false),
  70     _has_call(false)
  71 {
  72       _ftype = Form::INS;
  73 
  74       _matrule               = rule;
  75       _insencode             = instr->_insencode;
  76       _constant              = instr->_constant;
  77       _is_postalloc_expand   = instr->_is_postalloc_expand;
  78       _opcode                = instr->_opcode;
  79       _size                  = instr->_size;
  80       _attribs               = instr->_attribs;
  81       _predicate             = instr->_predicate;
  82       _exprule               = instr->_exprule;
  83       _rewrule               = instr->_rewrule;
  84       _format                = instr->_format;
  85       _peephole              = instr->_peephole;
  86       _ins_pipe              = instr->_ins_pipe;
  87       _uniq_idx              = instr->_uniq_idx;
  88       _num_uniq              = instr->_num_uniq;
  89       _cisc_spill_operand    = Not_cisc_spillable; // Which operand may cisc-spill
  90       _cisc_spill_alternate  = NULL;               // possible cisc replacement
  91       _cisc_reg_mask_name    = NULL;
  92       _is_cisc_alternate     = false;
  93       _is_short_branch       = false;
  94       _short_branch_form     = NULL;
  95       _alignment             = 1;
  96      // Copy parameters
  97      const char *name;
  98      instr->_parameters.reset();
  99      for (; (name = instr->_parameters.iter()) != NULL;)
 100        _parameters.addName(name);
 101 }
 102 
 103 InstructForm::~InstructForm() {
 104 }
 105 
 106 InstructForm *InstructForm::is_instruction() const {
 107   return (InstructForm*)this;
 108 }
 109 
 110 bool InstructForm::ideal_only() const {
 111   return _ideal_only;
 112 }
 113 
 114 bool InstructForm::sets_result() const {
 115   return (_matrule != NULL && _matrule->sets_result());
 116 }
 117 
 118 bool InstructForm::needs_projections() {
 119   _components.reset();
 120   for( Component *comp; (comp = _components.iter()) != NULL; ) {
 121     if (comp->isa(Component::KILL)) {
 122       return true;
 123     }
 124   }
 125   return false;
 126 }
 127 
 128 
 129 bool InstructForm::has_temps() {
 130   if (_matrule) {
 131     // Examine each component to see if it is a TEMP
 132     _components.reset();
 133     // Skip the first component, if already handled as (SET dst (...))
 134     Component *comp = NULL;
 135     if (sets_result())  comp = _components.iter();
 136     while ((comp = _components.iter()) != NULL) {
 137       if (comp->isa(Component::TEMP)) {
 138         return true;
 139       }
 140     }
 141   }
 142 
 143   return false;
 144 }
 145 
 146 uint InstructForm::num_defs_or_kills() {
 147   uint   defs_or_kills = 0;
 148 
 149   _components.reset();
 150   for( Component *comp; (comp = _components.iter()) != NULL; ) {
 151     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
 152       ++defs_or_kills;
 153     }
 154   }
 155 
 156   return  defs_or_kills;
 157 }
 158 
 159 // This instruction has an expand rule?
 160 bool InstructForm::expands() const {
 161   return ( _exprule != NULL );
 162 }
 163 
 164 // This instruction has a late expand rule?
 165 bool InstructForm::postalloc_expands() const {
 166   return _is_postalloc_expand;
 167 }
 168 
 169 // This instruction has a peephole rule?
 170 Peephole *InstructForm::peepholes() const {
 171   return _peephole;
 172 }
 173 
 174 // This instruction has a peephole rule?
 175 void InstructForm::append_peephole(Peephole *peephole) {
 176   if( _peephole == NULL ) {
 177     _peephole = peephole;
 178   } else {
 179     _peephole->append_peephole(peephole);
 180   }
 181 }
 182 
 183 
 184 // ideal opcode enumeration
 185 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
 186   if( !_matrule ) return "Node"; // Something weird
 187   // Chain rules do not really have ideal Opcodes; use their source
 188   // operand ideal Opcode instead.
 189   if( is_simple_chain_rule(globalNames) ) {
 190     const char *src = _matrule->_rChild->_opType;
 191     OperandForm *src_op = globalNames[src]->is_operand();
 192     assert( src_op, "Not operand class of chain rule" );
 193     if( !src_op->_matrule ) return "Node";
 194     return src_op->_matrule->_opType;
 195   }
 196   // Operand chain rules do not really have ideal Opcodes
 197   if( _matrule->is_chain_rule(globalNames) )
 198     return "Node";
 199   return strcmp(_matrule->_opType,"Set")
 200     ? _matrule->_opType
 201     : _matrule->_rChild->_opType;
 202 }
 203 
 204 // Recursive check on all operands' match rules in my match rule
 205 bool InstructForm::is_pinned(FormDict &globals) {
 206   if ( ! _matrule)  return false;
 207 
 208   int  index   = 0;
 209   if (_matrule->find_type("Goto",          index)) return true;
 210   if (_matrule->find_type("If",            index)) return true;
 211   if (_matrule->find_type("CountedLoopEnd",index)) return true;
 212   if (_matrule->find_type("Return",        index)) return true;
 213   if (_matrule->find_type("Rethrow",       index)) return true;
 214   if (_matrule->find_type("TailCall",      index)) return true;
 215   if (_matrule->find_type("TailJump",      index)) return true;
 216   if (_matrule->find_type("Halt",          index)) return true;
 217   if (_matrule->find_type("Jump",          index)) return true;
 218 
 219   return is_parm(globals);
 220 }
 221 
 222 // Recursive check on all operands' match rules in my match rule
 223 bool InstructForm::is_projection(FormDict &globals) {
 224   if ( ! _matrule)  return false;
 225 
 226   int  index   = 0;
 227   if (_matrule->find_type("Goto",    index)) return true;
 228   if (_matrule->find_type("Return",  index)) return true;
 229   if (_matrule->find_type("Rethrow", index)) return true;
 230   if (_matrule->find_type("TailCall",index)) return true;
 231   if (_matrule->find_type("TailJump",index)) return true;
 232   if (_matrule->find_type("Halt",    index)) return true;
 233 
 234   return false;
 235 }
 236 
 237 // Recursive check on all operands' match rules in my match rule
 238 bool InstructForm::is_parm(FormDict &globals) {
 239   if ( ! _matrule)  return false;
 240 
 241   int  index   = 0;
 242   if (_matrule->find_type("Parm",index)) return true;
 243 
 244   return false;
 245 }
 246 
 247 bool InstructForm::is_ideal_negD() const {
 248   return (_matrule && _matrule->_rChild && strcmp(_matrule->_rChild->_opType, "NegD") == 0);
 249 }
 250 
 251 // Return 'true' if this instruction matches an ideal 'Copy*' node
 252 int InstructForm::is_ideal_copy() const {
 253   return _matrule ? _matrule->is_ideal_copy() : 0;
 254 }
 255 
 256 // Return 'true' if this instruction is too complex to rematerialize.
 257 int InstructForm::is_expensive() const {
 258   // We can prove it is cheap if it has an empty encoding.
 259   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
 260   if (is_empty_encoding())
 261     return 0;
 262 
 263   if (is_tls_instruction())
 264     return 1;
 265 
 266   if (_matrule == NULL)  return 0;
 267 
 268   return _matrule->is_expensive();
 269 }
 270 
 271 // Has an empty encoding if _size is a constant zero or there
 272 // are no ins_encode tokens.
 273 int InstructForm::is_empty_encoding() const {
 274   if (_insencode != NULL) {
 275     _insencode->reset();
 276     if (_insencode->encode_class_iter() == NULL) {
 277       return 1;
 278     }
 279   }
 280   if (_size != NULL && strcmp(_size, "0") == 0) {
 281     return 1;
 282   }
 283   return 0;
 284 }
 285 
 286 int InstructForm::is_tls_instruction() const {
 287   if (_ident != NULL &&
 288       ( ! strcmp( _ident,"tlsLoadP") ||
 289         ! strncmp(_ident,"tlsLoadP_",9)) ) {
 290     return 1;
 291   }
 292 
 293   if (_matrule != NULL && _insencode != NULL) {
 294     const char* opType = _matrule->_opType;
 295     if (strcmp(opType, "Set")==0)
 296       opType = _matrule->_rChild->_opType;
 297     if (strcmp(opType,"ThreadLocal")==0) {
 298       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
 299               (_ident == NULL ? "NULL" : _ident));
 300       return 1;
 301     }
 302   }
 303 
 304   return 0;
 305 }
 306 
 307 
 308 // Return 'true' if this instruction matches an ideal 'If' node
 309 bool InstructForm::is_ideal_if() const {
 310   if( _matrule == NULL ) return false;
 311 
 312   return _matrule->is_ideal_if();
 313 }
 314 
 315 // Return 'true' if this instruction matches an ideal 'FastLock' node
 316 bool InstructForm::is_ideal_fastlock() const {
 317   if( _matrule == NULL ) return false;
 318 
 319   return _matrule->is_ideal_fastlock();
 320 }
 321 
 322 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
 323 bool InstructForm::is_ideal_membar() const {
 324   if( _matrule == NULL ) return false;
 325 
 326   return _matrule->is_ideal_membar();
 327 }
 328 
 329 // Return 'true' if this instruction matches an ideal 'LoadPC' node
 330 bool InstructForm::is_ideal_loadPC() const {
 331   if( _matrule == NULL ) return false;
 332 
 333   return _matrule->is_ideal_loadPC();
 334 }
 335 
 336 // Return 'true' if this instruction matches an ideal 'Box' node
 337 bool InstructForm::is_ideal_box() const {
 338   if( _matrule == NULL ) return false;
 339 
 340   return _matrule->is_ideal_box();
 341 }
 342 
 343 // Return 'true' if this instruction matches an ideal 'Goto' node
 344 bool InstructForm::is_ideal_goto() const {
 345   if( _matrule == NULL ) return false;
 346 
 347   return _matrule->is_ideal_goto();
 348 }
 349 
 350 // Return 'true' if this instruction matches an ideal 'Jump' node
 351 bool InstructForm::is_ideal_jump() const {
 352   if( _matrule == NULL ) return false;
 353 
 354   return _matrule->is_ideal_jump();
 355 }
 356 
 357 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
 358 bool InstructForm::is_ideal_branch() const {
 359   if( _matrule == NULL ) return false;
 360 
 361   return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
 362 }
 363 
 364 
 365 // Return 'true' if this instruction matches an ideal 'Return' node
 366 bool InstructForm::is_ideal_return() const {
 367   if( _matrule == NULL ) return false;
 368 
 369   // Check MatchRule to see if the first entry is the ideal "Return" node
 370   int  index   = 0;
 371   if (_matrule->find_type("Return",index)) return true;
 372   if (_matrule->find_type("Rethrow",index)) return true;
 373   if (_matrule->find_type("TailCall",index)) return true;
 374   if (_matrule->find_type("TailJump",index)) return true;
 375 
 376   return false;
 377 }
 378 
 379 // Return 'true' if this instruction matches an ideal 'Halt' node
 380 bool InstructForm::is_ideal_halt() const {
 381   int  index   = 0;
 382   return _matrule && _matrule->find_type("Halt",index);
 383 }
 384 
 385 // Return 'true' if this instruction matches an ideal 'SafePoint' node
 386 bool InstructForm::is_ideal_safepoint() const {
 387   int  index   = 0;
 388   return _matrule && _matrule->find_type("SafePoint",index);
 389 }
 390 
 391 // Return 'true' if this instruction matches an ideal 'Nop' node
 392 bool InstructForm::is_ideal_nop() const {
 393   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
 394 }
 395 
 396 bool InstructForm::is_ideal_control() const {
 397   if ( ! _matrule)  return false;
 398 
 399   return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
 400 }
 401 
 402 // Return 'true' if this instruction matches an ideal 'Call' node
 403 Form::CallType InstructForm::is_ideal_call() const {
 404   if( _matrule == NULL ) return Form::invalid_type;
 405 
 406   // Check MatchRule to see if the first entry is the ideal "Call" node
 407   int  idx   = 0;
 408   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
 409   idx = 0;
 410   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
 411   idx = 0;
 412   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
 413   idx = 0;
 414   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
 415   idx = 0;
 416   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
 417   idx = 0;
 418   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
 419   idx = 0;
 420   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
 421   idx = 0;
 422 
 423   return Form::invalid_type;
 424 }
 425 
 426 // Return 'true' if this instruction matches an ideal 'Load?' node
 427 Form::DataType InstructForm::is_ideal_load() const {
 428   if( _matrule == NULL ) return Form::none;
 429 
 430   return  _matrule->is_ideal_load();
 431 }
 432 
 433 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
 434 bool InstructForm::skip_antidep_check() const {
 435   if( _matrule == NULL ) return false;
 436 
 437   return  _matrule->skip_antidep_check();
 438 }
 439 
 440 // Return 'true' if this instruction matches an ideal 'Load?' node
 441 Form::DataType InstructForm::is_ideal_store() const {
 442   if( _matrule == NULL ) return Form::none;
 443 
 444   return  _matrule->is_ideal_store();
 445 }
 446 
 447 // Return 'true' if this instruction matches an ideal vector node
 448 bool InstructForm::is_vector() const {
 449   if( _matrule == NULL ) return false;
 450 
 451   return _matrule->is_vector();
 452 }
 453 
 454 
 455 // Return the input register that must match the output register
 456 // If this is not required, return 0
 457 uint InstructForm::two_address(FormDict &globals) {
 458   uint  matching_input = 0;
 459   if(_components.count() == 0) return 0;
 460 
 461   _components.reset();
 462   Component *comp = _components.iter();
 463   // Check if there is a DEF
 464   if( comp->isa(Component::DEF) ) {
 465     // Check that this is a register
 466     const char  *def_type = comp->_type;
 467     const Form  *form     = globals[def_type];
 468     OperandForm *op       = form->is_operand();
 469     if( op ) {
 470       if( op->constrained_reg_class() != NULL &&
 471           op->interface_type(globals) == Form::register_interface ) {
 472         // Remember the local name for equality test later
 473         const char *def_name = comp->_name;
 474         // Check if a component has the same name and is a USE
 475         do {
 476           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
 477             return operand_position_format(def_name);
 478           }
 479         } while( (comp = _components.iter()) != NULL);
 480       }
 481     }
 482   }
 483 
 484   return 0;
 485 }
 486 
 487 
 488 // when chaining a constant to an instruction, returns 'true' and sets opType
 489 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
 490   const char *dummy  = NULL;
 491   const char *dummy2 = NULL;
 492   return is_chain_of_constant(globals, dummy, dummy2);
 493 }
 494 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
 495                 const char * &opTypeParam) {
 496   const char *result = NULL;
 497 
 498   return is_chain_of_constant(globals, opTypeParam, result);
 499 }
 500 
 501 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
 502                 const char * &opTypeParam, const char * &resultParam) {
 503   Form::DataType  data_type = Form::none;
 504   if ( ! _matrule)  return data_type;
 505 
 506   // !!!!!
 507   // The source of the chain rule is 'position = 1'
 508   uint         position = 1;
 509   const char  *result   = NULL;
 510   const char  *name     = NULL;
 511   const char  *opType   = NULL;
 512   // Here base_operand is looking for an ideal type to be returned (opType).
 513   if ( _matrule->is_chain_rule(globals)
 514        && _matrule->base_operand(position, globals, result, name, opType) ) {
 515     data_type = ideal_to_const_type(opType);
 516 
 517     // if it isn't an ideal constant type, just return
 518     if ( data_type == Form::none ) return data_type;
 519 
 520     // Ideal constant types also adjust the opType parameter.
 521     resultParam = result;
 522     opTypeParam = opType;
 523     return data_type;
 524   }
 525 
 526   return data_type;
 527 }
 528 
 529 // Check if a simple chain rule
 530 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
 531   if( _matrule && _matrule->sets_result()
 532       && _matrule->_rChild->_lChild == NULL
 533       && globals[_matrule->_rChild->_opType]
 534       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
 535     return true;
 536   }
 537   return false;
 538 }
 539 
 540 // check for structural rematerialization
 541 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
 542   bool   rematerialize = false;
 543 
 544   Form::DataType data_type = is_chain_of_constant(globals);
 545   if( data_type != Form::none )
 546     rematerialize = true;
 547 
 548   // Constants
 549   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
 550     rematerialize = true;
 551 
 552   // Pseudo-constants (values easily available to the runtime)
 553   if (is_empty_encoding() && is_tls_instruction())
 554     rematerialize = true;
 555 
 556   // 1-input, 1-output, such as copies or increments.
 557   if( _components.count() == 2 &&
 558       _components[0]->is(Component::DEF) &&
 559       _components[1]->isa(Component::USE) )
 560     rematerialize = true;
 561 
 562   // Check for an ideal 'Load?' and eliminate rematerialize option
 563   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
 564        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
 565        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
 566     rematerialize = false;
 567   }
 568 
 569   // Always rematerialize the flags.  They are more expensive to save &
 570   // restore than to recompute (and possibly spill the compare's inputs).
 571   if( _components.count() >= 1 ) {
 572     Component *c = _components[0];
 573     const Form *form = globals[c->_type];
 574     OperandForm *opform = form->is_operand();
 575     if( opform ) {
 576       // Avoid the special stack_slots register classes
 577       const char *rc_name = opform->constrained_reg_class();
 578       if( rc_name ) {
 579         if( strcmp(rc_name,"stack_slots") ) {
 580           // Check for ideal_type of RegFlags
 581           const char *type = opform->ideal_type( globals, registers );
 582           if( (type != NULL) && !strcmp(type, "RegFlags") )
 583             rematerialize = true;
 584         } else
 585           rematerialize = false; // Do not rematerialize things target stk
 586       }
 587     }
 588   }
 589 
 590   return rematerialize;
 591 }
 592 
 593 // loads from memory, so must check for anti-dependence
 594 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
 595   if ( skip_antidep_check() ) return false;
 596 
 597   // Machine independent loads must be checked for anti-dependences
 598   if( is_ideal_load() != Form::none )  return true;
 599 
 600   // !!!!! !!!!! !!!!!
 601   // TEMPORARY
 602   // if( is_simple_chain_rule(globals) )  return false;
 603 
 604   // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
 605   // but writes none
 606   if( _matrule && _matrule->_rChild &&
 607       ( strcmp(_matrule->_rChild->_opType,"StrComp"    )==0 ||
 608         strcmp(_matrule->_rChild->_opType,"StrEquals"  )==0 ||
 609         strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
 610         strcmp(_matrule->_rChild->_opType,"AryEq"      )==0 ))
 611     return true;
 612 
 613   // Check if instruction has a USE of a memory operand class, but no defs
 614   bool USE_of_memory  = false;
 615   bool DEF_of_memory  = false;
 616   Component     *comp = NULL;
 617   ComponentList &components = (ComponentList &)_components;
 618 
 619   components.reset();
 620   while( (comp = components.iter()) != NULL ) {
 621     const Form  *form = globals[comp->_type];
 622     if( !form ) continue;
 623     OpClassForm *op   = form->is_opclass();
 624     if( !op ) continue;
 625     if( form->interface_type(globals) == Form::memory_interface ) {
 626       if( comp->isa(Component::USE) ) USE_of_memory = true;
 627       if( comp->isa(Component::DEF) ) {
 628         OperandForm *oper = form->is_operand();
 629         if( oper && oper->is_user_name_for_sReg() ) {
 630           // Stack slots are unaliased memory handled by allocator
 631           oper = oper;  // debug stopping point !!!!!
 632         } else {
 633           DEF_of_memory = true;
 634         }
 635       }
 636     }
 637   }
 638   return (USE_of_memory && !DEF_of_memory);
 639 }
 640 
 641 
 642 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
 643   if( _matrule == NULL ) return false;
 644   if( !_matrule->_opType ) return false;
 645 
 646   if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
 647   if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
 648   if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
 649   if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
 650   if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true;
 651   if( strcmp(_matrule->_opType,"MemBarVolatile") == 0 ) return true;
 652   if( strcmp(_matrule->_opType,"StoreFence") == 0 ) return true;
 653   if( strcmp(_matrule->_opType,"LoadFence") == 0 ) return true;
 654 
 655   return false;
 656 }
 657 
 658 int InstructForm::memory_operand(FormDict &globals) const {
 659   // Machine independent loads must be checked for anti-dependences
 660   // Check if instruction has a USE of a memory operand class, or a def.
 661   int USE_of_memory  = 0;
 662   int DEF_of_memory  = 0;
 663   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
 664   const char*    last_memory_USE = NULL;
 665   Component     *unique          = NULL;
 666   Component     *comp            = NULL;
 667   ComponentList &components      = (ComponentList &)_components;
 668 
 669   components.reset();
 670   while( (comp = components.iter()) != NULL ) {
 671     const Form  *form = globals[comp->_type];
 672     if( !form ) continue;
 673     OpClassForm *op   = form->is_opclass();
 674     if( !op ) continue;
 675     if( op->stack_slots_only(globals) )  continue;
 676     if( form->interface_type(globals) == Form::memory_interface ) {
 677       if( comp->isa(Component::DEF) ) {
 678         last_memory_DEF = comp->_name;
 679         DEF_of_memory++;
 680         unique = comp;
 681       } else if( comp->isa(Component::USE) ) {
 682         if( last_memory_DEF != NULL ) {
 683           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
 684           last_memory_DEF = NULL;
 685         }
 686         // Handles same memory being used multiple times in the case of BMI1 instructions.
 687         if (last_memory_USE != NULL) {
 688           if (strcmp(comp->_name, last_memory_USE) != 0) {
 689             USE_of_memory++;
 690           }
 691         } else {
 692           USE_of_memory++;
 693         }
 694         last_memory_USE = comp->_name;
 695 
 696         if (DEF_of_memory == 0)  // defs take precedence
 697           unique = comp;
 698       } else {
 699         assert(last_memory_DEF == NULL, "unpaired memory DEF");
 700       }
 701     }
 702   }
 703   assert(last_memory_DEF == NULL, "unpaired memory DEF");
 704   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
 705   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
 706   if( (USE_of_memory + DEF_of_memory) > 0 ) {
 707     if( is_simple_chain_rule(globals) ) {
 708       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
 709       //((InstructForm*)this)->dump();
 710       // Preceding code prints nothing on sparc and these insns on intel:
 711       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
 712       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
 713       return NO_MEMORY_OPERAND;
 714     }
 715 
 716     if( DEF_of_memory == 1 ) {
 717       assert(unique != NULL, "");
 718       if( USE_of_memory == 0 ) {
 719         // unique def, no uses
 720       } else {
 721         // // unique def, some uses
 722         // // must return bottom unless all uses match def
 723         // unique = NULL;
 724       }
 725     } else if( DEF_of_memory > 0 ) {
 726       // multiple defs, don't care about uses
 727       unique = NULL;
 728     } else if( USE_of_memory == 1) {
 729       // unique use, no defs
 730       assert(unique != NULL, "");
 731     } else if( USE_of_memory > 0 ) {
 732       // multiple uses, no defs
 733       unique = NULL;
 734     } else {
 735       assert(false, "bad case analysis");
 736     }
 737     // process the unique DEF or USE, if there is one
 738     if( unique == NULL ) {
 739       return MANY_MEMORY_OPERANDS;
 740     } else {
 741       int pos = components.operand_position(unique->_name);
 742       if( unique->isa(Component::DEF) ) {
 743         pos += 1;                // get corresponding USE from DEF
 744       }
 745       assert(pos >= 1, "I was just looking at it!");
 746       return pos;
 747     }
 748   }
 749 
 750   // missed the memory op??
 751   if( true ) {  // %%% should not be necessary
 752     if( is_ideal_store() != Form::none ) {
 753       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
 754       ((InstructForm*)this)->dump();
 755       // pretend it has multiple defs and uses
 756       return MANY_MEMORY_OPERANDS;
 757     }
 758     if( is_ideal_load()  != Form::none ) {
 759       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
 760       ((InstructForm*)this)->dump();
 761       // pretend it has multiple uses and no defs
 762       return MANY_MEMORY_OPERANDS;
 763     }
 764   }
 765 
 766   return NO_MEMORY_OPERAND;
 767 }
 768 
 769 
 770 // This instruction captures the machine-independent bottom_type
 771 // Expected use is for pointer vs oop determination for LoadP
 772 bool InstructForm::captures_bottom_type(FormDict &globals) const {
 773   if( _matrule && _matrule->_rChild &&
 774        (!strcmp(_matrule->_rChild->_opType,"CastPP")       ||  // new result type
 775         !strcmp(_matrule->_rChild->_opType,"CastX2P")      ||  // new result type
 776         !strcmp(_matrule->_rChild->_opType,"DecodeN")      ||
 777         !strcmp(_matrule->_rChild->_opType,"EncodeP")      ||
 778         !strcmp(_matrule->_rChild->_opType,"DecodeNKlass") ||
 779         !strcmp(_matrule->_rChild->_opType,"EncodePKlass") ||
 780         !strcmp(_matrule->_rChild->_opType,"LoadN")        ||
 781         !strcmp(_matrule->_rChild->_opType,"LoadNKlass")   ||
 782         !strcmp(_matrule->_rChild->_opType,"CreateEx")     ||  // type of exception
 783         !strcmp(_matrule->_rChild->_opType,"CheckCastPP")  ||
 784         !strcmp(_matrule->_rChild->_opType,"GetAndSetP")   ||
 785         !strcmp(_matrule->_rChild->_opType,"GetAndSetN")) )  return true;
 786   else if ( is_ideal_load() == Form::idealP )                return true;
 787   else if ( is_ideal_store() != Form::none  )                return true;
 788 
 789   if (needs_base_oop_edge(globals)) return true;
 790 
 791   if (is_vector()) return true;
 792   if (is_mach_constant()) return true;
 793 
 794   return  false;
 795 }
 796 
 797 
 798 // Access instr_cost attribute or return NULL.
 799 const char* InstructForm::cost() {
 800   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
 801     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
 802       return cur->_val;
 803     }
 804   }
 805   return NULL;
 806 }
 807 
 808 // Return count of top-level operands.
 809 uint InstructForm::num_opnds() {
 810   int  num_opnds = _components.num_operands();
 811 
 812   // Need special handling for matching some ideal nodes
 813   // i.e. Matching a return node
 814   /*
 815   if( _matrule ) {
 816     if( strcmp(_matrule->_opType,"Return"   )==0 ||
 817         strcmp(_matrule->_opType,"Halt"     )==0 )
 818       return 3;
 819   }
 820     */
 821   return num_opnds;
 822 }
 823 
 824 const char* InstructForm::opnd_ident(int idx) {
 825   return _components.at(idx)->_name;
 826 }
 827 
 828 const char* InstructForm::unique_opnd_ident(uint idx) {
 829   uint i;
 830   for (i = 1; i < num_opnds(); ++i) {
 831     if (unique_opnds_idx(i) == idx) {
 832       break;
 833     }
 834   }
 835   return (_components.at(i) != NULL) ? _components.at(i)->_name : "";
 836 }
 837 
 838 // Return count of unmatched operands.
 839 uint InstructForm::num_post_match_opnds() {
 840   uint  num_post_match_opnds = _components.count();
 841   uint  num_match_opnds = _components.match_count();
 842   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
 843 
 844   return num_post_match_opnds;
 845 }
 846 
 847 // Return the number of leaves below this complex operand
 848 uint InstructForm::num_consts(FormDict &globals) const {
 849   if ( ! _matrule) return 0;
 850 
 851   // This is a recursive invocation on all operands in the matchrule
 852   return _matrule->num_consts(globals);
 853 }
 854 
 855 // Constants in match rule with specified type
 856 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
 857   if ( ! _matrule) return 0;
 858 
 859   // This is a recursive invocation on all operands in the matchrule
 860   return _matrule->num_consts(globals, type);
 861 }
 862 
 863 
 864 // Return the register class associated with 'leaf'.
 865 const char *InstructForm::out_reg_class(FormDict &globals) {
 866   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
 867 
 868   return NULL;
 869 }
 870 
 871 
 872 
 873 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
 874 uint InstructForm::oper_input_base(FormDict &globals) {
 875   if( !_matrule ) return 1;     // Skip control for most nodes
 876 
 877   // Need special handling for matching some ideal nodes
 878   // i.e. Matching a return node
 879   if( strcmp(_matrule->_opType,"Return"    )==0 ||
 880       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
 881       strcmp(_matrule->_opType,"TailCall"  )==0 ||
 882       strcmp(_matrule->_opType,"TailJump"  )==0 ||
 883       strcmp(_matrule->_opType,"SafePoint" )==0 ||
 884       strcmp(_matrule->_opType,"Halt"      )==0 )
 885     return AdlcVMDeps::Parms;   // Skip the machine-state edges
 886 
 887   if( _matrule->_rChild &&
 888       ( strcmp(_matrule->_rChild->_opType,"AryEq"     )==0 ||
 889         strcmp(_matrule->_rChild->_opType,"StrComp"   )==0 ||
 890         strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
 891         strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 ||
 892         strcmp(_matrule->_rChild->_opType,"EncodeISOArray")==0)) {
 893         // String.(compareTo/equals/indexOf) and Arrays.equals
 894         // and sun.nio.cs.iso8859_1$Encoder.EncodeISOArray
 895         // take 1 control and 1 memory edges.
 896     return 2;
 897   }
 898 
 899   // Check for handling of 'Memory' input/edge in the ideal world.
 900   // The AD file writer is shielded from knowledge of these edges.
 901   int base = 1;                 // Skip control
 902   base += _matrule->needs_ideal_memory_edge(globals);
 903 
 904   // Also skip the base-oop value for uses of derived oops.
 905   // The AD file writer is shielded from knowledge of these edges.
 906   base += needs_base_oop_edge(globals);
 907 
 908   return base;
 909 }
 910 
 911 // This function determines the order of the MachOper in _opnds[]
 912 // by writing the operand names into the _components list.
 913 //
 914 // Implementation does not modify state of internal structures
 915 void InstructForm::build_components() {
 916   // Add top-level operands to the components
 917   if (_matrule)  _matrule->append_components(_localNames, _components);
 918 
 919   // Add parameters that "do not appear in match rule".
 920   bool has_temp = false;
 921   const char *name;
 922   const char *kill_name = NULL;
 923   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
 924     OpClassForm *opForm = _localNames[name]->is_opclass();
 925     assert(opForm != NULL, "sanity");
 926 
 927     Effect* e = NULL;
 928     {
 929       const Form* form = _effects[name];
 930       e = form ? form->is_effect() : NULL;
 931     }
 932 
 933     if (e != NULL) {
 934       has_temp |= e->is(Component::TEMP);
 935 
 936       // KILLs must be declared after any TEMPs because TEMPs are real
 937       // uses so their operand numbering must directly follow the real
 938       // inputs from the match rule.  Fixing the numbering seems
 939       // complex so simply enforce the restriction during parse.
 940       if (kill_name != NULL &&
 941           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
 942         OpClassForm* kill = _localNames[kill_name]->is_opclass();
 943         assert(kill != NULL, "sanity");
 944         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
 945                              _ident, kill->_ident, kill_name);
 946       } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
 947         kill_name = name;
 948       }
 949     }
 950 
 951     const Component *component  = _components.search(name);
 952     if ( component  == NULL ) {
 953       if (e) {
 954         _components.insert(name, opForm->_ident, e->_use_def, false);
 955         component = _components.search(name);
 956         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
 957           const Form *form = globalAD->globalNames()[component->_type];
 958           assert( form, "component type must be a defined form");
 959           OperandForm *op   = form->is_operand();
 960           if (op->_interface && op->_interface->is_RegInterface()) {
 961             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
 962                                  _ident, opForm->_ident, name);
 963           }
 964         }
 965       } else {
 966         // This would be a nice warning but it triggers in a few places in a benign way
 967         // if (_matrule != NULL && !expands()) {
 968         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
 969         //                        _ident, opForm->_ident, name);
 970         // }
 971         _components.insert(name, opForm->_ident, Component::INVALID, false);
 972       }
 973     }
 974     else if (e) {
 975       // Component was found in the list
 976       // Check if there is a new effect that requires an extra component.
 977       // This happens when adding 'USE' to a component that is not yet one.
 978       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
 979         if (component->isa(Component::USE) && _matrule) {
 980           const Form *form = globalAD->globalNames()[component->_type];
 981           assert( form, "component type must be a defined form");
 982           OperandForm *op   = form->is_operand();
 983           if (op->_interface && op->_interface->is_RegInterface()) {
 984             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
 985                                  _ident, opForm->_ident, name);
 986           }
 987         }
 988         _components.insert(name, opForm->_ident, e->_use_def, false);
 989       } else {
 990         Component  *comp = (Component*)component;
 991         comp->promote_use_def_info(e->_use_def);
 992       }
 993       // Component positions are zero based.
 994       int  pos  = _components.operand_position(name);
 995       assert( ! (component->isa(Component::DEF) && (pos >= 1)),
 996               "Component::DEF can only occur in the first position");
 997     }
 998   }
 999 
1000   // Resolving the interactions between expand rules and TEMPs would
1001   // be complex so simply disallow it.
1002   if (_matrule == NULL && has_temp) {
1003     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
1004   }
1005 
1006   return;
1007 }
1008 
1009 // Return zero-based position in component list;  -1 if not in list.
1010 int   InstructForm::operand_position(const char *name, int usedef) {
1011   return unique_opnds_idx(_components.operand_position(name, usedef, this));
1012 }
1013 
1014 int   InstructForm::operand_position_format(const char *name) {
1015   return unique_opnds_idx(_components.operand_position_format(name, this));
1016 }
1017 
1018 // Return zero-based position in component list; -1 if not in list.
1019 int   InstructForm::label_position() {
1020   return unique_opnds_idx(_components.label_position());
1021 }
1022 
1023 int   InstructForm::method_position() {
1024   return unique_opnds_idx(_components.method_position());
1025 }
1026 
1027 // Return number of relocation entries needed for this instruction.
1028 uint  InstructForm::reloc(FormDict &globals) {
1029   uint reloc_entries  = 0;
1030   // Check for "Call" nodes
1031   if ( is_ideal_call() )      ++reloc_entries;
1032   if ( is_ideal_return() )    ++reloc_entries;
1033   if ( is_ideal_safepoint() ) ++reloc_entries;
1034 
1035 
1036   // Check if operands MAYBE oop pointers, by checking for ConP elements
1037   // Proceed through the leaves of the match-tree and check for ConPs
1038   if ( _matrule != NULL ) {
1039     uint         position = 0;
1040     const char  *result   = NULL;
1041     const char  *name     = NULL;
1042     const char  *opType   = NULL;
1043     while (_matrule->base_operand(position, globals, result, name, opType)) {
1044       if ( strcmp(opType,"ConP") == 0 ) {
1045 #ifdef SPARC
1046         reloc_entries += 2; // 1 for sethi + 1 for setlo
1047 #else
1048         ++reloc_entries;
1049 #endif
1050       }
1051       ++position;
1052     }
1053   }
1054 
1055   // Above is only a conservative estimate
1056   // because it did not check contents of operand classes.
1057   // !!!!! !!!!!
1058   // Add 1 to reloc info for each operand class in the component list.
1059   Component  *comp;
1060   _components.reset();
1061   while ( (comp = _components.iter()) != NULL ) {
1062     const Form        *form = globals[comp->_type];
1063     assert( form, "Did not find component's type in global names");
1064     const OpClassForm *opc  = form->is_opclass();
1065     const OperandForm *oper = form->is_operand();
1066     if ( opc && (oper == NULL) ) {
1067       ++reloc_entries;
1068     } else if ( oper ) {
1069       // floats and doubles loaded out of method's constant pool require reloc info
1070       Form::DataType type = oper->is_base_constant(globals);
1071       if ( (type == Form::idealF) || (type == Form::idealD) ) {
1072         ++reloc_entries;
1073       }
1074     }
1075   }
1076 
1077   // Float and Double constants may come from the CodeBuffer table
1078   // and require relocatable addresses for access
1079   // !!!!!
1080   // Check for any component being an immediate float or double.
1081   Form::DataType data_type = is_chain_of_constant(globals);
1082   if( data_type==idealD || data_type==idealF ) {
1083 #ifdef SPARC
1084     // sparc required more relocation entries for floating constants
1085     // (expires 9/98)
1086     reloc_entries += 6;
1087 #else
1088     reloc_entries++;
1089 #endif
1090   }
1091 
1092   return reloc_entries;
1093 }
1094 
1095 // Utility function defined in archDesc.cpp
1096 extern bool is_def(int usedef);
1097 
1098 // Return the result of reducing an instruction
1099 const char *InstructForm::reduce_result() {
1100   const char* result = "Universe";  // default
1101   _components.reset();
1102   Component *comp = _components.iter();
1103   if (comp != NULL && comp->isa(Component::DEF)) {
1104     result = comp->_type;
1105     // Override this if the rule is a store operation:
1106     if (_matrule && _matrule->_rChild &&
1107         is_store_to_memory(_matrule->_rChild->_opType))
1108       result = "Universe";
1109   }
1110   return result;
1111 }
1112 
1113 // Return the name of the operand on the right hand side of the binary match
1114 // Return NULL if there is no right hand side
1115 const char *InstructForm::reduce_right(FormDict &globals)  const {
1116   if( _matrule == NULL ) return NULL;
1117   return  _matrule->reduce_right(globals);
1118 }
1119 
1120 // Similar for left
1121 const char *InstructForm::reduce_left(FormDict &globals)   const {
1122   if( _matrule == NULL ) return NULL;
1123   return  _matrule->reduce_left(globals);
1124 }
1125 
1126 
1127 // Base class for this instruction, MachNode except for calls
1128 const char *InstructForm::mach_base_class(FormDict &globals)  const {
1129   if( is_ideal_call() == Form::JAVA_STATIC ) {
1130     return "MachCallStaticJavaNode";
1131   }
1132   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
1133     return "MachCallDynamicJavaNode";
1134   }
1135   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
1136     return "MachCallRuntimeNode";
1137   }
1138   else if( is_ideal_call() == Form::JAVA_LEAF ) {
1139     return "MachCallLeafNode";
1140   }
1141   else if (is_ideal_return()) {
1142     return "MachReturnNode";
1143   }
1144   else if (is_ideal_halt()) {
1145     return "MachHaltNode";
1146   }
1147   else if (is_ideal_safepoint()) {
1148     return "MachSafePointNode";
1149   }
1150   else if (is_ideal_if()) {
1151     return "MachIfNode";
1152   }
1153   else if (is_ideal_goto()) {
1154     return "MachGotoNode";
1155   }
1156   else if (is_ideal_fastlock()) {
1157     return "MachFastLockNode";
1158   }
1159   else if (is_ideal_nop()) {
1160     return "MachNopNode";
1161   }
1162   else if (is_mach_constant()) {
1163     return "MachConstantNode";
1164   }
1165   else if (captures_bottom_type(globals)) {
1166     return "MachTypeNode";
1167   } else {
1168     return "MachNode";
1169   }
1170   assert( false, "ShouldNotReachHere()");
1171   return NULL;
1172 }
1173 
1174 // Compare the instruction predicates for textual equality
1175 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
1176   const Predicate *pred1  = instr1->_predicate;
1177   const Predicate *pred2  = instr2->_predicate;
1178   if( pred1 == NULL && pred2 == NULL ) {
1179     // no predicates means they are identical
1180     return true;
1181   }
1182   if( pred1 != NULL && pred2 != NULL ) {
1183     // compare the predicates
1184     if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
1185       return true;
1186     }
1187   }
1188 
1189   return false;
1190 }
1191 
1192 // Check if this instruction can cisc-spill to 'alternate'
1193 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
1194   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
1195   // Do not replace if a cisc-version has been found.
1196   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
1197 
1198   int         cisc_spill_operand = Maybe_cisc_spillable;
1199   char       *result             = NULL;
1200   char       *result2            = NULL;
1201   const char *op_name            = NULL;
1202   const char *reg_type           = NULL;
1203   FormDict   &globals            = AD.globalNames();
1204   cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
1205   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
1206     cisc_spill_operand = operand_position(op_name, Component::USE);
1207     int def_oper  = operand_position(op_name, Component::DEF);
1208     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
1209       // Do not support cisc-spilling for destination operands and
1210       // make sure they have the same number of operands.
1211       _cisc_spill_alternate = instr;
1212       instr->set_cisc_alternate(true);
1213       if( AD._cisc_spill_debug ) {
1214         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
1215         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
1216       }
1217       // Record that a stack-version of the reg_mask is needed
1218       // !!!!!
1219       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
1220       assert( oper != NULL, "cisc-spilling non operand");
1221       const char *reg_class_name = oper->constrained_reg_class();
1222       AD.set_stack_or_reg(reg_class_name);
1223       const char *reg_mask_name  = AD.reg_mask(*oper);
1224       set_cisc_reg_mask_name(reg_mask_name);
1225       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
1226     } else {
1227       cisc_spill_operand = Not_cisc_spillable;
1228     }
1229   } else {
1230     cisc_spill_operand = Not_cisc_spillable;
1231   }
1232 
1233   set_cisc_spill_operand(cisc_spill_operand);
1234   return (cisc_spill_operand != Not_cisc_spillable);
1235 }
1236 
1237 // Check to see if this instruction can be replaced with the short branch
1238 // instruction `short-branch'
1239 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
1240   if (_matrule != NULL &&
1241       this != short_branch &&   // Don't match myself
1242       !is_short_branch() &&     // Don't match another short branch variant
1243       reduce_result() != NULL &&
1244       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
1245       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
1246     // The instructions are equivalent.
1247 
1248     // Now verify that both instructions have the same parameters and
1249     // the same effects. Both branch forms should have the same inputs
1250     // and resulting projections to correctly replace a long branch node
1251     // with corresponding short branch node during code generation.
1252 
1253     bool different = false;
1254     if (short_branch->_components.count() != _components.count()) {
1255        different = true;
1256     } else if (_components.count() > 0) {
1257       short_branch->_components.reset();
1258       _components.reset();
1259       Component *comp;
1260       while ((comp = _components.iter()) != NULL) {
1261         Component *short_comp = short_branch->_components.iter();
1262         if (short_comp == NULL ||
1263             short_comp->_type != comp->_type ||
1264             short_comp->_usedef != comp->_usedef) {
1265           different = true;
1266           break;
1267         }
1268       }
1269       if (short_branch->_components.iter() != NULL)
1270         different = true;
1271     }
1272     if (different) {
1273       globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
1274     }
1275     if (AD._adl_debug > 1 || AD._short_branch_debug) {
1276       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
1277     }
1278     _short_branch_form = short_branch;
1279     return true;
1280   }
1281   return false;
1282 }
1283 
1284 
1285 // --------------------------- FILE *output_routines
1286 //
1287 // Generate the format call for the replacement variable
1288 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
1289   // Handle special constant table variables.
1290   if (strcmp(rep_var, "constanttablebase") == 0) {
1291     fprintf(fp, "char reg[128];  ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
1292     fprintf(fp, "    st->print(\"%%s\", reg);\n");
1293     return;
1294   }
1295   if (strcmp(rep_var, "constantoffset") == 0) {
1296     fprintf(fp, "st->print(\"#%%d\", constant_offset_unchecked());\n");
1297     return;
1298   }
1299   if (strcmp(rep_var, "constantaddress") == 0) {
1300     fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset_unchecked());\n");
1301     return;
1302   }
1303 
1304   // Find replacement variable's type
1305   const Form *form   = _localNames[rep_var];
1306   if (form == NULL) {
1307     globalAD->syntax_err(_linenum, "Unknown replacement variable %s in format statement of %s.",
1308                          rep_var, _ident);
1309     return;
1310   }
1311   OpClassForm *opc   = form->is_opclass();
1312   assert( opc, "replacement variable was not found in local names");
1313   // Lookup the index position of the replacement variable
1314   int idx  = operand_position_format(rep_var);
1315   if ( idx == -1 ) {
1316     globalAD->syntax_err(_linenum, "Could not find replacement variable %s in format statement of %s.\n",
1317                          rep_var, _ident);
1318     assert(strcmp(opc->_ident, "label") == 0, "Unimplemented");
1319     return;
1320   }
1321 
1322   if (is_noninput_operand(idx)) {
1323     // This component isn't in the input array.  Print out the static
1324     // name of the register.
1325     OperandForm* oper = form->is_operand();
1326     if (oper != NULL && oper->is_bound_register()) {
1327       const RegDef* first = oper->get_RegClass()->find_first_elem();
1328       fprintf(fp, "    st->print_raw(\"%s\");\n", first->_regname);
1329     } else {
1330       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
1331     }
1332   } else {
1333     // Output the format call for this operand
1334     fprintf(fp,"opnd_array(%d)->",idx);
1335     if (idx == 0)
1336       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
1337     else
1338       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
1339   }
1340 }
1341 
1342 // Seach through operands to determine parameters unique positions.
1343 void InstructForm::set_unique_opnds() {
1344   uint* uniq_idx = NULL;
1345   uint  nopnds = num_opnds();
1346   uint  num_uniq = nopnds;
1347   uint i;
1348   _uniq_idx_length = 0;
1349   if (nopnds > 0) {
1350     // Allocate index array.  Worst case we're mapping from each
1351     // component back to an index and any DEF always goes at 0 so the
1352     // length of the array has to be the number of components + 1.
1353     _uniq_idx_length = _components.count() + 1;
1354     uniq_idx = (uint*) malloc(sizeof(uint) * _uniq_idx_length);
1355     for (i = 0; i < _uniq_idx_length; i++) {
1356       uniq_idx[i] = i;
1357     }
1358   }
1359   // Do it only if there is a match rule and no expand rule.  With an
1360   // expand rule it is done by creating new mach node in Expand()
1361   // method.
1362   if (nopnds > 0 && _matrule != NULL && _exprule == NULL) {
1363     const char *name;
1364     uint count;
1365     bool has_dupl_use = false;
1366 
1367     _parameters.reset();
1368     while ((name = _parameters.iter()) != NULL) {
1369       count = 0;
1370       uint position = 0;
1371       uint uniq_position = 0;
1372       _components.reset();
1373       Component *comp = NULL;
1374       if (sets_result()) {
1375         comp = _components.iter();
1376         position++;
1377       }
1378       // The next code is copied from the method operand_position().
1379       for (; (comp = _components.iter()) != NULL; ++position) {
1380         // When the first component is not a DEF,
1381         // leave space for the result operand!
1382         if (position==0 && (!comp->isa(Component::DEF))) {
1383           ++position;
1384         }
1385         if (strcmp(name, comp->_name) == 0) {
1386           if (++count > 1) {
1387             assert(position < _uniq_idx_length, "out of bounds");
1388             uniq_idx[position] = uniq_position;
1389             has_dupl_use = true;
1390           } else {
1391             uniq_position = position;
1392           }
1393         }
1394         if (comp->isa(Component::DEF) && comp->isa(Component::USE)) {
1395           ++position;
1396           if (position != 1)
1397             --position;   // only use two slots for the 1st USE_DEF
1398         }
1399       }
1400     }
1401     if (has_dupl_use) {
1402       for (i = 1; i < nopnds; i++) {
1403         if (i != uniq_idx[i]) {
1404           break;
1405         }
1406       }
1407       uint j = i;
1408       for (; i < nopnds; i++) {
1409         if (i == uniq_idx[i]) {
1410           uniq_idx[i] = j++;
1411         }
1412       }
1413       num_uniq = j;
1414     }
1415   }
1416   _uniq_idx = uniq_idx;
1417   _num_uniq = num_uniq;
1418 }
1419 
1420 // Generate index values needed for determining the operand position
1421 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
1422   uint  idx = 0;                  // position of operand in match rule
1423   int   cur_num_opnds = num_opnds();
1424 
1425   // Compute the index into vector of operand pointers:
1426   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
1427   // idx1 starts at oper_input_base()
1428   if ( cur_num_opnds >= 1 ) {
1429     fprintf(fp,"  // Start at oper_input_base() and count operands\n");
1430     fprintf(fp,"  unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
1431     fprintf(fp,"  unsigned %sidx1 = %d;", prefix, oper_input_base(globals));
1432     fprintf(fp," \t// %s\n", unique_opnd_ident(1));
1433 
1434     // Generate starting points for other unique operands if they exist
1435     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
1436       if( *receiver == 0 ) {
1437         fprintf(fp,"  unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();",
1438                 prefix, idx, prefix, idx-1, idx-1 );
1439       } else {
1440         fprintf(fp,"  unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();",
1441                 prefix, idx, prefix, idx-1, receiver, idx-1 );
1442       }
1443       fprintf(fp," \t// %s\n", unique_opnd_ident(idx));
1444     }
1445   }
1446   if( *receiver != 0 ) {
1447     // This value is used by generate_peepreplace when copying a node.
1448     // Don't emit it in other cases since it can hide bugs with the
1449     // use invalid idx's.
1450     fprintf(fp,"  unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
1451   }
1452 
1453 }
1454 
1455 // ---------------------------
1456 bool InstructForm::verify() {
1457   // !!!!! !!!!!
1458   // Check that a "label" operand occurs last in the operand list, if present
1459   return true;
1460 }
1461 
1462 void InstructForm::dump() {
1463   output(stderr);
1464 }
1465 
1466 void InstructForm::output(FILE *fp) {
1467   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
1468   if (_matrule)   _matrule->output(fp);
1469   if (_insencode) _insencode->output(fp);
1470   if (_constant)  _constant->output(fp);
1471   if (_opcode)    _opcode->output(fp);
1472   if (_attribs)   _attribs->output(fp);
1473   if (_predicate) _predicate->output(fp);
1474   if (_effects.Size()) {
1475     fprintf(fp,"Effects\n");
1476     _effects.dump();
1477   }
1478   if (_exprule)   _exprule->output(fp);
1479   if (_rewrule)   _rewrule->output(fp);
1480   if (_format)    _format->output(fp);
1481   if (_peephole)  _peephole->output(fp);
1482 }
1483 
1484 void MachNodeForm::dump() {
1485   output(stderr);
1486 }
1487 
1488 void MachNodeForm::output(FILE *fp) {
1489   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
1490 }
1491 
1492 //------------------------------build_predicate--------------------------------
1493 // Build instruction predicates.  If the user uses the same operand name
1494 // twice, we need to check that the operands are pointer-eequivalent in
1495 // the DFA during the labeling process.
1496 Predicate *InstructForm::build_predicate() {
1497   char buf[1024], *s=buf;
1498   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
1499 
1500   MatchNode *mnode =
1501     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
1502   mnode->count_instr_names(names);
1503 
1504   uint first = 1;
1505   // Start with the predicate supplied in the .ad file.
1506   if( _predicate ) {
1507     if( first ) first=0;
1508     strcpy(s,"("); s += strlen(s);
1509     strcpy(s,_predicate->_pred);
1510     s += strlen(s);
1511     strcpy(s,")"); s += strlen(s);
1512   }
1513   for( DictI i(&names); i.test(); ++i ) {
1514     uintptr_t cnt = (uintptr_t)i._value;
1515     if( cnt > 1 ) {             // Need a predicate at all?
1516       assert( cnt == 2, "Unimplemented" );
1517       // Handle many pairs
1518       if( first ) first=0;
1519       else {                    // All tests must pass, so use '&&'
1520         strcpy(s," && ");
1521         s += strlen(s);
1522       }
1523       // Add predicate to working buffer
1524       sprintf(s,"/*%s*/(",(char*)i._key);
1525       s += strlen(s);
1526       mnode->build_instr_pred(s,(char*)i._key,0);
1527       s += strlen(s);
1528       strcpy(s," == "); s += strlen(s);
1529       mnode->build_instr_pred(s,(char*)i._key,1);
1530       s += strlen(s);
1531       strcpy(s,")"); s += strlen(s);
1532     }
1533   }
1534   if( s == buf ) s = NULL;
1535   else {
1536     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
1537     s = strdup(buf);
1538   }
1539   return new Predicate(s);
1540 }
1541 
1542 //------------------------------EncodeForm-------------------------------------
1543 // Constructor
1544 EncodeForm::EncodeForm()
1545   : _encClass(cmpstr,hashstr, Form::arena) {
1546 }
1547 EncodeForm::~EncodeForm() {
1548 }
1549 
1550 // record a new register class
1551 EncClass *EncodeForm::add_EncClass(const char *className) {
1552   EncClass *encClass = new EncClass(className);
1553   _eclasses.addName(className);
1554   _encClass.Insert(className,encClass);
1555   return encClass;
1556 }
1557 
1558 // Lookup the function body for an encoding class
1559 EncClass  *EncodeForm::encClass(const char *className) {
1560   assert( className != NULL, "Must provide a defined encoding name");
1561 
1562   EncClass *encClass = (EncClass*)_encClass[className];
1563   return encClass;
1564 }
1565 
1566 // Lookup the function body for an encoding class
1567 const char *EncodeForm::encClassBody(const char *className) {
1568   if( className == NULL ) return NULL;
1569 
1570   EncClass *encClass = (EncClass*)_encClass[className];
1571   assert( encClass != NULL, "Encode Class is missing.");
1572   encClass->_code.reset();
1573   const char *code = (const char*)encClass->_code.iter();
1574   assert( code != NULL, "Found an empty encode class body.");
1575 
1576   return code;
1577 }
1578 
1579 // Lookup the function body for an encoding class
1580 const char *EncodeForm::encClassPrototype(const char *className) {
1581   assert( className != NULL, "Encode class name must be non NULL.");
1582 
1583   return className;
1584 }
1585 
1586 void EncodeForm::dump() {                  // Debug printer
1587   output(stderr);
1588 }
1589 
1590 void EncodeForm::output(FILE *fp) {          // Write info to output files
1591   const char *name;
1592   fprintf(fp,"\n");
1593   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
1594   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
1595     ((EncClass*)_encClass[name])->output(fp);
1596   }
1597   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
1598 }
1599 //------------------------------EncClass---------------------------------------
1600 EncClass::EncClass(const char *name)
1601   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
1602 }
1603 EncClass::~EncClass() {
1604 }
1605 
1606 // Add a parameter <type,name> pair
1607 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
1608   _parameter_type.addName( parameter_type );
1609   _parameter_name.addName( parameter_name );
1610 }
1611 
1612 // Verify operand types in parameter list
1613 bool EncClass::check_parameter_types(FormDict &globals) {
1614   // !!!!!
1615   return false;
1616 }
1617 
1618 // Add the decomposed "code" sections of an encoding's code-block
1619 void EncClass::add_code(const char *code) {
1620   _code.addName(code);
1621 }
1622 
1623 // Add the decomposed "replacement variables" of an encoding's code-block
1624 void EncClass::add_rep_var(char *replacement_var) {
1625   _code.addName(NameList::_signal);
1626   _rep_vars.addName(replacement_var);
1627 }
1628 
1629 // Lookup the function body for an encoding class
1630 int EncClass::rep_var_index(const char *rep_var) {
1631   uint        position = 0;
1632   const char *name     = NULL;
1633 
1634   _parameter_name.reset();
1635   while ( (name = _parameter_name.iter()) != NULL ) {
1636     if ( strcmp(rep_var,name) == 0 ) return position;
1637     ++position;
1638   }
1639 
1640   return -1;
1641 }
1642 
1643 // Check after parsing
1644 bool EncClass::verify() {
1645   // 1!!!!
1646   // Check that each replacement variable, '$name' in architecture description
1647   // is actually a local variable for this encode class, or a reserved name
1648   // "primary, secondary, tertiary"
1649   return true;
1650 }
1651 
1652 void EncClass::dump() {
1653   output(stderr);
1654 }
1655 
1656 // Write info to output files
1657 void EncClass::output(FILE *fp) {
1658   fprintf(fp,"EncClass: %s", (_name ? _name : ""));
1659 
1660   // Output the parameter list
1661   _parameter_type.reset();
1662   _parameter_name.reset();
1663   const char *type = _parameter_type.iter();
1664   const char *name = _parameter_name.iter();
1665   fprintf(fp, " ( ");
1666   for ( ; (type != NULL) && (name != NULL);
1667         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
1668     fprintf(fp, " %s %s,", type, name);
1669   }
1670   fprintf(fp, " ) ");
1671 
1672   // Output the code block
1673   _code.reset();
1674   _rep_vars.reset();
1675   const char *code;
1676   while ( (code = _code.iter()) != NULL ) {
1677     if ( _code.is_signal(code) ) {
1678       // A replacement variable
1679       const char *rep_var = _rep_vars.iter();
1680       fprintf(fp,"($%s)", rep_var);
1681     } else {
1682       // A section of code
1683       fprintf(fp,"%s", code);
1684     }
1685   }
1686 
1687 }
1688 
1689 //------------------------------Opcode-----------------------------------------
1690 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
1691   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
1692 }
1693 
1694 Opcode::~Opcode() {
1695 }
1696 
1697 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
1698   if( strcmp(param,"primary") == 0 ) {
1699     return Opcode::PRIMARY;
1700   }
1701   else if( strcmp(param,"secondary") == 0 ) {
1702     return Opcode::SECONDARY;
1703   }
1704   else if( strcmp(param,"tertiary") == 0 ) {
1705     return Opcode::TERTIARY;
1706   }
1707   return Opcode::NOT_AN_OPCODE;
1708 }
1709 
1710 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
1711   // Default values previously provided by MachNode::primary()...
1712   const char *description = NULL;
1713   const char *value       = NULL;
1714   // Check if user provided any opcode definitions
1715   if( this != NULL ) {
1716     // Update 'value' if user provided a definition in the instruction
1717     switch (desired_opcode) {
1718     case PRIMARY:
1719       description = "primary()";
1720       if( _primary   != NULL)  { value = _primary;     }
1721       break;
1722     case SECONDARY:
1723       description = "secondary()";
1724       if( _secondary != NULL ) { value = _secondary;   }
1725       break;
1726     case TERTIARY:
1727       description = "tertiary()";
1728       if( _tertiary  != NULL ) { value = _tertiary;    }
1729       break;
1730     default:
1731       assert( false, "ShouldNotReachHere();");
1732       break;
1733     }
1734   }
1735   if (value != NULL) {
1736     fprintf(fp, "(%s /*%s*/)", value, description);
1737   }
1738   return value != NULL;
1739 }
1740 
1741 void Opcode::dump() {
1742   output(stderr);
1743 }
1744 
1745 // Write info to output files
1746 void Opcode::output(FILE *fp) {
1747   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
1748   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
1749   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
1750 }
1751 
1752 //------------------------------InsEncode--------------------------------------
1753 InsEncode::InsEncode() {
1754 }
1755 InsEncode::~InsEncode() {
1756 }
1757 
1758 // Add "encode class name" and its parameters
1759 NameAndList *InsEncode::add_encode(char *encoding) {
1760   assert( encoding != NULL, "Must provide name for encoding");
1761 
1762   // add_parameter(NameList::_signal);
1763   NameAndList *encode = new NameAndList(encoding);
1764   _encoding.addName((char*)encode);
1765 
1766   return encode;
1767 }
1768 
1769 // Access the list of encodings
1770 void InsEncode::reset() {
1771   _encoding.reset();
1772   // _parameter.reset();
1773 }
1774 const char* InsEncode::encode_class_iter() {
1775   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
1776   return  ( encode_class != NULL ? encode_class->name() : NULL );
1777 }
1778 // Obtain parameter name from zero based index
1779 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
1780   NameAndList *params = (NameAndList*)_encoding.current();
1781   assert( params != NULL, "Internal Error");
1782   const char *param = (*params)[param_no];
1783 
1784   // Remove '$' if parser placed it there.
1785   return ( param != NULL && *param == '$') ? (param+1) : param;
1786 }
1787 
1788 void InsEncode::dump() {
1789   output(stderr);
1790 }
1791 
1792 // Write info to output files
1793 void InsEncode::output(FILE *fp) {
1794   NameAndList *encoding  = NULL;
1795   const char  *parameter = NULL;
1796 
1797   fprintf(fp,"InsEncode: ");
1798   _encoding.reset();
1799 
1800   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
1801     // Output the encoding being used
1802     fprintf(fp,"%s(", encoding->name() );
1803 
1804     // Output its parameter list, if any
1805     bool first_param = true;
1806     encoding->reset();
1807     while (  (parameter = encoding->iter()) != 0 ) {
1808       // Output the ',' between parameters
1809       if ( ! first_param )  fprintf(fp,", ");
1810       first_param = false;
1811       // Output the parameter
1812       fprintf(fp,"%s", parameter);
1813     } // done with parameters
1814     fprintf(fp,")  ");
1815   } // done with encodings
1816 
1817   fprintf(fp,"\n");
1818 }
1819 
1820 //------------------------------Effect-----------------------------------------
1821 static int effect_lookup(const char *name) {
1822   if(!strcmp(name, "USE")) return Component::USE;
1823   if(!strcmp(name, "DEF")) return Component::DEF;
1824   if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
1825   if(!strcmp(name, "KILL")) return Component::KILL;
1826   if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
1827   if(!strcmp(name, "TEMP")) return Component::TEMP;
1828   if(!strcmp(name, "INVALID")) return Component::INVALID;
1829   if(!strcmp(name, "CALL")) return Component::CALL;
1830   assert( false,"Invalid effect name specified\n");
1831   return Component::INVALID;
1832 }
1833 
1834 const char *Component::getUsedefName() {
1835   switch (_usedef) {
1836     case Component::INVALID:  return "INVALID";  break;
1837     case Component::USE:      return "USE";      break;
1838     case Component::USE_DEF:  return "USE_DEF";  break;
1839     case Component::USE_KILL: return "USE_KILL"; break;
1840     case Component::KILL:     return "KILL";     break;
1841     case Component::TEMP:     return "TEMP";     break;
1842     case Component::DEF:      return "DEF";      break;
1843     case Component::CALL:     return "CALL";     break;
1844     default: assert(false, "unknown effect");
1845   }
1846   return "Undefined Use/Def info";
1847 }
1848 
1849 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
1850   _ftype = Form::EFF;
1851 }
1852 
1853 Effect::~Effect() {
1854 }
1855 
1856 // Dynamic type check
1857 Effect *Effect::is_effect() const {
1858   return (Effect*)this;
1859 }
1860 
1861 
1862 // True if this component is equal to the parameter.
1863 bool Effect::is(int use_def_kill_enum) const {
1864   return (_use_def == use_def_kill_enum ? true : false);
1865 }
1866 // True if this component is used/def'd/kill'd as the parameter suggests.
1867 bool Effect::isa(int use_def_kill_enum) const {
1868   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
1869 }
1870 
1871 void Effect::dump() {
1872   output(stderr);
1873 }
1874 
1875 void Effect::output(FILE *fp) {          // Write info to output files
1876   fprintf(fp,"Effect: %s\n", (_name?_name:""));
1877 }
1878 
1879 //------------------------------ExpandRule-------------------------------------
1880 ExpandRule::ExpandRule() : _expand_instrs(),
1881                            _newopconst(cmpstr, hashstr, Form::arena) {
1882   _ftype = Form::EXP;
1883 }
1884 
1885 ExpandRule::~ExpandRule() {                  // Destructor
1886 }
1887 
1888 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
1889   _expand_instrs.addName((char*)instruction_name_and_operand_list);
1890 }
1891 
1892 void ExpandRule::reset_instructions() {
1893   _expand_instrs.reset();
1894 }
1895 
1896 NameAndList* ExpandRule::iter_instructions() {
1897   return (NameAndList*)_expand_instrs.iter();
1898 }
1899 
1900 
1901 void ExpandRule::dump() {
1902   output(stderr);
1903 }
1904 
1905 void ExpandRule::output(FILE *fp) {         // Write info to output files
1906   NameAndList *expand_instr = NULL;
1907   const char *opid = NULL;
1908 
1909   fprintf(fp,"\nExpand Rule:\n");
1910 
1911   // Iterate over the instructions 'node' expands into
1912   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
1913     fprintf(fp,"%s(", expand_instr->name());
1914 
1915     // iterate over the operand list
1916     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1917       fprintf(fp,"%s ", opid);
1918     }
1919     fprintf(fp,");\n");
1920   }
1921 }
1922 
1923 //------------------------------RewriteRule------------------------------------
1924 RewriteRule::RewriteRule(char* params, char* block)
1925   : _tempParams(params), _tempBlock(block) { };  // Constructor
1926 RewriteRule::~RewriteRule() {                 // Destructor
1927 }
1928 
1929 void RewriteRule::dump() {
1930   output(stderr);
1931 }
1932 
1933 void RewriteRule::output(FILE *fp) {         // Write info to output files
1934   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
1935           (_tempParams?_tempParams:""),
1936           (_tempBlock?_tempBlock:""));
1937 }
1938 
1939 
1940 //==============================MachNodes======================================
1941 //------------------------------MachNodeForm-----------------------------------
1942 MachNodeForm::MachNodeForm(char *id)
1943   : _ident(id) {
1944 }
1945 
1946 MachNodeForm::~MachNodeForm() {
1947 }
1948 
1949 MachNodeForm *MachNodeForm::is_machnode() const {
1950   return (MachNodeForm*)this;
1951 }
1952 
1953 //==============================Operand Classes================================
1954 //------------------------------OpClassForm------------------------------------
1955 OpClassForm::OpClassForm(const char* id) : _ident(id) {
1956   _ftype = Form::OPCLASS;
1957 }
1958 
1959 OpClassForm::~OpClassForm() {
1960 }
1961 
1962 bool OpClassForm::ideal_only() const { return 0; }
1963 
1964 OpClassForm *OpClassForm::is_opclass() const {
1965   return (OpClassForm*)this;
1966 }
1967 
1968 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
1969   if( _oplst.count() == 0 ) return Form::no_interface;
1970 
1971   // Check that my operands have the same interface type
1972   Form::InterfaceType  interface;
1973   bool  first = true;
1974   NameList &op_list = (NameList &)_oplst;
1975   op_list.reset();
1976   const char *op_name;
1977   while( (op_name = op_list.iter()) != NULL ) {
1978     const Form  *form    = globals[op_name];
1979     OperandForm *operand = form->is_operand();
1980     assert( operand, "Entry in operand class that is not an operand");
1981     if( first ) {
1982       first     = false;
1983       interface = operand->interface_type(globals);
1984     } else {
1985       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
1986     }
1987   }
1988   return interface;
1989 }
1990 
1991 bool OpClassForm::stack_slots_only(FormDict &globals) const {
1992   if( _oplst.count() == 0 ) return false;  // how?
1993 
1994   NameList &op_list = (NameList &)_oplst;
1995   op_list.reset();
1996   const char *op_name;
1997   while( (op_name = op_list.iter()) != NULL ) {
1998     const Form  *form    = globals[op_name];
1999     OperandForm *operand = form->is_operand();
2000     assert( operand, "Entry in operand class that is not an operand");
2001     if( !operand->stack_slots_only(globals) )  return false;
2002   }
2003   return true;
2004 }
2005 
2006 
2007 void OpClassForm::dump() {
2008   output(stderr);
2009 }
2010 
2011 void OpClassForm::output(FILE *fp) {
2012   const char *name;
2013   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
2014   fprintf(fp,"\nCount = %d\n", _oplst.count());
2015   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
2016     fprintf(fp,"%s, ",name);
2017   }
2018   fprintf(fp,"\n");
2019 }
2020 
2021 
2022 //==============================Operands=======================================
2023 //------------------------------OperandForm------------------------------------
2024 OperandForm::OperandForm(const char* id)
2025   : OpClassForm(id), _ideal_only(false),
2026     _localNames(cmpstr, hashstr, Form::arena) {
2027       _ftype = Form::OPER;
2028 
2029       _matrule   = NULL;
2030       _interface = NULL;
2031       _attribs   = NULL;
2032       _predicate = NULL;
2033       _constraint= NULL;
2034       _construct = NULL;
2035       _format    = NULL;
2036 }
2037 OperandForm::OperandForm(const char* id, bool ideal_only)
2038   : OpClassForm(id), _ideal_only(ideal_only),
2039     _localNames(cmpstr, hashstr, Form::arena) {
2040       _ftype = Form::OPER;
2041 
2042       _matrule   = NULL;
2043       _interface = NULL;
2044       _attribs   = NULL;
2045       _predicate = NULL;
2046       _constraint= NULL;
2047       _construct = NULL;
2048       _format    = NULL;
2049 }
2050 OperandForm::~OperandForm() {
2051 }
2052 
2053 
2054 OperandForm *OperandForm::is_operand() const {
2055   return (OperandForm*)this;
2056 }
2057 
2058 bool OperandForm::ideal_only() const {
2059   return _ideal_only;
2060 }
2061 
2062 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
2063   if( _interface == NULL )  return Form::no_interface;
2064 
2065   return _interface->interface_type(globals);
2066 }
2067 
2068 
2069 bool OperandForm::stack_slots_only(FormDict &globals) const {
2070   if( _constraint == NULL )  return false;
2071   return _constraint->stack_slots_only();
2072 }
2073 
2074 
2075 // Access op_cost attribute or return NULL.
2076 const char* OperandForm::cost() {
2077   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
2078     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
2079       return cur->_val;
2080     }
2081   }
2082   return NULL;
2083 }
2084 
2085 // Return the number of leaves below this complex operand
2086 uint OperandForm::num_leaves() const {
2087   if ( ! _matrule) return 0;
2088 
2089   int num_leaves = _matrule->_numleaves;
2090   return num_leaves;
2091 }
2092 
2093 // Return the number of constants contained within this complex operand
2094 uint OperandForm::num_consts(FormDict &globals) const {
2095   if ( ! _matrule) return 0;
2096 
2097   // This is a recursive invocation on all operands in the matchrule
2098   return _matrule->num_consts(globals);
2099 }
2100 
2101 // Return the number of constants in match rule with specified type
2102 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
2103   if ( ! _matrule) return 0;
2104 
2105   // This is a recursive invocation on all operands in the matchrule
2106   return _matrule->num_consts(globals, type);
2107 }
2108 
2109 // Return the number of pointer constants contained within this complex operand
2110 uint OperandForm::num_const_ptrs(FormDict &globals) const {
2111   if ( ! _matrule) return 0;
2112 
2113   // This is a recursive invocation on all operands in the matchrule
2114   return _matrule->num_const_ptrs(globals);
2115 }
2116 
2117 uint OperandForm::num_edges(FormDict &globals) const {
2118   uint edges  = 0;
2119   uint leaves = num_leaves();
2120   uint consts = num_consts(globals);
2121 
2122   // If we are matching a constant directly, there are no leaves.
2123   edges = ( leaves > consts ) ? leaves - consts : 0;
2124 
2125   // !!!!!
2126   // Special case operands that do not have a corresponding ideal node.
2127   if( (edges == 0) && (consts == 0) ) {
2128     if( constrained_reg_class() != NULL ) {
2129       edges = 1;
2130     } else {
2131       if( _matrule
2132           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
2133         const Form *form = globals[_matrule->_opType];
2134         OperandForm *oper = form ? form->is_operand() : NULL;
2135         if( oper ) {
2136           return oper->num_edges(globals);
2137         }
2138       }
2139     }
2140   }
2141 
2142   return edges;
2143 }
2144 
2145 
2146 // Check if this operand is usable for cisc-spilling
2147 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
2148   const char *ideal = ideal_type(globals);
2149   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
2150   return is_cisc_reg;
2151 }
2152 
2153 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
2154   Form::InterfaceType my_interface = interface_type(globals);
2155   return (my_interface == memory_interface);
2156 }
2157 
2158 
2159 // node matches ideal 'Bool'
2160 bool OperandForm::is_ideal_bool() const {
2161   if( _matrule == NULL ) return false;
2162 
2163   return _matrule->is_ideal_bool();
2164 }
2165 
2166 // Require user's name for an sRegX to be stackSlotX
2167 Form::DataType OperandForm::is_user_name_for_sReg() const {
2168   DataType data_type = none;
2169   if( _ident != NULL ) {
2170     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
2171     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
2172     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
2173     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
2174     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
2175   }
2176   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
2177 
2178   return data_type;
2179 }
2180 
2181 
2182 // Return ideal type, if there is a single ideal type for this operand
2183 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
2184   const char *type = NULL;
2185   if (ideal_only()) type = _ident;
2186   else if( _matrule == NULL ) {
2187     // Check for condition code register
2188     const char *rc_name = constrained_reg_class();
2189     // !!!!!
2190     if (rc_name == NULL) return NULL;
2191     // !!!!! !!!!!
2192     // Check constraints on result's register class
2193     if( registers ) {
2194       RegClass *reg_class  = registers->getRegClass(rc_name);
2195       assert( reg_class != NULL, "Register class is not defined");
2196 
2197       // Check for ideal type of entries in register class, all are the same type
2198       reg_class->reset();
2199       RegDef *reg_def = reg_class->RegDef_iter();
2200       assert( reg_def != NULL, "No entries in register class");
2201       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
2202       // Return substring that names the register's ideal type
2203       type = reg_def->_idealtype + 3;
2204       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
2205       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
2206       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
2207     }
2208   }
2209   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
2210     // This operand matches a single type, at the top level.
2211     // Check for ideal type
2212     type = _matrule->_opType;
2213     if( strcmp(type,"Bool") == 0 )
2214       return "Bool";
2215     // transitive lookup
2216     const Form *frm = globals[type];
2217     OperandForm *op = frm->is_operand();
2218     type = op->ideal_type(globals, registers);
2219   }
2220   return type;
2221 }
2222 
2223 
2224 // If there is a single ideal type for this interface field, return it.
2225 const char *OperandForm::interface_ideal_type(FormDict &globals,
2226                                               const char *field) const {
2227   const char  *ideal_type = NULL;
2228   const char  *value      = NULL;
2229 
2230   // Check if "field" is valid for this operand's interface
2231   if ( ! is_interface_field(field, value) )   return ideal_type;
2232 
2233   // !!!!! !!!!! !!!!!
2234   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
2235 
2236   // Else, lookup type of field's replacement variable
2237 
2238   return ideal_type;
2239 }
2240 
2241 
2242 RegClass* OperandForm::get_RegClass() const {
2243   if (_interface && !_interface->is_RegInterface()) return NULL;
2244   return globalAD->get_registers()->getRegClass(constrained_reg_class());
2245 }
2246 
2247 
2248 bool OperandForm::is_bound_register() const {
2249   RegClass* reg_class = get_RegClass();
2250   if (reg_class == NULL) {
2251     return false;
2252   }
2253 
2254   const char* name = ideal_type(globalAD->globalNames());
2255   if (name == NULL) {
2256     return false;
2257   }
2258 
2259   uint size = 0;
2260   if (strcmp(name, "RegFlags") == 0) size = 1;
2261   if (strcmp(name, "RegI") == 0) size = 1;
2262   if (strcmp(name, "RegF") == 0) size = 1;
2263   if (strcmp(name, "RegD") == 0) size = 2;
2264   if (strcmp(name, "RegL") == 0) size = 2;
2265   if (strcmp(name, "RegN") == 0) size = 1;
2266   if (strcmp(name, "RegP") == 0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
2267   if (size == 0) {
2268     return false;
2269   }
2270   return size == reg_class->size();
2271 }
2272 
2273 
2274 // Check if this is a valid field for this operand,
2275 // Return 'true' if valid, and set the value to the string the user provided.
2276 bool  OperandForm::is_interface_field(const char *field,
2277                                       const char * &value) const {
2278   return false;
2279 }
2280 
2281 
2282 // Return register class name if a constraint specifies the register class.
2283 const char *OperandForm::constrained_reg_class() const {
2284   const char *reg_class  = NULL;
2285   if ( _constraint ) {
2286     // !!!!!
2287     Constraint *constraint = _constraint;
2288     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
2289       reg_class = _constraint->_arg;
2290     }
2291   }
2292 
2293   return reg_class;
2294 }
2295 
2296 
2297 // Return the register class associated with 'leaf'.
2298 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
2299   const char *reg_class = NULL; // "RegMask::Empty";
2300 
2301   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
2302     reg_class = constrained_reg_class();
2303     return reg_class;
2304   }
2305   const char *result   = NULL;
2306   const char *name     = NULL;
2307   const char *type     = NULL;
2308   // iterate through all base operands
2309   // until we reach the register that corresponds to "leaf"
2310   // This function is not looking for an ideal type.  It needs the first
2311   // level user type associated with the leaf.
2312   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
2313     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
2314     OperandForm *oper = form ? form->is_operand() : NULL;
2315     if( oper ) {
2316       reg_class = oper->constrained_reg_class();
2317       if( reg_class ) {
2318         reg_class = reg_class;
2319       } else {
2320         // ShouldNotReachHere();
2321       }
2322     } else {
2323       // ShouldNotReachHere();
2324     }
2325 
2326     // Increment our target leaf position if current leaf is not a candidate.
2327     if( reg_class == NULL)    ++leaf;
2328     // Exit the loop with the value of reg_class when at the correct index
2329     if( idx == leaf )         break;
2330     // May iterate through all base operands if reg_class for 'leaf' is NULL
2331   }
2332   return reg_class;
2333 }
2334 
2335 
2336 // Recursive call to construct list of top-level operands.
2337 // Implementation does not modify state of internal structures
2338 void OperandForm::build_components() {
2339   if (_matrule)  _matrule->append_components(_localNames, _components);
2340 
2341   // Add parameters that "do not appear in match rule".
2342   const char *name;
2343   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
2344     OpClassForm *opForm = _localNames[name]->is_opclass();
2345     assert(opForm != NULL, "sanity");
2346 
2347     if ( _components.operand_position(name) == -1 ) {
2348       _components.insert(name, opForm->_ident, Component::INVALID, false);
2349     }
2350   }
2351 
2352   return;
2353 }
2354 
2355 int OperandForm::operand_position(const char *name, int usedef) {
2356   return _components.operand_position(name, usedef, this);
2357 }
2358 
2359 
2360 // Return zero-based position in component list, only counting constants;
2361 // Return -1 if not in list.
2362 int OperandForm::constant_position(FormDict &globals, const Component *last) {
2363   // Iterate through components and count constants preceding 'constant'
2364   int position = 0;
2365   Component *comp;
2366   _components.reset();
2367   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
2368     // Special case for operands that take a single user-defined operand
2369     // Skip the initial definition in the component list.
2370     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2371 
2372     const char *type = comp->_type;
2373     // Lookup operand form for replacement variable's type
2374     const Form *form = globals[type];
2375     assert( form != NULL, "Component's type not found");
2376     OperandForm *oper = form ? form->is_operand() : NULL;
2377     if( oper ) {
2378       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
2379         ++position;
2380       }
2381     }
2382   }
2383 
2384   // Check for being passed a component that was not in the list
2385   if( comp != last )  position = -1;
2386 
2387   return position;
2388 }
2389 // Provide position of constant by "name"
2390 int OperandForm::constant_position(FormDict &globals, const char *name) {
2391   const Component *comp = _components.search(name);
2392   int idx = constant_position( globals, comp );
2393 
2394   return idx;
2395 }
2396 
2397 
2398 // Return zero-based position in component list, only counting constants;
2399 // Return -1 if not in list.
2400 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
2401   // Iterate through components and count registers preceding 'last'
2402   uint  position = 0;
2403   Component *comp;
2404   _components.reset();
2405   while( (comp = _components.iter()) != NULL
2406          && (strcmp(comp->_name,reg_name) != 0) ) {
2407     // Special case for operands that take a single user-defined operand
2408     // Skip the initial definition in the component list.
2409     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2410 
2411     const char *type = comp->_type;
2412     // Lookup operand form for component's type
2413     const Form *form = globals[type];
2414     assert( form != NULL, "Component's type not found");
2415     OperandForm *oper = form ? form->is_operand() : NULL;
2416     if( oper ) {
2417       if( oper->_matrule->is_base_register(globals) ) {
2418         ++position;
2419       }
2420     }
2421   }
2422 
2423   return position;
2424 }
2425 
2426 
2427 const char *OperandForm::reduce_result()  const {
2428   return _ident;
2429 }
2430 // Return the name of the operand on the right hand side of the binary match
2431 // Return NULL if there is no right hand side
2432 const char *OperandForm::reduce_right(FormDict &globals)  const {
2433   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
2434 }
2435 
2436 // Similar for left
2437 const char *OperandForm::reduce_left(FormDict &globals)   const {
2438   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
2439 }
2440 
2441 
2442 // --------------------------- FILE *output_routines
2443 //
2444 // Output code for disp_is_oop, if true.
2445 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
2446   //  Check it is a memory interface with a non-user-constant disp field
2447   if ( this->_interface == NULL ) return;
2448   MemInterface *mem_interface = this->_interface->is_MemInterface();
2449   if ( mem_interface == NULL )    return;
2450   const char   *disp  = mem_interface->_disp;
2451   if ( *disp != '$' )             return;
2452 
2453   // Lookup replacement variable in operand's component list
2454   const char   *rep_var = disp + 1;
2455   const Component *comp = this->_components.search(rep_var);
2456   assert( comp != NULL, "Replacement variable not found in components");
2457   // Lookup operand form for replacement variable's type
2458   const char      *type = comp->_type;
2459   Form            *form = (Form*)globals[type];
2460   assert( form != NULL, "Replacement variable's type not found");
2461   OperandForm     *op   = form->is_operand();
2462   assert( op, "Memory Interface 'disp' can only emit an operand form");
2463   // Check if this is a ConP, which may require relocation
2464   if ( op->is_base_constant(globals) == Form::idealP ) {
2465     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
2466     uint idx  = op->constant_position( globals, rep_var);
2467     fprintf(fp,"  virtual relocInfo::relocType disp_reloc() const {");
2468     fprintf(fp,  "  return _c%d->reloc();", idx);
2469     fprintf(fp, " }\n");
2470   }
2471 }
2472 
2473 // Generate code for internal and external format methods
2474 //
2475 // internal access to reg# node->_idx
2476 // access to subsumed constant _c0, _c1,
2477 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
2478   Form::DataType dtype;
2479   if (_matrule && (_matrule->is_base_register(globals) ||
2480                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2481     // !!!!! !!!!!
2482     fprintf(fp,"  { char reg_str[128];\n");
2483     fprintf(fp,"    ra->dump_register(node,reg_str);\n");
2484     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2485     fprintf(fp,"  }\n");
2486   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2487     format_constant( fp, index, dtype );
2488   } else if (ideal_to_sReg_type(_ident) != Form::none) {
2489     // Special format for Stack Slot Register
2490     fprintf(fp,"  { char reg_str[128];\n");
2491     fprintf(fp,"    ra->dump_register(node,reg_str);\n");
2492     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2493     fprintf(fp,"  }\n");
2494   } else {
2495     fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
2496     fflush(fp);
2497     fprintf(stderr,"No format defined for %s\n", _ident);
2498     dump();
2499     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
2500   }
2501 }
2502 
2503 // Similar to "int_format" but for cases where data is external to operand
2504 // external access to reg# node->in(idx)->_idx,
2505 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
2506   Form::DataType dtype;
2507   if (_matrule && (_matrule->is_base_register(globals) ||
2508                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2509     fprintf(fp,"  { char reg_str[128];\n");
2510     fprintf(fp,"    ra->dump_register(node->in(idx");
2511     if ( index != 0 ) fprintf(fp,              "+%d",index);
2512     fprintf(fp,                                      "),reg_str);\n");
2513     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2514     fprintf(fp,"  }\n");
2515   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2516     format_constant( fp, index, dtype );
2517   } else if (ideal_to_sReg_type(_ident) != Form::none) {
2518     // Special format for Stack Slot Register
2519     fprintf(fp,"  { char reg_str[128];\n");
2520     fprintf(fp,"    ra->dump_register(node->in(idx");
2521     if ( index != 0 ) fprintf(fp,                  "+%d",index);
2522     fprintf(fp,                                       "),reg_str);\n");
2523     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2524     fprintf(fp,"  }\n");
2525   } else {
2526     fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
2527     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
2528   }
2529 }
2530 
2531 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
2532   switch(const_type) {
2533   case Form::idealI: fprintf(fp,"  st->print(\"#%%d\", _c%d);\n", const_index); break;
2534   case Form::idealP: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
2535   case Form::idealNKlass:
2536   case Form::idealN: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
2537   case Form::idealL: fprintf(fp,"  st->print(\"#\" INT64_FORMAT, (int64_t)_c%d);\n", const_index); break;
2538   case Form::idealF: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
2539   case Form::idealD: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
2540   default:
2541     assert( false, "ShouldNotReachHere()");
2542   }
2543 }
2544 
2545 // Return the operand form corresponding to the given index, else NULL.
2546 OperandForm *OperandForm::constant_operand(FormDict &globals,
2547                                            uint      index) {
2548   // !!!!!
2549   // Check behavior on complex operands
2550   uint n_consts = num_consts(globals);
2551   if( n_consts > 0 ) {
2552     uint i = 0;
2553     const char *type;
2554     Component  *comp;
2555     _components.reset();
2556     if ((comp = _components.iter()) == NULL) {
2557       assert(n_consts == 1, "Bad component list detected.\n");
2558       // Current operand is THE operand
2559       if ( index == 0 ) {
2560         return this;
2561       }
2562     } // end if NULL
2563     else {
2564       // Skip the first component, it can not be a DEF of a constant
2565       do {
2566         type = comp->base_type(globals);
2567         // Check that "type" is a 'ConI', 'ConP', ...
2568         if ( ideal_to_const_type(type) != Form::none ) {
2569           // When at correct component, get corresponding Operand
2570           if ( index == 0 ) {
2571             return globals[comp->_type]->is_operand();
2572           }
2573           // Decrement number of constants to go
2574           --index;
2575         }
2576       } while((comp = _components.iter()) != NULL);
2577     }
2578   }
2579 
2580   // Did not find a constant for this index.
2581   return NULL;
2582 }
2583 
2584 // If this operand has a single ideal type, return its type
2585 Form::DataType OperandForm::simple_type(FormDict &globals) const {
2586   const char *type_name = ideal_type(globals);
2587   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
2588                                     : Form::none;
2589   return type;
2590 }
2591 
2592 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
2593   if ( _matrule == NULL )    return Form::none;
2594 
2595   return _matrule->is_base_constant(globals);
2596 }
2597 
2598 // "true" if this operand is a simple type that is swallowed
2599 bool  OperandForm::swallowed(FormDict &globals) const {
2600   Form::DataType type   = simple_type(globals);
2601   if( type != Form::none ) {
2602     return true;
2603   }
2604 
2605   return false;
2606 }
2607 
2608 // Output code to access the value of the index'th constant
2609 void OperandForm::access_constant(FILE *fp, FormDict &globals,
2610                                   uint const_index) {
2611   OperandForm *oper = constant_operand(globals, const_index);
2612   assert( oper, "Index exceeds number of constants in operand");
2613   Form::DataType dtype = oper->is_base_constant(globals);
2614 
2615   switch(dtype) {
2616   case idealI: fprintf(fp,"_c%d",           const_index); break;
2617   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
2618   case idealL: fprintf(fp,"_c%d",           const_index); break;
2619   case idealF: fprintf(fp,"_c%d",           const_index); break;
2620   case idealD: fprintf(fp,"_c%d",           const_index); break;
2621   default:
2622     assert( false, "ShouldNotReachHere()");
2623   }
2624 }
2625 
2626 
2627 void OperandForm::dump() {
2628   output(stderr);
2629 }
2630 
2631 void OperandForm::output(FILE *fp) {
2632   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
2633   if (_matrule)    _matrule->dump();
2634   if (_interface)  _interface->dump();
2635   if (_attribs)    _attribs->dump();
2636   if (_predicate)  _predicate->dump();
2637   if (_constraint) _constraint->dump();
2638   if (_construct)  _construct->dump();
2639   if (_format)     _format->dump();
2640 }
2641 
2642 //------------------------------Constraint-------------------------------------
2643 Constraint::Constraint(const char *func, const char *arg)
2644   : _func(func), _arg(arg) {
2645 }
2646 Constraint::~Constraint() { /* not owner of char* */
2647 }
2648 
2649 bool Constraint::stack_slots_only() const {
2650   return strcmp(_func, "ALLOC_IN_RC") == 0
2651       && strcmp(_arg,  "stack_slots") == 0;
2652 }
2653 
2654 void Constraint::dump() {
2655   output(stderr);
2656 }
2657 
2658 void Constraint::output(FILE *fp) {           // Write info to output files
2659   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
2660   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
2661 }
2662 
2663 //------------------------------Predicate--------------------------------------
2664 Predicate::Predicate(char *pr)
2665   : _pred(pr) {
2666 }
2667 Predicate::~Predicate() {
2668 }
2669 
2670 void Predicate::dump() {
2671   output(stderr);
2672 }
2673 
2674 void Predicate::output(FILE *fp) {
2675   fprintf(fp,"Predicate");  // Write to output files
2676 }
2677 //------------------------------Interface--------------------------------------
2678 Interface::Interface(const char *name) : _name(name) {
2679 }
2680 Interface::~Interface() {
2681 }
2682 
2683 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
2684   Interface *thsi = (Interface*)this;
2685   if ( thsi->is_RegInterface()   ) return Form::register_interface;
2686   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
2687   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
2688   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
2689 
2690   return Form::no_interface;
2691 }
2692 
2693 RegInterface   *Interface::is_RegInterface() {
2694   if ( strcmp(_name,"REG_INTER") != 0 )
2695     return NULL;
2696   return (RegInterface*)this;
2697 }
2698 MemInterface   *Interface::is_MemInterface() {
2699   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
2700   return (MemInterface*)this;
2701 }
2702 ConstInterface *Interface::is_ConstInterface() {
2703   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
2704   return (ConstInterface*)this;
2705 }
2706 CondInterface  *Interface::is_CondInterface() {
2707   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
2708   return (CondInterface*)this;
2709 }
2710 
2711 
2712 void Interface::dump() {
2713   output(stderr);
2714 }
2715 
2716 // Write info to output files
2717 void Interface::output(FILE *fp) {
2718   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
2719 }
2720 
2721 //------------------------------RegInterface-----------------------------------
2722 RegInterface::RegInterface() : Interface("REG_INTER") {
2723 }
2724 RegInterface::~RegInterface() {
2725 }
2726 
2727 void RegInterface::dump() {
2728   output(stderr);
2729 }
2730 
2731 // Write info to output files
2732 void RegInterface::output(FILE *fp) {
2733   Interface::output(fp);
2734 }
2735 
2736 //------------------------------ConstInterface---------------------------------
2737 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
2738 }
2739 ConstInterface::~ConstInterface() {
2740 }
2741 
2742 void ConstInterface::dump() {
2743   output(stderr);
2744 }
2745 
2746 // Write info to output files
2747 void ConstInterface::output(FILE *fp) {
2748   Interface::output(fp);
2749 }
2750 
2751 //------------------------------MemInterface-----------------------------------
2752 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
2753   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
2754 }
2755 MemInterface::~MemInterface() {
2756   // not owner of any character arrays
2757 }
2758 
2759 void MemInterface::dump() {
2760   output(stderr);
2761 }
2762 
2763 // Write info to output files
2764 void MemInterface::output(FILE *fp) {
2765   Interface::output(fp);
2766   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
2767   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
2768   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
2769   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
2770   // fprintf(fp,"\n");
2771 }
2772 
2773 //------------------------------CondInterface----------------------------------
2774 CondInterface::CondInterface(const char* equal,         const char* equal_format,
2775                              const char* not_equal,     const char* not_equal_format,
2776                              const char* less,          const char* less_format,
2777                              const char* greater_equal, const char* greater_equal_format,
2778                              const char* less_equal,    const char* less_equal_format,
2779                              const char* greater,       const char* greater_format,
2780                              const char* overflow,      const char* overflow_format,
2781                              const char* no_overflow,   const char* no_overflow_format)
2782   : Interface("COND_INTER"),
2783     _equal(equal),                 _equal_format(equal_format),
2784     _not_equal(not_equal),         _not_equal_format(not_equal_format),
2785     _less(less),                   _less_format(less_format),
2786     _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
2787     _less_equal(less_equal),       _less_equal_format(less_equal_format),
2788     _greater(greater),             _greater_format(greater_format),
2789     _overflow(overflow),           _overflow_format(overflow_format),
2790     _no_overflow(no_overflow),     _no_overflow_format(no_overflow_format) {
2791 }
2792 CondInterface::~CondInterface() {
2793   // not owner of any character arrays
2794 }
2795 
2796 void CondInterface::dump() {
2797   output(stderr);
2798 }
2799 
2800 // Write info to output files
2801 void CondInterface::output(FILE *fp) {
2802   Interface::output(fp);
2803   if ( _equal  != NULL )     fprintf(fp," equal        == %s\n", _equal);
2804   if ( _not_equal  != NULL ) fprintf(fp," not_equal    == %s\n", _not_equal);
2805   if ( _less  != NULL )      fprintf(fp," less         == %s\n", _less);
2806   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal    == %s\n", _greater_equal);
2807   if ( _less_equal  != NULL ) fprintf(fp," less_equal   == %s\n", _less_equal);
2808   if ( _greater  != NULL )    fprintf(fp," greater      == %s\n", _greater);
2809   if ( _overflow != NULL )    fprintf(fp," overflow     == %s\n", _overflow);
2810   if ( _no_overflow != NULL ) fprintf(fp," no_overflow  == %s\n", _no_overflow);
2811   // fprintf(fp,"\n");
2812 }
2813 
2814 //------------------------------ConstructRule----------------------------------
2815 ConstructRule::ConstructRule(char *cnstr)
2816   : _construct(cnstr) {
2817 }
2818 ConstructRule::~ConstructRule() {
2819 }
2820 
2821 void ConstructRule::dump() {
2822   output(stderr);
2823 }
2824 
2825 void ConstructRule::output(FILE *fp) {
2826   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
2827 }
2828 
2829 
2830 //==============================Shared Forms===================================
2831 //------------------------------AttributeForm----------------------------------
2832 int         AttributeForm::_insId   = 0;           // start counter at 0
2833 int         AttributeForm::_opId    = 0;           // start counter at 0
2834 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
2835 const char* AttributeForm::_op_cost  = "op_cost";  // required name
2836 
2837 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
2838   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
2839     if (type==OP_ATTR) {
2840       id = ++_opId;
2841     }
2842     else if (type==INS_ATTR) {
2843       id = ++_insId;
2844     }
2845     else assert( false,"");
2846 }
2847 AttributeForm::~AttributeForm() {
2848 }
2849 
2850 // Dynamic type check
2851 AttributeForm *AttributeForm::is_attribute() const {
2852   return (AttributeForm*)this;
2853 }
2854 
2855 
2856 // inlined  // int  AttributeForm::type() { return id;}
2857 
2858 void AttributeForm::dump() {
2859   output(stderr);
2860 }
2861 
2862 void AttributeForm::output(FILE *fp) {
2863   if( _attrname && _attrdef ) {
2864     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
2865             _attrname, _attrdef);
2866   }
2867   else {
2868     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
2869             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
2870   }
2871 }
2872 
2873 //------------------------------Component--------------------------------------
2874 Component::Component(const char *name, const char *type, int usedef)
2875   : _name(name), _type(type), _usedef(usedef) {
2876     _ftype = Form::COMP;
2877 }
2878 Component::~Component() {
2879 }
2880 
2881 // True if this component is equal to the parameter.
2882 bool Component::is(int use_def_kill_enum) const {
2883   return (_usedef == use_def_kill_enum ? true : false);
2884 }
2885 // True if this component is used/def'd/kill'd as the parameter suggests.
2886 bool Component::isa(int use_def_kill_enum) const {
2887   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
2888 }
2889 
2890 // Extend this component with additional use/def/kill behavior
2891 int Component::promote_use_def_info(int new_use_def) {
2892   _usedef |= new_use_def;
2893 
2894   return _usedef;
2895 }
2896 
2897 // Check the base type of this component, if it has one
2898 const char *Component::base_type(FormDict &globals) {
2899   const Form *frm = globals[_type];
2900   if (frm == NULL) return NULL;
2901   OperandForm *op = frm->is_operand();
2902   if (op == NULL) return NULL;
2903   if (op->ideal_only()) return op->_ident;
2904   return (char *)op->ideal_type(globals);
2905 }
2906 
2907 void Component::dump() {
2908   output(stderr);
2909 }
2910 
2911 void Component::output(FILE *fp) {
2912   fprintf(fp,"Component:");  // Write to output files
2913   fprintf(fp, "  name = %s", _name);
2914   fprintf(fp, ", type = %s", _type);
2915   assert(_usedef != 0, "unknown effect");
2916   fprintf(fp, ", use/def = %s\n", getUsedefName());
2917 }
2918 
2919 
2920 //------------------------------ComponentList---------------------------------
2921 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
2922 }
2923 ComponentList::~ComponentList() {
2924   // // This list may not own its elements if copied via assignment
2925   // Component *component;
2926   // for (reset(); (component = iter()) != NULL;) {
2927   //   delete component;
2928   // }
2929 }
2930 
2931 void   ComponentList::insert(Component *component, bool mflag) {
2932   NameList::addName((char *)component);
2933   if(mflag) _matchcnt++;
2934 }
2935 void   ComponentList::insert(const char *name, const char *opType, int usedef,
2936                              bool mflag) {
2937   Component * component = new Component(name, opType, usedef);
2938   insert(component, mflag);
2939 }
2940 Component *ComponentList::current() { return (Component*)NameList::current(); }
2941 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
2942 Component *ComponentList::match_iter() {
2943   if(_iter < _matchcnt) return (Component*)NameList::iter();
2944   return NULL;
2945 }
2946 Component *ComponentList::post_match_iter() {
2947   Component *comp = iter();
2948   // At end of list?
2949   if ( comp == NULL ) {
2950     return comp;
2951   }
2952   // In post-match components?
2953   if (_iter > match_count()-1) {
2954     return comp;
2955   }
2956 
2957   return post_match_iter();
2958 }
2959 
2960 void       ComponentList::reset()   { NameList::reset(); }
2961 int        ComponentList::count()   { return NameList::count(); }
2962 
2963 Component *ComponentList::operator[](int position) {
2964   // Shortcut complete iteration if there are not enough entries
2965   if (position >= count()) return NULL;
2966 
2967   int        index     = 0;
2968   Component *component = NULL;
2969   for (reset(); (component = iter()) != NULL;) {
2970     if (index == position) {
2971       return component;
2972     }
2973     ++index;
2974   }
2975 
2976   return NULL;
2977 }
2978 
2979 const Component *ComponentList::search(const char *name) {
2980   PreserveIter pi(this);
2981   reset();
2982   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
2983     if( strcmp(comp->_name,name) == 0 ) return comp;
2984   }
2985 
2986   return NULL;
2987 }
2988 
2989 // Return number of USEs + number of DEFs
2990 // When there are no components, or the first component is a USE,
2991 // then we add '1' to hold a space for the 'result' operand.
2992 int ComponentList::num_operands() {
2993   PreserveIter pi(this);
2994   uint       count = 1;           // result operand
2995   uint       position = 0;
2996 
2997   Component *component  = NULL;
2998   for( reset(); (component = iter()) != NULL; ++position ) {
2999     if( component->isa(Component::USE) ||
3000         ( position == 0 && (! component->isa(Component::DEF))) ) {
3001       ++count;
3002     }
3003   }
3004 
3005   return count;
3006 }
3007 
3008 // Return zero-based position of operand 'name' in list;  -1 if not in list.
3009 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
3010 int ComponentList::operand_position(const char *name, int usedef, Form *fm) {
3011   PreserveIter pi(this);
3012   int position = 0;
3013   int num_opnds = num_operands();
3014   Component *component;
3015   Component* preceding_non_use = NULL;
3016   Component* first_def = NULL;
3017   for (reset(); (component = iter()) != NULL; ++position) {
3018     // When the first component is not a DEF,
3019     // leave space for the result operand!
3020     if ( position==0 && (! component->isa(Component::DEF)) ) {
3021       ++position;
3022       ++num_opnds;
3023     }
3024     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
3025       // When the first entry in the component list is a DEF and a USE
3026       // Treat them as being separate, a DEF first, then a USE
3027       if( position==0
3028           && usedef==Component::USE && component->isa(Component::DEF) ) {
3029         assert(position+1 < num_opnds, "advertised index in bounds");
3030         return position+1;
3031       } else {
3032         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
3033           fprintf(stderr, "the name '%s(%s)' should not precede the name '%s(%s)'",
3034                   preceding_non_use->_name, preceding_non_use->getUsedefName(),
3035                   name, component->getUsedefName());
3036           if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
3037           if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
3038           fprintf(stderr,  "\n");
3039         }
3040         if( position >= num_opnds ) {
3041           fprintf(stderr, "the name '%s' is too late in its name list", name);
3042           if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
3043           if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
3044           fprintf(stderr,  "\n");
3045         }
3046         assert(position < num_opnds, "advertised index in bounds");
3047         return position;
3048       }
3049     }
3050     if( component->isa(Component::DEF)
3051         && component->isa(Component::USE) ) {
3052       ++position;
3053       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3054     }
3055     if( component->isa(Component::DEF) && !first_def ) {
3056       first_def = component;
3057     }
3058     if( !component->isa(Component::USE) && component != first_def ) {
3059       preceding_non_use = component;
3060     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
3061       preceding_non_use = NULL;
3062     }
3063   }
3064   return Not_in_list;
3065 }
3066 
3067 // Find position for this name, regardless of use/def information
3068 int ComponentList::operand_position(const char *name) {
3069   PreserveIter pi(this);
3070   int position = 0;
3071   Component *component;
3072   for (reset(); (component = iter()) != NULL; ++position) {
3073     // When the first component is not a DEF,
3074     // leave space for the result operand!
3075     if ( position==0 && (! component->isa(Component::DEF)) ) {
3076       ++position;
3077     }
3078     if (strcmp(name, component->_name)==0) {
3079       return position;
3080     }
3081     if( component->isa(Component::DEF)
3082         && component->isa(Component::USE) ) {
3083       ++position;
3084       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3085     }
3086   }
3087   return Not_in_list;
3088 }
3089 
3090 int ComponentList::operand_position_format(const char *name, Form *fm) {
3091   PreserveIter pi(this);
3092   int  first_position = operand_position(name);
3093   int  use_position   = operand_position(name, Component::USE, fm);
3094 
3095   return ((first_position < use_position) ? use_position : first_position);
3096 }
3097 
3098 int ComponentList::label_position() {
3099   PreserveIter pi(this);
3100   int position = 0;
3101   reset();
3102   for( Component *comp; (comp = iter()) != NULL; ++position) {
3103     // When the first component is not a DEF,
3104     // leave space for the result operand!
3105     if ( position==0 && (! comp->isa(Component::DEF)) ) {
3106       ++position;
3107     }
3108     if (strcmp(comp->_type, "label")==0) {
3109       return position;
3110     }
3111     if( comp->isa(Component::DEF)
3112         && comp->isa(Component::USE) ) {
3113       ++position;
3114       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3115     }
3116   }
3117 
3118   return -1;
3119 }
3120 
3121 int ComponentList::method_position() {
3122   PreserveIter pi(this);
3123   int position = 0;
3124   reset();
3125   for( Component *comp; (comp = iter()) != NULL; ++position) {
3126     // When the first component is not a DEF,
3127     // leave space for the result operand!
3128     if ( position==0 && (! comp->isa(Component::DEF)) ) {
3129       ++position;
3130     }
3131     if (strcmp(comp->_type, "method")==0) {
3132       return position;
3133     }
3134     if( comp->isa(Component::DEF)
3135         && comp->isa(Component::USE) ) {
3136       ++position;
3137       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3138     }
3139   }
3140 
3141   return -1;
3142 }
3143 
3144 void ComponentList::dump() { output(stderr); }
3145 
3146 void ComponentList::output(FILE *fp) {
3147   PreserveIter pi(this);
3148   fprintf(fp, "\n");
3149   Component *component;
3150   for (reset(); (component = iter()) != NULL;) {
3151     component->output(fp);
3152   }
3153   fprintf(fp, "\n");
3154 }
3155 
3156 //------------------------------MatchNode--------------------------------------
3157 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
3158                      const char *opType, MatchNode *lChild, MatchNode *rChild)
3159   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
3160     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
3161     _commutative_id(0) {
3162   _numleaves = (lChild ? lChild->_numleaves : 0)
3163                + (rChild ? rChild->_numleaves : 0);
3164 }
3165 
3166 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
3167   : _AD(ad), _result(mnode._result), _name(mnode._name),
3168     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
3169     _internalop(0), _numleaves(mnode._numleaves),
3170     _commutative_id(mnode._commutative_id) {
3171 }
3172 
3173 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
3174   : _AD(ad), _result(mnode._result), _name(mnode._name),
3175     _opType(mnode._opType),
3176     _internalop(0), _numleaves(mnode._numleaves),
3177     _commutative_id(mnode._commutative_id) {
3178   if (mnode._lChild) {
3179     _lChild = new MatchNode(ad, *mnode._lChild, clone);
3180   } else {
3181     _lChild = NULL;
3182   }
3183   if (mnode._rChild) {
3184     _rChild = new MatchNode(ad, *mnode._rChild, clone);
3185   } else {
3186     _rChild = NULL;
3187   }
3188 }
3189 
3190 MatchNode::~MatchNode() {
3191   // // This node may not own its children if copied via assignment
3192   // if( _lChild ) delete _lChild;
3193   // if( _rChild ) delete _rChild;
3194 }
3195 
3196 bool  MatchNode::find_type(const char *type, int &position) const {
3197   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
3198   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
3199 
3200   if (strcmp(type,_opType)==0)  {
3201     return true;
3202   } else {
3203     ++position;
3204   }
3205   return false;
3206 }
3207 
3208 // Recursive call collecting info on top-level operands, not transitive.
3209 // Implementation does not modify state of internal structures.
3210 void MatchNode::append_components(FormDict& locals, ComponentList& components,
3211                                   bool def_flag) const {
3212   int usedef = def_flag ? Component::DEF : Component::USE;
3213   FormDict &globals = _AD.globalNames();
3214 
3215   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3216   // Base case
3217   if (_lChild==NULL && _rChild==NULL) {
3218     // If _opType is not an operation, do not build a component for it #####
3219     const Form *f = globals[_opType];
3220     if( f != NULL ) {
3221       // Add non-ideals that are operands, operand-classes,
3222       if( ! f->ideal_only()
3223           && (f->is_opclass() || f->is_operand()) ) {
3224         components.insert(_name, _opType, usedef, true);
3225       }
3226     }
3227     return;
3228   }
3229   // Promote results of "Set" to DEF
3230   bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
3231   if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
3232   tmpdef_flag = false;   // only applies to component immediately following 'Set'
3233   if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
3234 }
3235 
3236 // Find the n'th base-operand in the match node,
3237 // recursively investigates match rules of user-defined operands.
3238 //
3239 // Implementation does not modify state of internal structures since they
3240 // can be shared.
3241 bool MatchNode::base_operand(uint &position, FormDict &globals,
3242                              const char * &result, const char * &name,
3243                              const char * &opType) const {
3244   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
3245   // Base case
3246   if (_lChild==NULL && _rChild==NULL) {
3247     // Check for special case: "Universe", "label"
3248     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
3249       if (position == 0) {
3250         result = _result;
3251         name   = _name;
3252         opType = _opType;
3253         return 1;
3254       } else {
3255         -- position;
3256         return 0;
3257       }
3258     }
3259 
3260     const Form *form = globals[_opType];
3261     MatchNode *matchNode = NULL;
3262     // Check for user-defined type
3263     if (form) {
3264       // User operand or instruction?
3265       OperandForm  *opForm = form->is_operand();
3266       InstructForm *inForm = form->is_instruction();
3267       if ( opForm ) {
3268         matchNode = (MatchNode*)opForm->_matrule;
3269       } else if ( inForm ) {
3270         matchNode = (MatchNode*)inForm->_matrule;
3271       }
3272     }
3273     // if this is user-defined, recurse on match rule
3274     // User-defined operand and instruction forms have a match-rule.
3275     if (matchNode) {
3276       return (matchNode->base_operand(position,globals,result,name,opType));
3277     } else {
3278       // Either not a form, or a system-defined form (no match rule).
3279       if (position==0) {
3280         result = _result;
3281         name   = _name;
3282         opType = _opType;
3283         return 1;
3284       } else {
3285         --position;
3286         return 0;
3287       }
3288     }
3289 
3290   } else {
3291     // Examine the left child and right child as well
3292     if (_lChild) {
3293       if (_lChild->base_operand(position, globals, result, name, opType))
3294         return 1;
3295     }
3296 
3297     if (_rChild) {
3298       if (_rChild->base_operand(position, globals, result, name, opType))
3299         return 1;
3300     }
3301   }
3302 
3303   return 0;
3304 }
3305 
3306 // Recursive call on all operands' match rules in my match rule.
3307 uint  MatchNode::num_consts(FormDict &globals) const {
3308   uint        index      = 0;
3309   uint        num_consts = 0;
3310   const char *result;
3311   const char *name;
3312   const char *opType;
3313 
3314   for (uint position = index;
3315        base_operand(position,globals,result,name,opType); position = index) {
3316     ++index;
3317     if( ideal_to_const_type(opType) )        num_consts++;
3318   }
3319 
3320   return num_consts;
3321 }
3322 
3323 // Recursive call on all operands' match rules in my match rule.
3324 // Constants in match rule subtree with specified type
3325 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
3326   uint        index      = 0;
3327   uint        num_consts = 0;
3328   const char *result;
3329   const char *name;
3330   const char *opType;
3331 
3332   for (uint position = index;
3333        base_operand(position,globals,result,name,opType); position = index) {
3334     ++index;
3335     if( ideal_to_const_type(opType) == type ) num_consts++;
3336   }
3337 
3338   return num_consts;
3339 }
3340 
3341 // Recursive call on all operands' match rules in my match rule.
3342 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
3343   return  num_consts( globals, Form::idealP );
3344 }
3345 
3346 bool  MatchNode::sets_result() const {
3347   return   ( (strcmp(_name,"Set") == 0) ? true : false );
3348 }
3349 
3350 const char *MatchNode::reduce_right(FormDict &globals) const {
3351   // If there is no right reduction, return NULL.
3352   const char      *rightStr    = NULL;
3353 
3354   // If we are a "Set", start from the right child.
3355   const MatchNode *const mnode = sets_result() ?
3356     (const MatchNode *)this->_rChild :
3357     (const MatchNode *)this;
3358 
3359   // If our right child exists, it is the right reduction
3360   if ( mnode->_rChild ) {
3361     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
3362       : mnode->_rChild->_opType;
3363   }
3364   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
3365   return rightStr;
3366 }
3367 
3368 const char *MatchNode::reduce_left(FormDict &globals) const {
3369   // If there is no left reduction, return NULL.
3370   const char  *leftStr  = NULL;
3371 
3372   // If we are a "Set", start from the right child.
3373   const MatchNode *const mnode = sets_result() ?
3374     (const MatchNode *)this->_rChild :
3375     (const MatchNode *)this;
3376 
3377   // If our left child exists, it is the left reduction
3378   if ( mnode->_lChild ) {
3379     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
3380       : mnode->_lChild->_opType;
3381   } else {
3382     // May be simple chain rule: (Set dst operand_form_source)
3383     if ( sets_result() ) {
3384       OperandForm *oper = globals[mnode->_opType]->is_operand();
3385       if( oper ) {
3386         leftStr = mnode->_opType;
3387       }
3388     }
3389   }
3390   return leftStr;
3391 }
3392 
3393 //------------------------------count_instr_names------------------------------
3394 // Count occurrences of operands names in the leaves of the instruction
3395 // match rule.
3396 void MatchNode::count_instr_names( Dict &names ) {
3397   if( !this ) return;
3398   if( _lChild ) _lChild->count_instr_names(names);
3399   if( _rChild ) _rChild->count_instr_names(names);
3400   if( !_lChild && !_rChild ) {
3401     uintptr_t cnt = (uintptr_t)names[_name];
3402     cnt++;                      // One more name found
3403     names.Insert(_name,(void*)cnt);
3404   }
3405 }
3406 
3407 //------------------------------build_instr_pred-------------------------------
3408 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
3409 // can skip some leading instances of 'name'.
3410 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
3411   if( _lChild ) {
3412     if( !cnt ) strcpy( buf, "_kids[0]->" );
3413     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
3414     if( cnt < 0 ) return cnt;   // Found it, all done
3415   }
3416   if( _rChild ) {
3417     if( !cnt ) strcpy( buf, "_kids[1]->" );
3418     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
3419     if( cnt < 0 ) return cnt;   // Found it, all done
3420   }
3421   if( !_lChild && !_rChild ) {  // Found a leaf
3422     // Wrong name?  Give up...
3423     if( strcmp(name,_name) ) return cnt;
3424     if( !cnt ) strcpy(buf,"_leaf");
3425     return cnt-1;
3426   }
3427   return cnt;
3428 }
3429 
3430 
3431 //------------------------------build_internalop-------------------------------
3432 // Build string representation of subtree
3433 void MatchNode::build_internalop( ) {
3434   char *iop, *subtree;
3435   const char *lstr, *rstr;
3436   // Build string representation of subtree
3437   // Operation lchildType rchildType
3438   int len = (int)strlen(_opType) + 4;
3439   lstr = (_lChild) ? ((_lChild->_internalop) ?
3440                        _lChild->_internalop : _lChild->_opType) : "";
3441   rstr = (_rChild) ? ((_rChild->_internalop) ?
3442                        _rChild->_internalop : _rChild->_opType) : "";
3443   len += (int)strlen(lstr) + (int)strlen(rstr);
3444   subtree = (char *)malloc(len);
3445   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
3446   // Hash the subtree string in _internalOps; if a name exists, use it
3447   iop = (char *)_AD._internalOps[subtree];
3448   // Else create a unique name, and add it to the hash table
3449   if (iop == NULL) {
3450     iop = subtree;
3451     _AD._internalOps.Insert(subtree, iop);
3452     _AD._internalOpNames.addName(iop);
3453     _AD._internalMatch.Insert(iop, this);
3454   }
3455   // Add the internal operand name to the MatchNode
3456   _internalop = iop;
3457   _result = iop;
3458 }
3459 
3460 
3461 void MatchNode::dump() {
3462   output(stderr);
3463 }
3464 
3465 void MatchNode::output(FILE *fp) {
3466   if (_lChild==0 && _rChild==0) {
3467     fprintf(fp," %s",_name);    // operand
3468   }
3469   else {
3470     fprintf(fp," (%s ",_name);  // " (opcodeName "
3471     if(_lChild) _lChild->output(fp); //               left operand
3472     if(_rChild) _rChild->output(fp); //                    right operand
3473     fprintf(fp,")");                 //                                 ")"
3474   }
3475 }
3476 
3477 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
3478   static const char *needs_ideal_memory_list[] = {
3479     "StoreI","StoreL","StoreP","StoreN","StoreNKlass","StoreD","StoreF" ,
3480     "StoreB","StoreC","Store" ,"StoreFP",
3481     "LoadI", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
3482     "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
3483     "StoreVector", "LoadVector",
3484     "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
3485     "LoadPLocked",
3486     "StorePConditional", "StoreIConditional", "StoreLConditional",
3487     "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
3488     "StoreCM",
3489     "ClearArray",
3490     "GetAndAddI", "GetAndSetI", "GetAndSetP",
3491     "GetAndAddL", "GetAndSetL", "GetAndSetN",
3492   };
3493   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
3494   if( strcmp(_opType,"PrefetchRead")==0 ||
3495       strcmp(_opType,"PrefetchWrite")==0 ||
3496       strcmp(_opType,"PrefetchAllocation")==0 )
3497     return 1;
3498   if( _lChild ) {
3499     const char *opType = _lChild->_opType;
3500     for( int i=0; i<cnt; i++ )
3501       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3502         return 1;
3503     if( _lChild->needs_ideal_memory_edge(globals) )
3504       return 1;
3505   }
3506   if( _rChild ) {
3507     const char *opType = _rChild->_opType;
3508     for( int i=0; i<cnt; i++ )
3509       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3510         return 1;
3511     if( _rChild->needs_ideal_memory_edge(globals) )
3512       return 1;
3513   }
3514 
3515   return 0;
3516 }
3517 
3518 // TRUE if defines a derived oop, and so needs a base oop edge present
3519 // post-matching.
3520 int MatchNode::needs_base_oop_edge() const {
3521   if( !strcmp(_opType,"AddP") ) return 1;
3522   if( strcmp(_opType,"Set") ) return 0;
3523   return !strcmp(_rChild->_opType,"AddP");
3524 }
3525 
3526 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
3527   if( is_simple_chain_rule(globals) ) {
3528     const char *src = _matrule->_rChild->_opType;
3529     OperandForm *src_op = globals[src]->is_operand();
3530     assert( src_op, "Not operand class of chain rule" );
3531     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
3532   }                             // Else check instruction
3533 
3534   return _matrule ? _matrule->needs_base_oop_edge() : 0;
3535 }
3536 
3537 
3538 //-------------------------cisc spilling methods-------------------------------
3539 // helper routines and methods for detecting cisc-spilling instructions
3540 //-------------------------cisc_spill_merge------------------------------------
3541 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
3542   int cisc_spillable  = Maybe_cisc_spillable;
3543 
3544   // Combine results of left and right checks
3545   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
3546     // neither side is spillable, nor prevents cisc spilling
3547     cisc_spillable = Maybe_cisc_spillable;
3548   }
3549   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
3550     // right side is spillable
3551     cisc_spillable = right_spillable;
3552   }
3553   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
3554     // left side is spillable
3555     cisc_spillable = left_spillable;
3556   }
3557   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
3558     // left or right prevents cisc spilling this instruction
3559     cisc_spillable = Not_cisc_spillable;
3560   }
3561   else {
3562     // Only allow one to spill
3563     cisc_spillable = Not_cisc_spillable;
3564   }
3565 
3566   return cisc_spillable;
3567 }
3568 
3569 //-------------------------root_ops_match--------------------------------------
3570 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
3571   // Base Case: check that the current operands/operations match
3572   assert( op1, "Must have op's name");
3573   assert( op2, "Must have op's name");
3574   const Form *form1 = globals[op1];
3575   const Form *form2 = globals[op2];
3576 
3577   return (form1 == form2);
3578 }
3579 
3580 //-------------------------cisc_spill_match_node-------------------------------
3581 // Recursively check two MatchRules for legal conversion via cisc-spilling
3582 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
3583   int cisc_spillable  = Maybe_cisc_spillable;
3584   int left_spillable  = Maybe_cisc_spillable;
3585   int right_spillable = Maybe_cisc_spillable;
3586 
3587   // Check that each has same number of operands at this level
3588   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
3589     return Not_cisc_spillable;
3590 
3591   // Base Case: check that the current operands/operations match
3592   // or are CISC spillable
3593   assert( _opType, "Must have _opType");
3594   assert( mRule2->_opType, "Must have _opType");
3595   const Form *form  = globals[_opType];
3596   const Form *form2 = globals[mRule2->_opType];
3597   if( form == form2 ) {
3598     cisc_spillable = Maybe_cisc_spillable;
3599   } else {
3600     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
3601     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
3602     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
3603     DataType data_type = Form::none;
3604     if (form->is_operand()) {
3605       // Make sure the loadX matches the type of the reg
3606       data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
3607     }
3608     // Detect reg vs (loadX memory)
3609     if( form->is_cisc_reg(globals)
3610         && form2_inst
3611         && data_type != Form::none
3612         && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
3613         && (name_left != NULL)       // NOT (load)
3614         && (name_right == NULL) ) {  // NOT (load memory foo)
3615       const Form *form2_left = name_left ? globals[name_left] : NULL;
3616       if( form2_left && form2_left->is_cisc_mem(globals) ) {
3617         cisc_spillable = Is_cisc_spillable;
3618         operand        = _name;
3619         reg_type       = _result;
3620         return Is_cisc_spillable;
3621       } else {
3622         cisc_spillable = Not_cisc_spillable;
3623       }
3624     }
3625     // Detect reg vs memory
3626     else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
3627       cisc_spillable = Is_cisc_spillable;
3628       operand        = _name;
3629       reg_type       = _result;
3630       return Is_cisc_spillable;
3631     } else {
3632       cisc_spillable = Not_cisc_spillable;
3633     }
3634   }
3635 
3636   // If cisc is still possible, check rest of tree
3637   if( cisc_spillable == Maybe_cisc_spillable ) {
3638     // Check that each has same number of operands at this level
3639     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3640 
3641     // Check left operands
3642     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
3643       left_spillable = Maybe_cisc_spillable;
3644     } else {
3645       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
3646     }
3647 
3648     // Check right operands
3649     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3650       right_spillable =  Maybe_cisc_spillable;
3651     } else {
3652       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3653     }
3654 
3655     // Combine results of left and right checks
3656     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3657   }
3658 
3659   return cisc_spillable;
3660 }
3661 
3662 //---------------------------cisc_spill_match_rule------------------------------
3663 // Recursively check two MatchRules for legal conversion via cisc-spilling
3664 // This method handles the root of Match tree,
3665 // general recursive checks done in MatchNode
3666 int  MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
3667                                            MatchRule* mRule2, const char* &operand,
3668                                            const char* &reg_type) {
3669   int cisc_spillable  = Maybe_cisc_spillable;
3670   int left_spillable  = Maybe_cisc_spillable;
3671   int right_spillable = Maybe_cisc_spillable;
3672 
3673   // Check that each sets a result
3674   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
3675   // Check that each has same number of operands at this level
3676   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3677 
3678   // Check left operands: at root, must be target of 'Set'
3679   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
3680     left_spillable = Not_cisc_spillable;
3681   } else {
3682     // Do not support cisc-spilling instruction's target location
3683     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
3684       left_spillable = Maybe_cisc_spillable;
3685     } else {
3686       left_spillable = Not_cisc_spillable;
3687     }
3688   }
3689 
3690   // Check right operands: recursive walk to identify reg->mem operand
3691   if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3692     right_spillable =  Maybe_cisc_spillable;
3693   } else {
3694     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3695   }
3696 
3697   // Combine results of left and right checks
3698   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3699 
3700   return cisc_spillable;
3701 }
3702 
3703 //----------------------------- equivalent ------------------------------------
3704 // Recursively check to see if two match rules are equivalent.
3705 // This rule handles the root.
3706 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
3707   // Check that each sets a result
3708   if (sets_result() != mRule2->sets_result()) {
3709     return false;
3710   }
3711 
3712   // Check that the current operands/operations match
3713   assert( _opType, "Must have _opType");
3714   assert( mRule2->_opType, "Must have _opType");
3715   const Form *form  = globals[_opType];
3716   const Form *form2 = globals[mRule2->_opType];
3717   if( form != form2 ) {
3718     return false;
3719   }
3720 
3721   if (_lChild ) {
3722     if( !_lChild->equivalent(globals, mRule2->_lChild) )
3723       return false;
3724   } else if (mRule2->_lChild) {
3725     return false; // I have NULL left child, mRule2 has non-NULL left child.
3726   }
3727 
3728   if (_rChild ) {
3729     if( !_rChild->equivalent(globals, mRule2->_rChild) )
3730       return false;
3731   } else if (mRule2->_rChild) {
3732     return false; // I have NULL right child, mRule2 has non-NULL right child.
3733   }
3734 
3735   // We've made it through the gauntlet.
3736   return true;
3737 }
3738 
3739 //----------------------------- equivalent ------------------------------------
3740 // Recursively check to see if two match rules are equivalent.
3741 // This rule handles the operands.
3742 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
3743   if( !mNode2 )
3744     return false;
3745 
3746   // Check that the current operands/operations match
3747   assert( _opType, "Must have _opType");
3748   assert( mNode2->_opType, "Must have _opType");
3749   const Form *form  = globals[_opType];
3750   const Form *form2 = globals[mNode2->_opType];
3751   if( form != form2 ) {
3752     return false;
3753   }
3754 
3755   // Check that their children also match
3756   if (_lChild ) {
3757     if( !_lChild->equivalent(globals, mNode2->_lChild) )
3758       return false;
3759   } else if (mNode2->_lChild) {
3760     return false; // I have NULL left child, mNode2 has non-NULL left child.
3761   }
3762 
3763   if (_rChild ) {
3764     if( !_rChild->equivalent(globals, mNode2->_rChild) )
3765       return false;
3766   } else if (mNode2->_rChild) {
3767     return false; // I have NULL right child, mNode2 has non-NULL right child.
3768   }
3769 
3770   // We've made it through the gauntlet.
3771   return true;
3772 }
3773 
3774 //-------------------------- has_commutative_op -------------------------------
3775 // Recursively check for commutative operations with subtree operands
3776 // which could be swapped.
3777 void MatchNode::count_commutative_op(int& count) {
3778   static const char *commut_op_list[] = {
3779     "AddI","AddL","AddF","AddD",
3780     "AndI","AndL",
3781     "MaxI","MinI",
3782     "MulI","MulL","MulF","MulD",
3783     "OrI" ,"OrL" ,
3784     "XorI","XorL"
3785   };
3786   int cnt = sizeof(commut_op_list)/sizeof(char*);
3787 
3788   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
3789     // Don't swap if right operand is an immediate constant.
3790     bool is_const = false;
3791     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
3792       FormDict &globals = _AD.globalNames();
3793       const Form *form = globals[_rChild->_opType];
3794       if ( form ) {
3795         OperandForm  *oper = form->is_operand();
3796         if( oper && oper->interface_type(globals) == Form::constant_interface )
3797           is_const = true;
3798       }
3799     }
3800     if( !is_const ) {
3801       for( int i=0; i<cnt; i++ ) {
3802         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
3803           count++;
3804           _commutative_id = count; // id should be > 0
3805           break;
3806         }
3807       }
3808     }
3809   }
3810   if( _lChild )
3811     _lChild->count_commutative_op(count);
3812   if( _rChild )
3813     _rChild->count_commutative_op(count);
3814 }
3815 
3816 //-------------------------- swap_commutative_op ------------------------------
3817 // Recursively swap specified commutative operation with subtree operands.
3818 void MatchNode::swap_commutative_op(bool atroot, int id) {
3819   if( _commutative_id == id ) { // id should be > 0
3820     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
3821             "not swappable operation");
3822     MatchNode* tmp = _lChild;
3823     _lChild = _rChild;
3824     _rChild = tmp;
3825     // Don't exit here since we need to build internalop.
3826   }
3827 
3828   bool is_set = ( strcmp(_opType, "Set") == 0 );
3829   if( _lChild )
3830     _lChild->swap_commutative_op(is_set, id);
3831   if( _rChild )
3832     _rChild->swap_commutative_op(is_set, id);
3833 
3834   // If not the root, reduce this subtree to an internal operand
3835   if( !atroot && (_lChild || _rChild) ) {
3836     build_internalop();
3837   }
3838 }
3839 
3840 //-------------------------- swap_commutative_op ------------------------------
3841 // Recursively swap specified commutative operation with subtree operands.
3842 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
3843   assert(match_rules_cnt < 100," too many match rule clones");
3844   // Clone
3845   MatchRule* clone = new MatchRule(_AD, this);
3846   // Swap operands of commutative operation
3847   ((MatchNode*)clone)->swap_commutative_op(true, count);
3848   char* buf = (char*) malloc(strlen(instr_ident) + 4);
3849   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
3850   clone->_result = buf;
3851 
3852   clone->_next = this->_next;
3853   this-> _next = clone;
3854   if( (--count) > 0 ) {
3855     this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
3856     clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
3857   }
3858 }
3859 
3860 //------------------------------MatchRule--------------------------------------
3861 MatchRule::MatchRule(ArchDesc &ad)
3862   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
3863     _next = NULL;
3864 }
3865 
3866 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
3867   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
3868     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
3869     _next = NULL;
3870 }
3871 
3872 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
3873                      int numleaves)
3874   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
3875     _numchilds(0) {
3876       _next = NULL;
3877       mroot->_lChild = NULL;
3878       mroot->_rChild = NULL;
3879       delete mroot;
3880       _numleaves = numleaves;
3881       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
3882 }
3883 MatchRule::~MatchRule() {
3884 }
3885 
3886 // Recursive call collecting info on top-level operands, not transitive.
3887 // Implementation does not modify state of internal structures.
3888 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
3889   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3890 
3891   MatchNode::append_components(locals, components,
3892                                false /* not necessarily a def */);
3893 }
3894 
3895 // Recursive call on all operands' match rules in my match rule.
3896 // Implementation does not modify state of internal structures  since they
3897 // can be shared.
3898 // The MatchNode that is called first treats its
3899 bool MatchRule::base_operand(uint &position0, FormDict &globals,
3900                              const char *&result, const char * &name,
3901                              const char * &opType)const{
3902   uint position = position0;
3903 
3904   return (MatchNode::base_operand( position, globals, result, name, opType));
3905 }
3906 
3907 
3908 bool MatchRule::is_base_register(FormDict &globals) const {
3909   uint   position = 1;
3910   const char  *result   = NULL;
3911   const char  *name     = NULL;
3912   const char  *opType   = NULL;
3913   if (!base_operand(position, globals, result, name, opType)) {
3914     position = 0;
3915     if( base_operand(position, globals, result, name, opType) &&
3916         (strcmp(opType,"RegI")==0 ||
3917          strcmp(opType,"RegP")==0 ||
3918          strcmp(opType,"RegN")==0 ||
3919          strcmp(opType,"RegL")==0 ||
3920          strcmp(opType,"RegF")==0 ||
3921          strcmp(opType,"RegD")==0 ||
3922          strcmp(opType,"VecS")==0 ||
3923          strcmp(opType,"VecD")==0 ||
3924          strcmp(opType,"VecX")==0 ||
3925          strcmp(opType,"VecY")==0 ||
3926          strcmp(opType,"Reg" )==0) ) {
3927       return 1;
3928     }
3929   }
3930   return 0;
3931 }
3932 
3933 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
3934   uint         position = 1;
3935   const char  *result   = NULL;
3936   const char  *name     = NULL;
3937   const char  *opType   = NULL;
3938   if (!base_operand(position, globals, result, name, opType)) {
3939     position = 0;
3940     if (base_operand(position, globals, result, name, opType)) {
3941       return ideal_to_const_type(opType);
3942     }
3943   }
3944   return Form::none;
3945 }
3946 
3947 bool MatchRule::is_chain_rule(FormDict &globals) const {
3948 
3949   // Check for chain rule, and do not generate a match list for it
3950   if ((_lChild == NULL) && (_rChild == NULL) ) {
3951     const Form *form = globals[_opType];
3952     // If this is ideal, then it is a base match, not a chain rule.
3953     if ( form && form->is_operand() && (!form->ideal_only())) {
3954       return true;
3955     }
3956   }
3957   // Check for "Set" form of chain rule, and do not generate a match list
3958   if (_rChild) {
3959     const char *rch = _rChild->_opType;
3960     const Form *form = globals[rch];
3961     if ((!strcmp(_opType,"Set") &&
3962          ((form) && form->is_operand()))) {
3963       return true;
3964     }
3965   }
3966   return false;
3967 }
3968 
3969 int MatchRule::is_ideal_copy() const {
3970   if( _rChild ) {
3971     const char  *opType = _rChild->_opType;
3972 #if 1
3973     if( strcmp(opType,"CastIP")==0 )
3974       return 1;
3975 #else
3976     if( strcmp(opType,"CastII")==0 )
3977       return 1;
3978     // Do not treat *CastPP this way, because it
3979     // may transfer a raw pointer to an oop.
3980     // If the register allocator were to coalesce this
3981     // into a single LRG, the GC maps would be incorrect.
3982     //if( strcmp(opType,"CastPP")==0 )
3983     //  return 1;
3984     //if( strcmp(opType,"CheckCastPP")==0 )
3985     //  return 1;
3986     //
3987     // Do not treat CastX2P or CastP2X this way, because
3988     // raw pointers and int types are treated differently
3989     // when saving local & stack info for safepoints in
3990     // Output().
3991     //if( strcmp(opType,"CastX2P")==0 )
3992     //  return 1;
3993     //if( strcmp(opType,"CastP2X")==0 )
3994     //  return 1;
3995 #endif
3996   }
3997   if( is_chain_rule(_AD.globalNames()) &&
3998       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
3999     return 1;
4000   return 0;
4001 }
4002 
4003 
4004 int MatchRule::is_expensive() const {
4005   if( _rChild ) {
4006     const char  *opType = _rChild->_opType;
4007     if( strcmp(opType,"AtanD")==0 ||
4008         strcmp(opType,"CosD")==0 ||
4009         strcmp(opType,"DivD")==0 ||
4010         strcmp(opType,"DivF")==0 ||
4011         strcmp(opType,"DivI")==0 ||
4012         strcmp(opType,"ExpD")==0 ||
4013         strcmp(opType,"LogD")==0 ||
4014         strcmp(opType,"Log10D")==0 ||
4015         strcmp(opType,"ModD")==0 ||
4016         strcmp(opType,"ModF")==0 ||
4017         strcmp(opType,"ModI")==0 ||
4018         strcmp(opType,"PowD")==0 ||
4019         strcmp(opType,"SinD")==0 ||
4020         strcmp(opType,"SqrtD")==0 ||
4021         strcmp(opType,"TanD")==0 ||
4022         strcmp(opType,"ConvD2F")==0 ||
4023         strcmp(opType,"ConvD2I")==0 ||
4024         strcmp(opType,"ConvD2L")==0 ||
4025         strcmp(opType,"ConvF2D")==0 ||
4026         strcmp(opType,"ConvF2I")==0 ||
4027         strcmp(opType,"ConvF2L")==0 ||
4028         strcmp(opType,"ConvI2D")==0 ||
4029         strcmp(opType,"ConvI2F")==0 ||
4030         strcmp(opType,"ConvI2L")==0 ||
4031         strcmp(opType,"ConvL2D")==0 ||
4032         strcmp(opType,"ConvL2F")==0 ||
4033         strcmp(opType,"ConvL2I")==0 ||
4034         strcmp(opType,"DecodeN")==0 ||
4035         strcmp(opType,"EncodeP")==0 ||
4036         strcmp(opType,"EncodePKlass")==0 ||
4037         strcmp(opType,"DecodeNKlass")==0 ||
4038         strcmp(opType,"RoundDouble")==0 ||
4039         strcmp(opType,"RoundFloat")==0 ||
4040         strcmp(opType,"ReverseBytesI")==0 ||
4041         strcmp(opType,"ReverseBytesL")==0 ||
4042         strcmp(opType,"ReverseBytesUS")==0 ||
4043         strcmp(opType,"ReverseBytesS")==0 ||
4044         strcmp(opType,"ReplicateB")==0 ||
4045         strcmp(opType,"ReplicateS")==0 ||
4046         strcmp(opType,"ReplicateI")==0 ||
4047         strcmp(opType,"ReplicateL")==0 ||
4048         strcmp(opType,"ReplicateF")==0 ||
4049         strcmp(opType,"ReplicateD")==0 ||
4050         0 /* 0 to line up columns nicely */ )
4051       return 1;
4052   }
4053   return 0;
4054 }
4055 
4056 bool MatchRule::is_ideal_if() const {
4057   if( !_opType ) return false;
4058   return
4059     !strcmp(_opType,"If"            ) ||
4060     !strcmp(_opType,"CountedLoopEnd");
4061 }
4062 
4063 bool MatchRule::is_ideal_fastlock() const {
4064   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4065     return (strcmp(_rChild->_opType,"FastLock") == 0);
4066   }
4067   return false;
4068 }
4069 
4070 bool MatchRule::is_ideal_membar() const {
4071   if( !_opType ) return false;
4072   return
4073     !strcmp(_opType,"MemBarAcquire") ||
4074     !strcmp(_opType,"MemBarRelease") ||
4075     !strcmp(_opType,"MemBarAcquireLock") ||
4076     !strcmp(_opType,"MemBarReleaseLock") ||
4077     !strcmp(_opType,"LoadFence" ) ||
4078     !strcmp(_opType,"StoreFence") ||
4079     !strcmp(_opType,"MemBarVolatile") ||
4080     !strcmp(_opType,"MemBarCPUOrder") ||
4081     !strcmp(_opType,"MemBarStoreStore");
4082 }
4083 
4084 bool MatchRule::is_ideal_loadPC() const {
4085   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4086     return (strcmp(_rChild->_opType,"LoadPC") == 0);
4087   }
4088   return false;
4089 }
4090 
4091 bool MatchRule::is_ideal_box() const {
4092   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4093     return (strcmp(_rChild->_opType,"Box") == 0);
4094   }
4095   return false;
4096 }
4097 
4098 bool MatchRule::is_ideal_goto() const {
4099   bool   ideal_goto = false;
4100 
4101   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
4102     ideal_goto = true;
4103   }
4104   return ideal_goto;
4105 }
4106 
4107 bool MatchRule::is_ideal_jump() const {
4108   if( _opType ) {
4109     if( !strcmp(_opType,"Jump") )
4110       return true;
4111   }
4112   return false;
4113 }
4114 
4115 bool MatchRule::is_ideal_bool() const {
4116   if( _opType ) {
4117     if( !strcmp(_opType,"Bool") )
4118       return true;
4119   }
4120   return false;
4121 }
4122 
4123 
4124 Form::DataType MatchRule::is_ideal_load() const {
4125   Form::DataType ideal_load = Form::none;
4126 
4127   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4128     const char *opType = _rChild->_opType;
4129     ideal_load = is_load_from_memory(opType);
4130   }
4131 
4132   return ideal_load;
4133 }
4134 
4135 bool MatchRule::is_vector() const {
4136   static const char *vector_list[] = {
4137     "AddVB","AddVS","AddVI","AddVL","AddVF","AddVD",
4138     "SubVB","SubVS","SubVI","SubVL","SubVF","SubVD",
4139     "MulVS","MulVI","MulVF","MulVD",
4140     "DivVF","DivVD",
4141     "AndV" ,"XorV" ,"OrV",
4142     "LShiftCntV","RShiftCntV",
4143     "LShiftVB","LShiftVS","LShiftVI","LShiftVL",
4144     "RShiftVB","RShiftVS","RShiftVI","RShiftVL",
4145     "URShiftVB","URShiftVS","URShiftVI","URShiftVL",
4146     "ReplicateB","ReplicateS","ReplicateI","ReplicateL","ReplicateF","ReplicateD",
4147     "LoadVector","StoreVector",
4148     // Next are not supported currently.
4149     "PackB","PackS","PackI","PackL","PackF","PackD","Pack2L","Pack2D",
4150     "ExtractB","ExtractUB","ExtractC","ExtractS","ExtractI","ExtractL","ExtractF","ExtractD"
4151   };
4152   int cnt = sizeof(vector_list)/sizeof(char*);
4153   if (_rChild) {
4154     const char  *opType = _rChild->_opType;
4155     for (int i=0; i<cnt; i++)
4156       if (strcmp(opType,vector_list[i]) == 0)
4157         return true;
4158   }
4159   return false;
4160 }
4161 
4162 
4163 bool MatchRule::skip_antidep_check() const {
4164   // Some loads operate on what is effectively immutable memory so we
4165   // should skip the anti dep computations.  For some of these nodes
4166   // the rewritable field keeps the anti dep logic from triggering but
4167   // for certain kinds of LoadKlass it does not since they are
4168   // actually reading memory which could be rewritten by the runtime,
4169   // though never by generated code.  This disables it uniformly for
4170   // the nodes that behave like this: LoadKlass, LoadNKlass and
4171   // LoadRange.
4172   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4173     const char *opType = _rChild->_opType;
4174     if (strcmp("LoadKlass", opType) == 0 ||
4175         strcmp("LoadNKlass", opType) == 0 ||
4176         strcmp("LoadRange", opType) == 0) {
4177       return true;
4178     }
4179   }
4180 
4181   return false;
4182 }
4183 
4184 
4185 Form::DataType MatchRule::is_ideal_store() const {
4186   Form::DataType ideal_store = Form::none;
4187 
4188   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4189     const char *opType = _rChild->_opType;
4190     ideal_store = is_store_to_memory(opType);
4191   }
4192 
4193   return ideal_store;
4194 }
4195 
4196 
4197 void MatchRule::dump() {
4198   output(stderr);
4199 }
4200 
4201 // Write just one line.
4202 void MatchRule::output_short(FILE *fp) {
4203   fprintf(fp,"MatchRule: ( %s",_name);
4204   if (_lChild) _lChild->output(fp);
4205   if (_rChild) _rChild->output(fp);
4206   fprintf(fp," )");
4207 }
4208 
4209 void MatchRule::output(FILE *fp) {
4210   output_short(fp);
4211   fprintf(fp,"\n   nesting depth = %d\n", _depth);
4212   if (_result) fprintf(fp,"   Result Type = %s", _result);
4213   fprintf(fp,"\n");
4214 }
4215 
4216 //------------------------------Attribute--------------------------------------
4217 Attribute::Attribute(char *id, char* val, int type)
4218   : _ident(id), _val(val), _atype(type) {
4219 }
4220 Attribute::~Attribute() {
4221 }
4222 
4223 int Attribute::int_val(ArchDesc &ad) {
4224   // Make sure it is an integer constant:
4225   int result = 0;
4226   if (!_val || !ADLParser::is_int_token(_val, result)) {
4227     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
4228                   _ident, _val ? _val : "");
4229   }
4230   return result;
4231 }
4232 
4233 void Attribute::dump() {
4234   output(stderr);
4235 } // Debug printer
4236 
4237 // Write to output files
4238 void Attribute::output(FILE *fp) {
4239   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
4240 }
4241 
4242 //------------------------------FormatRule----------------------------------
4243 FormatRule::FormatRule(char *temp)
4244   : _temp(temp) {
4245 }
4246 FormatRule::~FormatRule() {
4247 }
4248 
4249 void FormatRule::dump() {
4250   output(stderr);
4251 }
4252 
4253 // Write to output files
4254 void FormatRule::output(FILE *fp) {
4255   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
4256   fprintf(fp,"\n");
4257 }