1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CFGPrinter.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_IR.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_LinearScan.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "utilities/bitMap.inline.hpp"
  35 #ifdef TARGET_ARCH_x86
  36 # include "vmreg_x86.inline.hpp"
  37 #endif
  38 #ifdef TARGET_ARCH_sparc
  39 # include "vmreg_sparc.inline.hpp"
  40 #endif
  41 #ifdef TARGET_ARCH_zero
  42 # include "vmreg_zero.inline.hpp"
  43 #endif
  44 #ifdef TARGET_ARCH_arm
  45 # include "vmreg_arm.inline.hpp"
  46 #endif
  47 #ifdef TARGET_ARCH_ppc
  48 # include "vmreg_ppc.inline.hpp"
  49 #endif
  50 
  51 
  52 #ifndef PRODUCT
  53 
  54   static LinearScanStatistic _stat_before_alloc;
  55   static LinearScanStatistic _stat_after_asign;
  56   static LinearScanStatistic _stat_final;
  57 
  58   static LinearScanTimers _total_timer;
  59 
  60   // helper macro for short definition of timer
  61   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
  62 
  63   // helper macro for short definition of trace-output inside code
  64   #define TRACE_LINEAR_SCAN(level, code)       \
  65     if (TraceLinearScanLevel >= level) {       \
  66       code;                                    \
  67     }
  68 
  69 #else
  70 
  71   #define TIME_LINEAR_SCAN(timer_name)
  72   #define TRACE_LINEAR_SCAN(level, code)
  73 
  74 #endif
  75 
  76 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
  77 #ifdef _LP64
  78 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 2,  1, 2, 1, -1};
  79 #else
  80 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1, 1, 1, -1};
  81 #endif
  82 
  83 
  84 // Implementation of LinearScan
  85 
  86 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
  87  : _compilation(ir->compilation())
  88  , _ir(ir)
  89  , _gen(gen)
  90  , _frame_map(frame_map)
  91  , _num_virtual_regs(gen->max_virtual_register_number())
  92  , _has_fpu_registers(false)
  93  , _num_calls(-1)
  94  , _max_spills(0)
  95  , _unused_spill_slot(-1)
  96  , _intervals(0)   // initialized later with correct length
  97  , _new_intervals_from_allocation(new IntervalList())
  98  , _sorted_intervals(NULL)
  99  , _needs_full_resort(false)
 100  , _lir_ops(0)     // initialized later with correct length
 101  , _block_of_op(0) // initialized later with correct length
 102  , _has_info(0)
 103  , _has_call(0)
 104  , _scope_value_cache(0) // initialized later with correct length
 105  , _interval_in_loop(0, 0) // initialized later with correct length
 106  , _cached_blocks(*ir->linear_scan_order())
 107 #ifdef X86
 108  , _fpu_stack_allocator(NULL)
 109 #endif
 110 {
 111   assert(this->ir() != NULL,          "check if valid");
 112   assert(this->compilation() != NULL, "check if valid");
 113   assert(this->gen() != NULL,         "check if valid");
 114   assert(this->frame_map() != NULL,   "check if valid");
 115 }
 116 
 117 
 118 // ********** functions for converting LIR-Operands to register numbers
 119 //
 120 // Emulate a flat register file comprising physical integer registers,
 121 // physical floating-point registers and virtual registers, in that order.
 122 // Virtual registers already have appropriate numbers, since V0 is
 123 // the number of physical registers.
 124 // Returns -1 for hi word if opr is a single word operand.
 125 //
 126 // Note: the inverse operation (calculating an operand for register numbers)
 127 //       is done in calc_operand_for_interval()
 128 
 129 int LinearScan::reg_num(LIR_Opr opr) {
 130   assert(opr->is_register(), "should not call this otherwise");
 131 
 132   if (opr->is_virtual_register()) {
 133     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
 134     return opr->vreg_number();
 135   } else if (opr->is_single_cpu()) {
 136     return opr->cpu_regnr();
 137   } else if (opr->is_double_cpu()) {
 138     return opr->cpu_regnrLo();
 139 #ifdef X86
 140   } else if (opr->is_single_xmm()) {
 141     return opr->fpu_regnr() + pd_first_xmm_reg;
 142   } else if (opr->is_double_xmm()) {
 143     return opr->fpu_regnrLo() + pd_first_xmm_reg;
 144 #endif
 145   } else if (opr->is_single_fpu()) {
 146     return opr->fpu_regnr() + pd_first_fpu_reg;
 147   } else if (opr->is_double_fpu()) {
 148     return opr->fpu_regnrLo() + pd_first_fpu_reg;
 149   } else {
 150     ShouldNotReachHere();
 151     return -1;
 152   }
 153 }
 154 
 155 int LinearScan::reg_numHi(LIR_Opr opr) {
 156   assert(opr->is_register(), "should not call this otherwise");
 157 
 158   if (opr->is_virtual_register()) {
 159     return -1;
 160   } else if (opr->is_single_cpu()) {
 161     return -1;
 162   } else if (opr->is_double_cpu()) {
 163     return opr->cpu_regnrHi();
 164 #ifdef X86
 165   } else if (opr->is_single_xmm()) {
 166     return -1;
 167   } else if (opr->is_double_xmm()) {
 168     return -1;
 169 #endif
 170   } else if (opr->is_single_fpu()) {
 171     return -1;
 172   } else if (opr->is_double_fpu()) {
 173     return opr->fpu_regnrHi() + pd_first_fpu_reg;
 174   } else {
 175     ShouldNotReachHere();
 176     return -1;
 177   }
 178 }
 179 
 180 
 181 // ********** functions for classification of intervals
 182 
 183 bool LinearScan::is_precolored_interval(const Interval* i) {
 184   return i->reg_num() < LinearScan::nof_regs;
 185 }
 186 
 187 bool LinearScan::is_virtual_interval(const Interval* i) {
 188   return i->reg_num() >= LIR_OprDesc::vreg_base;
 189 }
 190 
 191 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
 192   return i->reg_num() < LinearScan::nof_cpu_regs;
 193 }
 194 
 195 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
 196 #if defined(__SOFTFP__) || defined(E500V2)
 197   return i->reg_num() >= LIR_OprDesc::vreg_base;
 198 #else
 199   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
 200 #endif // __SOFTFP__ or E500V2
 201 }
 202 
 203 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
 204   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
 205 }
 206 
 207 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
 208 #if defined(__SOFTFP__) || defined(E500V2)
 209   return false;
 210 #else
 211   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
 212 #endif // __SOFTFP__ or E500V2
 213 }
 214 
 215 bool LinearScan::is_in_fpu_register(const Interval* i) {
 216   // fixed intervals not needed for FPU stack allocation
 217   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
 218 }
 219 
 220 bool LinearScan::is_oop_interval(const Interval* i) {
 221   // fixed intervals never contain oops
 222   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
 223 }
 224 
 225 
 226 // ********** General helper functions
 227 
 228 // compute next unused stack index that can be used for spilling
 229 int LinearScan::allocate_spill_slot(bool double_word) {
 230   int spill_slot;
 231   if (double_word) {
 232     if ((_max_spills & 1) == 1) {
 233       // alignment of double-word values
 234       // the hole because of the alignment is filled with the next single-word value
 235       assert(_unused_spill_slot == -1, "wasting a spill slot");
 236       _unused_spill_slot = _max_spills;
 237       _max_spills++;
 238     }
 239     spill_slot = _max_spills;
 240     _max_spills += 2;
 241 
 242   } else if (_unused_spill_slot != -1) {
 243     // re-use hole that was the result of a previous double-word alignment
 244     spill_slot = _unused_spill_slot;
 245     _unused_spill_slot = -1;
 246 
 247   } else {
 248     spill_slot = _max_spills;
 249     _max_spills++;
 250   }
 251 
 252   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
 253 
 254   // the class OopMapValue uses only 11 bits for storing the name of the
 255   // oop location. So a stack slot bigger than 2^11 leads to an overflow
 256   // that is not reported in product builds. Prevent this by checking the
 257   // spill slot here (altough this value and the later used location name
 258   // are slightly different)
 259   if (result > 2000) {
 260     bailout("too many stack slots used");
 261   }
 262 
 263   return result;
 264 }
 265 
 266 void LinearScan::assign_spill_slot(Interval* it) {
 267   // assign the canonical spill slot of the parent (if a part of the interval
 268   // is already spilled) or allocate a new spill slot
 269   if (it->canonical_spill_slot() >= 0) {
 270     it->assign_reg(it->canonical_spill_slot());
 271   } else {
 272     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
 273     it->set_canonical_spill_slot(spill);
 274     it->assign_reg(spill);
 275   }
 276 }
 277 
 278 void LinearScan::propagate_spill_slots() {
 279   if (!frame_map()->finalize_frame(max_spills())) {
 280     bailout("frame too large");
 281   }
 282 }
 283 
 284 // create a new interval with a predefined reg_num
 285 // (only used for parent intervals that are created during the building phase)
 286 Interval* LinearScan::create_interval(int reg_num) {
 287   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
 288 
 289   Interval* interval = new Interval(reg_num);
 290   _intervals.at_put(reg_num, interval);
 291 
 292   // assign register number for precolored intervals
 293   if (reg_num < LIR_OprDesc::vreg_base) {
 294     interval->assign_reg(reg_num);
 295   }
 296   return interval;
 297 }
 298 
 299 // assign a new reg_num to the interval and append it to the list of intervals
 300 // (only used for child intervals that are created during register allocation)
 301 void LinearScan::append_interval(Interval* it) {
 302   it->set_reg_num(_intervals.length());
 303   _intervals.append(it);
 304   _new_intervals_from_allocation->append(it);
 305 }
 306 
 307 // copy the vreg-flags if an interval is split
 308 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
 309   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
 310     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
 311   }
 312   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
 313     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
 314   }
 315 
 316   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
 317   //       intervals (only the very beginning of the interval must be in memory)
 318 }
 319 
 320 
 321 // ********** spill move optimization
 322 // eliminate moves from register to stack if stack slot is known to be correct
 323 
 324 // called during building of intervals
 325 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
 326   assert(interval->is_split_parent(), "can only be called for split parents");
 327 
 328   switch (interval->spill_state()) {
 329     case noDefinitionFound:
 330       assert(interval->spill_definition_pos() == -1, "must no be set before");
 331       interval->set_spill_definition_pos(def_pos);
 332       interval->set_spill_state(oneDefinitionFound);
 333       break;
 334 
 335     case oneDefinitionFound:
 336       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
 337       if (def_pos < interval->spill_definition_pos() - 2) {
 338         // second definition found, so no spill optimization possible for this interval
 339         interval->set_spill_state(noOptimization);
 340       } else {
 341         // two consecutive definitions (because of two-operand LIR form)
 342         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
 343       }
 344       break;
 345 
 346     case noOptimization:
 347       // nothing to do
 348       break;
 349 
 350     default:
 351       assert(false, "other states not allowed at this time");
 352   }
 353 }
 354 
 355 // called during register allocation
 356 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
 357   switch (interval->spill_state()) {
 358     case oneDefinitionFound: {
 359       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
 360       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
 361 
 362       if (def_loop_depth < spill_loop_depth) {
 363         // the loop depth of the spilling position is higher then the loop depth
 364         // at the definition of the interval -> move write to memory out of loop
 365         // by storing at definitin of the interval
 366         interval->set_spill_state(storeAtDefinition);
 367       } else {
 368         // the interval is currently spilled only once, so for now there is no
 369         // reason to store the interval at the definition
 370         interval->set_spill_state(oneMoveInserted);
 371       }
 372       break;
 373     }
 374 
 375     case oneMoveInserted: {
 376       // the interval is spilled more then once, so it is better to store it to
 377       // memory at the definition
 378       interval->set_spill_state(storeAtDefinition);
 379       break;
 380     }
 381 
 382     case storeAtDefinition:
 383     case startInMemory:
 384     case noOptimization:
 385     case noDefinitionFound:
 386       // nothing to do
 387       break;
 388 
 389     default:
 390       assert(false, "other states not allowed at this time");
 391   }
 392 }
 393 
 394 
 395 bool LinearScan::must_store_at_definition(const Interval* i) {
 396   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
 397 }
 398 
 399 // called once before asignment of register numbers
 400 void LinearScan::eliminate_spill_moves() {
 401   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
 402   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
 403 
 404   // collect all intervals that must be stored after their definion.
 405   // the list is sorted by Interval::spill_definition_pos
 406   Interval* interval;
 407   Interval* temp_list;
 408   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
 409 
 410 #ifdef ASSERT
 411   Interval* prev = NULL;
 412   Interval* temp = interval;
 413   while (temp != Interval::end()) {
 414     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
 415     if (prev != NULL) {
 416       assert(temp->from() >= prev->from(), "intervals not sorted");
 417       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
 418     }
 419 
 420     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
 421     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
 422     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
 423 
 424     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
 425 
 426     temp = temp->next();
 427   }
 428 #endif
 429 
 430   LIR_InsertionBuffer insertion_buffer;
 431   int num_blocks = block_count();
 432   for (int i = 0; i < num_blocks; i++) {
 433     BlockBegin* block = block_at(i);
 434     LIR_OpList* instructions = block->lir()->instructions_list();
 435     int         num_inst = instructions->length();
 436     bool        has_new = false;
 437 
 438     // iterate all instructions of the block. skip the first because it is always a label
 439     for (int j = 1; j < num_inst; j++) {
 440       LIR_Op* op = instructions->at(j);
 441       int op_id = op->id();
 442 
 443       if (op_id == -1) {
 444         // remove move from register to stack if the stack slot is guaranteed to be correct.
 445         // only moves that have been inserted by LinearScan can be removed.
 446         assert(op->code() == lir_move, "only moves can have a op_id of -1");
 447         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
 448         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
 449 
 450         LIR_Op1* op1 = (LIR_Op1*)op;
 451         Interval* interval = interval_at(op1->result_opr()->vreg_number());
 452 
 453         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
 454           // move target is a stack slot that is always correct, so eliminate instruction
 455           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
 456           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
 457         }
 458 
 459       } else {
 460         // insert move from register to stack just after the beginning of the interval
 461         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
 462         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
 463 
 464         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
 465           if (!has_new) {
 466             // prepare insertion buffer (appended when all instructions of the block are processed)
 467             insertion_buffer.init(block->lir());
 468             has_new = true;
 469           }
 470 
 471           LIR_Opr from_opr = operand_for_interval(interval);
 472           LIR_Opr to_opr = canonical_spill_opr(interval);
 473           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
 474           assert(to_opr->is_stack(), "to operand must be a stack slot");
 475 
 476           insertion_buffer.move(j, from_opr, to_opr);
 477           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
 478 
 479           interval = interval->next();
 480         }
 481       }
 482     } // end of instruction iteration
 483 
 484     if (has_new) {
 485       block->lir()->append(&insertion_buffer);
 486     }
 487   } // end of block iteration
 488 
 489   assert(interval == Interval::end(), "missed an interval");
 490 }
 491 
 492 
 493 // ********** Phase 1: number all instructions in all blocks
 494 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
 495 
 496 void LinearScan::number_instructions() {
 497   {
 498     // dummy-timer to measure the cost of the timer itself
 499     // (this time is then subtracted from all other timers to get the real value)
 500     TIME_LINEAR_SCAN(timer_do_nothing);
 501   }
 502   TIME_LINEAR_SCAN(timer_number_instructions);
 503 
 504   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
 505   int num_blocks = block_count();
 506   int num_instructions = 0;
 507   int i;
 508   for (i = 0; i < num_blocks; i++) {
 509     num_instructions += block_at(i)->lir()->instructions_list()->length();
 510   }
 511 
 512   // initialize with correct length
 513   _lir_ops = LIR_OpArray(num_instructions);
 514   _block_of_op = BlockBeginArray(num_instructions);
 515 
 516   int op_id = 0;
 517   int idx = 0;
 518 
 519   for (i = 0; i < num_blocks; i++) {
 520     BlockBegin* block = block_at(i);
 521     block->set_first_lir_instruction_id(op_id);
 522     LIR_OpList* instructions = block->lir()->instructions_list();
 523 
 524     int num_inst = instructions->length();
 525     for (int j = 0; j < num_inst; j++) {
 526       LIR_Op* op = instructions->at(j);
 527       op->set_id(op_id);
 528 
 529       _lir_ops.at_put(idx, op);
 530       _block_of_op.at_put(idx, block);
 531       assert(lir_op_with_id(op_id) == op, "must match");
 532 
 533       idx++;
 534       op_id += 2; // numbering of lir_ops by two
 535     }
 536     block->set_last_lir_instruction_id(op_id - 2);
 537   }
 538   assert(idx == num_instructions, "must match");
 539   assert(idx * 2 == op_id, "must match");
 540 
 541   _has_call = BitMap(num_instructions); _has_call.clear();
 542   _has_info = BitMap(num_instructions); _has_info.clear();
 543 }
 544 
 545 
 546 // ********** Phase 2: compute local live sets separately for each block
 547 // (sets live_gen and live_kill for each block)
 548 
 549 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
 550   LIR_Opr opr = value->operand();
 551   Constant* con = value->as_Constant();
 552 
 553   // check some asumptions about debug information
 554   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
 555   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
 556   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
 557 
 558   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 559     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 560     int reg = opr->vreg_number();
 561     if (!live_kill.at(reg)) {
 562       live_gen.set_bit(reg);
 563       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
 564     }
 565   }
 566 }
 567 
 568 
 569 void LinearScan::compute_local_live_sets() {
 570   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
 571 
 572   int  num_blocks = block_count();
 573   int  live_size = live_set_size();
 574   bool local_has_fpu_registers = false;
 575   int  local_num_calls = 0;
 576   LIR_OpVisitState visitor;
 577 
 578   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
 579   local_interval_in_loop.clear();
 580 
 581   // iterate all blocks
 582   for (int i = 0; i < num_blocks; i++) {
 583     BlockBegin* block = block_at(i);
 584 
 585     BitMap live_gen(live_size);  live_gen.clear();
 586     BitMap live_kill(live_size); live_kill.clear();
 587 
 588     if (block->is_set(BlockBegin::exception_entry_flag)) {
 589       // Phi functions at the begin of an exception handler are
 590       // implicitly defined (= killed) at the beginning of the block.
 591       for_each_phi_fun(block, phi,
 592         live_kill.set_bit(phi->operand()->vreg_number())
 593       );
 594     }
 595 
 596     LIR_OpList* instructions = block->lir()->instructions_list();
 597     int num_inst = instructions->length();
 598 
 599     // iterate all instructions of the block. skip the first because it is always a label
 600     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
 601     for (int j = 1; j < num_inst; j++) {
 602       LIR_Op* op = instructions->at(j);
 603 
 604       // visit operation to collect all operands
 605       visitor.visit(op);
 606 
 607       if (visitor.has_call()) {
 608         _has_call.set_bit(op->id() >> 1);
 609         local_num_calls++;
 610       }
 611       if (visitor.info_count() > 0) {
 612         _has_info.set_bit(op->id() >> 1);
 613       }
 614 
 615       // iterate input operands of instruction
 616       int k, n, reg;
 617       n = visitor.opr_count(LIR_OpVisitState::inputMode);
 618       for (k = 0; k < n; k++) {
 619         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
 620         assert(opr->is_register(), "visitor should only return register operands");
 621 
 622         if (opr->is_virtual_register()) {
 623           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 624           reg = opr->vreg_number();
 625           if (!live_kill.at(reg)) {
 626             live_gen.set_bit(reg);
 627             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
 628           }
 629           if (block->loop_index() >= 0) {
 630             local_interval_in_loop.set_bit(reg, block->loop_index());
 631           }
 632           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 633         }
 634 
 635 #ifdef ASSERT
 636         // fixed intervals are never live at block boundaries, so
 637         // they need not be processed in live sets.
 638         // this is checked by these assertions to be sure about it.
 639         // the entry block may have incoming values in registers, which is ok.
 640         if (!opr->is_virtual_register() && block != ir()->start()) {
 641           reg = reg_num(opr);
 642           if (is_processed_reg_num(reg)) {
 643             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 644           }
 645           reg = reg_numHi(opr);
 646           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 647             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 648           }
 649         }
 650 #endif
 651       }
 652 
 653       // Add uses of live locals from interpreter's point of view for proper debug information generation
 654       n = visitor.info_count();
 655       for (k = 0; k < n; k++) {
 656         CodeEmitInfo* info = visitor.info_at(k);
 657         ValueStack* stack = info->stack();
 658         for_each_state_value(stack, value,
 659           set_live_gen_kill(value, op, live_gen, live_kill)
 660         );
 661       }
 662 
 663       // iterate temp operands of instruction
 664       n = visitor.opr_count(LIR_OpVisitState::tempMode);
 665       for (k = 0; k < n; k++) {
 666         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
 667         assert(opr->is_register(), "visitor should only return register operands");
 668 
 669         if (opr->is_virtual_register()) {
 670           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 671           reg = opr->vreg_number();
 672           live_kill.set_bit(reg);
 673           if (block->loop_index() >= 0) {
 674             local_interval_in_loop.set_bit(reg, block->loop_index());
 675           }
 676           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 677         }
 678 
 679 #ifdef ASSERT
 680         // fixed intervals are never live at block boundaries, so
 681         // they need not be processed in live sets
 682         // process them only in debug mode so that this can be checked
 683         if (!opr->is_virtual_register()) {
 684           reg = reg_num(opr);
 685           if (is_processed_reg_num(reg)) {
 686             live_kill.set_bit(reg_num(opr));
 687           }
 688           reg = reg_numHi(opr);
 689           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 690             live_kill.set_bit(reg);
 691           }
 692         }
 693 #endif
 694       }
 695 
 696       // iterate output operands of instruction
 697       n = visitor.opr_count(LIR_OpVisitState::outputMode);
 698       for (k = 0; k < n; k++) {
 699         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
 700         assert(opr->is_register(), "visitor should only return register operands");
 701 
 702         if (opr->is_virtual_register()) {
 703           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 704           reg = opr->vreg_number();
 705           live_kill.set_bit(reg);
 706           if (block->loop_index() >= 0) {
 707             local_interval_in_loop.set_bit(reg, block->loop_index());
 708           }
 709           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 710         }
 711 
 712 #ifdef ASSERT
 713         // fixed intervals are never live at block boundaries, so
 714         // they need not be processed in live sets
 715         // process them only in debug mode so that this can be checked
 716         if (!opr->is_virtual_register()) {
 717           reg = reg_num(opr);
 718           if (is_processed_reg_num(reg)) {
 719             live_kill.set_bit(reg_num(opr));
 720           }
 721           reg = reg_numHi(opr);
 722           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 723             live_kill.set_bit(reg);
 724           }
 725         }
 726 #endif
 727       }
 728     } // end of instruction iteration
 729 
 730     block->set_live_gen (live_gen);
 731     block->set_live_kill(live_kill);
 732     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
 733     block->set_live_out (BitMap(live_size)); block->live_out().clear();
 734 
 735     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
 736     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
 737   } // end of block iteration
 738 
 739   // propagate local calculated information into LinearScan object
 740   _has_fpu_registers = local_has_fpu_registers;
 741   compilation()->set_has_fpu_code(local_has_fpu_registers);
 742 
 743   _num_calls = local_num_calls;
 744   _interval_in_loop = local_interval_in_loop;
 745 }
 746 
 747 
 748 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
 749 // (sets live_in and live_out for each block)
 750 
 751 void LinearScan::compute_global_live_sets() {
 752   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
 753 
 754   int  num_blocks = block_count();
 755   bool change_occurred;
 756   bool change_occurred_in_block;
 757   int  iteration_count = 0;
 758   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
 759 
 760   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
 761   // The loop is executed until a fixpoint is reached (no changes in an iteration)
 762   // Exception handlers must be processed because not all live values are
 763   // present in the state array, e.g. because of global value numbering
 764   do {
 765     change_occurred = false;
 766 
 767     // iterate all blocks in reverse order
 768     for (int i = num_blocks - 1; i >= 0; i--) {
 769       BlockBegin* block = block_at(i);
 770 
 771       change_occurred_in_block = false;
 772 
 773       // live_out(block) is the union of live_in(sux), for successors sux of block
 774       int n = block->number_of_sux();
 775       int e = block->number_of_exception_handlers();
 776       if (n + e > 0) {
 777         // block has successors
 778         if (n > 0) {
 779           live_out.set_from(block->sux_at(0)->live_in());
 780           for (int j = 1; j < n; j++) {
 781             live_out.set_union(block->sux_at(j)->live_in());
 782           }
 783         } else {
 784           live_out.clear();
 785         }
 786         for (int j = 0; j < e; j++) {
 787           live_out.set_union(block->exception_handler_at(j)->live_in());
 788         }
 789 
 790         if (!block->live_out().is_same(live_out)) {
 791           // A change occurred.  Swap the old and new live out sets to avoid copying.
 792           BitMap temp = block->live_out();
 793           block->set_live_out(live_out);
 794           live_out = temp;
 795 
 796           change_occurred = true;
 797           change_occurred_in_block = true;
 798         }
 799       }
 800 
 801       if (iteration_count == 0 || change_occurred_in_block) {
 802         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
 803         // note: live_in has to be computed only in first iteration or if live_out has changed!
 804         BitMap live_in = block->live_in();
 805         live_in.set_from(block->live_out());
 806         live_in.set_difference(block->live_kill());
 807         live_in.set_union(block->live_gen());
 808       }
 809 
 810 #ifndef PRODUCT
 811       if (TraceLinearScanLevel >= 4) {
 812         char c = ' ';
 813         if (iteration_count == 0 || change_occurred_in_block) {
 814           c = '*';
 815         }
 816         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
 817         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
 818       }
 819 #endif
 820     }
 821     iteration_count++;
 822 
 823     if (change_occurred && iteration_count > 50) {
 824       BAILOUT("too many iterations in compute_global_live_sets");
 825     }
 826   } while (change_occurred);
 827 
 828 
 829 #ifdef ASSERT
 830   // check that fixed intervals are not live at block boundaries
 831   // (live set must be empty at fixed intervals)
 832   for (int i = 0; i < num_blocks; i++) {
 833     BlockBegin* block = block_at(i);
 834     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
 835       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
 836       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
 837       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
 838     }
 839   }
 840 #endif
 841 
 842   // check that the live_in set of the first block is empty
 843   BitMap live_in_args(ir()->start()->live_in().size());
 844   live_in_args.clear();
 845   if (!ir()->start()->live_in().is_same(live_in_args)) {
 846 #ifdef ASSERT
 847     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
 848     tty->print_cr("affected registers:");
 849     print_bitmap(ir()->start()->live_in());
 850 
 851     // print some additional information to simplify debugging
 852     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
 853       if (ir()->start()->live_in().at(i)) {
 854         Instruction* instr = gen()->instruction_for_vreg(i);
 855         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
 856 
 857         for (int j = 0; j < num_blocks; j++) {
 858           BlockBegin* block = block_at(j);
 859           if (block->live_gen().at(i)) {
 860             tty->print_cr("  used in block B%d", block->block_id());
 861           }
 862           if (block->live_kill().at(i)) {
 863             tty->print_cr("  defined in block B%d", block->block_id());
 864           }
 865         }
 866       }
 867     }
 868 
 869 #endif
 870     // when this fails, virtual registers are used before they are defined.
 871     assert(false, "live_in set of first block must be empty");
 872     // bailout of if this occurs in product mode.
 873     bailout("live_in set of first block not empty");
 874   }
 875 }
 876 
 877 
 878 // ********** Phase 4: build intervals
 879 // (fills the list _intervals)
 880 
 881 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
 882   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
 883   LIR_Opr opr = value->operand();
 884   Constant* con = value->as_Constant();
 885 
 886   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 887     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 888     add_use(opr, from, to, use_kind);
 889   }
 890 }
 891 
 892 
 893 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
 894   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
 895   assert(opr->is_register(), "should not be called otherwise");
 896 
 897   if (opr->is_virtual_register()) {
 898     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 899     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
 900 
 901   } else {
 902     int reg = reg_num(opr);
 903     if (is_processed_reg_num(reg)) {
 904       add_def(reg, def_pos, use_kind, opr->type_register());
 905     }
 906     reg = reg_numHi(opr);
 907     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 908       add_def(reg, def_pos, use_kind, opr->type_register());
 909     }
 910   }
 911 }
 912 
 913 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
 914   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
 915   assert(opr->is_register(), "should not be called otherwise");
 916 
 917   if (opr->is_virtual_register()) {
 918     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 919     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
 920 
 921   } else {
 922     int reg = reg_num(opr);
 923     if (is_processed_reg_num(reg)) {
 924       add_use(reg, from, to, use_kind, opr->type_register());
 925     }
 926     reg = reg_numHi(opr);
 927     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 928       add_use(reg, from, to, use_kind, opr->type_register());
 929     }
 930   }
 931 }
 932 
 933 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
 934   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
 935   assert(opr->is_register(), "should not be called otherwise");
 936 
 937   if (opr->is_virtual_register()) {
 938     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 939     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
 940 
 941   } else {
 942     int reg = reg_num(opr);
 943     if (is_processed_reg_num(reg)) {
 944       add_temp(reg, temp_pos, use_kind, opr->type_register());
 945     }
 946     reg = reg_numHi(opr);
 947     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 948       add_temp(reg, temp_pos, use_kind, opr->type_register());
 949     }
 950   }
 951 }
 952 
 953 
 954 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
 955   Interval* interval = interval_at(reg_num);
 956   if (interval != NULL) {
 957     assert(interval->reg_num() == reg_num, "wrong interval");
 958 
 959     if (type != T_ILLEGAL) {
 960       interval->set_type(type);
 961     }
 962 
 963     Range* r = interval->first();
 964     if (r->from() <= def_pos) {
 965       // Update the starting point (when a range is first created for a use, its
 966       // start is the beginning of the current block until a def is encountered.)
 967       r->set_from(def_pos);
 968       interval->add_use_pos(def_pos, use_kind);
 969 
 970     } else {
 971       // Dead value - make vacuous interval
 972       // also add use_kind for dead intervals
 973       interval->add_range(def_pos, def_pos + 1);
 974       interval->add_use_pos(def_pos, use_kind);
 975       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
 976     }
 977 
 978   } else {
 979     // Dead value - make vacuous interval
 980     // also add use_kind for dead intervals
 981     interval = create_interval(reg_num);
 982     if (type != T_ILLEGAL) {
 983       interval->set_type(type);
 984     }
 985 
 986     interval->add_range(def_pos, def_pos + 1);
 987     interval->add_use_pos(def_pos, use_kind);
 988     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
 989   }
 990 
 991   change_spill_definition_pos(interval, def_pos);
 992   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
 993         // detection of method-parameters and roundfp-results
 994         // TODO: move this directly to position where use-kind is computed
 995     interval->set_spill_state(startInMemory);
 996   }
 997 }
 998 
 999 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
1000   Interval* interval = interval_at(reg_num);
1001   if (interval == NULL) {
1002     interval = create_interval(reg_num);
1003   }
1004   assert(interval->reg_num() == reg_num, "wrong interval");
1005 
1006   if (type != T_ILLEGAL) {
1007     interval->set_type(type);
1008   }
1009 
1010   interval->add_range(from, to);
1011   interval->add_use_pos(to, use_kind);
1012 }
1013 
1014 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
1015   Interval* interval = interval_at(reg_num);
1016   if (interval == NULL) {
1017     interval = create_interval(reg_num);
1018   }
1019   assert(interval->reg_num() == reg_num, "wrong interval");
1020 
1021   if (type != T_ILLEGAL) {
1022     interval->set_type(type);
1023   }
1024 
1025   interval->add_range(temp_pos, temp_pos + 1);
1026   interval->add_use_pos(temp_pos, use_kind);
1027 }
1028 
1029 
1030 // the results of this functions are used for optimizing spilling and reloading
1031 // if the functions return shouldHaveRegister and the interval is spilled,
1032 // it is not reloaded to a register.
1033 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1034   if (op->code() == lir_move) {
1035     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1036     LIR_Op1* move = (LIR_Op1*)op;
1037     LIR_Opr res = move->result_opr();
1038     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1039 
1040     if (result_in_memory) {
1041       // Begin of an interval with must_start_in_memory set.
1042       // This interval will always get a stack slot first, so return noUse.
1043       return noUse;
1044 
1045     } else if (move->in_opr()->is_stack()) {
1046       // method argument (condition must be equal to handle_method_arguments)
1047       return noUse;
1048 
1049     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1050       // Move from register to register
1051       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1052         // special handling of phi-function moves inside osr-entry blocks
1053         // input operand must have a register instead of output operand (leads to better register allocation)
1054         return shouldHaveRegister;
1055       }
1056     }
1057   }
1058 
1059   if (opr->is_virtual() &&
1060       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1061     // result is a stack-slot, so prevent immediate reloading
1062     return noUse;
1063   }
1064 
1065   // all other operands require a register
1066   return mustHaveRegister;
1067 }
1068 
1069 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1070   if (op->code() == lir_move) {
1071     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1072     LIR_Op1* move = (LIR_Op1*)op;
1073     LIR_Opr res = move->result_opr();
1074     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1075 
1076     if (result_in_memory) {
1077       // Move to an interval with must_start_in_memory set.
1078       // To avoid moves from stack to stack (not allowed) force the input operand to a register
1079       return mustHaveRegister;
1080 
1081     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1082       // Move from register to register
1083       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1084         // special handling of phi-function moves inside osr-entry blocks
1085         // input operand must have a register instead of output operand (leads to better register allocation)
1086         return mustHaveRegister;
1087       }
1088 
1089       // The input operand is not forced to a register (moves from stack to register are allowed),
1090       // but it is faster if the input operand is in a register
1091       return shouldHaveRegister;
1092     }
1093   }
1094 
1095 
1096 #ifdef X86
1097   if (op->code() == lir_cmove) {
1098     // conditional moves can handle stack operands
1099     assert(op->result_opr()->is_register(), "result must always be in a register");
1100     return shouldHaveRegister;
1101   }
1102 
1103   // optimizations for second input operand of arithmehtic operations on Intel
1104   // this operand is allowed to be on the stack in some cases
1105   BasicType opr_type = opr->type_register();
1106   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1107     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
1108       // SSE float instruction (T_DOUBLE only supported with SSE2)
1109       switch (op->code()) {
1110         case lir_cmp:
1111         case lir_add:
1112         case lir_sub:
1113         case lir_mul:
1114         case lir_div:
1115         {
1116           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1117           LIR_Op2* op2 = (LIR_Op2*)op;
1118           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1119             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1120             return shouldHaveRegister;
1121           }
1122         }
1123       }
1124     } else {
1125       // FPU stack float instruction
1126       switch (op->code()) {
1127         case lir_add:
1128         case lir_sub:
1129         case lir_mul:
1130         case lir_div:
1131         {
1132           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1133           LIR_Op2* op2 = (LIR_Op2*)op;
1134           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1135             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1136             return shouldHaveRegister;
1137           }
1138         }
1139       }
1140     }
1141     // We want to sometimes use logical operations on pointers, in particular in GC barriers.
1142     // Since 64bit logical operations do not current support operands on stack, we have to make sure
1143     // T_OBJECT doesn't get spilled along with T_LONG.
1144   } else if (opr_type != T_LONG LP64_ONLY(&& opr_type != T_OBJECT)) {
1145     // integer instruction (note: long operands must always be in register)
1146     switch (op->code()) {
1147       case lir_cmp:
1148       case lir_add:
1149       case lir_sub:
1150       case lir_logic_and:
1151       case lir_logic_or:
1152       case lir_logic_xor:
1153       {
1154         assert(op->as_Op2() != NULL, "must be LIR_Op2");
1155         LIR_Op2* op2 = (LIR_Op2*)op;
1156         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1157           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1158           return shouldHaveRegister;
1159         }
1160       }
1161     }
1162   }
1163 #endif // X86
1164 
1165   // all other operands require a register
1166   return mustHaveRegister;
1167 }
1168 
1169 
1170 void LinearScan::handle_method_arguments(LIR_Op* op) {
1171   // special handling for method arguments (moves from stack to virtual register):
1172   // the interval gets no register assigned, but the stack slot.
1173   // it is split before the first use by the register allocator.
1174 
1175   if (op->code() == lir_move) {
1176     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1177     LIR_Op1* move = (LIR_Op1*)op;
1178 
1179     if (move->in_opr()->is_stack()) {
1180 #ifdef ASSERT
1181       int arg_size = compilation()->method()->arg_size();
1182       LIR_Opr o = move->in_opr();
1183       if (o->is_single_stack()) {
1184         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1185       } else if (o->is_double_stack()) {
1186         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1187       } else {
1188         ShouldNotReachHere();
1189       }
1190 
1191       assert(move->id() > 0, "invalid id");
1192       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1193       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1194 
1195       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1196 #endif
1197 
1198       Interval* interval = interval_at(reg_num(move->result_opr()));
1199 
1200       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1201       interval->set_canonical_spill_slot(stack_slot);
1202       interval->assign_reg(stack_slot);
1203     }
1204   }
1205 }
1206 
1207 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1208   // special handling for doubleword move from memory to register:
1209   // in this case the registers of the input address and the result
1210   // registers must not overlap -> add a temp range for the input registers
1211   if (op->code() == lir_move) {
1212     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1213     LIR_Op1* move = (LIR_Op1*)op;
1214 
1215     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1216       LIR_Address* address = move->in_opr()->as_address_ptr();
1217       if (address != NULL) {
1218         if (address->base()->is_valid()) {
1219           add_temp(address->base(), op->id(), noUse);
1220         }
1221         if (address->index()->is_valid()) {
1222           add_temp(address->index(), op->id(), noUse);
1223         }
1224       }
1225     }
1226   }
1227 }
1228 
1229 void LinearScan::add_register_hints(LIR_Op* op) {
1230   switch (op->code()) {
1231     case lir_move:      // fall through
1232     case lir_convert: {
1233       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1234       LIR_Op1* move = (LIR_Op1*)op;
1235 
1236       LIR_Opr move_from = move->in_opr();
1237       LIR_Opr move_to = move->result_opr();
1238 
1239       if (move_to->is_register() && move_from->is_register()) {
1240         Interval* from = interval_at(reg_num(move_from));
1241         Interval* to = interval_at(reg_num(move_to));
1242         if (from != NULL && to != NULL) {
1243           to->set_register_hint(from);
1244           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1245         }
1246       }
1247       break;
1248     }
1249     case lir_cmove: {
1250       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1251       LIR_Op2* cmove = (LIR_Op2*)op;
1252 
1253       LIR_Opr move_from = cmove->in_opr1();
1254       LIR_Opr move_to = cmove->result_opr();
1255 
1256       if (move_to->is_register() && move_from->is_register()) {
1257         Interval* from = interval_at(reg_num(move_from));
1258         Interval* to = interval_at(reg_num(move_to));
1259         if (from != NULL && to != NULL) {
1260           to->set_register_hint(from);
1261           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1262         }
1263       }
1264       break;
1265     }
1266   }
1267 }
1268 
1269 
1270 void LinearScan::build_intervals() {
1271   TIME_LINEAR_SCAN(timer_build_intervals);
1272 
1273   // initialize interval list with expected number of intervals
1274   // (32 is added to have some space for split children without having to resize the list)
1275   _intervals = IntervalList(num_virtual_regs() + 32);
1276   // initialize all slots that are used by build_intervals
1277   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1278 
1279   // create a list with all caller-save registers (cpu, fpu, xmm)
1280   // when an instruction is a call, a temp range is created for all these registers
1281   int num_caller_save_registers = 0;
1282   int caller_save_registers[LinearScan::nof_regs];
1283 
1284   int i;
1285   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) {
1286     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1287     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1288     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1289     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1290   }
1291 
1292   // temp ranges for fpu registers are only created when the method has
1293   // virtual fpu operands. Otherwise no allocation for fpu registers is
1294   // perfomed and so the temp ranges would be useless
1295   if (has_fpu_registers()) {
1296 #ifdef X86
1297     if (UseSSE < 2) {
1298 #endif
1299       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1300         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1301         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1302         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1303         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1304       }
1305 #ifdef X86
1306     }
1307     if (UseSSE > 0) {
1308       for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
1309         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1310         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1311         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1312         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1313       }
1314     }
1315 #endif
1316   }
1317   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1318 
1319 
1320   LIR_OpVisitState visitor;
1321 
1322   // iterate all blocks in reverse order
1323   for (i = block_count() - 1; i >= 0; i--) {
1324     BlockBegin* block = block_at(i);
1325     LIR_OpList* instructions = block->lir()->instructions_list();
1326     int         block_from =   block->first_lir_instruction_id();
1327     int         block_to =     block->last_lir_instruction_id();
1328 
1329     assert(block_from == instructions->at(0)->id(), "must be");
1330     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
1331 
1332     // Update intervals for registers live at the end of this block;
1333     BitMap live = block->live_out();
1334     int size = (int)live.size();
1335     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1336       assert(live.at(number), "should not stop here otherwise");
1337       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1338       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1339 
1340       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1341 
1342       // add special use positions for loop-end blocks when the
1343       // interval is used anywhere inside this loop.  It's possible
1344       // that the block was part of a non-natural loop, so it might
1345       // have an invalid loop index.
1346       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1347           block->loop_index() != -1 &&
1348           is_interval_in_loop(number, block->loop_index())) {
1349         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1350       }
1351     }
1352 
1353     // iterate all instructions of the block in reverse order.
1354     // skip the first instruction because it is always a label
1355     // definitions of intervals are processed before uses
1356     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1357     for (int j = instructions->length() - 1; j >= 1; j--) {
1358       LIR_Op* op = instructions->at(j);
1359       int op_id = op->id();
1360 
1361       // visit operation to collect all operands
1362       visitor.visit(op);
1363 
1364       // add a temp range for each register if operation destroys caller-save registers
1365       if (visitor.has_call()) {
1366         for (int k = 0; k < num_caller_save_registers; k++) {
1367           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1368         }
1369         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1370       }
1371 
1372       // Add any platform dependent temps
1373       pd_add_temps(op);
1374 
1375       // visit definitions (output and temp operands)
1376       int k, n;
1377       n = visitor.opr_count(LIR_OpVisitState::outputMode);
1378       for (k = 0; k < n; k++) {
1379         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1380         assert(opr->is_register(), "visitor should only return register operands");
1381         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1382       }
1383 
1384       n = visitor.opr_count(LIR_OpVisitState::tempMode);
1385       for (k = 0; k < n; k++) {
1386         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1387         assert(opr->is_register(), "visitor should only return register operands");
1388         add_temp(opr, op_id, mustHaveRegister);
1389       }
1390 
1391       // visit uses (input operands)
1392       n = visitor.opr_count(LIR_OpVisitState::inputMode);
1393       for (k = 0; k < n; k++) {
1394         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1395         assert(opr->is_register(), "visitor should only return register operands");
1396         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1397       }
1398 
1399       // Add uses of live locals from interpreter's point of view for proper
1400       // debug information generation
1401       // Treat these operands as temp values (if the life range is extended
1402       // to a call site, the value would be in a register at the call otherwise)
1403       n = visitor.info_count();
1404       for (k = 0; k < n; k++) {
1405         CodeEmitInfo* info = visitor.info_at(k);
1406         ValueStack* stack = info->stack();
1407         for_each_state_value(stack, value,
1408           add_use(value, block_from, op_id + 1, noUse);
1409         );
1410       }
1411 
1412       // special steps for some instructions (especially moves)
1413       handle_method_arguments(op);
1414       handle_doubleword_moves(op);
1415       add_register_hints(op);
1416 
1417     } // end of instruction iteration
1418   } // end of block iteration
1419 
1420 
1421   // add the range [0, 1[ to all fixed intervals
1422   // -> the register allocator need not handle unhandled fixed intervals
1423   for (int n = 0; n < LinearScan::nof_regs; n++) {
1424     Interval* interval = interval_at(n);
1425     if (interval != NULL) {
1426       interval->add_range(0, 1);
1427     }
1428   }
1429 }
1430 
1431 
1432 // ********** Phase 5: actual register allocation
1433 
1434 int LinearScan::interval_cmp(Interval** a, Interval** b) {
1435   if (*a != NULL) {
1436     if (*b != NULL) {
1437       return (*a)->from() - (*b)->from();
1438     } else {
1439       return -1;
1440     }
1441   } else {
1442     if (*b != NULL) {
1443       return 1;
1444     } else {
1445       return 0;
1446     }
1447   }
1448 }
1449 
1450 #ifndef PRODUCT
1451 bool LinearScan::is_sorted(IntervalArray* intervals) {
1452   int from = -1;
1453   int i, j;
1454   for (i = 0; i < intervals->length(); i ++) {
1455     Interval* it = intervals->at(i);
1456     if (it != NULL) {
1457       if (from > it->from()) {
1458         assert(false, "");
1459         return false;
1460       }
1461       from = it->from();
1462     }
1463   }
1464 
1465   // check in both directions if sorted list and unsorted list contain same intervals
1466   for (i = 0; i < interval_count(); i++) {
1467     if (interval_at(i) != NULL) {
1468       int num_found = 0;
1469       for (j = 0; j < intervals->length(); j++) {
1470         if (interval_at(i) == intervals->at(j)) {
1471           num_found++;
1472         }
1473       }
1474       assert(num_found == 1, "lists do not contain same intervals");
1475     }
1476   }
1477   for (j = 0; j < intervals->length(); j++) {
1478     int num_found = 0;
1479     for (i = 0; i < interval_count(); i++) {
1480       if (interval_at(i) == intervals->at(j)) {
1481         num_found++;
1482       }
1483     }
1484     assert(num_found == 1, "lists do not contain same intervals");
1485   }
1486 
1487   return true;
1488 }
1489 #endif
1490 
1491 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1492   if (*prev != NULL) {
1493     (*prev)->set_next(interval);
1494   } else {
1495     *first = interval;
1496   }
1497   *prev = interval;
1498 }
1499 
1500 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1501   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1502 
1503   *list1 = *list2 = Interval::end();
1504 
1505   Interval* list1_prev = NULL;
1506   Interval* list2_prev = NULL;
1507   Interval* v;
1508 
1509   const int n = _sorted_intervals->length();
1510   for (int i = 0; i < n; i++) {
1511     v = _sorted_intervals->at(i);
1512     if (v == NULL) continue;
1513 
1514     if (is_list1(v)) {
1515       add_to_list(list1, &list1_prev, v);
1516     } else if (is_list2 == NULL || is_list2(v)) {
1517       add_to_list(list2, &list2_prev, v);
1518     }
1519   }
1520 
1521   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1522   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1523 
1524   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1525   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1526 }
1527 
1528 
1529 void LinearScan::sort_intervals_before_allocation() {
1530   TIME_LINEAR_SCAN(timer_sort_intervals_before);
1531 
1532   if (_needs_full_resort) {
1533     // There is no known reason why this should occur but just in case...
1534     assert(false, "should never occur");
1535     // Re-sort existing interval list because an Interval::from() has changed
1536     _sorted_intervals->sort(interval_cmp);
1537     _needs_full_resort = false;
1538   }
1539 
1540   IntervalList* unsorted_list = &_intervals;
1541   int unsorted_len = unsorted_list->length();
1542   int sorted_len = 0;
1543   int unsorted_idx;
1544   int sorted_idx = 0;
1545   int sorted_from_max = -1;
1546 
1547   // calc number of items for sorted list (sorted list must not contain NULL values)
1548   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1549     if (unsorted_list->at(unsorted_idx) != NULL) {
1550       sorted_len++;
1551     }
1552   }
1553   IntervalArray* sorted_list = new IntervalArray(sorted_len);
1554 
1555   // special sorting algorithm: the original interval-list is almost sorted,
1556   // only some intervals are swapped. So this is much faster than a complete QuickSort
1557   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1558     Interval* cur_interval = unsorted_list->at(unsorted_idx);
1559 
1560     if (cur_interval != NULL) {
1561       int cur_from = cur_interval->from();
1562 
1563       if (sorted_from_max <= cur_from) {
1564         sorted_list->at_put(sorted_idx++, cur_interval);
1565         sorted_from_max = cur_interval->from();
1566       } else {
1567         // the asumption that the intervals are already sorted failed,
1568         // so this interval must be sorted in manually
1569         int j;
1570         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1571           sorted_list->at_put(j + 1, sorted_list->at(j));
1572         }
1573         sorted_list->at_put(j + 1, cur_interval);
1574         sorted_idx++;
1575       }
1576     }
1577   }
1578   _sorted_intervals = sorted_list;
1579   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1580 }
1581 
1582 void LinearScan::sort_intervals_after_allocation() {
1583   TIME_LINEAR_SCAN(timer_sort_intervals_after);
1584 
1585   if (_needs_full_resort) {
1586     // Re-sort existing interval list because an Interval::from() has changed
1587     _sorted_intervals->sort(interval_cmp);
1588     _needs_full_resort = false;
1589   }
1590 
1591   IntervalArray* old_list      = _sorted_intervals;
1592   IntervalList*  new_list      = _new_intervals_from_allocation;
1593   int old_len = old_list->length();
1594   int new_len = new_list->length();
1595 
1596   if (new_len == 0) {
1597     // no intervals have been added during allocation, so sorted list is already up to date
1598     assert(is_sorted(_sorted_intervals), "intervals unsorted");
1599     return;
1600   }
1601 
1602   // conventional sort-algorithm for new intervals
1603   new_list->sort(interval_cmp);
1604 
1605   // merge old and new list (both already sorted) into one combined list
1606   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
1607   int old_idx = 0;
1608   int new_idx = 0;
1609 
1610   while (old_idx + new_idx < old_len + new_len) {
1611     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1612       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1613       old_idx++;
1614     } else {
1615       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1616       new_idx++;
1617     }
1618   }
1619 
1620   _sorted_intervals = combined_list;
1621   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1622 }
1623 
1624 
1625 void LinearScan::allocate_registers() {
1626   TIME_LINEAR_SCAN(timer_allocate_registers);
1627 
1628   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1629   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1630 
1631   // allocate cpu registers
1632   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals,
1633                          is_precolored_cpu_interval, is_virtual_cpu_interval);
1634 
1635   // allocate fpu registers
1636   create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals,
1637                          is_precolored_fpu_interval, is_virtual_fpu_interval);
1638 
1639   // the fpu interval allocation cannot be moved down below with the fpu section as
1640   // the cpu_lsw.walk() changes interval positions.
1641 
1642   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1643   cpu_lsw.walk();
1644   cpu_lsw.finish_allocation();
1645 
1646   if (has_fpu_registers()) {
1647     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1648     fpu_lsw.walk();
1649     fpu_lsw.finish_allocation();
1650   }
1651 }
1652 
1653 
1654 // ********** Phase 6: resolve data flow
1655 // (insert moves at edges between blocks if intervals have been split)
1656 
1657 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1658 // instead of returning NULL
1659 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1660   Interval* result = interval->split_child_at_op_id(op_id, mode);
1661   if (result != NULL) {
1662     return result;
1663   }
1664 
1665   assert(false, "must find an interval, but do a clean bailout in product mode");
1666   result = new Interval(LIR_OprDesc::vreg_base);
1667   result->assign_reg(0);
1668   result->set_type(T_INT);
1669   BAILOUT_("LinearScan: interval is NULL", result);
1670 }
1671 
1672 
1673 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1674   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1675   assert(interval_at(reg_num) != NULL, "no interval found");
1676 
1677   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1678 }
1679 
1680 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1681   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1682   assert(interval_at(reg_num) != NULL, "no interval found");
1683 
1684   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1685 }
1686 
1687 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1688   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1689   assert(interval_at(reg_num) != NULL, "no interval found");
1690 
1691   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1692 }
1693 
1694 
1695 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1696   DEBUG_ONLY(move_resolver.check_empty());
1697 
1698   const int num_regs = num_virtual_regs();
1699   const int size = live_set_size();
1700   const BitMap live_at_edge = to_block->live_in();
1701 
1702   // visit all registers where the live_at_edge bit is set
1703   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1704     assert(r < num_regs, "live information set for not exisiting interval");
1705     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1706 
1707     Interval* from_interval = interval_at_block_end(from_block, r);
1708     Interval* to_interval = interval_at_block_begin(to_block, r);
1709 
1710     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1711       // need to insert move instruction
1712       move_resolver.add_mapping(from_interval, to_interval);
1713     }
1714   }
1715 }
1716 
1717 
1718 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1719   if (from_block->number_of_sux() <= 1) {
1720     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1721 
1722     LIR_OpList* instructions = from_block->lir()->instructions_list();
1723     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1724     if (branch != NULL) {
1725       // insert moves before branch
1726       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1727       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1728     } else {
1729       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1730     }
1731 
1732   } else {
1733     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1734 #ifdef ASSERT
1735     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1736 
1737     // because the number of predecessor edges matches the number of
1738     // successor edges, blocks which are reached by switch statements
1739     // may have be more than one predecessor but it will be guaranteed
1740     // that all predecessors will be the same.
1741     for (int i = 0; i < to_block->number_of_preds(); i++) {
1742       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1743     }
1744 #endif
1745 
1746     move_resolver.set_insert_position(to_block->lir(), 0);
1747   }
1748 }
1749 
1750 
1751 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1752 void LinearScan::resolve_data_flow() {
1753   TIME_LINEAR_SCAN(timer_resolve_data_flow);
1754 
1755   int num_blocks = block_count();
1756   MoveResolver move_resolver(this);
1757   BitMap block_completed(num_blocks);  block_completed.clear();
1758   BitMap already_resolved(num_blocks); already_resolved.clear();
1759 
1760   int i;
1761   for (i = 0; i < num_blocks; i++) {
1762     BlockBegin* block = block_at(i);
1763 
1764     // check if block has only one predecessor and only one successor
1765     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1766       LIR_OpList* instructions = block->lir()->instructions_list();
1767       assert(instructions->at(0)->code() == lir_label, "block must start with label");
1768       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1769       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1770 
1771       // check if block is empty (only label and branch)
1772       if (instructions->length() == 2) {
1773         BlockBegin* pred = block->pred_at(0);
1774         BlockBegin* sux = block->sux_at(0);
1775 
1776         // prevent optimization of two consecutive blocks
1777         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1778           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1779           block_completed.set_bit(block->linear_scan_number());
1780 
1781           // directly resolve between pred and sux (without looking at the empty block between)
1782           resolve_collect_mappings(pred, sux, move_resolver);
1783           if (move_resolver.has_mappings()) {
1784             move_resolver.set_insert_position(block->lir(), 0);
1785             move_resolver.resolve_and_append_moves();
1786           }
1787         }
1788       }
1789     }
1790   }
1791 
1792 
1793   for (i = 0; i < num_blocks; i++) {
1794     if (!block_completed.at(i)) {
1795       BlockBegin* from_block = block_at(i);
1796       already_resolved.set_from(block_completed);
1797 
1798       int num_sux = from_block->number_of_sux();
1799       for (int s = 0; s < num_sux; s++) {
1800         BlockBegin* to_block = from_block->sux_at(s);
1801 
1802         // check for duplicate edges between the same blocks (can happen with switch blocks)
1803         if (!already_resolved.at(to_block->linear_scan_number())) {
1804           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1805           already_resolved.set_bit(to_block->linear_scan_number());
1806 
1807           // collect all intervals that have been split between from_block and to_block
1808           resolve_collect_mappings(from_block, to_block, move_resolver);
1809           if (move_resolver.has_mappings()) {
1810             resolve_find_insert_pos(from_block, to_block, move_resolver);
1811             move_resolver.resolve_and_append_moves();
1812           }
1813         }
1814       }
1815     }
1816   }
1817 }
1818 
1819 
1820 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1821   if (interval_at(reg_num) == NULL) {
1822     // if a phi function is never used, no interval is created -> ignore this
1823     return;
1824   }
1825 
1826   Interval* interval = interval_at_block_begin(block, reg_num);
1827   int reg = interval->assigned_reg();
1828   int regHi = interval->assigned_regHi();
1829 
1830   if ((reg < nof_regs && interval->always_in_memory()) ||
1831       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1832     // the interval is split to get a short range that is located on the stack
1833     // in the following two cases:
1834     // * the interval started in memory (e.g. method parameter), but is currently in a register
1835     //   this is an optimization for exception handling that reduces the number of moves that
1836     //   are necessary for resolving the states when an exception uses this exception handler
1837     // * the interval would be on the fpu stack at the begin of the exception handler
1838     //   this is not allowed because of the complicated fpu stack handling on Intel
1839 
1840     // range that will be spilled to memory
1841     int from_op_id = block->first_lir_instruction_id();
1842     int to_op_id = from_op_id + 1;  // short live range of length 1
1843     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1844            "no split allowed between exception entry and first instruction");
1845 
1846     if (interval->from() != from_op_id) {
1847       // the part before from_op_id is unchanged
1848       interval = interval->split(from_op_id);
1849       interval->assign_reg(reg, regHi);
1850       append_interval(interval);
1851     } else {
1852       _needs_full_resort = true;
1853     }
1854     assert(interval->from() == from_op_id, "must be true now");
1855 
1856     Interval* spilled_part = interval;
1857     if (interval->to() != to_op_id) {
1858       // the part after to_op_id is unchanged
1859       spilled_part = interval->split_from_start(to_op_id);
1860       append_interval(spilled_part);
1861       move_resolver.add_mapping(spilled_part, interval);
1862     }
1863     assign_spill_slot(spilled_part);
1864 
1865     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1866   }
1867 }
1868 
1869 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1870   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1871   DEBUG_ONLY(move_resolver.check_empty());
1872 
1873   // visit all registers where the live_in bit is set
1874   int size = live_set_size();
1875   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1876     resolve_exception_entry(block, r, move_resolver);
1877   }
1878 
1879   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1880   for_each_phi_fun(block, phi,
1881     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
1882   );
1883 
1884   if (move_resolver.has_mappings()) {
1885     // insert moves after first instruction
1886     move_resolver.set_insert_position(block->lir(), 0);
1887     move_resolver.resolve_and_append_moves();
1888   }
1889 }
1890 
1891 
1892 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1893   if (interval_at(reg_num) == NULL) {
1894     // if a phi function is never used, no interval is created -> ignore this
1895     return;
1896   }
1897 
1898   // the computation of to_interval is equal to resolve_collect_mappings,
1899   // but from_interval is more complicated because of phi functions
1900   BlockBegin* to_block = handler->entry_block();
1901   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1902 
1903   if (phi != NULL) {
1904     // phi function of the exception entry block
1905     // no moves are created for this phi function in the LIR_Generator, so the
1906     // interval at the throwing instruction must be searched using the operands
1907     // of the phi function
1908     Value from_value = phi->operand_at(handler->phi_operand());
1909 
1910     // with phi functions it can happen that the same from_value is used in
1911     // multiple mappings, so notify move-resolver that this is allowed
1912     move_resolver.set_multiple_reads_allowed();
1913 
1914     Constant* con = from_value->as_Constant();
1915     if (con != NULL && !con->is_pinned()) {
1916       // unpinned constants may have no register, so add mapping from constant to interval
1917       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1918     } else {
1919       // search split child at the throwing op_id
1920       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1921       move_resolver.add_mapping(from_interval, to_interval);
1922     }
1923 
1924   } else {
1925     // no phi function, so use reg_num also for from_interval
1926     // search split child at the throwing op_id
1927     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1928     if (from_interval != to_interval) {
1929       // optimization to reduce number of moves: when to_interval is on stack and
1930       // the stack slot is known to be always correct, then no move is necessary
1931       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1932         move_resolver.add_mapping(from_interval, to_interval);
1933       }
1934     }
1935   }
1936 }
1937 
1938 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1939   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1940 
1941   DEBUG_ONLY(move_resolver.check_empty());
1942   assert(handler->lir_op_id() == -1, "already processed this xhandler");
1943   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1944   assert(handler->entry_code() == NULL, "code already present");
1945 
1946   // visit all registers where the live_in bit is set
1947   BlockBegin* block = handler->entry_block();
1948   int size = live_set_size();
1949   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1950     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1951   }
1952 
1953   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1954   for_each_phi_fun(block, phi,
1955     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
1956   );
1957 
1958   if (move_resolver.has_mappings()) {
1959     LIR_List* entry_code = new LIR_List(compilation());
1960     move_resolver.set_insert_position(entry_code, 0);
1961     move_resolver.resolve_and_append_moves();
1962 
1963     entry_code->jump(handler->entry_block());
1964     handler->set_entry_code(entry_code);
1965   }
1966 }
1967 
1968 
1969 void LinearScan::resolve_exception_handlers() {
1970   MoveResolver move_resolver(this);
1971   LIR_OpVisitState visitor;
1972   int num_blocks = block_count();
1973 
1974   int i;
1975   for (i = 0; i < num_blocks; i++) {
1976     BlockBegin* block = block_at(i);
1977     if (block->is_set(BlockBegin::exception_entry_flag)) {
1978       resolve_exception_entry(block, move_resolver);
1979     }
1980   }
1981 
1982   for (i = 0; i < num_blocks; i++) {
1983     BlockBegin* block = block_at(i);
1984     LIR_List* ops = block->lir();
1985     int num_ops = ops->length();
1986 
1987     // iterate all instructions of the block. skip the first because it is always a label
1988     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
1989     for (int j = 1; j < num_ops; j++) {
1990       LIR_Op* op = ops->at(j);
1991       int op_id = op->id();
1992 
1993       if (op_id != -1 && has_info(op_id)) {
1994         // visit operation to collect all operands
1995         visitor.visit(op);
1996         assert(visitor.info_count() > 0, "should not visit otherwise");
1997 
1998         XHandlers* xhandlers = visitor.all_xhandler();
1999         int n = xhandlers->length();
2000         for (int k = 0; k < n; k++) {
2001           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
2002         }
2003 
2004 #ifdef ASSERT
2005       } else {
2006         visitor.visit(op);
2007         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2008 #endif
2009       }
2010     }
2011   }
2012 }
2013 
2014 
2015 // ********** Phase 7: assign register numbers back to LIR
2016 // (includes computation of debug information and oop maps)
2017 
2018 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
2019   VMReg reg = interval->cached_vm_reg();
2020   if (!reg->is_valid() ) {
2021     reg = vm_reg_for_operand(operand_for_interval(interval));
2022     interval->set_cached_vm_reg(reg);
2023   }
2024   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
2025   return reg;
2026 }
2027 
2028 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
2029   assert(opr->is_oop(), "currently only implemented for oop operands");
2030   return frame_map()->regname(opr);
2031 }
2032 
2033 
2034 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
2035   LIR_Opr opr = interval->cached_opr();
2036   if (opr->is_illegal()) {
2037     opr = calc_operand_for_interval(interval);
2038     interval->set_cached_opr(opr);
2039   }
2040 
2041   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
2042   return opr;
2043 }
2044 
2045 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2046   int assigned_reg = interval->assigned_reg();
2047   BasicType type = interval->type();
2048 
2049   if (assigned_reg >= nof_regs) {
2050     // stack slot
2051     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2052     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2053 
2054   } else {
2055     // register
2056     switch (type) {
2057       case T_OBJECT: {
2058         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2059         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2060         return LIR_OprFact::single_cpu_oop(assigned_reg);
2061       }
2062 
2063       case T_ADDRESS: {
2064         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2065         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2066         return LIR_OprFact::single_cpu_address(assigned_reg);
2067       }
2068 
2069       case T_METADATA: {
2070         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2071         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2072         return LIR_OprFact::single_cpu_metadata(assigned_reg);
2073       }
2074 
2075 #ifdef __SOFTFP__
2076       case T_FLOAT:  // fall through
2077 #endif // __SOFTFP__
2078       case T_INT: {
2079         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2080         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2081         return LIR_OprFact::single_cpu(assigned_reg);
2082       }
2083 
2084 #ifdef __SOFTFP__
2085       case T_DOUBLE:  // fall through
2086 #endif // __SOFTFP__
2087       case T_LONG: {
2088         int assigned_regHi = interval->assigned_regHi();
2089         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2090         assert(num_physical_regs(T_LONG) == 1 ||
2091                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2092 
2093         assert(assigned_reg != assigned_regHi, "invalid allocation");
2094         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2095                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2096         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2097         if (requires_adjacent_regs(T_LONG)) {
2098           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2099         }
2100 
2101 #ifdef _LP64
2102         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2103 #else
2104 #if defined(SPARC) || defined(PPC)
2105         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2106 #else
2107         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2108 #endif // SPARC
2109 #endif // LP64
2110       }
2111 
2112 #ifndef __SOFTFP__
2113       case T_FLOAT: {
2114 #ifdef X86
2115         if (UseSSE >= 1) {
2116           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2117           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2118           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2119         }
2120 #endif
2121 
2122         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2123         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2124         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2125       }
2126 
2127       case T_DOUBLE: {
2128 #ifdef X86
2129         if (UseSSE >= 2) {
2130           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2131           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2132           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2133         }
2134 #endif
2135 
2136 #ifdef SPARC
2137         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2138         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2139         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2140         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2141 #elif defined(ARM32)
2142         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2143         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2144         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2145         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
2146 #else
2147         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2148         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2149         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2150 #endif
2151         return result;
2152       }
2153 #endif // __SOFTFP__
2154 
2155       default: {
2156         ShouldNotReachHere();
2157         return LIR_OprFact::illegalOpr;
2158       }
2159     }
2160   }
2161 }
2162 
2163 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2164   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2165   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2166 }
2167 
2168 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2169   assert(opr->is_virtual(), "should not call this otherwise");
2170 
2171   Interval* interval = interval_at(opr->vreg_number());
2172   assert(interval != NULL, "interval must exist");
2173 
2174   if (op_id != -1) {
2175 #ifdef ASSERT
2176     BlockBegin* block = block_of_op_with_id(op_id);
2177     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2178       // check if spill moves could have been appended at the end of this block, but
2179       // before the branch instruction. So the split child information for this branch would
2180       // be incorrect.
2181       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2182       if (branch != NULL) {
2183         if (block->live_out().at(opr->vreg_number())) {
2184           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2185           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2186         }
2187       }
2188     }
2189 #endif
2190 
2191     // operands are not changed when an interval is split during allocation,
2192     // so search the right interval here
2193     interval = split_child_at_op_id(interval, op_id, mode);
2194   }
2195 
2196   LIR_Opr res = operand_for_interval(interval);
2197 
2198 #ifdef X86
2199   // new semantic for is_last_use: not only set on definite end of interval,
2200   // but also before hole
2201   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2202   // last use information is completely correct
2203   // information is only needed for fpu stack allocation
2204   if (res->is_fpu_register()) {
2205     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2206       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2207       res = res->make_last_use();
2208     }
2209   }
2210 #endif
2211 
2212   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2213 
2214   return res;
2215 }
2216 
2217 
2218 #ifdef ASSERT
2219 // some methods used to check correctness of debug information
2220 
2221 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2222   if (values == NULL) {
2223     return;
2224   }
2225 
2226   for (int i = 0; i < values->length(); i++) {
2227     ScopeValue* value = values->at(i);
2228 
2229     if (value->is_location()) {
2230       Location location = ((LocationValue*)value)->location();
2231       assert(location.where() == Location::on_stack, "value is in register");
2232     }
2233   }
2234 }
2235 
2236 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2237   if (values == NULL) {
2238     return;
2239   }
2240 
2241   for (int i = 0; i < values->length(); i++) {
2242     MonitorValue* value = values->at(i);
2243 
2244     if (value->owner()->is_location()) {
2245       Location location = ((LocationValue*)value->owner())->location();
2246       assert(location.where() == Location::on_stack, "owner is in register");
2247     }
2248     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2249   }
2250 }
2251 
2252 void assert_equal(Location l1, Location l2) {
2253   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2254 }
2255 
2256 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2257   if (v1->is_location()) {
2258     assert(v2->is_location(), "");
2259     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2260   } else if (v1->is_constant_int()) {
2261     assert(v2->is_constant_int(), "");
2262     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2263   } else if (v1->is_constant_double()) {
2264     assert(v2->is_constant_double(), "");
2265     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2266   } else if (v1->is_constant_long()) {
2267     assert(v2->is_constant_long(), "");
2268     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2269   } else if (v1->is_constant_oop()) {
2270     assert(v2->is_constant_oop(), "");
2271     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2272   } else {
2273     ShouldNotReachHere();
2274   }
2275 }
2276 
2277 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2278   assert_equal(m1->owner(), m2->owner());
2279   assert_equal(m1->basic_lock(), m2->basic_lock());
2280 }
2281 
2282 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2283   assert(d1->scope() == d2->scope(), "not equal");
2284   assert(d1->bci() == d2->bci(), "not equal");
2285 
2286   if (d1->locals() != NULL) {
2287     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2288     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2289     for (int i = 0; i < d1->locals()->length(); i++) {
2290       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2291     }
2292   } else {
2293     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2294   }
2295 
2296   if (d1->expressions() != NULL) {
2297     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2298     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2299     for (int i = 0; i < d1->expressions()->length(); i++) {
2300       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2301     }
2302   } else {
2303     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2304   }
2305 
2306   if (d1->monitors() != NULL) {
2307     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2308     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2309     for (int i = 0; i < d1->monitors()->length(); i++) {
2310       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2311     }
2312   } else {
2313     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2314   }
2315 
2316   if (d1->caller() != NULL) {
2317     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2318     assert_equal(d1->caller(), d2->caller());
2319   } else {
2320     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2321   }
2322 }
2323 
2324 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2325   if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2326     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci());
2327     switch (code) {
2328       case Bytecodes::_ifnull    : // fall through
2329       case Bytecodes::_ifnonnull : // fall through
2330       case Bytecodes::_ifeq      : // fall through
2331       case Bytecodes::_ifne      : // fall through
2332       case Bytecodes::_iflt      : // fall through
2333       case Bytecodes::_ifge      : // fall through
2334       case Bytecodes::_ifgt      : // fall through
2335       case Bytecodes::_ifle      : // fall through
2336       case Bytecodes::_if_icmpeq : // fall through
2337       case Bytecodes::_if_icmpne : // fall through
2338       case Bytecodes::_if_icmplt : // fall through
2339       case Bytecodes::_if_icmpge : // fall through
2340       case Bytecodes::_if_icmpgt : // fall through
2341       case Bytecodes::_if_icmple : // fall through
2342       case Bytecodes::_if_acmpeq : // fall through
2343       case Bytecodes::_if_acmpne :
2344         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2345         break;
2346     }
2347   }
2348 }
2349 
2350 #endif // ASSERT
2351 
2352 
2353 IntervalWalker* LinearScan::init_compute_oop_maps() {
2354   // setup lists of potential oops for walking
2355   Interval* oop_intervals;
2356   Interval* non_oop_intervals;
2357 
2358   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2359 
2360   // intervals that have no oops inside need not to be processed
2361   // to ensure a walking until the last instruction id, add a dummy interval
2362   // with a high operation id
2363   non_oop_intervals = new Interval(any_reg);
2364   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2365 
2366   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2367 }
2368 
2369 
2370 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2371   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2372 
2373   // walk before the current operation -> intervals that start at
2374   // the operation (= output operands of the operation) are not
2375   // included in the oop map
2376   iw->walk_before(op->id());
2377 
2378   int frame_size = frame_map()->framesize();
2379   int arg_count = frame_map()->oop_map_arg_count();
2380   OopMap* map = new OopMap(frame_size, arg_count);
2381 
2382   // Iterate through active intervals
2383   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2384     int assigned_reg = interval->assigned_reg();
2385 
2386     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2387     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2388     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2389 
2390     // Check if this range covers the instruction. Intervals that
2391     // start or end at the current operation are not included in the
2392     // oop map, except in the case of patching moves.  For patching
2393     // moves, any intervals which end at this instruction are included
2394     // in the oop map since we may safepoint while doing the patch
2395     // before we've consumed the inputs.
2396     if (op->is_patching() || op->id() < interval->current_to()) {
2397 
2398       // caller-save registers must not be included into oop-maps at calls
2399       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2400 
2401       VMReg name = vm_reg_for_interval(interval);
2402       set_oop(map, name);
2403 
2404       // Spill optimization: when the stack value is guaranteed to be always correct,
2405       // then it must be added to the oop map even if the interval is currently in a register
2406       if (interval->always_in_memory() &&
2407           op->id() > interval->spill_definition_pos() &&
2408           interval->assigned_reg() != interval->canonical_spill_slot()) {
2409         assert(interval->spill_definition_pos() > 0, "position not set correctly");
2410         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2411         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2412 
2413         set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2414       }
2415     }
2416   }
2417 
2418   // add oops from lock stack
2419   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2420   int locks_count = info->stack()->total_locks_size();
2421   for (int i = 0; i < locks_count; i++) {
2422     set_oop(map, frame_map()->monitor_object_regname(i));
2423   }
2424 
2425   return map;
2426 }
2427 
2428 
2429 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2430   assert(visitor.info_count() > 0, "no oop map needed");
2431 
2432   // compute oop_map only for first CodeEmitInfo
2433   // because it is (in most cases) equal for all other infos of the same operation
2434   CodeEmitInfo* first_info = visitor.info_at(0);
2435   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2436 
2437   for (int i = 0; i < visitor.info_count(); i++) {
2438     CodeEmitInfo* info = visitor.info_at(i);
2439     OopMap* oop_map = first_oop_map;
2440 
2441     // compute worst case interpreter size in case of a deoptimization
2442     _compilation->update_interpreter_frame_size(info->interpreter_frame_size());
2443 
2444     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2445       // this info has a different number of locks then the precomputed oop map
2446       // (possible for lock and unlock instructions) -> compute oop map with
2447       // correct lock information
2448       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2449     }
2450 
2451     if (info->_oop_map == NULL) {
2452       info->_oop_map = oop_map;
2453     } else {
2454       // a CodeEmitInfo can not be shared between different LIR-instructions
2455       // because interval splitting can occur anywhere between two instructions
2456       // and so the oop maps must be different
2457       // -> check if the already set oop_map is exactly the one calculated for this operation
2458       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2459     }
2460   }
2461 }
2462 
2463 
2464 // frequently used constants
2465 // Allocate them with new so they are never destroyed (otherwise, a
2466 // forced exit could destroy these objects while they are still in
2467 // use).
2468 ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL);
2469 ConstantIntValue*      LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1);
2470 ConstantIntValue*      LinearScan::_int_0_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(0);
2471 ConstantIntValue*      LinearScan::_int_1_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1);
2472 ConstantIntValue*      LinearScan::_int_2_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2);
2473 LocationValue*         _illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location());
2474 
2475 void LinearScan::init_compute_debug_info() {
2476   // cache for frequently used scope values
2477   // (cpu registers and stack slots)
2478   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
2479 }
2480 
2481 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2482   Location loc;
2483   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2484     bailout("too large frame");
2485   }
2486   ScopeValue* object_scope_value = new LocationValue(loc);
2487 
2488   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2489     bailout("too large frame");
2490   }
2491   return new MonitorValue(object_scope_value, loc);
2492 }
2493 
2494 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2495   Location loc;
2496   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2497     bailout("too large frame");
2498   }
2499   return new LocationValue(loc);
2500 }
2501 
2502 
2503 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2504   assert(opr->is_constant(), "should not be called otherwise");
2505 
2506   LIR_Const* c = opr->as_constant_ptr();
2507   BasicType t = c->type();
2508   switch (t) {
2509     case T_OBJECT: {
2510       jobject value = c->as_jobject();
2511       if (value == NULL) {
2512         scope_values->append(_oop_null_scope_value);
2513       } else {
2514         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2515       }
2516       return 1;
2517     }
2518 
2519     case T_INT: // fall through
2520     case T_FLOAT: {
2521       int value = c->as_jint_bits();
2522       switch (value) {
2523         case -1: scope_values->append(_int_m1_scope_value); break;
2524         case 0:  scope_values->append(_int_0_scope_value); break;
2525         case 1:  scope_values->append(_int_1_scope_value); break;
2526         case 2:  scope_values->append(_int_2_scope_value); break;
2527         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2528       }
2529       return 1;
2530     }
2531 
2532     case T_LONG: // fall through
2533     case T_DOUBLE: {
2534 #ifdef _LP64
2535       scope_values->append(_int_0_scope_value);
2536       scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
2537 #else
2538       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2539         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2540         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2541       } else {
2542         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2543         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2544       }
2545 #endif
2546       return 2;
2547     }
2548 
2549     case T_ADDRESS: {
2550 #ifdef _LP64
2551       scope_values->append(new ConstantLongValue(c->as_jint()));
2552 #else
2553       scope_values->append(new ConstantIntValue(c->as_jint()));
2554 #endif
2555       return 1;
2556     }
2557 
2558     default:
2559       ShouldNotReachHere();
2560       return -1;
2561   }
2562 }
2563 
2564 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2565   if (opr->is_single_stack()) {
2566     int stack_idx = opr->single_stack_ix();
2567     bool is_oop = opr->is_oop_register();
2568     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2569 
2570     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2571     if (sv == NULL) {
2572       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2573       sv = location_for_name(stack_idx, loc_type);
2574       _scope_value_cache.at_put(cache_idx, sv);
2575     }
2576 
2577     // check if cached value is correct
2578     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2579 
2580     scope_values->append(sv);
2581     return 1;
2582 
2583   } else if (opr->is_single_cpu()) {
2584     bool is_oop = opr->is_oop_register();
2585     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2586     Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
2587 
2588     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2589     if (sv == NULL) {
2590       Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
2591       VMReg rname = frame_map()->regname(opr);
2592       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2593       _scope_value_cache.at_put(cache_idx, sv);
2594     }
2595 
2596     // check if cached value is correct
2597     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
2598 
2599     scope_values->append(sv);
2600     return 1;
2601 
2602 #ifdef X86
2603   } else if (opr->is_single_xmm()) {
2604     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2605     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2606 
2607     scope_values->append(sv);
2608     return 1;
2609 #endif
2610 
2611   } else if (opr->is_single_fpu()) {
2612 #ifdef X86
2613     // the exact location of fpu stack values is only known
2614     // during fpu stack allocation, so the stack allocator object
2615     // must be present
2616     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2617     assert(_fpu_stack_allocator != NULL, "must be present");
2618     opr = _fpu_stack_allocator->to_fpu_stack(opr);
2619 #endif
2620 
2621     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2622     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2623 #ifndef __SOFTFP__
2624 #ifndef VM_LITTLE_ENDIAN
2625     if (! float_saved_as_double) {
2626       // On big endian system, we may have an issue if float registers use only
2627       // the low half of the (same) double registers.
2628       // Both the float and the double could have the same regnr but would correspond
2629       // to two different addresses once saved.
2630 
2631       // get next safely (no assertion checks)
2632       VMReg next = VMRegImpl::as_VMReg(1+rname->value());
2633       if (next->is_reg() &&
2634           (next->as_FloatRegister() == rname->as_FloatRegister())) {
2635         // the back-end does use the same numbering for the double and the float
2636         rname = next; // VMReg for the low bits, e.g. the real VMReg for the float
2637       }
2638     }
2639 #endif
2640 #endif
2641     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2642 
2643     scope_values->append(sv);
2644     return 1;
2645 
2646   } else {
2647     // double-size operands
2648 
2649     ScopeValue* first;
2650     ScopeValue* second;
2651 
2652     if (opr->is_double_stack()) {
2653 #ifdef _LP64
2654       Location loc1;
2655       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2656       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2657         bailout("too large frame");
2658       }
2659       // Does this reverse on x86 vs. sparc?
2660       first =  new LocationValue(loc1);
2661       second = _int_0_scope_value;
2662 #else
2663       Location loc1, loc2;
2664       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2665         bailout("too large frame");
2666       }
2667       first =  new LocationValue(loc1);
2668       second = new LocationValue(loc2);
2669 #endif // _LP64
2670 
2671     } else if (opr->is_double_cpu()) {
2672 #ifdef _LP64
2673       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2674       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2675       second = _int_0_scope_value;
2676 #else
2677       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2678       VMReg rname_second = opr->as_register_hi()->as_VMReg();
2679 
2680       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2681         // lo/hi and swapped relative to first and second, so swap them
2682         VMReg tmp = rname_first;
2683         rname_first = rname_second;
2684         rname_second = tmp;
2685       }
2686 
2687       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2688       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2689 #endif //_LP64
2690 
2691 
2692 #ifdef X86
2693     } else if (opr->is_double_xmm()) {
2694       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2695       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
2696 #  ifdef _LP64
2697       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2698       second = _int_0_scope_value;
2699 #  else
2700       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2701       // %%% This is probably a waste but we'll keep things as they were for now
2702       if (true) {
2703         VMReg rname_second = rname_first->next();
2704         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2705       }
2706 #  endif
2707 #endif
2708 
2709     } else if (opr->is_double_fpu()) {
2710       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2711       // the double as float registers in the native ordering. On X86,
2712       // fpu_regnrLo is a FPU stack slot whose VMReg represents
2713       // the low-order word of the double and fpu_regnrLo + 1 is the
2714       // name for the other half.  *first and *second must represent the
2715       // least and most significant words, respectively.
2716 
2717 #ifdef X86
2718       // the exact location of fpu stack values is only known
2719       // during fpu stack allocation, so the stack allocator object
2720       // must be present
2721       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2722       assert(_fpu_stack_allocator != NULL, "must be present");
2723       opr = _fpu_stack_allocator->to_fpu_stack(opr);
2724 
2725       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)");
2726 #endif
2727 #ifdef SPARC
2728       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2729 #endif
2730 #ifdef ARM32
2731       assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
2732 #endif
2733 #ifdef PPC
2734       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2735 #endif
2736 
2737 #ifdef VM_LITTLE_ENDIAN
2738       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo());
2739 #else
2740       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2741 #endif
2742 
2743 #ifdef _LP64
2744       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2745       second = _int_0_scope_value;
2746 #else
2747       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2748       // %%% This is probably a waste but we'll keep things as they were for now
2749       if (true) {
2750         VMReg rname_second = rname_first->next();
2751         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2752       }
2753 #endif
2754 
2755     } else {
2756       ShouldNotReachHere();
2757       first = NULL;
2758       second = NULL;
2759     }
2760 
2761     assert(first != NULL && second != NULL, "must be set");
2762     // The convention the interpreter uses is that the second local
2763     // holds the first raw word of the native double representation.
2764     // This is actually reasonable, since locals and stack arrays
2765     // grow downwards in all implementations.
2766     // (If, on some machine, the interpreter's Java locals or stack
2767     // were to grow upwards, the embedded doubles would be word-swapped.)
2768     scope_values->append(second);
2769     scope_values->append(first);
2770     return 2;
2771   }
2772 }
2773 
2774 
2775 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2776   if (value != NULL) {
2777     LIR_Opr opr = value->operand();
2778     Constant* con = value->as_Constant();
2779 
2780     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2781     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2782 
2783     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2784       // Unpinned constants may have a virtual operand for a part of the lifetime
2785       // or may be illegal when it was optimized away,
2786       // so always use a constant operand
2787       opr = LIR_OprFact::value_type(con->type());
2788     }
2789     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2790 
2791     if (opr->is_virtual()) {
2792       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2793 
2794       BlockBegin* block = block_of_op_with_id(op_id);
2795       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2796         // generating debug information for the last instruction of a block.
2797         // if this instruction is a branch, spill moves are inserted before this branch
2798         // and so the wrong operand would be returned (spill moves at block boundaries are not
2799         // considered in the live ranges of intervals)
2800         // Solution: use the first op_id of the branch target block instead.
2801         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2802           if (block->live_out().at(opr->vreg_number())) {
2803             op_id = block->sux_at(0)->first_lir_instruction_id();
2804             mode = LIR_OpVisitState::outputMode;
2805           }
2806         }
2807       }
2808 
2809       // Get current location of operand
2810       // The operand must be live because debug information is considered when building the intervals
2811       // if the interval is not live, color_lir_opr will cause an assertion failure
2812       opr = color_lir_opr(opr, op_id, mode);
2813       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2814 
2815       // Append to ScopeValue array
2816       return append_scope_value_for_operand(opr, scope_values);
2817 
2818     } else {
2819       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2820       assert(opr->is_constant(), "operand must be constant");
2821 
2822       return append_scope_value_for_constant(opr, scope_values);
2823     }
2824   } else {
2825     // append a dummy value because real value not needed
2826     scope_values->append(_illegal_value);
2827     return 1;
2828   }
2829 }
2830 
2831 
2832 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) {
2833   IRScopeDebugInfo* caller_debug_info = NULL;
2834 
2835   ValueStack* caller_state = cur_state->caller_state();
2836   if (caller_state != NULL) {
2837     // process recursively to compute outermost scope first
2838     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state);
2839   }
2840 
2841   // initialize these to null.
2842   // If we don't need deopt info or there are no locals, expressions or monitors,
2843   // then these get recorded as no information and avoids the allocation of 0 length arrays.
2844   GrowableArray<ScopeValue*>*   locals      = NULL;
2845   GrowableArray<ScopeValue*>*   expressions = NULL;
2846   GrowableArray<MonitorValue*>* monitors    = NULL;
2847 
2848   // describe local variable values
2849   int nof_locals = cur_state->locals_size();
2850   if (nof_locals > 0) {
2851     locals = new GrowableArray<ScopeValue*>(nof_locals);
2852 
2853     int pos = 0;
2854     while (pos < nof_locals) {
2855       assert(pos < cur_state->locals_size(), "why not?");
2856 
2857       Value local = cur_state->local_at(pos);
2858       pos += append_scope_value(op_id, local, locals);
2859 
2860       assert(locals->length() == pos, "must match");
2861     }
2862     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2863     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2864   } else if (cur_scope->method()->max_locals() > 0) {
2865     assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be");
2866     nof_locals = cur_scope->method()->max_locals();
2867     locals = new GrowableArray<ScopeValue*>(nof_locals);
2868     for(int i = 0; i < nof_locals; i++) {
2869       locals->append(_illegal_value);
2870     }
2871   }
2872 
2873   // describe expression stack
2874   int nof_stack = cur_state->stack_size();
2875   if (nof_stack > 0) {
2876     expressions = new GrowableArray<ScopeValue*>(nof_stack);
2877 
2878     int pos = 0;
2879     while (pos < nof_stack) {
2880       Value expression = cur_state->stack_at_inc(pos);
2881       append_scope_value(op_id, expression, expressions);
2882 
2883       assert(expressions->length() == pos, "must match");
2884     }
2885     assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries");
2886   }
2887 
2888   // describe monitors
2889   int nof_locks = cur_state->locks_size();
2890   if (nof_locks > 0) {
2891     int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0;
2892     monitors = new GrowableArray<MonitorValue*>(nof_locks);
2893     for (int i = 0; i < nof_locks; i++) {
2894       monitors->append(location_for_monitor_index(lock_offset + i));
2895     }
2896   }
2897 
2898   return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info);
2899 }
2900 
2901 
2902 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2903   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2904 
2905   IRScope* innermost_scope = info->scope();
2906   ValueStack* innermost_state = info->stack();
2907 
2908   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2909 
2910   DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size()));
2911 
2912   if (info->_scope_debug_info == NULL) {
2913     // compute debug information
2914     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state);
2915   } else {
2916     // debug information already set. Check that it is correct from the current point of view
2917     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state)));
2918   }
2919 }
2920 
2921 
2922 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2923   LIR_OpVisitState visitor;
2924   int num_inst = instructions->length();
2925   bool has_dead = false;
2926 
2927   for (int j = 0; j < num_inst; j++) {
2928     LIR_Op* op = instructions->at(j);
2929     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
2930       has_dead = true;
2931       continue;
2932     }
2933     int op_id = op->id();
2934 
2935     // visit instruction to get list of operands
2936     visitor.visit(op);
2937 
2938     // iterate all modes of the visitor and process all virtual operands
2939     for_each_visitor_mode(mode) {
2940       int n = visitor.opr_count(mode);
2941       for (int k = 0; k < n; k++) {
2942         LIR_Opr opr = visitor.opr_at(mode, k);
2943         if (opr->is_virtual_register()) {
2944           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2945         }
2946       }
2947     }
2948 
2949     if (visitor.info_count() > 0) {
2950       // exception handling
2951       if (compilation()->has_exception_handlers()) {
2952         XHandlers* xhandlers = visitor.all_xhandler();
2953         int n = xhandlers->length();
2954         for (int k = 0; k < n; k++) {
2955           XHandler* handler = xhandlers->handler_at(k);
2956           if (handler->entry_code() != NULL) {
2957             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
2958           }
2959         }
2960       } else {
2961         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2962       }
2963 
2964       // compute oop map
2965       assert(iw != NULL, "needed for compute_oop_map");
2966       compute_oop_map(iw, visitor, op);
2967 
2968       // compute debug information
2969       if (!use_fpu_stack_allocation()) {
2970         // compute debug information if fpu stack allocation is not needed.
2971         // when fpu stack allocation is needed, the debug information can not
2972         // be computed here because the exact location of fpu operands is not known
2973         // -> debug information is created inside the fpu stack allocator
2974         int n = visitor.info_count();
2975         for (int k = 0; k < n; k++) {
2976           compute_debug_info(visitor.info_at(k), op_id);
2977         }
2978       }
2979     }
2980 
2981 #ifdef ASSERT
2982     // make sure we haven't made the op invalid.
2983     op->verify();
2984 #endif
2985 
2986     // remove useless moves
2987     if (op->code() == lir_move) {
2988       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2989       LIR_Op1* move = (LIR_Op1*)op;
2990       LIR_Opr src = move->in_opr();
2991       LIR_Opr dst = move->result_opr();
2992       if (dst == src ||
2993           !dst->is_pointer() && !src->is_pointer() &&
2994           src->is_same_register(dst)) {
2995         instructions->at_put(j, NULL);
2996         has_dead = true;
2997       }
2998     }
2999   }
3000 
3001   if (has_dead) {
3002     // iterate all instructions of the block and remove all null-values.
3003     int insert_point = 0;
3004     for (int j = 0; j < num_inst; j++) {
3005       LIR_Op* op = instructions->at(j);
3006       if (op != NULL) {
3007         if (insert_point != j) {
3008           instructions->at_put(insert_point, op);
3009         }
3010         insert_point++;
3011       }
3012     }
3013     instructions->truncate(insert_point);
3014   }
3015 }
3016 
3017 void LinearScan::assign_reg_num() {
3018   TIME_LINEAR_SCAN(timer_assign_reg_num);
3019 
3020   init_compute_debug_info();
3021   IntervalWalker* iw = init_compute_oop_maps();
3022 
3023   int num_blocks = block_count();
3024   for (int i = 0; i < num_blocks; i++) {
3025     BlockBegin* block = block_at(i);
3026     assign_reg_num(block->lir()->instructions_list(), iw);
3027   }
3028 }
3029 
3030 
3031 void LinearScan::do_linear_scan() {
3032   NOT_PRODUCT(_total_timer.begin_method());
3033 
3034   number_instructions();
3035 
3036   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
3037 
3038   compute_local_live_sets();
3039   compute_global_live_sets();
3040   CHECK_BAILOUT();
3041 
3042   build_intervals();
3043   CHECK_BAILOUT();
3044   sort_intervals_before_allocation();
3045 
3046   NOT_PRODUCT(print_intervals("Before Register Allocation"));
3047   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
3048 
3049   allocate_registers();
3050   CHECK_BAILOUT();
3051 
3052   resolve_data_flow();
3053   if (compilation()->has_exception_handlers()) {
3054     resolve_exception_handlers();
3055   }
3056   // fill in number of spill slots into frame_map
3057   propagate_spill_slots();
3058   CHECK_BAILOUT();
3059 
3060   NOT_PRODUCT(print_intervals("After Register Allocation"));
3061   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
3062 
3063   sort_intervals_after_allocation();
3064 
3065   DEBUG_ONLY(verify());
3066 
3067   eliminate_spill_moves();
3068   assign_reg_num();
3069   CHECK_BAILOUT();
3070 
3071   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
3072   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
3073 
3074   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
3075 
3076     if (use_fpu_stack_allocation()) {
3077       allocate_fpu_stack(); // Only has effect on Intel
3078       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
3079     }
3080   }
3081 
3082   { TIME_LINEAR_SCAN(timer_optimize_lir);
3083 
3084     EdgeMoveOptimizer::optimize(ir()->code());
3085     ControlFlowOptimizer::optimize(ir()->code());
3086     // check that cfg is still correct after optimizations
3087     ir()->verify();
3088   }
3089 
3090   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
3091   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
3092   NOT_PRODUCT(_total_timer.end_method(this));
3093 }
3094 
3095 
3096 // ********** Printing functions
3097 
3098 #ifndef PRODUCT
3099 
3100 void LinearScan::print_timers(double total) {
3101   _total_timer.print(total);
3102 }
3103 
3104 void LinearScan::print_statistics() {
3105   _stat_before_alloc.print("before allocation");
3106   _stat_after_asign.print("after assignment of register");
3107   _stat_final.print("after optimization");
3108 }
3109 
3110 void LinearScan::print_bitmap(BitMap& b) {
3111   for (unsigned int i = 0; i < b.size(); i++) {
3112     if (b.at(i)) tty->print("%d ", i);
3113   }
3114   tty->cr();
3115 }
3116 
3117 void LinearScan::print_intervals(const char* label) {
3118   if (TraceLinearScanLevel >= 1) {
3119     int i;
3120     tty->cr();
3121     tty->print_cr("%s", label);
3122 
3123     for (i = 0; i < interval_count(); i++) {
3124       Interval* interval = interval_at(i);
3125       if (interval != NULL) {
3126         interval->print();
3127       }
3128     }
3129 
3130     tty->cr();
3131     tty->print_cr("--- Basic Blocks ---");
3132     for (i = 0; i < block_count(); i++) {
3133       BlockBegin* block = block_at(i);
3134       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3135     }
3136     tty->cr();
3137     tty->cr();
3138   }
3139 
3140   if (PrintCFGToFile) {
3141     CFGPrinter::print_intervals(&_intervals, label);
3142   }
3143 }
3144 
3145 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3146   if (TraceLinearScanLevel >= level) {
3147     tty->cr();
3148     tty->print_cr("%s", label);
3149     print_LIR(ir()->linear_scan_order());
3150     tty->cr();
3151   }
3152 
3153   if (level == 1 && PrintCFGToFile) {
3154     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3155   }
3156 }
3157 
3158 #endif //PRODUCT
3159 
3160 
3161 // ********** verification functions for allocation
3162 // (check that all intervals have a correct register and that no registers are overwritten)
3163 #ifdef ASSERT
3164 
3165 void LinearScan::verify() {
3166   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3167   verify_intervals();
3168 
3169   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3170   verify_no_oops_in_fixed_intervals();
3171 
3172   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3173   verify_constants();
3174 
3175   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3176   verify_registers();
3177 
3178   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3179 }
3180 
3181 void LinearScan::verify_intervals() {
3182   int len = interval_count();
3183   bool has_error = false;
3184 
3185   for (int i = 0; i < len; i++) {
3186     Interval* i1 = interval_at(i);
3187     if (i1 == NULL) continue;
3188 
3189     i1->check_split_children();
3190 
3191     if (i1->reg_num() != i) {
3192       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3193       has_error = true;
3194     }
3195 
3196     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3197       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3198       has_error = true;
3199     }
3200 
3201     if (i1->assigned_reg() == any_reg) {
3202       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3203       has_error = true;
3204     }
3205 
3206     if (i1->assigned_reg() == i1->assigned_regHi()) {
3207       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3208       has_error = true;
3209     }
3210 
3211     if (!is_processed_reg_num(i1->assigned_reg())) {
3212       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3213       has_error = true;
3214     }
3215 
3216     if (i1->first() == Range::end()) {
3217       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3218       has_error = true;
3219     }
3220 
3221     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3222       if (r->from() >= r->to()) {
3223         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3224         has_error = true;
3225       }
3226     }
3227 
3228     for (int j = i + 1; j < len; j++) {
3229       Interval* i2 = interval_at(j);
3230       if (i2 == NULL) continue;
3231 
3232       // special intervals that are created in MoveResolver
3233       // -> ignore them because the range information has no meaning there
3234       if (i1->from() == 1 && i1->to() == 2) continue;
3235       if (i2->from() == 1 && i2->to() == 2) continue;
3236 
3237       int r1 = i1->assigned_reg();
3238       int r1Hi = i1->assigned_regHi();
3239       int r2 = i2->assigned_reg();
3240       int r2Hi = i2->assigned_regHi();
3241       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
3242         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3243         i1->print(); tty->cr();
3244         i2->print(); tty->cr();
3245         has_error = true;
3246       }
3247     }
3248   }
3249 
3250   assert(has_error == false, "register allocation invalid");
3251 }
3252 
3253 
3254 void LinearScan::verify_no_oops_in_fixed_intervals() {
3255   Interval* fixed_intervals;
3256   Interval* other_intervals;
3257   create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
3258 
3259   // to ensure a walking until the last instruction id, add a dummy interval
3260   // with a high operation id
3261   other_intervals = new Interval(any_reg);
3262   other_intervals->add_range(max_jint - 2, max_jint - 1);
3263   IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
3264 
3265   LIR_OpVisitState visitor;
3266   for (int i = 0; i < block_count(); i++) {
3267     BlockBegin* block = block_at(i);
3268 
3269     LIR_OpList* instructions = block->lir()->instructions_list();
3270 
3271     for (int j = 0; j < instructions->length(); j++) {
3272       LIR_Op* op = instructions->at(j);
3273       int op_id = op->id();
3274 
3275       visitor.visit(op);
3276 
3277       if (visitor.info_count() > 0) {
3278         iw->walk_before(op->id());
3279         bool check_live = true;
3280         if (op->code() == lir_move) {
3281           LIR_Op1* move = (LIR_Op1*)op;
3282           check_live = (move->patch_code() == lir_patch_none);
3283         }
3284         LIR_OpBranch* branch = op->as_OpBranch();
3285         if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
3286           // Don't bother checking the stub in this case since the
3287           // exception stub will never return to normal control flow.
3288           check_live = false;
3289         }
3290 
3291         // Make sure none of the fixed registers is live across an
3292         // oopmap since we can't handle that correctly.
3293         if (check_live) {
3294           for (Interval* interval = iw->active_first(fixedKind);
3295                interval != Interval::end();
3296                interval = interval->next()) {
3297             if (interval->current_to() > op->id() + 1) {
3298               // This interval is live out of this op so make sure
3299               // that this interval represents some value that's
3300               // referenced by this op either as an input or output.
3301               bool ok = false;
3302               for_each_visitor_mode(mode) {
3303                 int n = visitor.opr_count(mode);
3304                 for (int k = 0; k < n; k++) {
3305                   LIR_Opr opr = visitor.opr_at(mode, k);
3306                   if (opr->is_fixed_cpu()) {
3307                     if (interval_at(reg_num(opr)) == interval) {
3308                       ok = true;
3309                       break;
3310                     }
3311                     int hi = reg_numHi(opr);
3312                     if (hi != -1 && interval_at(hi) == interval) {
3313                       ok = true;
3314                       break;
3315                     }
3316                   }
3317                 }
3318               }
3319               assert(ok, "fixed intervals should never be live across an oopmap point");
3320             }
3321           }
3322         }
3323       }
3324 
3325       // oop-maps at calls do not contain registers, so check is not needed
3326       if (!visitor.has_call()) {
3327 
3328         for_each_visitor_mode(mode) {
3329           int n = visitor.opr_count(mode);
3330           for (int k = 0; k < n; k++) {
3331             LIR_Opr opr = visitor.opr_at(mode, k);
3332 
3333             if (opr->is_fixed_cpu() && opr->is_oop()) {
3334               // operand is a non-virtual cpu register and contains an oop
3335               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3336 
3337               Interval* interval = interval_at(reg_num(opr));
3338               assert(interval != NULL, "no interval");
3339 
3340               if (mode == LIR_OpVisitState::inputMode) {
3341                 if (interval->to() >= op_id + 1) {
3342                   assert(interval->to() < op_id + 2 ||
3343                          interval->has_hole_between(op_id, op_id + 2),
3344                          "oop input operand live after instruction");
3345                 }
3346               } else if (mode == LIR_OpVisitState::outputMode) {
3347                 if (interval->from() <= op_id - 1) {
3348                   assert(interval->has_hole_between(op_id - 1, op_id),
3349                          "oop input operand live after instruction");
3350                 }
3351               }
3352             }
3353           }
3354         }
3355       }
3356     }
3357   }
3358 }
3359 
3360 
3361 void LinearScan::verify_constants() {
3362   int num_regs = num_virtual_regs();
3363   int size = live_set_size();
3364   int num_blocks = block_count();
3365 
3366   for (int i = 0; i < num_blocks; i++) {
3367     BlockBegin* block = block_at(i);
3368     BitMap live_at_edge = block->live_in();
3369 
3370     // visit all registers where the live_at_edge bit is set
3371     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3372       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3373 
3374       Value value = gen()->instruction_for_vreg(r);
3375 
3376       assert(value != NULL, "all intervals live across block boundaries must have Value");
3377       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3378       assert(value->operand()->vreg_number() == r, "register number must match");
3379       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3380     }
3381   }
3382 }
3383 
3384 
3385 class RegisterVerifier: public StackObj {
3386  private:
3387   LinearScan*   _allocator;
3388   BlockList     _work_list;      // all blocks that must be processed
3389   IntervalsList _saved_states;   // saved information of previous check
3390 
3391   // simplified access to methods of LinearScan
3392   Compilation*  compilation() const              { return _allocator->compilation(); }
3393   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
3394   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
3395 
3396   // currently, only registers are processed
3397   int           state_size()                     { return LinearScan::nof_regs; }
3398 
3399   // accessors
3400   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3401   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3402   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3403 
3404   // helper functions
3405   IntervalList* copy(IntervalList* input_state);
3406   void          state_put(IntervalList* input_state, int reg, Interval* interval);
3407   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
3408 
3409   void process_block(BlockBegin* block);
3410   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3411   void process_successor(BlockBegin* block, IntervalList* input_state);
3412   void process_operations(LIR_List* ops, IntervalList* input_state);
3413 
3414  public:
3415   RegisterVerifier(LinearScan* allocator)
3416     : _allocator(allocator)
3417     , _work_list(16)
3418     , _saved_states(BlockBegin::number_of_blocks(), NULL)
3419   { }
3420 
3421   void verify(BlockBegin* start);
3422 };
3423 
3424 
3425 // entry function from LinearScan that starts the verification
3426 void LinearScan::verify_registers() {
3427   RegisterVerifier verifier(this);
3428   verifier.verify(block_at(0));
3429 }
3430 
3431 
3432 void RegisterVerifier::verify(BlockBegin* start) {
3433   // setup input registers (method arguments) for first block
3434   IntervalList* input_state = new IntervalList(state_size(), NULL);
3435   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3436   for (int n = 0; n < args->length(); n++) {
3437     LIR_Opr opr = args->at(n);
3438     if (opr->is_register()) {
3439       Interval* interval = interval_at(reg_num(opr));
3440 
3441       if (interval->assigned_reg() < state_size()) {
3442         input_state->at_put(interval->assigned_reg(), interval);
3443       }
3444       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3445         input_state->at_put(interval->assigned_regHi(), interval);
3446       }
3447     }
3448   }
3449 
3450   set_state_for_block(start, input_state);
3451   add_to_work_list(start);
3452 
3453   // main loop for verification
3454   do {
3455     BlockBegin* block = _work_list.at(0);
3456     _work_list.remove_at(0);
3457 
3458     process_block(block);
3459   } while (!_work_list.is_empty());
3460 }
3461 
3462 void RegisterVerifier::process_block(BlockBegin* block) {
3463   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3464 
3465   // must copy state because it is modified
3466   IntervalList* input_state = copy(state_for_block(block));
3467 
3468   if (TraceLinearScanLevel >= 4) {
3469     tty->print_cr("Input-State of intervals:");
3470     tty->print("    ");
3471     for (int i = 0; i < state_size(); i++) {
3472       if (input_state->at(i) != NULL) {
3473         tty->print(" %4d", input_state->at(i)->reg_num());
3474       } else {
3475         tty->print("   __");
3476       }
3477     }
3478     tty->cr();
3479     tty->cr();
3480   }
3481 
3482   // process all operations of the block
3483   process_operations(block->lir(), input_state);
3484 
3485   // iterate all successors
3486   for (int i = 0; i < block->number_of_sux(); i++) {
3487     process_successor(block->sux_at(i), input_state);
3488   }
3489 }
3490 
3491 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3492   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3493 
3494   // must copy state because it is modified
3495   input_state = copy(input_state);
3496 
3497   if (xhandler->entry_code() != NULL) {
3498     process_operations(xhandler->entry_code(), input_state);
3499   }
3500   process_successor(xhandler->entry_block(), input_state);
3501 }
3502 
3503 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3504   IntervalList* saved_state = state_for_block(block);
3505 
3506   if (saved_state != NULL) {
3507     // this block was already processed before.
3508     // check if new input_state is consistent with saved_state
3509 
3510     bool saved_state_correct = true;
3511     for (int i = 0; i < state_size(); i++) {
3512       if (input_state->at(i) != saved_state->at(i)) {
3513         // current input_state and previous saved_state assume a different
3514         // interval in this register -> assume that this register is invalid
3515         if (saved_state->at(i) != NULL) {
3516           // invalidate old calculation only if it assumed that
3517           // register was valid. when the register was already invalid,
3518           // then the old calculation was correct.
3519           saved_state_correct = false;
3520           saved_state->at_put(i, NULL);
3521 
3522           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3523         }
3524       }
3525     }
3526 
3527     if (saved_state_correct) {
3528       // already processed block with correct input_state
3529       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3530     } else {
3531       // must re-visit this block
3532       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3533       add_to_work_list(block);
3534     }
3535 
3536   } else {
3537     // block was not processed before, so set initial input_state
3538     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3539 
3540     set_state_for_block(block, copy(input_state));
3541     add_to_work_list(block);
3542   }
3543 }
3544 
3545 
3546 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3547   IntervalList* copy_state = new IntervalList(input_state->length());
3548   copy_state->push_all(input_state);
3549   return copy_state;
3550 }
3551 
3552 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3553   if (reg != LinearScan::any_reg && reg < state_size()) {
3554     if (interval != NULL) {
3555       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
3556     } else if (input_state->at(reg) != NULL) {
3557       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
3558     }
3559 
3560     input_state->at_put(reg, interval);
3561   }
3562 }
3563 
3564 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3565   if (reg != LinearScan::any_reg && reg < state_size()) {
3566     if (input_state->at(reg) != interval) {
3567       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3568       return true;
3569     }
3570   }
3571   return false;
3572 }
3573 
3574 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3575   // visit all instructions of the block
3576   LIR_OpVisitState visitor;
3577   bool has_error = false;
3578 
3579   for (int i = 0; i < ops->length(); i++) {
3580     LIR_Op* op = ops->at(i);
3581     visitor.visit(op);
3582 
3583     TRACE_LINEAR_SCAN(4, op->print_on(tty));
3584 
3585     // check if input operands are correct
3586     int j;
3587     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3588     for (j = 0; j < n; j++) {
3589       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3590       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3591         Interval* interval = interval_at(reg_num(opr));
3592         if (op->id() != -1) {
3593           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3594         }
3595 
3596         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
3597         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3598 
3599         // When an operand is marked with is_last_use, then the fpu stack allocator
3600         // removes the register from the fpu stack -> the register contains no value
3601         if (opr->is_last_use()) {
3602           state_put(input_state, interval->assigned_reg(),   NULL);
3603           state_put(input_state, interval->assigned_regHi(), NULL);
3604         }
3605       }
3606     }
3607 
3608     // invalidate all caller save registers at calls
3609     if (visitor.has_call()) {
3610       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) {
3611         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3612       }
3613       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3614         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3615       }
3616 
3617 #ifdef X86
3618       for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
3619         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3620       }
3621 #endif
3622     }
3623 
3624     // process xhandler before output and temp operands
3625     XHandlers* xhandlers = visitor.all_xhandler();
3626     n = xhandlers->length();
3627     for (int k = 0; k < n; k++) {
3628       process_xhandler(xhandlers->handler_at(k), input_state);
3629     }
3630 
3631     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3632     n = visitor.opr_count(LIR_OpVisitState::tempMode);
3633     for (j = 0; j < n; j++) {
3634       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3635       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3636         Interval* interval = interval_at(reg_num(opr));
3637         if (op->id() != -1) {
3638           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3639         }
3640 
3641         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3642         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3643       }
3644     }
3645 
3646     // set output operands
3647     n = visitor.opr_count(LIR_OpVisitState::outputMode);
3648     for (j = 0; j < n; j++) {
3649       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3650       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3651         Interval* interval = interval_at(reg_num(opr));
3652         if (op->id() != -1) {
3653           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3654         }
3655 
3656         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3657         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3658       }
3659     }
3660   }
3661   assert(has_error == false, "Error in register allocation");
3662 }
3663 
3664 #endif // ASSERT
3665 
3666 
3667 
3668 // **** Implementation of MoveResolver ******************************
3669 
3670 MoveResolver::MoveResolver(LinearScan* allocator) :
3671   _allocator(allocator),
3672   _multiple_reads_allowed(false),
3673   _mapping_from(8),
3674   _mapping_from_opr(8),
3675   _mapping_to(8),
3676   _insert_list(NULL),
3677   _insert_idx(-1),
3678   _insertion_buffer()
3679 {
3680   for (int i = 0; i < LinearScan::nof_regs; i++) {
3681     _register_blocked[i] = 0;
3682   }
3683   DEBUG_ONLY(check_empty());
3684 }
3685 
3686 
3687 #ifdef ASSERT
3688 
3689 void MoveResolver::check_empty() {
3690   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3691   for (int i = 0; i < LinearScan::nof_regs; i++) {
3692     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3693   }
3694   assert(_multiple_reads_allowed == false, "must have default value");
3695 }
3696 
3697 void MoveResolver::verify_before_resolve() {
3698   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3699   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3700   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3701 
3702   int i, j;
3703   if (!_multiple_reads_allowed) {
3704     for (i = 0; i < _mapping_from.length(); i++) {
3705       for (j = i + 1; j < _mapping_from.length(); j++) {
3706         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3707       }
3708     }
3709   }
3710 
3711   for (i = 0; i < _mapping_to.length(); i++) {
3712     for (j = i + 1; j < _mapping_to.length(); j++) {
3713       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3714     }
3715   }
3716 
3717 
3718   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3719   used_regs.clear();
3720   if (!_multiple_reads_allowed) {
3721     for (i = 0; i < _mapping_from.length(); i++) {
3722       Interval* it = _mapping_from.at(i);
3723       if (it != NULL) {
3724         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3725         used_regs.set_bit(it->assigned_reg());
3726 
3727         if (it->assigned_regHi() != LinearScan::any_reg) {
3728           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3729           used_regs.set_bit(it->assigned_regHi());
3730         }
3731       }
3732     }
3733   }
3734 
3735   used_regs.clear();
3736   for (i = 0; i < _mapping_to.length(); i++) {
3737     Interval* it = _mapping_to.at(i);
3738     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3739     used_regs.set_bit(it->assigned_reg());
3740 
3741     if (it->assigned_regHi() != LinearScan::any_reg) {
3742       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3743       used_regs.set_bit(it->assigned_regHi());
3744     }
3745   }
3746 
3747   used_regs.clear();
3748   for (i = 0; i < _mapping_from.length(); i++) {
3749     Interval* it = _mapping_from.at(i);
3750     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3751       used_regs.set_bit(it->assigned_reg());
3752     }
3753   }
3754   for (i = 0; i < _mapping_to.length(); i++) {
3755     Interval* it = _mapping_to.at(i);
3756     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3757   }
3758 }
3759 
3760 #endif // ASSERT
3761 
3762 
3763 // mark assigned_reg and assigned_regHi of the interval as blocked
3764 void MoveResolver::block_registers(Interval* it) {
3765   int reg = it->assigned_reg();
3766   if (reg < LinearScan::nof_regs) {
3767     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3768     set_register_blocked(reg, 1);
3769   }
3770   reg = it->assigned_regHi();
3771   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3772     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3773     set_register_blocked(reg, 1);
3774   }
3775 }
3776 
3777 // mark assigned_reg and assigned_regHi of the interval as unblocked
3778 void MoveResolver::unblock_registers(Interval* it) {
3779   int reg = it->assigned_reg();
3780   if (reg < LinearScan::nof_regs) {
3781     assert(register_blocked(reg) > 0, "register already marked as unused");
3782     set_register_blocked(reg, -1);
3783   }
3784   reg = it->assigned_regHi();
3785   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3786     assert(register_blocked(reg) > 0, "register already marked as unused");
3787     set_register_blocked(reg, -1);
3788   }
3789 }
3790 
3791 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3792 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3793   int from_reg = -1;
3794   int from_regHi = -1;
3795   if (from != NULL) {
3796     from_reg = from->assigned_reg();
3797     from_regHi = from->assigned_regHi();
3798   }
3799 
3800   int reg = to->assigned_reg();
3801   if (reg < LinearScan::nof_regs) {
3802     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3803       return false;
3804     }
3805   }
3806   reg = to->assigned_regHi();
3807   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3808     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3809       return false;
3810     }
3811   }
3812 
3813   return true;
3814 }
3815 
3816 
3817 void MoveResolver::create_insertion_buffer(LIR_List* list) {
3818   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3819   _insertion_buffer.init(list);
3820 }
3821 
3822 void MoveResolver::append_insertion_buffer() {
3823   if (_insertion_buffer.initialized()) {
3824     _insertion_buffer.lir_list()->append(&_insertion_buffer);
3825   }
3826   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3827 
3828   _insert_list = NULL;
3829   _insert_idx = -1;
3830 }
3831 
3832 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3833   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3834   assert(from_interval->type() == to_interval->type(), "move between different types");
3835   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3836   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3837 
3838   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
3839   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3840 
3841   if (!_multiple_reads_allowed) {
3842     // the last_use flag is an optimization for FPU stack allocation. When the same
3843     // input interval is used in more than one move, then it is too difficult to determine
3844     // if this move is really the last use.
3845     from_opr = from_opr->make_last_use();
3846   }
3847   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3848 
3849   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3850 }
3851 
3852 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3853   assert(from_opr->type() == to_interval->type(), "move between different types");
3854   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3855   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3856 
3857   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3858   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3859 
3860   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3861 }
3862 
3863 
3864 void MoveResolver::resolve_mappings() {
3865   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3866   DEBUG_ONLY(verify_before_resolve());
3867 
3868   // Block all registers that are used as input operands of a move.
3869   // When a register is blocked, no move to this register is emitted.
3870   // This is necessary for detecting cycles in moves.
3871   int i;
3872   for (i = _mapping_from.length() - 1; i >= 0; i--) {
3873     Interval* from_interval = _mapping_from.at(i);
3874     if (from_interval != NULL) {
3875       block_registers(from_interval);
3876     }
3877   }
3878 
3879   int spill_candidate = -1;
3880   while (_mapping_from.length() > 0) {
3881     bool processed_interval = false;
3882 
3883     for (i = _mapping_from.length() - 1; i >= 0; i--) {
3884       Interval* from_interval = _mapping_from.at(i);
3885       Interval* to_interval = _mapping_to.at(i);
3886 
3887       if (save_to_process_move(from_interval, to_interval)) {
3888         // this inverval can be processed because target is free
3889         if (from_interval != NULL) {
3890           insert_move(from_interval, to_interval);
3891           unblock_registers(from_interval);
3892         } else {
3893           insert_move(_mapping_from_opr.at(i), to_interval);
3894         }
3895         _mapping_from.remove_at(i);
3896         _mapping_from_opr.remove_at(i);
3897         _mapping_to.remove_at(i);
3898 
3899         processed_interval = true;
3900       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3901         // this interval cannot be processed now because target is not free
3902         // it starts in a register, so it is a possible candidate for spilling
3903         spill_candidate = i;
3904       }
3905     }
3906 
3907     if (!processed_interval) {
3908       // no move could be processed because there is a cycle in the move list
3909       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3910       assert(spill_candidate != -1, "no interval in register for spilling found");
3911 
3912       // create a new spill interval and assign a stack slot to it
3913       Interval* from_interval = _mapping_from.at(spill_candidate);
3914       Interval* spill_interval = new Interval(-1);
3915       spill_interval->set_type(from_interval->type());
3916 
3917       // add a dummy range because real position is difficult to calculate
3918       // Note: this range is a special case when the integrity of the allocation is checked
3919       spill_interval->add_range(1, 2);
3920 
3921       //       do not allocate a new spill slot for temporary interval, but
3922       //       use spill slot assigned to from_interval. Otherwise moves from
3923       //       one stack slot to another can happen (not allowed by LIR_Assembler
3924       int spill_slot = from_interval->canonical_spill_slot();
3925       if (spill_slot < 0) {
3926         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
3927         from_interval->set_canonical_spill_slot(spill_slot);
3928       }
3929       spill_interval->assign_reg(spill_slot);
3930       allocator()->append_interval(spill_interval);
3931 
3932       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
3933 
3934       // insert a move from register to stack and update the mapping
3935       insert_move(from_interval, spill_interval);
3936       _mapping_from.at_put(spill_candidate, spill_interval);
3937       unblock_registers(from_interval);
3938     }
3939   }
3940 
3941   // reset to default value
3942   _multiple_reads_allowed = false;
3943 
3944   // check that all intervals have been processed
3945   DEBUG_ONLY(check_empty());
3946 }
3947 
3948 
3949 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
3950   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3951   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
3952 
3953   create_insertion_buffer(insert_list);
3954   _insert_list = insert_list;
3955   _insert_idx = insert_idx;
3956 }
3957 
3958 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
3959   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3960 
3961   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
3962     // insert position changed -> resolve current mappings
3963     resolve_mappings();
3964   }
3965 
3966   if (insert_list != _insert_list) {
3967     // block changed -> append insertion_buffer because it is
3968     // bound to a specific block and create a new insertion_buffer
3969     append_insertion_buffer();
3970     create_insertion_buffer(insert_list);
3971   }
3972 
3973   _insert_list = insert_list;
3974   _insert_idx = insert_idx;
3975 }
3976 
3977 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
3978   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3979 
3980   _mapping_from.append(from_interval);
3981   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
3982   _mapping_to.append(to_interval);
3983 }
3984 
3985 
3986 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
3987   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3988   assert(from_opr->is_constant(), "only for constants");
3989 
3990   _mapping_from.append(NULL);
3991   _mapping_from_opr.append(from_opr);
3992   _mapping_to.append(to_interval);
3993 }
3994 
3995 void MoveResolver::resolve_and_append_moves() {
3996   if (has_mappings()) {
3997     resolve_mappings();
3998   }
3999   append_insertion_buffer();
4000 }
4001 
4002 
4003 
4004 // **** Implementation of Range *************************************
4005 
4006 Range::Range(int from, int to, Range* next) :
4007   _from(from),
4008   _to(to),
4009   _next(next)
4010 {
4011 }
4012 
4013 // initialize sentinel
4014 Range* Range::_end = NULL;
4015 void Range::initialize(Arena* arena) {
4016   _end = new (arena) Range(max_jint, max_jint, NULL);
4017 }
4018 
4019 int Range::intersects_at(Range* r2) const {
4020   const Range* r1 = this;
4021 
4022   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
4023   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
4024 
4025   do {
4026     if (r1->from() < r2->from()) {
4027       if (r1->to() <= r2->from()) {
4028         r1 = r1->next(); if (r1 == _end) return -1;
4029       } else {
4030         return r2->from();
4031       }
4032     } else if (r2->from() < r1->from()) {
4033       if (r2->to() <= r1->from()) {
4034         r2 = r2->next(); if (r2 == _end) return -1;
4035       } else {
4036         return r1->from();
4037       }
4038     } else { // r1->from() == r2->from()
4039       if (r1->from() == r1->to()) {
4040         r1 = r1->next(); if (r1 == _end) return -1;
4041       } else if (r2->from() == r2->to()) {
4042         r2 = r2->next(); if (r2 == _end) return -1;
4043       } else {
4044         return r1->from();
4045       }
4046     }
4047   } while (true);
4048 }
4049 
4050 #ifndef PRODUCT
4051 void Range::print(outputStream* out) const {
4052   out->print("[%d, %d[ ", _from, _to);
4053 }
4054 #endif
4055 
4056 
4057 
4058 // **** Implementation of Interval **********************************
4059 
4060 // initialize sentinel
4061 Interval* Interval::_end = NULL;
4062 void Interval::initialize(Arena* arena) {
4063   Range::initialize(arena);
4064   _end = new (arena) Interval(-1);
4065 }
4066 
4067 Interval::Interval(int reg_num) :
4068   _reg_num(reg_num),
4069   _type(T_ILLEGAL),
4070   _first(Range::end()),
4071   _use_pos_and_kinds(12),
4072   _current(Range::end()),
4073   _next(_end),
4074   _state(invalidState),
4075   _assigned_reg(LinearScan::any_reg),
4076   _assigned_regHi(LinearScan::any_reg),
4077   _cached_to(-1),
4078   _cached_opr(LIR_OprFact::illegalOpr),
4079   _cached_vm_reg(VMRegImpl::Bad()),
4080   _split_children(0),
4081   _canonical_spill_slot(-1),
4082   _insert_move_when_activated(false),
4083   _register_hint(NULL),
4084   _spill_state(noDefinitionFound),
4085   _spill_definition_pos(-1)
4086 {
4087   _split_parent = this;
4088   _current_split_child = this;
4089 }
4090 
4091 int Interval::calc_to() {
4092   assert(_first != Range::end(), "interval has no range");
4093 
4094   Range* r = _first;
4095   while (r->next() != Range::end()) {
4096     r = r->next();
4097   }
4098   return r->to();
4099 }
4100 
4101 
4102 #ifdef ASSERT
4103 // consistency check of split-children
4104 void Interval::check_split_children() {
4105   if (_split_children.length() > 0) {
4106     assert(is_split_parent(), "only split parents can have children");
4107 
4108     for (int i = 0; i < _split_children.length(); i++) {
4109       Interval* i1 = _split_children.at(i);
4110 
4111       assert(i1->split_parent() == this, "not a split child of this interval");
4112       assert(i1->type() == type(), "must be equal for all split children");
4113       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
4114 
4115       for (int j = i + 1; j < _split_children.length(); j++) {
4116         Interval* i2 = _split_children.at(j);
4117 
4118         assert(i1->reg_num() != i2->reg_num(), "same register number");
4119 
4120         if (i1->from() < i2->from()) {
4121           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
4122         } else {
4123           assert(i2->from() < i1->from(), "intervals start at same op_id");
4124           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
4125         }
4126       }
4127     }
4128   }
4129 }
4130 #endif // ASSERT
4131 
4132 Interval* Interval::register_hint(bool search_split_child) const {
4133   if (!search_split_child) {
4134     return _register_hint;
4135   }
4136 
4137   if (_register_hint != NULL) {
4138     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
4139 
4140     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
4141       return _register_hint;
4142 
4143     } else if (_register_hint->_split_children.length() > 0) {
4144       // search the first split child that has a register assigned
4145       int len = _register_hint->_split_children.length();
4146       for (int i = 0; i < len; i++) {
4147         Interval* cur = _register_hint->_split_children.at(i);
4148 
4149         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
4150           return cur;
4151         }
4152       }
4153     }
4154   }
4155 
4156   // no hint interval found that has a register assigned
4157   return NULL;
4158 }
4159 
4160 
4161 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
4162   assert(is_split_parent(), "can only be called for split parents");
4163   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4164 
4165   Interval* result;
4166   if (_split_children.length() == 0) {
4167     result = this;
4168   } else {
4169     result = NULL;
4170     int len = _split_children.length();
4171 
4172     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4173     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4174 
4175     int i;
4176     for (i = 0; i < len; i++) {
4177       Interval* cur = _split_children.at(i);
4178       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4179         if (i > 0) {
4180           // exchange current split child to start of list (faster access for next call)
4181           _split_children.at_put(i, _split_children.at(0));
4182           _split_children.at_put(0, cur);
4183         }
4184 
4185         // interval found
4186         result = cur;
4187         break;
4188       }
4189     }
4190 
4191 #ifdef ASSERT
4192     for (i = 0; i < len; i++) {
4193       Interval* tmp = _split_children.at(i);
4194       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4195         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4196         result->print();
4197         tmp->print();
4198         assert(false, "two valid result intervals found");
4199       }
4200     }
4201 #endif
4202   }
4203 
4204   assert(result != NULL, "no matching interval found");
4205   assert(result->covers(op_id, mode), "op_id not covered by interval");
4206 
4207   return result;
4208 }
4209 
4210 
4211 // returns the last split child that ends before the given op_id
4212 Interval* Interval::split_child_before_op_id(int op_id) {
4213   assert(op_id >= 0, "invalid op_id");
4214 
4215   Interval* parent = split_parent();
4216   Interval* result = NULL;
4217 
4218   int len = parent->_split_children.length();
4219   assert(len > 0, "no split children available");
4220 
4221   for (int i = len - 1; i >= 0; i--) {
4222     Interval* cur = parent->_split_children.at(i);
4223     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4224       result = cur;
4225     }
4226   }
4227 
4228   assert(result != NULL, "no split child found");
4229   return result;
4230 }
4231 
4232 
4233 // checks if op_id is covered by any split child
4234 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
4235   assert(is_split_parent(), "can only be called for split parents");
4236   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4237 
4238   if (_split_children.length() == 0) {
4239     // simple case if interval was not split
4240     return covers(op_id, mode);
4241 
4242   } else {
4243     // extended case: check all split children
4244     int len = _split_children.length();
4245     for (int i = 0; i < len; i++) {
4246       Interval* cur = _split_children.at(i);
4247       if (cur->covers(op_id, mode)) {
4248         return true;
4249       }
4250     }
4251     return false;
4252   }
4253 }
4254 
4255 
4256 // Note: use positions are sorted descending -> first use has highest index
4257 int Interval::first_usage(IntervalUseKind min_use_kind) const {
4258   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4259 
4260   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4261     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4262       return _use_pos_and_kinds.at(i);
4263     }
4264   }
4265   return max_jint;
4266 }
4267 
4268 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4269   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4270 
4271   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4272     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4273       return _use_pos_and_kinds.at(i);
4274     }
4275   }
4276   return max_jint;
4277 }
4278 
4279 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4280   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4281 
4282   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4283     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4284       return _use_pos_and_kinds.at(i);
4285     }
4286   }
4287   return max_jint;
4288 }
4289 
4290 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4291   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4292 
4293   int prev = 0;
4294   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4295     if (_use_pos_and_kinds.at(i) > from) {
4296       return prev;
4297     }
4298     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4299       prev = _use_pos_and_kinds.at(i);
4300     }
4301   }
4302   return prev;
4303 }
4304 
4305 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4306   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4307 
4308   // do not add use positions for precolored intervals because
4309   // they are never used
4310   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4311 #ifdef ASSERT
4312     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4313     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4314       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4315       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4316       if (i > 0) {
4317         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4318       }
4319     }
4320 #endif
4321 
4322     // Note: add_use is called in descending order, so list gets sorted
4323     //       automatically by just appending new use positions
4324     int len = _use_pos_and_kinds.length();
4325     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4326       _use_pos_and_kinds.append(pos);
4327       _use_pos_and_kinds.append(use_kind);
4328     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4329       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4330       _use_pos_and_kinds.at_put(len - 1, use_kind);
4331     }
4332   }
4333 }
4334 
4335 void Interval::add_range(int from, int to) {
4336   assert(from < to, "invalid range");
4337   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4338   assert(from <= first()->to(), "not inserting at begin of interval");
4339 
4340   if (first()->from() <= to) {
4341     // join intersecting ranges
4342     first()->set_from(MIN2(from, first()->from()));
4343     first()->set_to  (MAX2(to,   first()->to()));
4344   } else {
4345     // insert new range
4346     _first = new Range(from, to, first());
4347   }
4348 }
4349 
4350 Interval* Interval::new_split_child() {
4351   // allocate new interval
4352   Interval* result = new Interval(-1);
4353   result->set_type(type());
4354 
4355   Interval* parent = split_parent();
4356   result->_split_parent = parent;
4357   result->set_register_hint(parent);
4358 
4359   // insert new interval in children-list of parent
4360   if (parent->_split_children.length() == 0) {
4361     assert(is_split_parent(), "list must be initialized at first split");
4362 
4363     parent->_split_children = IntervalList(4);
4364     parent->_split_children.append(this);
4365   }
4366   parent->_split_children.append(result);
4367 
4368   return result;
4369 }
4370 
4371 // split this interval at the specified position and return
4372 // the remainder as a new interval.
4373 //
4374 // when an interval is split, a bi-directional link is established between the original interval
4375 // (the split parent) and the intervals that are split off this interval (the split children)
4376 // When a split child is split again, the new created interval is also a direct child
4377 // of the original parent (there is no tree of split children stored, but a flat list)
4378 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4379 //
4380 // Note: The new interval has no valid reg_num
4381 Interval* Interval::split(int split_pos) {
4382   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4383 
4384   // allocate new interval
4385   Interval* result = new_split_child();
4386 
4387   // split the ranges
4388   Range* prev = NULL;
4389   Range* cur = _first;
4390   while (cur != Range::end() && cur->to() <= split_pos) {
4391     prev = cur;
4392     cur = cur->next();
4393   }
4394   assert(cur != Range::end(), "split interval after end of last range");
4395 
4396   if (cur->from() < split_pos) {
4397     result->_first = new Range(split_pos, cur->to(), cur->next());
4398     cur->set_to(split_pos);
4399     cur->set_next(Range::end());
4400 
4401   } else {
4402     assert(prev != NULL, "split before start of first range");
4403     result->_first = cur;
4404     prev->set_next(Range::end());
4405   }
4406   result->_current = result->_first;
4407   _cached_to = -1; // clear cached value
4408 
4409   // split list of use positions
4410   int total_len = _use_pos_and_kinds.length();
4411   int start_idx = total_len - 2;
4412   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4413     start_idx -= 2;
4414   }
4415 
4416   intStack new_use_pos_and_kinds(total_len - start_idx);
4417   int i;
4418   for (i = start_idx + 2; i < total_len; i++) {
4419     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4420   }
4421 
4422   _use_pos_and_kinds.truncate(start_idx + 2);
4423   result->_use_pos_and_kinds = _use_pos_and_kinds;
4424   _use_pos_and_kinds = new_use_pos_and_kinds;
4425 
4426 #ifdef ASSERT
4427   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4428   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4429   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4430 
4431   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4432     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4433     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4434   }
4435   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4436     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4437     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4438   }
4439 #endif
4440 
4441   return result;
4442 }
4443 
4444 // split this interval at the specified position and return
4445 // the head as a new interval (the original interval is the tail)
4446 //
4447 // Currently, only the first range can be split, and the new interval
4448 // must not have split positions
4449 Interval* Interval::split_from_start(int split_pos) {
4450   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4451   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4452   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4453   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4454 
4455   // allocate new interval
4456   Interval* result = new_split_child();
4457 
4458   // the new created interval has only one range (checked by assertion above),
4459   // so the splitting of the ranges is very simple
4460   result->add_range(_first->from(), split_pos);
4461 
4462   if (split_pos == _first->to()) {
4463     assert(_first->next() != Range::end(), "must not be at end");
4464     _first = _first->next();
4465   } else {
4466     _first->set_from(split_pos);
4467   }
4468 
4469   return result;
4470 }
4471 
4472 
4473 // returns true if the op_id is inside the interval
4474 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4475   Range* cur  = _first;
4476 
4477   while (cur != Range::end() && cur->to() < op_id) {
4478     cur = cur->next();
4479   }
4480   if (cur != Range::end()) {
4481     assert(cur->to() != cur->next()->from(), "ranges not separated");
4482 
4483     if (mode == LIR_OpVisitState::outputMode) {
4484       return cur->from() <= op_id && op_id < cur->to();
4485     } else {
4486       return cur->from() <= op_id && op_id <= cur->to();
4487     }
4488   }
4489   return false;
4490 }
4491 
4492 // returns true if the interval has any hole between hole_from and hole_to
4493 // (even if the hole has only the length 1)
4494 bool Interval::has_hole_between(int hole_from, int hole_to) {
4495   assert(hole_from < hole_to, "check");
4496   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4497 
4498   Range* cur  = _first;
4499   while (cur != Range::end()) {
4500     assert(cur->to() < cur->next()->from(), "no space between ranges");
4501 
4502     // hole-range starts before this range -> hole
4503     if (hole_from < cur->from()) {
4504       return true;
4505 
4506     // hole-range completely inside this range -> no hole
4507     } else if (hole_to <= cur->to()) {
4508       return false;
4509 
4510     // overlapping of hole-range with this range -> hole
4511     } else if (hole_from <= cur->to()) {
4512       return true;
4513     }
4514 
4515     cur = cur->next();
4516   }
4517 
4518   return false;
4519 }
4520 
4521 
4522 #ifndef PRODUCT
4523 void Interval::print(outputStream* out) const {
4524   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4525   const char* UseKind2Name[] = { "N", "L", "S", "M" };
4526 
4527   const char* type_name;
4528   LIR_Opr opr = LIR_OprFact::illegal();
4529   if (reg_num() < LIR_OprDesc::vreg_base) {
4530     type_name = "fixed";
4531     // need a temporary operand for fixed intervals because type() cannot be called
4532     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4533       opr = LIR_OprFact::single_cpu(assigned_reg());
4534     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4535       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4536 #ifdef X86
4537     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
4538       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4539 #endif
4540     } else {
4541       ShouldNotReachHere();
4542     }
4543   } else {
4544     type_name = type2name(type());
4545     if (assigned_reg() != -1 &&
4546         (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) {
4547       opr = LinearScan::calc_operand_for_interval(this);
4548     }
4549   }
4550 
4551   out->print("%d %s ", reg_num(), type_name);
4552   if (opr->is_valid()) {
4553     out->print("\"");
4554     opr->print(out);
4555     out->print("\" ");
4556   }
4557   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4558 
4559   // print ranges
4560   Range* cur = _first;
4561   while (cur != Range::end()) {
4562     cur->print(out);
4563     cur = cur->next();
4564     assert(cur != NULL, "range list not closed with range sentinel");
4565   }
4566 
4567   // print use positions
4568   int prev = 0;
4569   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4570   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4571     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4572     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4573 
4574     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4575     prev = _use_pos_and_kinds.at(i);
4576   }
4577 
4578   out->print(" \"%s\"", SpillState2Name[spill_state()]);
4579   out->cr();
4580 }
4581 #endif
4582 
4583 
4584 
4585 // **** Implementation of IntervalWalker ****************************
4586 
4587 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4588  : _compilation(allocator->compilation())
4589  , _allocator(allocator)
4590 {
4591   _unhandled_first[fixedKind] = unhandled_fixed_first;
4592   _unhandled_first[anyKind]   = unhandled_any_first;
4593   _active_first[fixedKind]    = Interval::end();
4594   _inactive_first[fixedKind]  = Interval::end();
4595   _active_first[anyKind]      = Interval::end();
4596   _inactive_first[anyKind]    = Interval::end();
4597   _current_position = -1;
4598   _current = NULL;
4599   next_interval();
4600 }
4601 
4602 
4603 // append interval at top of list
4604 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
4605   interval->set_next(*list); *list = interval;
4606 }
4607 
4608 
4609 // append interval in order of current range from()
4610 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4611   Interval* prev = NULL;
4612   Interval* cur  = *list;
4613   while (cur->current_from() < interval->current_from()) {
4614     prev = cur; cur = cur->next();
4615   }
4616   if (prev == NULL) {
4617     *list = interval;
4618   } else {
4619     prev->set_next(interval);
4620   }
4621   interval->set_next(cur);
4622 }
4623 
4624 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4625   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4626 
4627   Interval* prev = NULL;
4628   Interval* cur  = *list;
4629   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4630     prev = cur; cur = cur->next();
4631   }
4632   if (prev == NULL) {
4633     *list = interval;
4634   } else {
4635     prev->set_next(interval);
4636   }
4637   interval->set_next(cur);
4638 }
4639 
4640 
4641 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4642   while (*list != Interval::end() && *list != i) {
4643     list = (*list)->next_addr();
4644   }
4645   if (*list != Interval::end()) {
4646     assert(*list == i, "check");
4647     *list = (*list)->next();
4648     return true;
4649   } else {
4650     return false;
4651   }
4652 }
4653 
4654 void IntervalWalker::remove_from_list(Interval* i) {
4655   bool deleted;
4656 
4657   if (i->state() == activeState) {
4658     deleted = remove_from_list(active_first_addr(anyKind), i);
4659   } else {
4660     assert(i->state() == inactiveState, "invalid state");
4661     deleted = remove_from_list(inactive_first_addr(anyKind), i);
4662   }
4663 
4664   assert(deleted, "interval has not been found in list");
4665 }
4666 
4667 
4668 void IntervalWalker::walk_to(IntervalState state, int from) {
4669   assert (state == activeState || state == inactiveState, "wrong state");
4670   for_each_interval_kind(kind) {
4671     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4672     Interval* next   = *prev;
4673     while (next->current_from() <= from) {
4674       Interval* cur = next;
4675       next = cur->next();
4676 
4677       bool range_has_changed = false;
4678       while (cur->current_to() <= from) {
4679         cur->next_range();
4680         range_has_changed = true;
4681       }
4682 
4683       // also handle move from inactive list to active list
4684       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4685 
4686       if (range_has_changed) {
4687         // remove cur from list
4688         *prev = next;
4689         if (cur->current_at_end()) {
4690           // move to handled state (not maintained as a list)
4691           cur->set_state(handledState);
4692           interval_moved(cur, kind, state, handledState);
4693         } else if (cur->current_from() <= from){
4694           // sort into active list
4695           append_sorted(active_first_addr(kind), cur);
4696           cur->set_state(activeState);
4697           if (*prev == cur) {
4698             assert(state == activeState, "check");
4699             prev = cur->next_addr();
4700           }
4701           interval_moved(cur, kind, state, activeState);
4702         } else {
4703           // sort into inactive list
4704           append_sorted(inactive_first_addr(kind), cur);
4705           cur->set_state(inactiveState);
4706           if (*prev == cur) {
4707             assert(state == inactiveState, "check");
4708             prev = cur->next_addr();
4709           }
4710           interval_moved(cur, kind, state, inactiveState);
4711         }
4712       } else {
4713         prev = cur->next_addr();
4714         continue;
4715       }
4716     }
4717   }
4718 }
4719 
4720 
4721 void IntervalWalker::next_interval() {
4722   IntervalKind kind;
4723   Interval* any   = _unhandled_first[anyKind];
4724   Interval* fixed = _unhandled_first[fixedKind];
4725 
4726   if (any != Interval::end()) {
4727     // intervals may start at same position -> prefer fixed interval
4728     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4729 
4730     assert (kind == fixedKind && fixed->from() <= any->from() ||
4731             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
4732     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4733 
4734   } else if (fixed != Interval::end()) {
4735     kind = fixedKind;
4736   } else {
4737     _current = NULL; return;
4738   }
4739   _current_kind = kind;
4740   _current = _unhandled_first[kind];
4741   _unhandled_first[kind] = _current->next();
4742   _current->set_next(Interval::end());
4743   _current->rewind_range();
4744 }
4745 
4746 
4747 void IntervalWalker::walk_to(int lir_op_id) {
4748   assert(_current_position <= lir_op_id, "can not walk backwards");
4749   while (current() != NULL) {
4750     bool is_active = current()->from() <= lir_op_id;
4751     int id = is_active ? current()->from() : lir_op_id;
4752 
4753     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4754 
4755     // set _current_position prior to call of walk_to
4756     _current_position = id;
4757 
4758     // call walk_to even if _current_position == id
4759     walk_to(activeState, id);
4760     walk_to(inactiveState, id);
4761 
4762     if (is_active) {
4763       current()->set_state(activeState);
4764       if (activate_current()) {
4765         append_sorted(active_first_addr(current_kind()), current());
4766         interval_moved(current(), current_kind(), unhandledState, activeState);
4767       }
4768 
4769       next_interval();
4770     } else {
4771       return;
4772     }
4773   }
4774 }
4775 
4776 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4777 #ifndef PRODUCT
4778   if (TraceLinearScanLevel >= 4) {
4779     #define print_state(state) \
4780     switch(state) {\
4781       case unhandledState: tty->print("unhandled"); break;\
4782       case activeState: tty->print("active"); break;\
4783       case inactiveState: tty->print("inactive"); break;\
4784       case handledState: tty->print("handled"); break;\
4785       default: ShouldNotReachHere(); \
4786     }
4787 
4788     print_state(from); tty->print(" to "); print_state(to);
4789     tty->fill_to(23);
4790     interval->print();
4791 
4792     #undef print_state
4793   }
4794 #endif
4795 }
4796 
4797 
4798 
4799 // **** Implementation of LinearScanWalker **************************
4800 
4801 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4802   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4803   , _move_resolver(allocator)
4804 {
4805   for (int i = 0; i < LinearScan::nof_regs; i++) {
4806     _spill_intervals[i] = new IntervalList(2);
4807   }
4808 }
4809 
4810 
4811 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4812   for (int i = _first_reg; i <= _last_reg; i++) {
4813     _use_pos[i] = max_jint;
4814 
4815     if (!only_process_use_pos) {
4816       _block_pos[i] = max_jint;
4817       _spill_intervals[i]->clear();
4818     }
4819   }
4820 }
4821 
4822 inline void LinearScanWalker::exclude_from_use(int reg) {
4823   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4824   if (reg >= _first_reg && reg <= _last_reg) {
4825     _use_pos[reg] = 0;
4826   }
4827 }
4828 inline void LinearScanWalker::exclude_from_use(Interval* i) {
4829   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4830 
4831   exclude_from_use(i->assigned_reg());
4832   exclude_from_use(i->assigned_regHi());
4833 }
4834 
4835 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4836   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4837 
4838   if (reg >= _first_reg && reg <= _last_reg) {
4839     if (_use_pos[reg] > use_pos) {
4840       _use_pos[reg] = use_pos;
4841     }
4842     if (!only_process_use_pos) {
4843       _spill_intervals[reg]->append(i);
4844     }
4845   }
4846 }
4847 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4848   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4849   if (use_pos != -1) {
4850     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4851     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4852   }
4853 }
4854 
4855 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4856   if (reg >= _first_reg && reg <= _last_reg) {
4857     if (_block_pos[reg] > block_pos) {
4858       _block_pos[reg] = block_pos;
4859     }
4860     if (_use_pos[reg] > block_pos) {
4861       _use_pos[reg] = block_pos;
4862     }
4863   }
4864 }
4865 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4866   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4867   if (block_pos != -1) {
4868     set_block_pos(i->assigned_reg(), i, block_pos);
4869     set_block_pos(i->assigned_regHi(), i, block_pos);
4870   }
4871 }
4872 
4873 
4874 void LinearScanWalker::free_exclude_active_fixed() {
4875   Interval* list = active_first(fixedKind);
4876   while (list != Interval::end()) {
4877     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4878     exclude_from_use(list);
4879     list = list->next();
4880   }
4881 }
4882 
4883 void LinearScanWalker::free_exclude_active_any() {
4884   Interval* list = active_first(anyKind);
4885   while (list != Interval::end()) {
4886     exclude_from_use(list);
4887     list = list->next();
4888   }
4889 }
4890 
4891 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4892   Interval* list = inactive_first(fixedKind);
4893   while (list != Interval::end()) {
4894     if (cur->to() <= list->current_from()) {
4895       assert(list->current_intersects_at(cur) == -1, "must not intersect");
4896       set_use_pos(list, list->current_from(), true);
4897     } else {
4898       set_use_pos(list, list->current_intersects_at(cur), true);
4899     }
4900     list = list->next();
4901   }
4902 }
4903 
4904 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4905   Interval* list = inactive_first(anyKind);
4906   while (list != Interval::end()) {
4907     set_use_pos(list, list->current_intersects_at(cur), true);
4908     list = list->next();
4909   }
4910 }
4911 
4912 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
4913   Interval* list = unhandled_first(kind);
4914   while (list != Interval::end()) {
4915     set_use_pos(list, list->intersects_at(cur), true);
4916     if (kind == fixedKind && cur->to() <= list->from()) {
4917       set_use_pos(list, list->from(), true);
4918     }
4919     list = list->next();
4920   }
4921 }
4922 
4923 void LinearScanWalker::spill_exclude_active_fixed() {
4924   Interval* list = active_first(fixedKind);
4925   while (list != Interval::end()) {
4926     exclude_from_use(list);
4927     list = list->next();
4928   }
4929 }
4930 
4931 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
4932   Interval* list = unhandled_first(fixedKind);
4933   while (list != Interval::end()) {
4934     set_block_pos(list, list->intersects_at(cur));
4935     list = list->next();
4936   }
4937 }
4938 
4939 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4940   Interval* list = inactive_first(fixedKind);
4941   while (list != Interval::end()) {
4942     if (cur->to() > list->current_from()) {
4943       set_block_pos(list, list->current_intersects_at(cur));
4944     } else {
4945       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
4946     }
4947 
4948     list = list->next();
4949   }
4950 }
4951 
4952 void LinearScanWalker::spill_collect_active_any() {
4953   Interval* list = active_first(anyKind);
4954   while (list != Interval::end()) {
4955     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4956     list = list->next();
4957   }
4958 }
4959 
4960 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
4961   Interval* list = inactive_first(anyKind);
4962   while (list != Interval::end()) {
4963     if (list->current_intersects(cur)) {
4964       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4965     }
4966     list = list->next();
4967   }
4968 }
4969 
4970 
4971 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
4972   // output all moves here. When source and target are equal, the move is
4973   // optimized away later in assign_reg_nums
4974 
4975   op_id = (op_id + 1) & ~1;
4976   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
4977   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
4978 
4979   // calculate index of instruction inside instruction list of current block
4980   // the minimal index (for a block with no spill moves) can be calculated because the
4981   // numbering of instructions is known.
4982   // When the block already contains spill moves, the index must be increased until the
4983   // correct index is reached.
4984   LIR_OpList* list = op_block->lir()->instructions_list();
4985   int index = (op_id - list->at(0)->id()) / 2;
4986   assert(list->at(index)->id() <= op_id, "error in calculation");
4987 
4988   while (list->at(index)->id() != op_id) {
4989     index++;
4990     assert(0 <= index && index < list->length(), "index out of bounds");
4991   }
4992   assert(1 <= index && index < list->length(), "index out of bounds");
4993   assert(list->at(index)->id() == op_id, "error in calculation");
4994 
4995   // insert new instruction before instruction at position index
4996   _move_resolver.move_insert_position(op_block->lir(), index - 1);
4997   _move_resolver.add_mapping(src_it, dst_it);
4998 }
4999 
5000 
5001 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
5002   int from_block_nr = min_block->linear_scan_number();
5003   int to_block_nr = max_block->linear_scan_number();
5004 
5005   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
5006   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
5007   assert(from_block_nr < to_block_nr, "must cross block boundary");
5008 
5009   // Try to split at end of max_block. If this would be after
5010   // max_split_pos, then use the begin of max_block
5011   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
5012   if (optimal_split_pos > max_split_pos) {
5013     optimal_split_pos = max_block->first_lir_instruction_id();
5014   }
5015 
5016   int min_loop_depth = max_block->loop_depth();
5017   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
5018     BlockBegin* cur = block_at(i);
5019 
5020     if (cur->loop_depth() < min_loop_depth) {
5021       // block with lower loop-depth found -> split at the end of this block
5022       min_loop_depth = cur->loop_depth();
5023       optimal_split_pos = cur->last_lir_instruction_id() + 2;
5024     }
5025   }
5026   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
5027 
5028   return optimal_split_pos;
5029 }
5030 
5031 
5032 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
5033   int optimal_split_pos = -1;
5034   if (min_split_pos == max_split_pos) {
5035     // trivial case, no optimization of split position possible
5036     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
5037     optimal_split_pos = min_split_pos;
5038 
5039   } else {
5040     assert(min_split_pos < max_split_pos, "must be true then");
5041     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
5042 
5043     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
5044     // beginning of a block, then min_split_pos is also a possible split position.
5045     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
5046     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
5047 
5048     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
5049     // when an interval ends at the end of the last block of the method
5050     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
5051     // block at this op_id)
5052     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
5053 
5054     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
5055     if (min_block == max_block) {
5056       // split position cannot be moved to block boundary, so split as late as possible
5057       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
5058       optimal_split_pos = max_split_pos;
5059 
5060     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
5061       // Do not move split position if the interval has a hole before max_split_pos.
5062       // Intervals resulting from Phi-Functions have more than one definition (marked
5063       // as mustHaveRegister) with a hole before each definition. When the register is needed
5064       // for the second definition, an earlier reloading is unnecessary.
5065       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
5066       optimal_split_pos = max_split_pos;
5067 
5068     } else {
5069       // seach optimal block boundary between min_split_pos and max_split_pos
5070       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
5071 
5072       if (do_loop_optimization) {
5073         // Loop optimization: if a loop-end marker is found between min- and max-position,
5074         // then split before this loop
5075         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
5076         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
5077 
5078         assert(loop_end_pos > min_split_pos, "invalid order");
5079         if (loop_end_pos < max_split_pos) {
5080           // loop-end marker found between min- and max-position
5081           // if it is not the end marker for the same loop as the min-position, then move
5082           // the max-position to this loop block.
5083           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
5084           // of the interval (normally, only mustHaveRegister causes a reloading)
5085           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
5086 
5087           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
5088           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
5089 
5090           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
5091           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
5092             optimal_split_pos = -1;
5093             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
5094           } else {
5095             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
5096           }
5097         }
5098       }
5099 
5100       if (optimal_split_pos == -1) {
5101         // not calculated by loop optimization
5102         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
5103       }
5104     }
5105   }
5106   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
5107 
5108   return optimal_split_pos;
5109 }
5110 
5111 
5112 /*
5113   split an interval at the optimal position between min_split_pos and
5114   max_split_pos in two parts:
5115   1) the left part has already a location assigned
5116   2) the right part is sorted into to the unhandled-list
5117 */
5118 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
5119   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
5120   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5121 
5122   assert(it->from() < min_split_pos,         "cannot split at start of interval");
5123   assert(current_position() < min_split_pos, "cannot split before current position");
5124   assert(min_split_pos <= max_split_pos,     "invalid order");
5125   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
5126 
5127   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
5128 
5129   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5130   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
5131   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
5132 
5133   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
5134     // the split position would be just before the end of the interval
5135     // -> no split at all necessary
5136     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
5137     return;
5138   }
5139 
5140   // must calculate this before the actual split is performed and before split position is moved to odd op_id
5141   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
5142 
5143   if (!allocator()->is_block_begin(optimal_split_pos)) {
5144     // move position before actual instruction (odd op_id)
5145     optimal_split_pos = (optimal_split_pos - 1) | 1;
5146   }
5147 
5148   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5149   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5150   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5151 
5152   Interval* split_part = it->split(optimal_split_pos);
5153 
5154   allocator()->append_interval(split_part);
5155   allocator()->copy_register_flags(it, split_part);
5156   split_part->set_insert_move_when_activated(move_necessary);
5157   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
5158 
5159   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
5160   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5161   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
5162 }
5163 
5164 /*
5165   split an interval at the optimal position between min_split_pos and
5166   max_split_pos in two parts:
5167   1) the left part has already a location assigned
5168   2) the right part is always on the stack and therefore ignored in further processing
5169 */
5170 void LinearScanWalker::split_for_spilling(Interval* it) {
5171   // calculate allowed range of splitting position
5172   int max_split_pos = current_position();
5173   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5174 
5175   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
5176   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5177 
5178   assert(it->state() == activeState,     "why spill interval that is not active?");
5179   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
5180   assert(min_split_pos <= max_split_pos, "invalid order");
5181   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
5182   assert(current_position() < it->to(),  "interval must not end before current position");
5183 
5184   if (min_split_pos == it->from()) {
5185     // the whole interval is never used, so spill it entirely to memory
5186     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
5187     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5188 
5189     allocator()->assign_spill_slot(it);
5190     allocator()->change_spill_state(it, min_split_pos);
5191 
5192     // Also kick parent intervals out of register to memory when they have no use
5193     // position. This avoids short interval in register surrounded by intervals in
5194     // memory -> avoid useless moves from memory to register and back
5195     Interval* parent = it;
5196     while (parent != NULL && parent->is_split_child()) {
5197       parent = parent->split_child_before_op_id(parent->from());
5198 
5199       if (parent->assigned_reg() < LinearScan::nof_regs) {
5200         if (parent->first_usage(shouldHaveRegister) == max_jint) {
5201           // parent is never used, so kick it out of its assigned register
5202           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
5203           allocator()->assign_spill_slot(parent);
5204         } else {
5205           // do not go further back because the register is actually used by the interval
5206           parent = NULL;
5207         }
5208       }
5209     }
5210 
5211   } else {
5212     // search optimal split pos, split interval and spill only the right hand part
5213     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5214 
5215     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5216     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5217     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5218 
5219     if (!allocator()->is_block_begin(optimal_split_pos)) {
5220       // move position before actual instruction (odd op_id)
5221       optimal_split_pos = (optimal_split_pos - 1) | 1;
5222     }
5223 
5224     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5225     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5226     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5227 
5228     Interval* spilled_part = it->split(optimal_split_pos);
5229     allocator()->append_interval(spilled_part);
5230     allocator()->assign_spill_slot(spilled_part);
5231     allocator()->change_spill_state(spilled_part, optimal_split_pos);
5232 
5233     if (!allocator()->is_block_begin(optimal_split_pos)) {
5234       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5235       insert_move(optimal_split_pos, it, spilled_part);
5236     }
5237 
5238     // the current_split_child is needed later when moves are inserted for reloading
5239     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5240     spilled_part->make_current_split_child();
5241 
5242     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
5243     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5244     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
5245   }
5246 }
5247 
5248 
5249 void LinearScanWalker::split_stack_interval(Interval* it) {
5250   int min_split_pos = current_position() + 1;
5251   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5252 
5253   split_before_usage(it, min_split_pos, max_split_pos);
5254 }
5255 
5256 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5257   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5258   int max_split_pos = register_available_until;
5259 
5260   split_before_usage(it, min_split_pos, max_split_pos);
5261 }
5262 
5263 void LinearScanWalker::split_and_spill_interval(Interval* it) {
5264   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5265 
5266   int current_pos = current_position();
5267   if (it->state() == inactiveState) {
5268     // the interval is currently inactive, so no spill slot is needed for now.
5269     // when the split part is activated, the interval has a new chance to get a register,
5270     // so in the best case no stack slot is necessary
5271     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5272     split_before_usage(it, current_pos + 1, current_pos + 1);
5273 
5274   } else {
5275     // search the position where the interval must have a register and split
5276     // at the optimal position before.
5277     // The new created part is added to the unhandled list and will get a register
5278     // when it is activated
5279     int min_split_pos = current_pos + 1;
5280     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5281 
5282     split_before_usage(it, min_split_pos, max_split_pos);
5283 
5284     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5285     split_for_spilling(it);
5286   }
5287 }
5288 
5289 
5290 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5291   int min_full_reg = any_reg;
5292   int max_partial_reg = any_reg;
5293 
5294   for (int i = _first_reg; i <= _last_reg; i++) {
5295     if (i == ignore_reg) {
5296       // this register must be ignored
5297 
5298     } else if (_use_pos[i] >= interval_to) {
5299       // this register is free for the full interval
5300       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5301         min_full_reg = i;
5302       }
5303     } else if (_use_pos[i] > reg_needed_until) {
5304       // this register is at least free until reg_needed_until
5305       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5306         max_partial_reg = i;
5307       }
5308     }
5309   }
5310 
5311   if (min_full_reg != any_reg) {
5312     return min_full_reg;
5313   } else if (max_partial_reg != any_reg) {
5314     *need_split = true;
5315     return max_partial_reg;
5316   } else {
5317     return any_reg;
5318   }
5319 }
5320 
5321 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5322   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5323 
5324   int min_full_reg = any_reg;
5325   int max_partial_reg = any_reg;
5326 
5327   for (int i = _first_reg; i < _last_reg; i+=2) {
5328     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5329       // this register is free for the full interval
5330       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5331         min_full_reg = i;
5332       }
5333     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5334       // this register is at least free until reg_needed_until
5335       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5336         max_partial_reg = i;
5337       }
5338     }
5339   }
5340 
5341   if (min_full_reg != any_reg) {
5342     return min_full_reg;
5343   } else if (max_partial_reg != any_reg) {
5344     *need_split = true;
5345     return max_partial_reg;
5346   } else {
5347     return any_reg;
5348   }
5349 }
5350 
5351 
5352 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5353   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5354 
5355   init_use_lists(true);
5356   free_exclude_active_fixed();
5357   free_exclude_active_any();
5358   free_collect_inactive_fixed(cur);
5359   free_collect_inactive_any(cur);
5360 //  free_collect_unhandled(fixedKind, cur);
5361   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5362 
5363   // _use_pos contains the start of the next interval that has this register assigned
5364   // (either as a fixed register or a normal allocated register in the past)
5365   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5366   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
5367   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
5368 
5369   int hint_reg, hint_regHi;
5370   Interval* register_hint = cur->register_hint();
5371   if (register_hint != NULL) {
5372     hint_reg = register_hint->assigned_reg();
5373     hint_regHi = register_hint->assigned_regHi();
5374 
5375     if (allocator()->is_precolored_cpu_interval(register_hint)) {
5376       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5377       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
5378     }
5379     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5380 
5381   } else {
5382     hint_reg = any_reg;
5383     hint_regHi = any_reg;
5384   }
5385   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5386   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5387 
5388   // the register must be free at least until this position
5389   int reg_needed_until = cur->from() + 1;
5390   int interval_to = cur->to();
5391 
5392   bool need_split = false;
5393   int split_pos = -1;
5394   int reg = any_reg;
5395   int regHi = any_reg;
5396 
5397   if (_adjacent_regs) {
5398     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5399     regHi = reg + 1;
5400     if (reg == any_reg) {
5401       return false;
5402     }
5403     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5404 
5405   } else {
5406     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5407     if (reg == any_reg) {
5408       return false;
5409     }
5410     split_pos = _use_pos[reg];
5411 
5412     if (_num_phys_regs == 2) {
5413       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5414 
5415       if (_use_pos[reg] < interval_to && regHi == any_reg) {
5416         // do not split interval if only one register can be assigned until the split pos
5417         // (when one register is found for the whole interval, split&spill is only
5418         // performed for the hi register)
5419         return false;
5420 
5421       } else if (regHi != any_reg) {
5422         split_pos = MIN2(split_pos, _use_pos[regHi]);
5423 
5424         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5425         if (reg > regHi) {
5426           int temp = reg;
5427           reg = regHi;
5428           regHi = temp;
5429         }
5430       }
5431     }
5432   }
5433 
5434   cur->assign_reg(reg, regHi);
5435   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5436 
5437   assert(split_pos > 0, "invalid split_pos");
5438   if (need_split) {
5439     // register not available for full interval, so split it
5440     split_when_partial_register_available(cur, split_pos);
5441   }
5442 
5443   // only return true if interval is completely assigned
5444   return _num_phys_regs == 1 || regHi != any_reg;
5445 }
5446 
5447 
5448 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5449   int max_reg = any_reg;
5450 
5451   for (int i = _first_reg; i <= _last_reg; i++) {
5452     if (i == ignore_reg) {
5453       // this register must be ignored
5454 
5455     } else if (_use_pos[i] > reg_needed_until) {
5456       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
5457         max_reg = i;
5458       }
5459     }
5460   }
5461 
5462   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5463     *need_split = true;
5464   }
5465 
5466   return max_reg;
5467 }
5468 
5469 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5470   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5471 
5472   int max_reg = any_reg;
5473 
5474   for (int i = _first_reg; i < _last_reg; i+=2) {
5475     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5476       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5477         max_reg = i;
5478       }
5479     }
5480   }
5481 
5482   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
5483     *need_split = true;
5484   }
5485 
5486   return max_reg;
5487 }
5488 
5489 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5490   assert(reg != any_reg, "no register assigned");
5491 
5492   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5493     Interval* it = _spill_intervals[reg]->at(i);
5494     remove_from_list(it);
5495     split_and_spill_interval(it);
5496   }
5497 
5498   if (regHi != any_reg) {
5499     IntervalList* processed = _spill_intervals[reg];
5500     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5501       Interval* it = _spill_intervals[regHi]->at(i);
5502       if (processed->index_of(it) == -1) {
5503         remove_from_list(it);
5504         split_and_spill_interval(it);
5505       }
5506     }
5507   }
5508 }
5509 
5510 
5511 // Split an Interval and spill it to memory so that cur can be placed in a register
5512 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5513   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5514 
5515   // collect current usage of registers
5516   init_use_lists(false);
5517   spill_exclude_active_fixed();
5518 //  spill_block_unhandled_fixed(cur);
5519   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5520   spill_block_inactive_fixed(cur);
5521   spill_collect_active_any();
5522   spill_collect_inactive_any(cur);
5523 
5524 #ifndef PRODUCT
5525   if (TraceLinearScanLevel >= 4) {
5526     tty->print_cr("      state of registers:");
5527     for (int i = _first_reg; i <= _last_reg; i++) {
5528       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5529       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5530         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5531       }
5532       tty->cr();
5533     }
5534   }
5535 #endif
5536 
5537   // the register must be free at least until this position
5538   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5539   int interval_to = cur->to();
5540   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5541 
5542   int split_pos = 0;
5543   int use_pos = 0;
5544   bool need_split = false;
5545   int reg, regHi;
5546 
5547   if (_adjacent_regs) {
5548     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
5549     regHi = reg + 1;
5550 
5551     if (reg != any_reg) {
5552       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5553       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5554     }
5555   } else {
5556     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
5557     regHi = any_reg;
5558 
5559     if (reg != any_reg) {
5560       use_pos = _use_pos[reg];
5561       split_pos = _block_pos[reg];
5562 
5563       if (_num_phys_regs == 2) {
5564         if (cur->assigned_reg() != any_reg) {
5565           regHi = reg;
5566           reg = cur->assigned_reg();
5567         } else {
5568           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
5569           if (regHi != any_reg) {
5570             use_pos = MIN2(use_pos, _use_pos[regHi]);
5571             split_pos = MIN2(split_pos, _block_pos[regHi]);
5572           }
5573         }
5574 
5575         if (regHi != any_reg && reg > regHi) {
5576           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5577           int temp = reg;
5578           reg = regHi;
5579           regHi = temp;
5580         }
5581       }
5582     }
5583   }
5584 
5585   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5586     // the first use of cur is later than the spilling position -> spill cur
5587     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5588 
5589     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5590       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5591       // assign a reasonable register and do a bailout in product mode to avoid errors
5592       allocator()->assign_spill_slot(cur);
5593       BAILOUT("LinearScan: no register found");
5594     }
5595 
5596     split_and_spill_interval(cur);
5597   } else {
5598     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5599     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5600     assert(split_pos > 0, "invalid split_pos");
5601     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5602 
5603     cur->assign_reg(reg, regHi);
5604     if (need_split) {
5605       // register not available for full interval, so split it
5606       split_when_partial_register_available(cur, split_pos);
5607     }
5608 
5609     // perform splitting and spilling for all affected intervalls
5610     split_and_spill_intersecting_intervals(reg, regHi);
5611   }
5612 }
5613 
5614 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5615 #ifdef X86
5616   // fast calculation of intervals that can never get a register because the
5617   // the next instruction is a call that blocks all registers
5618   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5619 
5620   // check if this interval is the result of a split operation
5621   // (an interval got a register until this position)
5622   int pos = cur->from();
5623   if ((pos & 1) == 1) {
5624     // the current instruction is a call that blocks all registers
5625     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5626       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
5627 
5628       // safety check that there is really no register available
5629       assert(alloc_free_reg(cur) == false, "found a register for this interval");
5630       return true;
5631     }
5632 
5633   }
5634 #endif
5635   return false;
5636 }
5637 
5638 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5639   BasicType type = cur->type();
5640   _num_phys_regs = LinearScan::num_physical_regs(type);
5641   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5642 
5643   if (pd_init_regs_for_alloc(cur)) {
5644     // the appropriate register range was selected.
5645   } else if (type == T_FLOAT || type == T_DOUBLE) {
5646     _first_reg = pd_first_fpu_reg;
5647     _last_reg = pd_last_fpu_reg;
5648   } else {
5649     _first_reg = pd_first_cpu_reg;
5650     _last_reg = FrameMap::last_cpu_reg();
5651   }
5652 
5653   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5654   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5655 }
5656 
5657 
5658 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5659   if (op->code() != lir_move) {
5660     return false;
5661   }
5662   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5663 
5664   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5665   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5666   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5667 }
5668 
5669 // optimization (especially for phi functions of nested loops):
5670 // assign same spill slot to non-intersecting intervals
5671 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5672   if (cur->is_split_child()) {
5673     // optimization is only suitable for split parents
5674     return;
5675   }
5676 
5677   Interval* register_hint = cur->register_hint(false);
5678   if (register_hint == NULL) {
5679     // cur is not the target of a move, otherwise register_hint would be set
5680     return;
5681   }
5682   assert(register_hint->is_split_parent(), "register hint must be split parent");
5683 
5684   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5685     // combining the stack slots for intervals where spill move optimization is applied
5686     // is not benefitial and would cause problems
5687     return;
5688   }
5689 
5690   int begin_pos = cur->from();
5691   int end_pos = cur->to();
5692   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5693     // safety check that lir_op_with_id is allowed
5694     return;
5695   }
5696 
5697   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5698     // cur and register_hint are not connected with two moves
5699     return;
5700   }
5701 
5702   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5703   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5704   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5705     // register_hint must be split, otherwise the re-writing of use positions does not work
5706     return;
5707   }
5708 
5709   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5710   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5711   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5712   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5713 
5714   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5715     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5716     return;
5717   }
5718   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5719 
5720   // modify intervals such that cur gets the same stack slot as register_hint
5721   // delete use positions to prevent the intervals to get a register at beginning
5722   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5723   cur->remove_first_use_pos();
5724   end_hint->remove_first_use_pos();
5725 }
5726 
5727 
5728 // allocate a physical register or memory location to an interval
5729 bool LinearScanWalker::activate_current() {
5730   Interval* cur = current();
5731   bool result = true;
5732 
5733   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
5734   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5735 
5736   if (cur->assigned_reg() >= LinearScan::nof_regs) {
5737     // activating an interval that has a stack slot assigned -> split it at first use position
5738     // used for method parameters
5739     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
5740 
5741     split_stack_interval(cur);
5742     result = false;
5743 
5744   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5745     // activating an interval that must start in a stack slot, but may get a register later
5746     // used for lir_roundfp: rounding is done by store to stack and reload later
5747     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
5748     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5749 
5750     allocator()->assign_spill_slot(cur);
5751     split_stack_interval(cur);
5752     result = false;
5753 
5754   } else if (cur->assigned_reg() == any_reg) {
5755     // interval has not assigned register -> normal allocation
5756     // (this is the normal case for most intervals)
5757     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
5758 
5759     // assign same spill slot to non-intersecting intervals
5760     combine_spilled_intervals(cur);
5761 
5762     init_vars_for_alloc(cur);
5763     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5764       // no empty register available.
5765       // split and spill another interval so that this interval gets a register
5766       alloc_locked_reg(cur);
5767     }
5768 
5769     // spilled intervals need not be move to active-list
5770     if (cur->assigned_reg() >= LinearScan::nof_regs) {
5771       result = false;
5772     }
5773   }
5774 
5775   // load spilled values that become active from stack slot to register
5776   if (cur->insert_move_when_activated()) {
5777     assert(cur->is_split_child(), "must be");
5778     assert(cur->current_split_child() != NULL, "must be");
5779     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5780     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5781 
5782     insert_move(cur->from(), cur->current_split_child(), cur);
5783   }
5784   cur->make_current_split_child();
5785 
5786   return result; // true = interval is moved to active list
5787 }
5788 
5789 
5790 // Implementation of EdgeMoveOptimizer
5791 
5792 EdgeMoveOptimizer::EdgeMoveOptimizer() :
5793   _edge_instructions(4),
5794   _edge_instructions_idx(4)
5795 {
5796 }
5797 
5798 void EdgeMoveOptimizer::optimize(BlockList* code) {
5799   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5800 
5801   // ignore the first block in the list (index 0 is not processed)
5802   for (int i = code->length() - 1; i >= 1; i--) {
5803     BlockBegin* block = code->at(i);
5804 
5805     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5806       optimizer.optimize_moves_at_block_end(block);
5807     }
5808     if (block->number_of_sux() == 2) {
5809       optimizer.optimize_moves_at_block_begin(block);
5810     }
5811   }
5812 }
5813 
5814 
5815 // clear all internal data structures
5816 void EdgeMoveOptimizer::init_instructions() {
5817   _edge_instructions.clear();
5818   _edge_instructions_idx.clear();
5819 }
5820 
5821 // append a lir-instruction-list and the index of the current operation in to the list
5822 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5823   _edge_instructions.append(instructions);
5824   _edge_instructions_idx.append(instructions_idx);
5825 }
5826 
5827 // return the current operation of the given edge (predecessor or successor)
5828 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5829   LIR_OpList* instructions = _edge_instructions.at(edge);
5830   int idx = _edge_instructions_idx.at(edge);
5831 
5832   if (idx < instructions->length()) {
5833     return instructions->at(idx);
5834   } else {
5835     return NULL;
5836   }
5837 }
5838 
5839 // removes the current operation of the given edge (predecessor or successor)
5840 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5841   LIR_OpList* instructions = _edge_instructions.at(edge);
5842   int idx = _edge_instructions_idx.at(edge);
5843   instructions->remove_at(idx);
5844 
5845   if (decrement_index) {
5846     _edge_instructions_idx.at_put(edge, idx - 1);
5847   }
5848 }
5849 
5850 
5851 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5852   if (op1 == NULL || op2 == NULL) {
5853     // at least one block is already empty -> no optimization possible
5854     return true;
5855   }
5856 
5857   if (op1->code() == lir_move && op2->code() == lir_move) {
5858     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5859     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5860     LIR_Op1* move1 = (LIR_Op1*)op1;
5861     LIR_Op1* move2 = (LIR_Op1*)op2;
5862     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5863       // these moves are exactly equal and can be optimized
5864       return false;
5865     }
5866 
5867   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5868     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5869     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5870     LIR_Op1* fxch1 = (LIR_Op1*)op1;
5871     LIR_Op1* fxch2 = (LIR_Op1*)op2;
5872     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5873       // equal FPU stack operations can be optimized
5874       return false;
5875     }
5876 
5877   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5878     // equal FPU stack operations can be optimized
5879     return false;
5880   }
5881 
5882   // no optimization possible
5883   return true;
5884 }
5885 
5886 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5887   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5888 
5889   if (block->is_predecessor(block)) {
5890     // currently we can't handle this correctly.
5891     return;
5892   }
5893 
5894   init_instructions();
5895   int num_preds = block->number_of_preds();
5896   assert(num_preds > 1, "do not call otherwise");
5897   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5898 
5899   // setup a list with the lir-instructions of all predecessors
5900   int i;
5901   for (i = 0; i < num_preds; i++) {
5902     BlockBegin* pred = block->pred_at(i);
5903     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5904 
5905     if (pred->number_of_sux() != 1) {
5906       // this can happen with switch-statements where multiple edges are between
5907       // the same blocks.
5908       return;
5909     }
5910 
5911     assert(pred->number_of_sux() == 1, "can handle only one successor");
5912     assert(pred->sux_at(0) == block, "invalid control flow");
5913     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5914     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5915     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5916 
5917     if (pred_instructions->last()->info() != NULL) {
5918       // can not optimize instructions when debug info is needed
5919       return;
5920     }
5921 
5922     // ignore the unconditional branch at the end of the block
5923     append_instructions(pred_instructions, pred_instructions->length() - 2);
5924   }
5925 
5926 
5927   // process lir-instructions while all predecessors end with the same instruction
5928   while (true) {
5929     LIR_Op* op = instruction_at(0);
5930     for (i = 1; i < num_preds; i++) {
5931       if (operations_different(op, instruction_at(i))) {
5932         // these instructions are different and cannot be optimized ->
5933         // no further optimization possible
5934         return;
5935       }
5936     }
5937 
5938     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5939 
5940     // insert the instruction at the beginning of the current block
5941     block->lir()->insert_before(1, op);
5942 
5943     // delete the instruction at the end of all predecessors
5944     for (i = 0; i < num_preds; i++) {
5945       remove_cur_instruction(i, true);
5946     }
5947   }
5948 }
5949 
5950 
5951 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
5952   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
5953 
5954   init_instructions();
5955   int num_sux = block->number_of_sux();
5956 
5957   LIR_OpList* cur_instructions = block->lir()->instructions_list();
5958 
5959   assert(num_sux == 2, "method should not be called otherwise");
5960   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5961   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5962   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5963 
5964   if (cur_instructions->last()->info() != NULL) {
5965     // can no optimize instructions when debug info is needed
5966     return;
5967   }
5968 
5969   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
5970   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
5971     // not a valid case for optimization
5972     // currently, only blocks that end with two branches (conditional branch followed
5973     // by unconditional branch) are optimized
5974     return;
5975   }
5976 
5977   // now it is guaranteed that the block ends with two branch instructions.
5978   // the instructions are inserted at the end of the block before these two branches
5979   int insert_idx = cur_instructions->length() - 2;
5980 
5981   int i;
5982 #ifdef ASSERT
5983   for (i = insert_idx - 1; i >= 0; i--) {
5984     LIR_Op* op = cur_instructions->at(i);
5985     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
5986       assert(false, "block with two successors can have only two branch instructions");
5987     }
5988   }
5989 #endif
5990 
5991   // setup a list with the lir-instructions of all successors
5992   for (i = 0; i < num_sux; i++) {
5993     BlockBegin* sux = block->sux_at(i);
5994     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
5995 
5996     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
5997 
5998     if (sux->number_of_preds() != 1) {
5999       // this can happen with switch-statements where multiple edges are between
6000       // the same blocks.
6001       return;
6002     }
6003     assert(sux->pred_at(0) == block, "invalid control flow");
6004     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
6005 
6006     // ignore the label at the beginning of the block
6007     append_instructions(sux_instructions, 1);
6008   }
6009 
6010   // process lir-instructions while all successors begin with the same instruction
6011   while (true) {
6012     LIR_Op* op = instruction_at(0);
6013     for (i = 1; i < num_sux; i++) {
6014       if (operations_different(op, instruction_at(i))) {
6015         // these instructions are different and cannot be optimized ->
6016         // no further optimization possible
6017         return;
6018       }
6019     }
6020 
6021     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
6022 
6023     // insert instruction at end of current block
6024     block->lir()->insert_before(insert_idx, op);
6025     insert_idx++;
6026 
6027     // delete the instructions at the beginning of all successors
6028     for (i = 0; i < num_sux; i++) {
6029       remove_cur_instruction(i, false);
6030     }
6031   }
6032 }
6033 
6034 
6035 // Implementation of ControlFlowOptimizer
6036 
6037 ControlFlowOptimizer::ControlFlowOptimizer() :
6038   _original_preds(4)
6039 {
6040 }
6041 
6042 void ControlFlowOptimizer::optimize(BlockList* code) {
6043   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
6044 
6045   // push the OSR entry block to the end so that we're not jumping over it.
6046   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
6047   if (osr_entry) {
6048     int index = osr_entry->linear_scan_number();
6049     assert(code->at(index) == osr_entry, "wrong index");
6050     code->remove_at(index);
6051     code->append(osr_entry);
6052   }
6053 
6054   optimizer.reorder_short_loops(code);
6055   optimizer.delete_empty_blocks(code);
6056   optimizer.delete_unnecessary_jumps(code);
6057   optimizer.delete_jumps_to_return(code);
6058 }
6059 
6060 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
6061   int i = header_idx + 1;
6062   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
6063   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
6064     i++;
6065   }
6066 
6067   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
6068     int end_idx = i - 1;
6069     BlockBegin* end_block = code->at(end_idx);
6070 
6071     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
6072       // short loop from header_idx to end_idx found -> reorder blocks such that
6073       // the header_block is the last block instead of the first block of the loop
6074       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
6075                                          end_idx - header_idx + 1,
6076                                          header_block->block_id(), end_block->block_id()));
6077 
6078       for (int j = header_idx; j < end_idx; j++) {
6079         code->at_put(j, code->at(j + 1));
6080       }
6081       code->at_put(end_idx, header_block);
6082 
6083       // correct the flags so that any loop alignment occurs in the right place.
6084       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
6085       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
6086       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
6087     }
6088   }
6089 }
6090 
6091 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
6092   for (int i = code->length() - 1; i >= 0; i--) {
6093     BlockBegin* block = code->at(i);
6094 
6095     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
6096       reorder_short_loop(code, block, i);
6097     }
6098   }
6099 
6100   DEBUG_ONLY(verify(code));
6101 }
6102 
6103 // only blocks with exactly one successor can be deleted. Such blocks
6104 // must always end with an unconditional branch to this successor
6105 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
6106   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
6107     return false;
6108   }
6109 
6110   LIR_OpList* instructions = block->lir()->instructions_list();
6111 
6112   assert(instructions->length() >= 2, "block must have label and branch");
6113   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6114   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
6115   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
6116   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
6117 
6118   // block must have exactly one successor
6119 
6120   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
6121     return true;
6122   }
6123   return false;
6124 }
6125 
6126 // substitute branch targets in all branch-instructions of this blocks
6127 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
6128   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
6129 
6130   LIR_OpList* instructions = block->lir()->instructions_list();
6131 
6132   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6133   for (int i = instructions->length() - 1; i >= 1; i--) {
6134     LIR_Op* op = instructions->at(i);
6135 
6136     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
6137       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6138       LIR_OpBranch* branch = (LIR_OpBranch*)op;
6139 
6140       if (branch->block() == target_from) {
6141         branch->change_block(target_to);
6142       }
6143       if (branch->ublock() == target_from) {
6144         branch->change_ublock(target_to);
6145       }
6146     }
6147   }
6148 }
6149 
6150 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
6151   int old_pos = 0;
6152   int new_pos = 0;
6153   int num_blocks = code->length();
6154 
6155   while (old_pos < num_blocks) {
6156     BlockBegin* block = code->at(old_pos);
6157 
6158     if (can_delete_block(block)) {
6159       BlockBegin* new_target = block->sux_at(0);
6160 
6161       // propagate backward branch target flag for correct code alignment
6162       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
6163         new_target->set(BlockBegin::backward_branch_target_flag);
6164       }
6165 
6166       // collect a list with all predecessors that contains each predecessor only once
6167       // the predecessors of cur are changed during the substitution, so a copy of the
6168       // predecessor list is necessary
6169       int j;
6170       _original_preds.clear();
6171       for (j = block->number_of_preds() - 1; j >= 0; j--) {
6172         BlockBegin* pred = block->pred_at(j);
6173         if (_original_preds.index_of(pred) == -1) {
6174           _original_preds.append(pred);
6175         }
6176       }
6177 
6178       for (j = _original_preds.length() - 1; j >= 0; j--) {
6179         BlockBegin* pred = _original_preds.at(j);
6180         substitute_branch_target(pred, block, new_target);
6181         pred->substitute_sux(block, new_target);
6182       }
6183     } else {
6184       // adjust position of this block in the block list if blocks before
6185       // have been deleted
6186       if (new_pos != old_pos) {
6187         code->at_put(new_pos, code->at(old_pos));
6188       }
6189       new_pos++;
6190     }
6191     old_pos++;
6192   }
6193   code->truncate(new_pos);
6194 
6195   DEBUG_ONLY(verify(code));
6196 }
6197 
6198 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6199   // skip the last block because there a branch is always necessary
6200   for (int i = code->length() - 2; i >= 0; i--) {
6201     BlockBegin* block = code->at(i);
6202     LIR_OpList* instructions = block->lir()->instructions_list();
6203 
6204     LIR_Op* last_op = instructions->last();
6205     if (last_op->code() == lir_branch) {
6206       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6207       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6208 
6209       assert(last_branch->block() != NULL, "last branch must always have a block as target");
6210       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6211 
6212       if (last_branch->info() == NULL) {
6213         if (last_branch->block() == code->at(i + 1)) {
6214 
6215           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6216 
6217           // delete last branch instruction
6218           instructions->truncate(instructions->length() - 1);
6219 
6220         } else {
6221           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6222           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6223             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6224             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6225 
6226             if (prev_branch->stub() == NULL) {
6227 
6228               LIR_Op2* prev_cmp = NULL;
6229 
6230               for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
6231                 prev_op = instructions->at(j);
6232                 if (prev_op->code() == lir_cmp) {
6233                   assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
6234                   prev_cmp = (LIR_Op2*)prev_op;
6235                   assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
6236                 }
6237               }
6238               assert(prev_cmp != NULL, "should have found comp instruction for branch");
6239               if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6240 
6241                 TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6242 
6243                 // eliminate a conditional branch to the immediate successor
6244                 prev_branch->change_block(last_branch->block());
6245                 prev_branch->negate_cond();
6246                 prev_cmp->set_condition(prev_branch->cond());
6247                 instructions->truncate(instructions->length() - 1);
6248               }
6249             }
6250           }
6251         }
6252       }
6253     }
6254   }
6255 
6256   DEBUG_ONLY(verify(code));
6257 }
6258 
6259 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6260 #ifdef ASSERT
6261   BitMap return_converted(BlockBegin::number_of_blocks());
6262   return_converted.clear();
6263 #endif
6264 
6265   for (int i = code->length() - 1; i >= 0; i--) {
6266     BlockBegin* block = code->at(i);
6267     LIR_OpList* cur_instructions = block->lir()->instructions_list();
6268     LIR_Op*     cur_last_op = cur_instructions->last();
6269 
6270     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6271     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6272       // the block contains only a label and a return
6273       // if a predecessor ends with an unconditional jump to this block, then the jump
6274       // can be replaced with a return instruction
6275       //
6276       // Note: the original block with only a return statement cannot be deleted completely
6277       //       because the predecessors might have other (conditional) jumps to this block
6278       //       -> this may lead to unnecesary return instructions in the final code
6279 
6280       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6281       assert(block->number_of_sux() == 0 ||
6282              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6283              "blocks that end with return must not have successors");
6284 
6285       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6286       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6287 
6288       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6289         BlockBegin* pred = block->pred_at(j);
6290         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6291         LIR_Op*     pred_last_op = pred_instructions->last();
6292 
6293         if (pred_last_op->code() == lir_branch) {
6294           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6295           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6296 
6297           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6298             // replace the jump to a return with a direct return
6299             // Note: currently the edge between the blocks is not deleted
6300             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6301 #ifdef ASSERT
6302             return_converted.set_bit(pred->block_id());
6303 #endif
6304           }
6305         }
6306       }
6307     }
6308   }
6309 }
6310 
6311 
6312 #ifdef ASSERT
6313 void ControlFlowOptimizer::verify(BlockList* code) {
6314   for (int i = 0; i < code->length(); i++) {
6315     BlockBegin* block = code->at(i);
6316     LIR_OpList* instructions = block->lir()->instructions_list();
6317 
6318     int j;
6319     for (j = 0; j < instructions->length(); j++) {
6320       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6321 
6322       if (op_branch != NULL) {
6323         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
6324         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
6325       }
6326     }
6327 
6328     for (j = 0; j < block->number_of_sux() - 1; j++) {
6329       BlockBegin* sux = block->sux_at(j);
6330       assert(code->index_of(sux) != -1, "successor not valid");
6331     }
6332 
6333     for (j = 0; j < block->number_of_preds() - 1; j++) {
6334       BlockBegin* pred = block->pred_at(j);
6335       assert(code->index_of(pred) != -1, "successor not valid");
6336     }
6337   }
6338 }
6339 #endif
6340 
6341 
6342 #ifndef PRODUCT
6343 
6344 // Implementation of LinearStatistic
6345 
6346 const char* LinearScanStatistic::counter_name(int counter_idx) {
6347   switch (counter_idx) {
6348     case counter_method:          return "compiled methods";
6349     case counter_fpu_method:      return "methods using fpu";
6350     case counter_loop_method:     return "methods with loops";
6351     case counter_exception_method:return "methods with xhandler";
6352 
6353     case counter_loop:            return "loops";
6354     case counter_block:           return "blocks";
6355     case counter_loop_block:      return "blocks inside loop";
6356     case counter_exception_block: return "exception handler entries";
6357     case counter_interval:        return "intervals";
6358     case counter_fixed_interval:  return "fixed intervals";
6359     case counter_range:           return "ranges";
6360     case counter_fixed_range:     return "fixed ranges";
6361     case counter_use_pos:         return "use positions";
6362     case counter_fixed_use_pos:   return "fixed use positions";
6363     case counter_spill_slots:     return "spill slots";
6364 
6365     // counter for classes of lir instructions
6366     case counter_instruction:     return "total instructions";
6367     case counter_label:           return "labels";
6368     case counter_entry:           return "method entries";
6369     case counter_return:          return "method returns";
6370     case counter_call:            return "method calls";
6371     case counter_move:            return "moves";
6372     case counter_cmp:             return "compare";
6373     case counter_cond_branch:     return "conditional branches";
6374     case counter_uncond_branch:   return "unconditional branches";
6375     case counter_stub_branch:     return "branches to stub";
6376     case counter_alu:             return "artithmetic + logic";
6377     case counter_alloc:           return "allocations";
6378     case counter_sync:            return "synchronisation";
6379     case counter_throw:           return "throw";
6380     case counter_unwind:          return "unwind";
6381     case counter_typecheck:       return "type+null-checks";
6382     case counter_fpu_stack:       return "fpu-stack";
6383     case counter_misc_inst:       return "other instructions";
6384     case counter_other_inst:      return "misc. instructions";
6385 
6386     // counter for different types of moves
6387     case counter_move_total:      return "total moves";
6388     case counter_move_reg_reg:    return "register->register";
6389     case counter_move_reg_stack:  return "register->stack";
6390     case counter_move_stack_reg:  return "stack->register";
6391     case counter_move_stack_stack:return "stack->stack";
6392     case counter_move_reg_mem:    return "register->memory";
6393     case counter_move_mem_reg:    return "memory->register";
6394     case counter_move_const_any:  return "constant->any";
6395 
6396     case blank_line_1:            return "";
6397     case blank_line_2:            return "";
6398 
6399     default: ShouldNotReachHere(); return "";
6400   }
6401 }
6402 
6403 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6404   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6405     return counter_method;
6406   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6407     return counter_block;
6408   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6409     return counter_instruction;
6410   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6411     return counter_move_total;
6412   }
6413   return invalid_counter;
6414 }
6415 
6416 LinearScanStatistic::LinearScanStatistic() {
6417   for (int i = 0; i < number_of_counters; i++) {
6418     _counters_sum[i] = 0;
6419     _counters_max[i] = -1;
6420   }
6421 
6422 }
6423 
6424 // add the method-local numbers to the total sum
6425 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6426   for (int i = 0; i < number_of_counters; i++) {
6427     _counters_sum[i] += method_statistic._counters_sum[i];
6428     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6429   }
6430 }
6431 
6432 void LinearScanStatistic::print(const char* title) {
6433   if (CountLinearScan || TraceLinearScanLevel > 0) {
6434     tty->cr();
6435     tty->print_cr("***** LinearScan statistic - %s *****", title);
6436 
6437     for (int i = 0; i < number_of_counters; i++) {
6438       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6439         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6440 
6441         if (base_counter(i) != invalid_counter) {
6442           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
6443         } else {
6444           tty->print("           ");
6445         }
6446 
6447         if (_counters_max[i] >= 0) {
6448           tty->print("%8d", _counters_max[i]);
6449         }
6450       }
6451       tty->cr();
6452     }
6453   }
6454 }
6455 
6456 void LinearScanStatistic::collect(LinearScan* allocator) {
6457   inc_counter(counter_method);
6458   if (allocator->has_fpu_registers()) {
6459     inc_counter(counter_fpu_method);
6460   }
6461   if (allocator->num_loops() > 0) {
6462     inc_counter(counter_loop_method);
6463   }
6464   inc_counter(counter_loop, allocator->num_loops());
6465   inc_counter(counter_spill_slots, allocator->max_spills());
6466 
6467   int i;
6468   for (i = 0; i < allocator->interval_count(); i++) {
6469     Interval* cur = allocator->interval_at(i);
6470 
6471     if (cur != NULL) {
6472       inc_counter(counter_interval);
6473       inc_counter(counter_use_pos, cur->num_use_positions());
6474       if (LinearScan::is_precolored_interval(cur)) {
6475         inc_counter(counter_fixed_interval);
6476         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6477       }
6478 
6479       Range* range = cur->first();
6480       while (range != Range::end()) {
6481         inc_counter(counter_range);
6482         if (LinearScan::is_precolored_interval(cur)) {
6483           inc_counter(counter_fixed_range);
6484         }
6485         range = range->next();
6486       }
6487     }
6488   }
6489 
6490   bool has_xhandlers = false;
6491   // Note: only count blocks that are in code-emit order
6492   for (i = 0; i < allocator->ir()->code()->length(); i++) {
6493     BlockBegin* cur = allocator->ir()->code()->at(i);
6494 
6495     inc_counter(counter_block);
6496     if (cur->loop_depth() > 0) {
6497       inc_counter(counter_loop_block);
6498     }
6499     if (cur->is_set(BlockBegin::exception_entry_flag)) {
6500       inc_counter(counter_exception_block);
6501       has_xhandlers = true;
6502     }
6503 
6504     LIR_OpList* instructions = cur->lir()->instructions_list();
6505     for (int j = 0; j < instructions->length(); j++) {
6506       LIR_Op* op = instructions->at(j);
6507 
6508       inc_counter(counter_instruction);
6509 
6510       switch (op->code()) {
6511         case lir_label:           inc_counter(counter_label); break;
6512         case lir_std_entry:
6513         case lir_osr_entry:       inc_counter(counter_entry); break;
6514         case lir_return:          inc_counter(counter_return); break;
6515 
6516         case lir_rtcall:
6517         case lir_static_call:
6518         case lir_optvirtual_call:
6519         case lir_virtual_call:    inc_counter(counter_call); break;
6520 
6521         case lir_move: {
6522           inc_counter(counter_move);
6523           inc_counter(counter_move_total);
6524 
6525           LIR_Opr in = op->as_Op1()->in_opr();
6526           LIR_Opr res = op->as_Op1()->result_opr();
6527           if (in->is_register()) {
6528             if (res->is_register()) {
6529               inc_counter(counter_move_reg_reg);
6530             } else if (res->is_stack()) {
6531               inc_counter(counter_move_reg_stack);
6532             } else if (res->is_address()) {
6533               inc_counter(counter_move_reg_mem);
6534             } else {
6535               ShouldNotReachHere();
6536             }
6537           } else if (in->is_stack()) {
6538             if (res->is_register()) {
6539               inc_counter(counter_move_stack_reg);
6540             } else {
6541               inc_counter(counter_move_stack_stack);
6542             }
6543           } else if (in->is_address()) {
6544             assert(res->is_register(), "must be");
6545             inc_counter(counter_move_mem_reg);
6546           } else if (in->is_constant()) {
6547             inc_counter(counter_move_const_any);
6548           } else {
6549             ShouldNotReachHere();
6550           }
6551           break;
6552         }
6553 
6554         case lir_cmp:             inc_counter(counter_cmp); break;
6555 
6556         case lir_branch:
6557         case lir_cond_float_branch: {
6558           LIR_OpBranch* branch = op->as_OpBranch();
6559           if (branch->block() == NULL) {
6560             inc_counter(counter_stub_branch);
6561           } else if (branch->cond() == lir_cond_always) {
6562             inc_counter(counter_uncond_branch);
6563           } else {
6564             inc_counter(counter_cond_branch);
6565           }
6566           break;
6567         }
6568 
6569         case lir_neg:
6570         case lir_add:
6571         case lir_sub:
6572         case lir_mul:
6573         case lir_mul_strictfp:
6574         case lir_div:
6575         case lir_div_strictfp:
6576         case lir_rem:
6577         case lir_sqrt:
6578         case lir_sin:
6579         case lir_cos:
6580         case lir_abs:
6581         case lir_log10:
6582         case lir_log:
6583         case lir_pow:
6584         case lir_exp:
6585         case lir_logic_and:
6586         case lir_logic_or:
6587         case lir_logic_xor:
6588         case lir_shl:
6589         case lir_shr:
6590         case lir_ushr:            inc_counter(counter_alu); break;
6591 
6592         case lir_alloc_object:
6593         case lir_alloc_array:     inc_counter(counter_alloc); break;
6594 
6595         case lir_monaddr:
6596         case lir_lock:
6597         case lir_unlock:          inc_counter(counter_sync); break;
6598 
6599         case lir_throw:           inc_counter(counter_throw); break;
6600 
6601         case lir_unwind:          inc_counter(counter_unwind); break;
6602 
6603         case lir_null_check:
6604         case lir_leal:
6605         case lir_instanceof:
6606         case lir_checkcast:
6607         case lir_store_check:     inc_counter(counter_typecheck); break;
6608 
6609         case lir_fpop_raw:
6610         case lir_fxch:
6611         case lir_fld:             inc_counter(counter_fpu_stack); break;
6612 
6613         case lir_nop:
6614         case lir_push:
6615         case lir_pop:
6616         case lir_convert:
6617         case lir_roundfp:
6618         case lir_cmove:           inc_counter(counter_misc_inst); break;
6619 
6620         default:                  inc_counter(counter_other_inst); break;
6621       }
6622     }
6623   }
6624 
6625   if (has_xhandlers) {
6626     inc_counter(counter_exception_method);
6627   }
6628 }
6629 
6630 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6631   if (CountLinearScan || TraceLinearScanLevel > 0) {
6632 
6633     LinearScanStatistic local_statistic = LinearScanStatistic();
6634 
6635     local_statistic.collect(allocator);
6636     global_statistic.sum_up(local_statistic);
6637 
6638     if (TraceLinearScanLevel > 2) {
6639       local_statistic.print("current local statistic");
6640     }
6641   }
6642 }
6643 
6644 
6645 // Implementation of LinearTimers
6646 
6647 LinearScanTimers::LinearScanTimers() {
6648   for (int i = 0; i < number_of_timers; i++) {
6649     timer(i)->reset();
6650   }
6651 }
6652 
6653 const char* LinearScanTimers::timer_name(int idx) {
6654   switch (idx) {
6655     case timer_do_nothing:               return "Nothing (Time Check)";
6656     case timer_number_instructions:      return "Number Instructions";
6657     case timer_compute_local_live_sets:  return "Local Live Sets";
6658     case timer_compute_global_live_sets: return "Global Live Sets";
6659     case timer_build_intervals:          return "Build Intervals";
6660     case timer_sort_intervals_before:    return "Sort Intervals Before";
6661     case timer_allocate_registers:       return "Allocate Registers";
6662     case timer_resolve_data_flow:        return "Resolve Data Flow";
6663     case timer_sort_intervals_after:     return "Sort Intervals After";
6664     case timer_eliminate_spill_moves:    return "Spill optimization";
6665     case timer_assign_reg_num:           return "Assign Reg Num";
6666     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
6667     case timer_optimize_lir:             return "Optimize LIR";
6668     default: ShouldNotReachHere();       return "";
6669   }
6670 }
6671 
6672 void LinearScanTimers::begin_method() {
6673   if (TimeEachLinearScan) {
6674     // reset all timers to measure only current method
6675     for (int i = 0; i < number_of_timers; i++) {
6676       timer(i)->reset();
6677     }
6678   }
6679 }
6680 
6681 void LinearScanTimers::end_method(LinearScan* allocator) {
6682   if (TimeEachLinearScan) {
6683 
6684     double c = timer(timer_do_nothing)->seconds();
6685     double total = 0;
6686     for (int i = 1; i < number_of_timers; i++) {
6687       total += timer(i)->seconds() - c;
6688     }
6689 
6690     if (total >= 0.0005) {
6691       // print all information in one line for automatic processing
6692       tty->print("@"); allocator->compilation()->method()->print_name();
6693 
6694       tty->print("@ %d ", allocator->compilation()->method()->code_size());
6695       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6696       tty->print("@ %d ", allocator->block_count());
6697       tty->print("@ %d ", allocator->num_virtual_regs());
6698       tty->print("@ %d ", allocator->interval_count());
6699       tty->print("@ %d ", allocator->_num_calls);
6700       tty->print("@ %d ", allocator->num_loops());
6701 
6702       tty->print("@ %6.6f ", total);
6703       for (int i = 1; i < number_of_timers; i++) {
6704         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6705       }
6706       tty->cr();
6707     }
6708   }
6709 }
6710 
6711 void LinearScanTimers::print(double total_time) {
6712   if (TimeLinearScan) {
6713     // correction value: sum of dummy-timer that only measures the time that
6714     // is necesary to start and stop itself
6715     double c = timer(timer_do_nothing)->seconds();
6716 
6717     for (int i = 0; i < number_of_timers; i++) {
6718       double t = timer(i)->seconds();
6719       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6720     }
6721   }
6722 }
6723 
6724 #endif // #ifndef PRODUCT