1 /*
   2  * Copyright (c) 2002, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/oopMap.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/callnode.hpp"
  29 #include "opto/compile.hpp"
  30 #include "opto/machnode.hpp"
  31 #include "opto/matcher.hpp"
  32 #include "opto/phase.hpp"
  33 #include "opto/regalloc.hpp"
  34 #include "opto/rootnode.hpp"
  35 #ifdef TARGET_ARCH_x86
  36 # include "vmreg_x86.inline.hpp"
  37 #endif
  38 #ifdef TARGET_ARCH_sparc
  39 # include "vmreg_sparc.inline.hpp"
  40 #endif
  41 #ifdef TARGET_ARCH_zero
  42 # include "vmreg_zero.inline.hpp"
  43 #endif
  44 #ifdef TARGET_ARCH_arm
  45 # include "vmreg_arm.inline.hpp"
  46 #endif
  47 #ifdef TARGET_ARCH_ppc
  48 # include "vmreg_ppc.inline.hpp"
  49 #endif
  50 
  51 // The functions in this file builds OopMaps after all scheduling is done.
  52 //
  53 // OopMaps contain a list of all registers and stack-slots containing oops (so
  54 // they can be updated by GC).  OopMaps also contain a list of derived-pointer
  55 // base-pointer pairs.  When the base is moved, the derived pointer moves to
  56 // follow it.  Finally, any registers holding callee-save values are also
  57 // recorded.  These might contain oops, but only the caller knows.
  58 //
  59 // BuildOopMaps implements a simple forward reaching-defs solution.  At each
  60 // GC point we'll have the reaching-def Nodes.  If the reaching Nodes are
  61 // typed as pointers (no offset), then they are oops.  Pointers+offsets are
  62 // derived pointers, and bases can be found from them.  Finally, we'll also
  63 // track reaching callee-save values.  Note that a copy of a callee-save value
  64 // "kills" it's source, so that only 1 copy of a callee-save value is alive at
  65 // a time.
  66 //
  67 // We run a simple bitvector liveness pass to help trim out dead oops.  Due to
  68 // irreducible loops, we can have a reaching def of an oop that only reaches
  69 // along one path and no way to know if it's valid or not on the other path.
  70 // The bitvectors are quite dense and the liveness pass is fast.
  71 //
  72 // At GC points, we consult this information to build OopMaps.  All reaching
  73 // defs typed as oops are added to the OopMap.  Only 1 instance of a
  74 // callee-save register can be recorded.  For derived pointers, we'll have to
  75 // find and record the register holding the base.
  76 //
  77 // The reaching def's is a simple 1-pass worklist approach.  I tried a clever
  78 // breadth-first approach but it was worse (showed O(n^2) in the
  79 // pick-next-block code).
  80 //
  81 // The relevant data is kept in a struct of arrays (it could just as well be
  82 // an array of structs, but the struct-of-arrays is generally a little more
  83 // efficient).  The arrays are indexed by register number (including
  84 // stack-slots as registers) and so is bounded by 200 to 300 elements in
  85 // practice.  One array will map to a reaching def Node (or NULL for
  86 // conflict/dead).  The other array will map to a callee-saved register or
  87 // OptoReg::Bad for not-callee-saved.
  88 
  89 
  90 // Structure to pass around
  91 struct OopFlow : public ResourceObj {
  92   short *_callees;              // Array mapping register to callee-saved
  93   Node **_defs;                 // array mapping register to reaching def
  94                                 // or NULL if dead/conflict
  95   // OopFlow structs, when not being actively modified, describe the _end_ of
  96   // this block.
  97   Block *_b;                    // Block for this struct
  98   OopFlow *_next;               // Next free OopFlow
  99                                 // or NULL if dead/conflict
 100   Compile* C;
 101 
 102   OopFlow( short *callees, Node **defs, Compile* c ) : _callees(callees), _defs(defs),
 103     _b(NULL), _next(NULL), C(c) { }
 104 
 105   // Given reaching-defs for this block start, compute it for this block end
 106   void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash );
 107 
 108   // Merge these two OopFlows into the 'this' pointer.
 109   void merge( OopFlow *flow, int max_reg );
 110 
 111   // Copy a 'flow' over an existing flow
 112   void clone( OopFlow *flow, int max_size);
 113 
 114   // Make a new OopFlow from scratch
 115   static OopFlow *make( Arena *A, int max_size, Compile* C );
 116 
 117   // Build an oopmap from the current flow info
 118   OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
 119 };
 120 
 121 // Given reaching-defs for this block start, compute it for this block end
 122 void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
 123 
 124   for( uint i=0; i<_b->number_of_nodes(); i++ ) {
 125     Node *n = _b->get_node(i);
 126 
 127     if( n->jvms() ) {           // Build an OopMap here?
 128       JVMState *jvms = n->jvms();
 129       // no map needed for leaf calls
 130       if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) {
 131         int *live = (int*) (*safehash)[n];
 132         assert( live, "must find live" );
 133         n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) );
 134       }
 135     }
 136 
 137     // Assign new reaching def's.
 138     // Note that I padded the _defs and _callees arrays so it's legal
 139     // to index at _defs[OptoReg::Bad].
 140     OptoReg::Name first = regalloc->get_reg_first(n);
 141     OptoReg::Name second = regalloc->get_reg_second(n);
 142     _defs[first] = n;
 143     _defs[second] = n;
 144 
 145     // Pass callee-save info around copies
 146     int idx = n->is_Copy();
 147     if( idx ) {                 // Copies move callee-save info
 148       OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx));
 149       OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx));
 150       int tmp_first = _callees[old_first];
 151       int tmp_second = _callees[old_second];
 152       _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location
 153       _callees[old_second] = OptoReg::Bad;
 154       _callees[first] = tmp_first;
 155       _callees[second] = tmp_second;
 156     } else if( n->is_Phi() ) {  // Phis do not mod callee-saves
 157       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" );
 158       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" );
 159       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" );
 160       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" );
 161     } else {
 162       _callees[first] = OptoReg::Bad; // No longer holding a callee-save value
 163       _callees[second] = OptoReg::Bad;
 164 
 165       // Find base case for callee saves
 166       if( n->is_Proj() && n->in(0)->is_Start() ) {
 167         if( OptoReg::is_reg(first) &&
 168             regalloc->_matcher.is_save_on_entry(first) )
 169           _callees[first] = first;
 170         if( OptoReg::is_reg(second) &&
 171             regalloc->_matcher.is_save_on_entry(second) )
 172           _callees[second] = second;
 173       }
 174     }
 175   }
 176 }
 177 
 178 // Merge the given flow into the 'this' flow
 179 void OopFlow::merge( OopFlow *flow, int max_reg ) {
 180   assert( _b == NULL, "merging into a happy flow" );
 181   assert( flow->_b, "this flow is still alive" );
 182   assert( flow != this, "no self flow" );
 183 
 184   // Do the merge.  If there are any differences, drop to 'bottom' which
 185   // is OptoReg::Bad or NULL depending.
 186   for( int i=0; i<max_reg; i++ ) {
 187     // Merge the callee-save's
 188     if( _callees[i] != flow->_callees[i] )
 189       _callees[i] = OptoReg::Bad;
 190     // Merge the reaching defs
 191     if( _defs[i] != flow->_defs[i] )
 192       _defs[i] = NULL;
 193   }
 194 
 195 }
 196 
 197 void OopFlow::clone( OopFlow *flow, int max_size ) {
 198   _b = flow->_b;
 199   memcpy( _callees, flow->_callees, sizeof(short)*max_size);
 200   memcpy( _defs   , flow->_defs   , sizeof(Node*)*max_size);
 201 }
 202 
 203 OopFlow *OopFlow::make( Arena *A, int max_size, Compile* C ) {
 204   short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
 205   Node **defs    = NEW_ARENA_ARRAY(A,Node*,max_size+1);
 206   debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) );
 207   OopFlow *flow = new (A) OopFlow(callees+1, defs+1, C);
 208   assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" );
 209   assert( &flow->_defs   [OptoReg::Bad] == defs   , "Ok to index at OptoReg::Bad" );
 210   return flow;
 211 }
 212 
 213 static int get_live_bit( int *live, int reg ) {
 214   return live[reg>>LogBitsPerInt] &   (1<<(reg&(BitsPerInt-1))); }
 215 static void set_live_bit( int *live, int reg ) {
 216          live[reg>>LogBitsPerInt] |=  (1<<(reg&(BitsPerInt-1))); }
 217 static void clr_live_bit( int *live, int reg ) {
 218          live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }
 219 
 220 // Build an oopmap from the current flow info
 221 OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
 222   int framesize = regalloc->_framesize;
 223   int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP);
 224   debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0());
 225               memset(dup_check,0,OptoReg::stack0()) );
 226 
 227   OopMap *omap = new OopMap( framesize,  max_inarg_slot );
 228   MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : NULL;
 229   JVMState* jvms = n->jvms();
 230 
 231   // For all registers do...
 232   for( int reg=0; reg<max_reg; reg++ ) {
 233     if( get_live_bit(live,reg) == 0 )
 234       continue;                 // Ignore if not live
 235 
 236     // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit
 237     // register in that case we'll get an non-concrete register for the second
 238     // half. We only need to tell the map the register once!
 239     //
 240     // However for the moment we disable this change and leave things as they
 241     // were.
 242 
 243     VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot);
 244 
 245     if (false && r->is_reg() && !r->is_concrete()) {
 246       continue;
 247     }
 248 
 249     // See if dead (no reaching def).
 250     Node *def = _defs[reg];     // Get reaching def
 251     assert( def, "since live better have reaching def" );
 252 
 253     // Classify the reaching def as oop, derived, callee-save, dead, or other
 254     const Type *t = def->bottom_type();
 255     if( t->isa_oop_ptr() ) {    // Oop or derived?
 256       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
 257 #ifdef _LP64
 258       // 64-bit pointers record oop-ishness on 2 aligned adjacent registers.
 259       // Make sure both are record from the same reaching def, but do not
 260       // put both into the oopmap.
 261       if( (reg&1) == 1 ) {      // High half of oop-pair?
 262         assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" );
 263         continue;               // Do not record high parts in oopmap
 264       }
 265 #endif
 266 
 267       // Check for a legal reg name in the oopMap and bailout if it is not.
 268       if (!omap->legal_vm_reg_name(r)) {
 269         regalloc->C->record_method_not_compilable("illegal oopMap register name");
 270         continue;
 271       }
 272       if( t->is_ptr()->_offset == 0 ) { // Not derived?
 273         if( mcall ) {
 274           // Outgoing argument GC mask responsibility belongs to the callee,
 275           // not the caller.  Inspect the inputs to the call, to see if
 276           // this live-range is one of them.
 277           uint cnt = mcall->tf()->domain()->cnt();
 278           uint j;
 279           for( j = TypeFunc::Parms; j < cnt; j++)
 280             if( mcall->in(j) == def )
 281               break;            // reaching def is an argument oop
 282           if( j < cnt )         // arg oops dont go in GC map
 283             continue;           // Continue on to the next register
 284         }
 285         omap->set_oop(r);
 286       } else {                  // Else it's derived.
 287         // Find the base of the derived value.
 288         uint i;
 289         // Fast, common case, scan
 290         for( i = jvms->oopoff(); i < n->req(); i+=2 )
 291           if( n->in(i) == def ) break; // Common case
 292         if( i == n->req() ) {   // Missed, try a more generous scan
 293           // Scan again, but this time peek through copies
 294           for( i = jvms->oopoff(); i < n->req(); i+=2 ) {
 295             Node *m = n->in(i); // Get initial derived value
 296             while( 1 ) {
 297               Node *d = def;    // Get initial reaching def
 298               while( 1 ) {      // Follow copies of reaching def to end
 299                 if( m == d ) goto found; // breaks 3 loops
 300                 int idx = d->is_Copy();
 301                 if( !idx ) break;
 302                 d = d->in(idx);     // Link through copy
 303               }
 304               int idx = m->is_Copy();
 305               if( !idx ) break;
 306               m = m->in(idx);
 307             }
 308           }
 309           guarantee( 0, "must find derived/base pair" );
 310         }
 311       found: ;
 312         Node *base = n->in(i+1); // Base is other half of pair
 313         int breg = regalloc->get_reg_first(base);
 314         VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot);
 315 
 316         // I record liveness at safepoints BEFORE I make the inputs
 317         // live.  This is because argument oops are NOT live at a
 318         // safepoint (or at least they cannot appear in the oopmap).
 319         // Thus bases of base/derived pairs might not be in the
 320         // liveness data but they need to appear in the oopmap.
 321         if( get_live_bit(live,breg) == 0 ) {// Not live?
 322           // Flag it, so next derived pointer won't re-insert into oopmap
 323           set_live_bit(live,breg);
 324           // Already missed our turn?
 325           if( breg < reg ) {
 326             if (b->is_stack() || b->is_concrete() || true ) {
 327               omap->set_oop( b);
 328             }
 329           }
 330         }
 331         if (b->is_stack() || b->is_concrete() || true ) {
 332           omap->set_derived_oop( r, b);
 333         }
 334       }
 335 
 336     } else if( t->isa_narrowoop() ) {
 337       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
 338       // Check for a legal reg name in the oopMap and bailout if it is not.
 339       if (!omap->legal_vm_reg_name(r)) {
 340         regalloc->C->record_method_not_compilable("illegal oopMap register name");
 341         continue;
 342       }
 343       if( mcall ) {
 344           // Outgoing argument GC mask responsibility belongs to the callee,
 345           // not the caller.  Inspect the inputs to the call, to see if
 346           // this live-range is one of them.
 347         uint cnt = mcall->tf()->domain()->cnt();
 348         uint j;
 349         for( j = TypeFunc::Parms; j < cnt; j++)
 350           if( mcall->in(j) == def )
 351             break;            // reaching def is an argument oop
 352         if( j < cnt )         // arg oops dont go in GC map
 353           continue;           // Continue on to the next register
 354       }
 355       omap->set_narrowoop(r);
 356     } else if( OptoReg::is_valid(_callees[reg])) { // callee-save?
 357       // It's a callee-save value
 358       assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" );
 359       debug_only( dup_check[_callees[reg]]=1; )
 360       VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg]));
 361       if ( callee->is_concrete() || true ) {
 362         omap->set_callee_saved( r, callee);
 363       }
 364 
 365     } else {
 366       // Other - some reaching non-oop value
 367       omap->set_value( r);
 368 #ifdef ASSERT
 369       if( t->isa_rawptr() && C->cfg()->_raw_oops.member(def) ) {
 370         def->dump();
 371         n->dump();
 372         assert(false, "there should be a oop in OopMap instead of a live raw oop at safepoint");
 373       }
 374 #endif
 375     }
 376 
 377   }
 378 
 379 #ifdef ASSERT
 380   /* Nice, Intel-only assert
 381   int cnt_callee_saves=0;
 382   int reg2 = 0;
 383   while (OptoReg::is_reg(reg2)) {
 384     if( dup_check[reg2] != 0) cnt_callee_saves++;
 385     assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" );
 386     reg2++;
 387   }
 388   */
 389 #endif
 390 
 391 #ifdef ASSERT
 392   for( OopMapStream oms1(omap, OopMapValue::derived_oop_value); !oms1.is_done(); oms1.next()) {
 393     OopMapValue omv1 = oms1.current();
 394     bool found = false;
 395     for( OopMapStream oms2(omap,OopMapValue::oop_value); !oms2.is_done(); oms2.next()) {
 396       if( omv1.content_reg() == oms2.current().reg() ) {
 397         found = true;
 398         break;
 399       }
 400     }
 401     assert( found, "derived with no base in oopmap" );
 402   }
 403 #endif
 404 
 405   return omap;
 406 }
 407 
 408 // Compute backwards liveness on registers
 409 static void do_liveness(PhaseRegAlloc* regalloc, PhaseCFG* cfg, Block_List* worklist, int max_reg_ints, Arena* A, Dict* safehash) {
 410   int* live = NEW_ARENA_ARRAY(A, int, (cfg->number_of_blocks() + 1) * max_reg_ints);
 411   int* tmp_live = &live[cfg->number_of_blocks() * max_reg_ints];
 412   Node* root = cfg->get_root_node();
 413   // On CISC platforms, get the node representing the stack pointer  that regalloc
 414   // used for spills
 415   Node *fp = NodeSentinel;
 416   if (UseCISCSpill && root->req() > 1) {
 417     fp = root->in(1)->in(TypeFunc::FramePtr);
 418   }
 419   memset(live, 0, cfg->number_of_blocks() * (max_reg_ints << LogBytesPerInt));
 420   // Push preds onto worklist
 421   for (uint i = 1; i < root->req(); i++) {
 422     Block* block = cfg->get_block_for_node(root->in(i));
 423     worklist->push(block);
 424   }
 425 
 426   // ZKM.jar includes tiny infinite loops which are unreached from below.
 427   // If we missed any blocks, we'll retry here after pushing all missed
 428   // blocks on the worklist.  Normally this outer loop never trips more
 429   // than once.
 430   while (1) {
 431 
 432     while( worklist->size() ) { // Standard worklist algorithm
 433       Block *b = worklist->rpop();
 434 
 435       // Copy first successor into my tmp_live space
 436       int s0num = b->_succs[0]->_pre_order;
 437       int *t = &live[s0num*max_reg_ints];
 438       for( int i=0; i<max_reg_ints; i++ )
 439         tmp_live[i] = t[i];
 440 
 441       // OR in the remaining live registers
 442       for( uint j=1; j<b->_num_succs; j++ ) {
 443         uint sjnum = b->_succs[j]->_pre_order;
 444         int *t = &live[sjnum*max_reg_ints];
 445         for( int i=0; i<max_reg_ints; i++ )
 446           tmp_live[i] |= t[i];
 447       }
 448 
 449       // Now walk tmp_live up the block backwards, computing live
 450       for( int k=b->number_of_nodes()-1; k>=0; k-- ) {
 451         Node *n = b->get_node(k);
 452         // KILL def'd bits
 453         int first = regalloc->get_reg_first(n);
 454         int second = regalloc->get_reg_second(n);
 455         if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first);
 456         if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second);
 457 
 458         MachNode *m = n->is_Mach() ? n->as_Mach() : NULL;
 459 
 460         // Check if m is potentially a CISC alternate instruction (i.e, possibly
 461         // synthesized by RegAlloc from a conventional instruction and a
 462         // spilled input)
 463         bool is_cisc_alternate = false;
 464         if (UseCISCSpill && m) {
 465           is_cisc_alternate = m->is_cisc_alternate();
 466         }
 467 
 468         // GEN use'd bits
 469         for( uint l=1; l<n->req(); l++ ) {
 470           Node *def = n->in(l);
 471           assert(def != 0, "input edge required");
 472           int first = regalloc->get_reg_first(def);
 473           int second = regalloc->get_reg_second(def);
 474           if( OptoReg::is_valid(first) ) set_live_bit(tmp_live,first);
 475           if( OptoReg::is_valid(second) ) set_live_bit(tmp_live,second);
 476           // If we use the stack pointer in a cisc-alternative instruction,
 477           // check for use as a memory operand.  Then reconstruct the RegName
 478           // for this stack location, and set the appropriate bit in the
 479           // live vector 4987749.
 480           if (is_cisc_alternate && def == fp) {
 481             const TypePtr *adr_type = NULL;
 482             intptr_t offset;
 483             const Node* base = m->get_base_and_disp(offset, adr_type);
 484             if (base == NodeSentinel) {
 485               // Machnode has multiple memory inputs. We are unable to reason
 486               // with these, but are presuming (with trepidation) that not any of
 487               // them are oops. This can be fixed by making get_base_and_disp()
 488               // look at a specific input instead of all inputs.
 489               assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input");
 490             } else if (base != fp || offset == Type::OffsetBot) {
 491               // Do nothing: the fp operand is either not from a memory use
 492               // (base == NULL) OR the fp is used in a non-memory context
 493               // (base is some other register) OR the offset is not constant,
 494               // so it is not a stack slot.
 495             } else {
 496               assert(offset >= 0, "unexpected negative offset");
 497               offset -= (offset % jintSize);  // count the whole word
 498               int stack_reg = regalloc->offset2reg(offset);
 499               if (OptoReg::is_stack(stack_reg)) {
 500                 set_live_bit(tmp_live, stack_reg);
 501               } else {
 502                 assert(false, "stack_reg not on stack?");
 503               }
 504             }
 505           }
 506         }
 507 
 508         if( n->jvms() ) {       // Record liveness at safepoint
 509 
 510           // This placement of this stanza means inputs to calls are
 511           // considered live at the callsite's OopMap.  Argument oops are
 512           // hence live, but NOT included in the oopmap.  See cutout in
 513           // build_oop_map.  Debug oops are live (and in OopMap).
 514           int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints);
 515           for( int l=0; l<max_reg_ints; l++ )
 516             n_live[l] = tmp_live[l];
 517           safehash->Insert(n,n_live);
 518         }
 519 
 520       }
 521 
 522       // Now at block top, see if we have any changes.  If so, propagate
 523       // to prior blocks.
 524       int *old_live = &live[b->_pre_order*max_reg_ints];
 525       int l;
 526       for( l=0; l<max_reg_ints; l++ )
 527         if( tmp_live[l] != old_live[l] )
 528           break;
 529       if( l<max_reg_ints ) {     // Change!
 530         // Copy in new value
 531         for( l=0; l<max_reg_ints; l++ )
 532           old_live[l] = tmp_live[l];
 533         // Push preds onto worklist
 534         for (l = 1; l < (int)b->num_preds(); l++) {
 535           Block* block = cfg->get_block_for_node(b->pred(l));
 536           worklist->push(block);
 537         }
 538       }
 539     }
 540 
 541     // Scan for any missing safepoints.  Happens to infinite loops
 542     // ala ZKM.jar
 543     uint i;
 544     for (i = 1; i < cfg->number_of_blocks(); i++) {
 545       Block* block = cfg->get_block(i);
 546       uint j;
 547       for (j = 1; j < block->number_of_nodes(); j++) {
 548         if (block->get_node(j)->jvms() && (*safehash)[block->get_node(j)] == NULL) {
 549            break;
 550         }
 551       }
 552       if (j < block->number_of_nodes()) {
 553         break;
 554       }
 555     }
 556     if (i == cfg->number_of_blocks()) {
 557       break;                    // Got 'em all
 558     }
 559 #ifndef PRODUCT
 560     if( PrintOpto && Verbose )
 561       tty->print_cr("retripping live calc");
 562 #endif
 563     // Force the issue (expensively): recheck everybody
 564     for (i = 1; i < cfg->number_of_blocks(); i++) {
 565       worklist->push(cfg->get_block(i));
 566     }
 567   }
 568 }
 569 
 570 // Collect GC mask info - where are all the OOPs?
 571 void Compile::BuildOopMaps() {
 572   NOT_PRODUCT( TracePhase t3("bldOopMaps", &_t_buildOopMaps, TimeCompiler); )
 573   // Can't resource-mark because I need to leave all those OopMaps around,
 574   // or else I need to resource-mark some arena other than the default.
 575   // ResourceMark rm;              // Reclaim all OopFlows when done
 576   int max_reg = _regalloc->_max_reg; // Current array extent
 577 
 578   Arena *A = Thread::current()->resource_area();
 579   Block_List worklist;          // Worklist of pending blocks
 580 
 581   int max_reg_ints = round_to(max_reg, BitsPerInt)>>LogBitsPerInt;
 582   Dict *safehash = NULL;        // Used for assert only
 583   // Compute a backwards liveness per register.  Needs a bitarray of
 584   // #blocks x (#registers, rounded up to ints)
 585   safehash = new Dict(cmpkey,hashkey,A);
 586   do_liveness( _regalloc, _cfg, &worklist, max_reg_ints, A, safehash );
 587   OopFlow *free_list = NULL;    // Free, unused
 588 
 589   // Array mapping blocks to completed oopflows
 590   OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, _cfg->number_of_blocks());
 591   memset( flows, 0, _cfg->number_of_blocks() * sizeof(OopFlow*) );
 592 
 593 
 594   // Do the first block 'by hand' to prime the worklist
 595   Block *entry = _cfg->get_block(1);
 596   OopFlow *rootflow = OopFlow::make(A,max_reg,this);
 597   // Initialize to 'bottom' (not 'top')
 598   memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
 599   memset( rootflow->_defs   ,            0, max_reg*sizeof(Node*) );
 600   flows[entry->_pre_order] = rootflow;
 601 
 602   // Do the first block 'by hand' to prime the worklist
 603   rootflow->_b = entry;
 604   rootflow->compute_reach( _regalloc, max_reg, safehash );
 605   for( uint i=0; i<entry->_num_succs; i++ )
 606     worklist.push(entry->_succs[i]);
 607 
 608   // Now worklist contains blocks which have some, but perhaps not all,
 609   // predecessors visited.
 610   while( worklist.size() ) {
 611     // Scan for a block with all predecessors visited, or any randoms slob
 612     // otherwise.  All-preds-visited order allows me to recycle OopFlow
 613     // structures rapidly and cut down on the memory footprint.
 614     // Note: not all predecessors might be visited yet (must happen for
 615     // irreducible loops).  This is OK, since every live value must have the
 616     // SAME reaching def for the block, so any reaching def is OK.
 617     uint i;
 618 
 619     Block *b = worklist.pop();
 620     // Ignore root block
 621     if (b == _cfg->get_root_block()) {
 622       continue;
 623     }
 624     // Block is already done?  Happens if block has several predecessors,
 625     // he can get on the worklist more than once.
 626     if( flows[b->_pre_order] ) continue;
 627 
 628     // If this block has a visited predecessor AND that predecessor has this
 629     // last block as his only undone child, we can move the OopFlow from the
 630     // pred to this block.  Otherwise we have to grab a new OopFlow.
 631     OopFlow *flow = NULL;       // Flag for finding optimized flow
 632     Block *pred = (Block*)((intptr_t)0xdeadbeef);
 633     // Scan this block's preds to find a done predecessor
 634     for (uint j = 1; j < b->num_preds(); j++) {
 635       Block* p = _cfg->get_block_for_node(b->pred(j));
 636       OopFlow *p_flow = flows[p->_pre_order];
 637       if( p_flow ) {            // Predecessor is done
 638         assert( p_flow->_b == p, "cross check" );
 639         pred = p;               // Record some predecessor
 640         // If all successors of p are done except for 'b', then we can carry
 641         // p_flow forward to 'b' without copying, otherwise we have to draw
 642         // from the free_list and clone data.
 643         uint k;
 644         for( k=0; k<p->_num_succs; k++ )
 645           if( !flows[p->_succs[k]->_pre_order] &&
 646               p->_succs[k] != b )
 647             break;
 648 
 649         // Either carry-forward the now-unused OopFlow for b's use
 650         // or draw a new one from the free list
 651         if( k==p->_num_succs ) {
 652           flow = p_flow;
 653           break;                // Found an ideal pred, use him
 654         }
 655       }
 656     }
 657 
 658     if( flow ) {
 659       // We have an OopFlow that's the last-use of a predecessor.
 660       // Carry it forward.
 661     } else {                    // Draw a new OopFlow from the freelist
 662       if( !free_list )
 663         free_list = OopFlow::make(A,max_reg,C);
 664       flow = free_list;
 665       assert( flow->_b == NULL, "oopFlow is not free" );
 666       free_list = flow->_next;
 667       flow->_next = NULL;
 668 
 669       // Copy/clone over the data
 670       flow->clone(flows[pred->_pre_order], max_reg);
 671     }
 672 
 673     // Mark flow for block.  Blocks can only be flowed over once,
 674     // because after the first time they are guarded from entering
 675     // this code again.
 676     assert( flow->_b == pred, "have some prior flow" );
 677     flow->_b = NULL;
 678 
 679     // Now push flow forward
 680     flows[b->_pre_order] = flow;// Mark flow for this block
 681     flow->_b = b;
 682     flow->compute_reach( _regalloc, max_reg, safehash );
 683 
 684     // Now push children onto worklist
 685     for( i=0; i<b->_num_succs; i++ )
 686       worklist.push(b->_succs[i]);
 687 
 688   }
 689 }