1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "jfr/jfrEvents.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/block.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/callGenerator.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/chaitin.hpp"
  43 #include "opto/compile.hpp"
  44 #include "opto/connode.hpp"
  45 #include "opto/divnode.hpp"
  46 #include "opto/escape.hpp"
  47 #include "opto/idealGraphPrinter.hpp"
  48 #include "opto/loopnode.hpp"
  49 #include "opto/machnode.hpp"
  50 #include "opto/macro.hpp"
  51 #include "opto/matcher.hpp"
  52 #include "opto/mathexactnode.hpp"
  53 #include "opto/memnode.hpp"
  54 #include "opto/mulnode.hpp"
  55 #include "opto/node.hpp"
  56 #include "opto/opcodes.hpp"
  57 #include "opto/output.hpp"
  58 #include "opto/parse.hpp"
  59 #include "opto/phaseX.hpp"
  60 #include "opto/rootnode.hpp"
  61 #include "opto/runtime.hpp"
  62 #include "opto/stringopts.hpp"
  63 #include "opto/type.hpp"
  64 #include "opto/vectornode.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/signature.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/timer.hpp"
  69 #include "utilities/copy.hpp"
  70 #if defined AD_MD_HPP
  71 # include AD_MD_HPP
  72 #elif defined TARGET_ARCH_MODEL_x86_32
  73 # include "adfiles/ad_x86_32.hpp"
  74 #elif defined TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #elif defined TARGET_ARCH_MODEL_sparc
  77 # include "adfiles/ad_sparc.hpp"
  78 #elif defined TARGET_ARCH_MODEL_zero
  79 # include "adfiles/ad_zero.hpp"
  80 #elif defined TARGET_ARCH_MODEL_ppc_64
  81 # include "adfiles/ad_ppc_64.hpp"
  82 #endif
  83 
  84 // -------------------- Compile::mach_constant_base_node -----------------------
  85 // Constant table base node singleton.
  86 MachConstantBaseNode* Compile::mach_constant_base_node() {
  87   if (_mach_constant_base_node == NULL) {
  88     _mach_constant_base_node = new (C) MachConstantBaseNode();
  89     _mach_constant_base_node->add_req(C->root());
  90   }
  91   return _mach_constant_base_node;
  92 }
  93 
  94 
  95 /// Support for intrinsics.
  96 
  97 // Return the index at which m must be inserted (or already exists).
  98 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  99 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 100 #ifdef ASSERT
 101   for (int i = 1; i < _intrinsics->length(); i++) {
 102     CallGenerator* cg1 = _intrinsics->at(i-1);
 103     CallGenerator* cg2 = _intrinsics->at(i);
 104     assert(cg1->method() != cg2->method()
 105            ? cg1->method()     < cg2->method()
 106            : cg1->is_virtual() < cg2->is_virtual(),
 107            "compiler intrinsics list must stay sorted");
 108   }
 109 #endif
 110   // Binary search sorted list, in decreasing intervals [lo, hi].
 111   int lo = 0, hi = _intrinsics->length()-1;
 112   while (lo <= hi) {
 113     int mid = (uint)(hi + lo) / 2;
 114     ciMethod* mid_m = _intrinsics->at(mid)->method();
 115     if (m < mid_m) {
 116       hi = mid-1;
 117     } else if (m > mid_m) {
 118       lo = mid+1;
 119     } else {
 120       // look at minor sort key
 121       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 122       if (is_virtual < mid_virt) {
 123         hi = mid-1;
 124       } else if (is_virtual > mid_virt) {
 125         lo = mid+1;
 126       } else {
 127         return mid;  // exact match
 128       }
 129     }
 130   }
 131   return lo;  // inexact match
 132 }
 133 
 134 void Compile::register_intrinsic(CallGenerator* cg) {
 135   if (_intrinsics == NULL) {
 136     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 137   }
 138   // This code is stolen from ciObjectFactory::insert.
 139   // Really, GrowableArray should have methods for
 140   // insert_at, remove_at, and binary_search.
 141   int len = _intrinsics->length();
 142   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 143   if (index == len) {
 144     _intrinsics->append(cg);
 145   } else {
 146 #ifdef ASSERT
 147     CallGenerator* oldcg = _intrinsics->at(index);
 148     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 149 #endif
 150     _intrinsics->append(_intrinsics->at(len-1));
 151     int pos;
 152     for (pos = len-2; pos >= index; pos--) {
 153       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 154     }
 155     _intrinsics->at_put(index, cg);
 156   }
 157   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 158 }
 159 
 160 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 161   assert(m->is_loaded(), "don't try this on unloaded methods");
 162   if (_intrinsics != NULL) {
 163     int index = intrinsic_insertion_index(m, is_virtual);
 164     if (index < _intrinsics->length()
 165         && _intrinsics->at(index)->method() == m
 166         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 167       return _intrinsics->at(index);
 168     }
 169   }
 170   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 171   if (m->intrinsic_id() != vmIntrinsics::_none &&
 172       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 173     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 174     if (cg != NULL) {
 175       // Save it for next time:
 176       register_intrinsic(cg);
 177       return cg;
 178     } else {
 179       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 180     }
 181   }
 182   return NULL;
 183 }
 184 
 185 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 186 // in library_call.cpp.
 187 
 188 
 189 #ifndef PRODUCT
 190 // statistics gathering...
 191 
 192 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 193 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 194 
 195 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 196   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 197   int oflags = _intrinsic_hist_flags[id];
 198   assert(flags != 0, "what happened?");
 199   if (is_virtual) {
 200     flags |= _intrinsic_virtual;
 201   }
 202   bool changed = (flags != oflags);
 203   if ((flags & _intrinsic_worked) != 0) {
 204     juint count = (_intrinsic_hist_count[id] += 1);
 205     if (count == 1) {
 206       changed = true;           // first time
 207     }
 208     // increment the overall count also:
 209     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 210   }
 211   if (changed) {
 212     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 213       // Something changed about the intrinsic's virtuality.
 214       if ((flags & _intrinsic_virtual) != 0) {
 215         // This is the first use of this intrinsic as a virtual call.
 216         if (oflags != 0) {
 217           // We already saw it as a non-virtual, so note both cases.
 218           flags |= _intrinsic_both;
 219         }
 220       } else if ((oflags & _intrinsic_both) == 0) {
 221         // This is the first use of this intrinsic as a non-virtual
 222         flags |= _intrinsic_both;
 223       }
 224     }
 225     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 226   }
 227   // update the overall flags also:
 228   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 229   return changed;
 230 }
 231 
 232 static char* format_flags(int flags, char* buf) {
 233   buf[0] = 0;
 234   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 235   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 236   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 237   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 238   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 239   if (buf[0] == 0)  strcat(buf, ",");
 240   assert(buf[0] == ',', "must be");
 241   return &buf[1];
 242 }
 243 
 244 void Compile::print_intrinsic_statistics() {
 245   char flagsbuf[100];
 246   ttyLocker ttyl;
 247   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 248   tty->print_cr("Compiler intrinsic usage:");
 249   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 250   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 251   #define PRINT_STAT_LINE(name, c, f) \
 252     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 253   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 254     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 255     int   flags = _intrinsic_hist_flags[id];
 256     juint count = _intrinsic_hist_count[id];
 257     if ((flags | count) != 0) {
 258       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 259     }
 260   }
 261   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 262   if (xtty != NULL)  xtty->tail("statistics");
 263 }
 264 
 265 void Compile::print_statistics() {
 266   { ttyLocker ttyl;
 267     if (xtty != NULL)  xtty->head("statistics type='opto'");
 268     Parse::print_statistics();
 269     PhaseCCP::print_statistics();
 270     PhaseRegAlloc::print_statistics();
 271     Scheduling::print_statistics();
 272     PhasePeephole::print_statistics();
 273     PhaseIdealLoop::print_statistics();
 274     if (xtty != NULL)  xtty->tail("statistics");
 275   }
 276   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 277     // put this under its own <statistics> element.
 278     print_intrinsic_statistics();
 279   }
 280 }
 281 #endif //PRODUCT
 282 
 283 // Support for bundling info
 284 Bundle* Compile::node_bundling(const Node *n) {
 285   assert(valid_bundle_info(n), "oob");
 286   return &_node_bundling_base[n->_idx];
 287 }
 288 
 289 bool Compile::valid_bundle_info(const Node *n) {
 290   return (_node_bundling_limit > n->_idx);
 291 }
 292 
 293 
 294 void Compile::gvn_replace_by(Node* n, Node* nn) {
 295   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 296     Node* use = n->last_out(i);
 297     bool is_in_table = initial_gvn()->hash_delete(use);
 298     uint uses_found = 0;
 299     for (uint j = 0; j < use->len(); j++) {
 300       if (use->in(j) == n) {
 301         if (j < use->req())
 302           use->set_req(j, nn);
 303         else
 304           use->set_prec(j, nn);
 305         uses_found++;
 306       }
 307     }
 308     if (is_in_table) {
 309       // reinsert into table
 310       initial_gvn()->hash_find_insert(use);
 311     }
 312     record_for_igvn(use);
 313     i -= uses_found;    // we deleted 1 or more copies of this edge
 314   }
 315 }
 316 
 317 
 318 static inline bool not_a_node(const Node* n) {
 319   if (n == NULL)                   return true;
 320   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 321   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 322   return false;
 323 }
 324 
 325 // Identify all nodes that are reachable from below, useful.
 326 // Use breadth-first pass that records state in a Unique_Node_List,
 327 // recursive traversal is slower.
 328 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 329   int estimated_worklist_size = live_nodes();
 330   useful.map( estimated_worklist_size, NULL );  // preallocate space
 331 
 332   // Initialize worklist
 333   if (root() != NULL)     { useful.push(root()); }
 334   // If 'top' is cached, declare it useful to preserve cached node
 335   if( cached_top_node() ) { useful.push(cached_top_node()); }
 336 
 337   // Push all useful nodes onto the list, breadthfirst
 338   for( uint next = 0; next < useful.size(); ++next ) {
 339     assert( next < unique(), "Unique useful nodes < total nodes");
 340     Node *n  = useful.at(next);
 341     uint max = n->len();
 342     for( uint i = 0; i < max; ++i ) {
 343       Node *m = n->in(i);
 344       if (not_a_node(m))  continue;
 345       useful.push(m);
 346     }
 347   }
 348 }
 349 
 350 // Update dead_node_list with any missing dead nodes using useful
 351 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 352 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 353   uint max_idx = unique();
 354   VectorSet& useful_node_set = useful.member_set();
 355 
 356   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 357     // If node with index node_idx is not in useful set,
 358     // mark it as dead in dead node list.
 359     if (! useful_node_set.test(node_idx) ) {
 360       record_dead_node(node_idx);
 361     }
 362   }
 363 }
 364 
 365 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 366   int shift = 0;
 367   for (int i = 0; i < inlines->length(); i++) {
 368     CallGenerator* cg = inlines->at(i);
 369     CallNode* call = cg->call_node();
 370     if (shift > 0) {
 371       inlines->at_put(i-shift, cg);
 372     }
 373     if (!useful.member(call)) {
 374       shift++;
 375     }
 376   }
 377   inlines->trunc_to(inlines->length()-shift);
 378 }
 379 
 380 // Disconnect all useless nodes by disconnecting those at the boundary.
 381 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 382   uint next = 0;
 383   while (next < useful.size()) {
 384     Node *n = useful.at(next++);
 385     if (n->is_SafePoint()) {
 386       // We're done with a parsing phase. Replaced nodes are not valid
 387       // beyond that point.
 388       n->as_SafePoint()->delete_replaced_nodes();
 389     }
 390     // Use raw traversal of out edges since this code removes out edges
 391     int max = n->outcnt();
 392     for (int j = 0; j < max; ++j) {
 393       Node* child = n->raw_out(j);
 394       if (! useful.member(child)) {
 395         assert(!child->is_top() || child != top(),
 396                "If top is cached in Compile object it is in useful list");
 397         // Only need to remove this out-edge to the useless node
 398         n->raw_del_out(j);
 399         --j;
 400         --max;
 401       }
 402     }
 403     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 404       record_for_igvn(n->unique_out());
 405     }
 406   }
 407   // Remove useless macro and predicate opaq nodes
 408   for (int i = C->macro_count()-1; i >= 0; i--) {
 409     Node* n = C->macro_node(i);
 410     if (!useful.member(n)) {
 411       remove_macro_node(n);
 412     }
 413   }
 414   // Remove useless CastII nodes with range check dependency
 415   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 416     Node* cast = range_check_cast_node(i);
 417     if (!useful.member(cast)) {
 418       remove_range_check_cast(cast);
 419     }
 420   }
 421   // Remove useless expensive node
 422   for (int i = C->expensive_count()-1; i >= 0; i--) {
 423     Node* n = C->expensive_node(i);
 424     if (!useful.member(n)) {
 425       remove_expensive_node(n);
 426     }
 427   }
 428   // clean up the late inline lists
 429   remove_useless_late_inlines(&_string_late_inlines, useful);
 430   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 431   remove_useless_late_inlines(&_late_inlines, useful);
 432   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 433 }
 434 
 435 //------------------------------frame_size_in_words-----------------------------
 436 // frame_slots in units of words
 437 int Compile::frame_size_in_words() const {
 438   // shift is 0 in LP32 and 1 in LP64
 439   const int shift = (LogBytesPerWord - LogBytesPerInt);
 440   int words = _frame_slots >> shift;
 441   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 442   return words;
 443 }
 444 
 445 // To bang the stack of this compiled method we use the stack size
 446 // that the interpreter would need in case of a deoptimization. This
 447 // removes the need to bang the stack in the deoptimization blob which
 448 // in turn simplifies stack overflow handling.
 449 int Compile::bang_size_in_bytes() const {
 450   return MAX2(_interpreter_frame_size, frame_size_in_bytes());
 451 }
 452 
 453 // ============================================================================
 454 //------------------------------CompileWrapper---------------------------------
 455 class CompileWrapper : public StackObj {
 456   Compile *const _compile;
 457  public:
 458   CompileWrapper(Compile* compile);
 459 
 460   ~CompileWrapper();
 461 };
 462 
 463 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 464   // the Compile* pointer is stored in the current ciEnv:
 465   ciEnv* env = compile->env();
 466   assert(env == ciEnv::current(), "must already be a ciEnv active");
 467   assert(env->compiler_data() == NULL, "compile already active?");
 468   env->set_compiler_data(compile);
 469   assert(compile == Compile::current(), "sanity");
 470 
 471   compile->set_type_dict(NULL);
 472   compile->set_type_hwm(NULL);
 473   compile->set_type_last_size(0);
 474   compile->set_last_tf(NULL, NULL);
 475   compile->set_indexSet_arena(NULL);
 476   compile->set_indexSet_free_block_list(NULL);
 477   compile->init_type_arena();
 478   Type::Initialize(compile);
 479   _compile->set_scratch_buffer_blob(NULL);
 480   _compile->begin_method();
 481 }
 482 CompileWrapper::~CompileWrapper() {
 483   _compile->end_method();
 484   if (_compile->scratch_buffer_blob() != NULL)
 485     BufferBlob::free(_compile->scratch_buffer_blob());
 486   _compile->env()->set_compiler_data(NULL);
 487 }
 488 
 489 
 490 //----------------------------print_compile_messages---------------------------
 491 void Compile::print_compile_messages() {
 492 #ifndef PRODUCT
 493   // Check if recompiling
 494   if (_subsume_loads == false && PrintOpto) {
 495     // Recompiling without allowing machine instructions to subsume loads
 496     tty->print_cr("*********************************************************");
 497     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 498     tty->print_cr("*********************************************************");
 499   }
 500   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 501     // Recompiling without escape analysis
 502     tty->print_cr("*********************************************************");
 503     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 504     tty->print_cr("*********************************************************");
 505   }
 506   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 507     // Recompiling without boxing elimination
 508     tty->print_cr("*********************************************************");
 509     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 510     tty->print_cr("*********************************************************");
 511   }
 512   if (env()->break_at_compile()) {
 513     // Open the debugger when compiling this method.
 514     tty->print("### Breaking when compiling: ");
 515     method()->print_short_name();
 516     tty->cr();
 517     BREAKPOINT;
 518   }
 519 
 520   if( PrintOpto ) {
 521     if (is_osr_compilation()) {
 522       tty->print("[OSR]%3d", _compile_id);
 523     } else {
 524       tty->print("%3d", _compile_id);
 525     }
 526   }
 527 #endif
 528 }
 529 
 530 
 531 //-----------------------init_scratch_buffer_blob------------------------------
 532 // Construct a temporary BufferBlob and cache it for this compile.
 533 void Compile::init_scratch_buffer_blob(int const_size) {
 534   // If there is already a scratch buffer blob allocated and the
 535   // constant section is big enough, use it.  Otherwise free the
 536   // current and allocate a new one.
 537   BufferBlob* blob = scratch_buffer_blob();
 538   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 539     // Use the current blob.
 540   } else {
 541     if (blob != NULL) {
 542       BufferBlob::free(blob);
 543     }
 544 
 545     ResourceMark rm;
 546     _scratch_const_size = const_size;
 547     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 548     blob = BufferBlob::create("Compile::scratch_buffer", size);
 549     // Record the buffer blob for next time.
 550     set_scratch_buffer_blob(blob);
 551     // Have we run out of code space?
 552     if (scratch_buffer_blob() == NULL) {
 553       // Let CompilerBroker disable further compilations.
 554       record_failure("Not enough space for scratch buffer in CodeCache");
 555       return;
 556     }
 557   }
 558 
 559   // Initialize the relocation buffers
 560   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 561   set_scratch_locs_memory(locs_buf);
 562 }
 563 
 564 
 565 //-----------------------scratch_emit_size-------------------------------------
 566 // Helper function that computes size by emitting code
 567 uint Compile::scratch_emit_size(const Node* n) {
 568   // Start scratch_emit_size section.
 569   set_in_scratch_emit_size(true);
 570 
 571   // Emit into a trash buffer and count bytes emitted.
 572   // This is a pretty expensive way to compute a size,
 573   // but it works well enough if seldom used.
 574   // All common fixed-size instructions are given a size
 575   // method by the AD file.
 576   // Note that the scratch buffer blob and locs memory are
 577   // allocated at the beginning of the compile task, and
 578   // may be shared by several calls to scratch_emit_size.
 579   // The allocation of the scratch buffer blob is particularly
 580   // expensive, since it has to grab the code cache lock.
 581   BufferBlob* blob = this->scratch_buffer_blob();
 582   assert(blob != NULL, "Initialize BufferBlob at start");
 583   assert(blob->size() > MAX_inst_size, "sanity");
 584   relocInfo* locs_buf = scratch_locs_memory();
 585   address blob_begin = blob->content_begin();
 586   address blob_end   = (address)locs_buf;
 587   assert(blob->content_contains(blob_end), "sanity");
 588   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 589   buf.initialize_consts_size(_scratch_const_size);
 590   buf.initialize_stubs_size(MAX_stubs_size);
 591   assert(locs_buf != NULL, "sanity");
 592   int lsize = MAX_locs_size / 3;
 593   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 594   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 595   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 596 
 597   // Do the emission.
 598 
 599   Label fakeL; // Fake label for branch instructions.
 600   Label*   saveL = NULL;
 601   uint save_bnum = 0;
 602   bool is_branch = n->is_MachBranch();
 603   if (is_branch) {
 604     MacroAssembler masm(&buf);
 605     masm.bind(fakeL);
 606     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 607     n->as_MachBranch()->label_set(&fakeL, 0);
 608   }
 609   n->emit(buf, this->regalloc());
 610 
 611   // Emitting into the scratch buffer should not fail
 612   assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason()));
 613 
 614   if (is_branch) // Restore label.
 615     n->as_MachBranch()->label_set(saveL, save_bnum);
 616 
 617   // End scratch_emit_size section.
 618   set_in_scratch_emit_size(false);
 619 
 620   return buf.insts_size();
 621 }
 622 
 623 
 624 // ============================================================================
 625 //------------------------------Compile standard-------------------------------
 626 debug_only( int Compile::_debug_idx = 100000; )
 627 
 628 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 629 // the continuation bci for on stack replacement.
 630 
 631 
 632 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 633                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 634                 : Phase(Compiler),
 635                   _env(ci_env),
 636                   _log(ci_env->log()),
 637                   _compile_id(ci_env->compile_id()),
 638                   _save_argument_registers(false),
 639                   _stub_name(NULL),
 640                   _stub_function(NULL),
 641                   _stub_entry_point(NULL),
 642                   _method(target),
 643                   _entry_bci(osr_bci),
 644                   _initial_gvn(NULL),
 645                   _for_igvn(NULL),
 646                   _warm_calls(NULL),
 647                   _subsume_loads(subsume_loads),
 648                   _do_escape_analysis(do_escape_analysis),
 649                   _eliminate_boxing(eliminate_boxing),
 650                   _failure_reason(NULL),
 651                   _code_buffer("Compile::Fill_buffer"),
 652                   _orig_pc_slot(0),
 653                   _orig_pc_slot_offset_in_bytes(0),
 654                   _has_method_handle_invokes(false),
 655                   _mach_constant_base_node(NULL),
 656                   _node_bundling_limit(0),
 657                   _node_bundling_base(NULL),
 658                   _java_calls(0),
 659                   _inner_loops(0),
 660                   _scratch_const_size(-1),
 661                   _in_scratch_emit_size(false),
 662                   _dead_node_list(comp_arena()),
 663                   _dead_node_count(0),
 664 #ifndef PRODUCT
 665                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 666                   _in_dump_cnt(0),
 667                   _printer(IdealGraphPrinter::printer()),
 668 #endif
 669                   _congraph(NULL),
 670                   _comp_arena(mtCompiler),
 671                   _node_arena(mtCompiler),
 672                   _old_arena(mtCompiler),
 673                   _Compile_types(mtCompiler),
 674                   _replay_inline_data(NULL),
 675                   _late_inlines(comp_arena(), 2, 0, NULL),
 676                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 677                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 678                   _late_inlines_pos(0),
 679                   _number_of_mh_late_inlines(0),
 680                   _inlining_progress(false),
 681                   _inlining_incrementally(false),
 682                   _print_inlining_list(NULL),
 683                   _print_inlining_idx(0),
 684                   _interpreter_frame_size(0),
 685                   _max_node_limit(MaxNodeLimit) {
 686   C = this;
 687 
 688   CompileWrapper cw(this);
 689 #ifndef PRODUCT
 690   if (TimeCompiler2) {
 691     tty->print(" ");
 692     target->holder()->name()->print();
 693     tty->print(".");
 694     target->print_short_name();
 695     tty->print("  ");
 696   }
 697   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 698   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 699   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 700   if (!print_opto_assembly) {
 701     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 702     if (print_assembly && !Disassembler::can_decode()) {
 703       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 704       print_opto_assembly = true;
 705     }
 706   }
 707   set_print_assembly(print_opto_assembly);
 708   set_parsed_irreducible_loop(false);
 709 
 710   if (method()->has_option("ReplayInline")) {
 711     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 712   }
 713 #endif
 714   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 715   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 716   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 717 
 718   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 719     // Make sure the method being compiled gets its own MDO,
 720     // so we can at least track the decompile_count().
 721     // Need MDO to record RTM code generation state.
 722     method()->ensure_method_data();
 723   }
 724 
 725   Init(::AliasLevel);
 726 
 727 
 728   print_compile_messages();
 729 
 730   _ilt = InlineTree::build_inline_tree_root();
 731 
 732   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 733   assert(num_alias_types() >= AliasIdxRaw, "");
 734 
 735 #define MINIMUM_NODE_HASH  1023
 736   // Node list that Iterative GVN will start with
 737   Unique_Node_List for_igvn(comp_arena());
 738   set_for_igvn(&for_igvn);
 739 
 740   // GVN that will be run immediately on new nodes
 741   uint estimated_size = method()->code_size()*4+64;
 742   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 743   PhaseGVN gvn(node_arena(), estimated_size);
 744   set_initial_gvn(&gvn);
 745 
 746   if (print_inlining() || print_intrinsics()) {
 747     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 748   }
 749   { // Scope for timing the parser
 750     TracePhase t3("parse", &_t_parser, true);
 751 
 752     // Put top into the hash table ASAP.
 753     initial_gvn()->transform_no_reclaim(top());
 754 
 755     // Set up tf(), start(), and find a CallGenerator.
 756     CallGenerator* cg = NULL;
 757     if (is_osr_compilation()) {
 758       const TypeTuple *domain = StartOSRNode::osr_domain();
 759       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 760       init_tf(TypeFunc::make(domain, range));
 761       StartNode* s = new (this) StartOSRNode(root(), domain);
 762       initial_gvn()->set_type_bottom(s);
 763       init_start(s);
 764       cg = CallGenerator::for_osr(method(), entry_bci());
 765     } else {
 766       // Normal case.
 767       init_tf(TypeFunc::make(method()));
 768       StartNode* s = new (this) StartNode(root(), tf()->domain());
 769       initial_gvn()->set_type_bottom(s);
 770       init_start(s);
 771       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 772         // With java.lang.ref.reference.get() we must go through the
 773         // intrinsic when G1 is enabled - even when get() is the root
 774         // method of the compile - so that, if necessary, the value in
 775         // the referent field of the reference object gets recorded by
 776         // the pre-barrier code.
 777         // Specifically, if G1 is enabled, the value in the referent
 778         // field is recorded by the G1 SATB pre barrier. This will
 779         // result in the referent being marked live and the reference
 780         // object removed from the list of discovered references during
 781         // reference processing.
 782         cg = find_intrinsic(method(), false);
 783       }
 784       if (cg == NULL) {
 785         float past_uses = method()->interpreter_invocation_count();
 786         float expected_uses = past_uses;
 787         cg = CallGenerator::for_inline(method(), expected_uses);
 788       }
 789     }
 790     if (failing())  return;
 791     if (cg == NULL) {
 792       record_method_not_compilable_all_tiers("cannot parse method");
 793       return;
 794     }
 795     JVMState* jvms = build_start_state(start(), tf());
 796     if ((jvms = cg->generate(jvms)) == NULL) {
 797       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 798         record_method_not_compilable("method parse failed");
 799       }
 800       return;
 801     }
 802     GraphKit kit(jvms);
 803 
 804     if (!kit.stopped()) {
 805       // Accept return values, and transfer control we know not where.
 806       // This is done by a special, unique ReturnNode bound to root.
 807       return_values(kit.jvms());
 808     }
 809 
 810     if (kit.has_exceptions()) {
 811       // Any exceptions that escape from this call must be rethrown
 812       // to whatever caller is dynamically above us on the stack.
 813       // This is done by a special, unique RethrowNode bound to root.
 814       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 815     }
 816 
 817     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 818 
 819     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 820       inline_string_calls(true);
 821     }
 822 
 823     if (failing())  return;
 824 
 825     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 826 
 827     // Remove clutter produced by parsing.
 828     if (!failing()) {
 829       ResourceMark rm;
 830       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 831     }
 832   }
 833 
 834   // Note:  Large methods are capped off in do_one_bytecode().
 835   if (failing())  return;
 836 
 837   // After parsing, node notes are no longer automagic.
 838   // They must be propagated by register_new_node_with_optimizer(),
 839   // clone(), or the like.
 840   set_default_node_notes(NULL);
 841 
 842   for (;;) {
 843     int successes = Inline_Warm();
 844     if (failing())  return;
 845     if (successes == 0)  break;
 846   }
 847 
 848   // Drain the list.
 849   Finish_Warm();
 850 #ifndef PRODUCT
 851   if (_printer) {
 852     _printer->print_inlining(this);
 853   }
 854 #endif
 855 
 856   if (failing())  return;
 857   NOT_PRODUCT( verify_graph_edges(); )
 858 
 859   // Now optimize
 860   Optimize();
 861   if (failing())  return;
 862   NOT_PRODUCT( verify_graph_edges(); )
 863 
 864 #ifndef PRODUCT
 865   if (PrintIdeal) {
 866     ttyLocker ttyl;  // keep the following output all in one block
 867     // This output goes directly to the tty, not the compiler log.
 868     // To enable tools to match it up with the compilation activity,
 869     // be sure to tag this tty output with the compile ID.
 870     if (xtty != NULL) {
 871       xtty->head("ideal compile_id='%d'%s", compile_id(),
 872                  is_osr_compilation()    ? " compile_kind='osr'" :
 873                  "");
 874     }
 875     root()->dump(9999);
 876     if (xtty != NULL) {
 877       xtty->tail("ideal");
 878     }
 879   }
 880 #endif
 881 
 882   NOT_PRODUCT( verify_barriers(); )
 883 
 884   // Dump compilation data to replay it.
 885   if (method()->has_option("DumpReplay")) {
 886     env()->dump_replay_data(_compile_id);
 887   }
 888   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 889     env()->dump_inline_data(_compile_id);
 890   }
 891 
 892   // Now that we know the size of all the monitors we can add a fixed slot
 893   // for the original deopt pc.
 894 
 895   _orig_pc_slot =  fixed_slots();
 896   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 897   set_fixed_slots(next_slot);
 898 
 899   // Compute when to use implicit null checks. Used by matching trap based
 900   // nodes and NullCheck optimization.
 901   set_allowed_deopt_reasons();
 902 
 903   // Now generate code
 904   Code_Gen();
 905   if (failing())  return;
 906 
 907   // Check if we want to skip execution of all compiled code.
 908   {
 909 #ifndef PRODUCT
 910     if (OptoNoExecute) {
 911       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 912       return;
 913     }
 914     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 915 #endif
 916 
 917     if (is_osr_compilation()) {
 918       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 919       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 920     } else {
 921       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 922       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 923     }
 924 
 925     env()->register_method(_method, _entry_bci,
 926                            &_code_offsets,
 927                            _orig_pc_slot_offset_in_bytes,
 928                            code_buffer(),
 929                            frame_size_in_words(), _oop_map_set,
 930                            &_handler_table, &_inc_table,
 931                            compiler,
 932                            env()->comp_level(),
 933                            has_unsafe_access(),
 934                            SharedRuntime::is_wide_vector(max_vector_size()),
 935                            rtm_state()
 936                            );
 937 
 938     if (log() != NULL) // Print code cache state into compiler log
 939       log()->code_cache_state();
 940   }
 941 }
 942 
 943 //------------------------------Compile----------------------------------------
 944 // Compile a runtime stub
 945 Compile::Compile( ciEnv* ci_env,
 946                   TypeFunc_generator generator,
 947                   address stub_function,
 948                   const char *stub_name,
 949                   int is_fancy_jump,
 950                   bool pass_tls,
 951                   bool save_arg_registers,
 952                   bool return_pc )
 953   : Phase(Compiler),
 954     _env(ci_env),
 955     _log(ci_env->log()),
 956     _compile_id(0),
 957     _save_argument_registers(save_arg_registers),
 958     _method(NULL),
 959     _stub_name(stub_name),
 960     _stub_function(stub_function),
 961     _stub_entry_point(NULL),
 962     _entry_bci(InvocationEntryBci),
 963     _initial_gvn(NULL),
 964     _for_igvn(NULL),
 965     _warm_calls(NULL),
 966     _orig_pc_slot(0),
 967     _orig_pc_slot_offset_in_bytes(0),
 968     _subsume_loads(true),
 969     _do_escape_analysis(false),
 970     _eliminate_boxing(false),
 971     _failure_reason(NULL),
 972     _code_buffer("Compile::Fill_buffer"),
 973     _has_method_handle_invokes(false),
 974     _mach_constant_base_node(NULL),
 975     _node_bundling_limit(0),
 976     _node_bundling_base(NULL),
 977     _java_calls(0),
 978     _inner_loops(0),
 979 #ifndef PRODUCT
 980     _trace_opto_output(TraceOptoOutput),
 981     _in_dump_cnt(0),
 982     _printer(NULL),
 983 #endif
 984     _comp_arena(mtCompiler),
 985     _node_arena(mtCompiler),
 986     _old_arena(mtCompiler),
 987     _Compile_types(mtCompiler),
 988     _dead_node_list(comp_arena()),
 989     _dead_node_count(0),
 990     _congraph(NULL),
 991     _replay_inline_data(NULL),
 992     _number_of_mh_late_inlines(0),
 993     _inlining_progress(false),
 994     _inlining_incrementally(false),
 995     _print_inlining_list(NULL),
 996     _print_inlining_idx(0),
 997     _allowed_reasons(0),
 998     _interpreter_frame_size(0),
 999     _max_node_limit(MaxNodeLimit) {
1000   C = this;
1001 
1002 #ifndef PRODUCT
1003   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
1004   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
1005   set_print_assembly(PrintFrameConverterAssembly);
1006   set_parsed_irreducible_loop(false);
1007 #endif
1008   set_has_irreducible_loop(false); // no loops
1009 
1010   CompileWrapper cw(this);
1011   Init(/*AliasLevel=*/ 0);
1012   init_tf((*generator)());
1013 
1014   {
1015     // The following is a dummy for the sake of GraphKit::gen_stub
1016     Unique_Node_List for_igvn(comp_arena());
1017     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1018     PhaseGVN gvn(Thread::current()->resource_area(),255);
1019     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1020     gvn.transform_no_reclaim(top());
1021 
1022     GraphKit kit;
1023     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1024   }
1025 
1026   NOT_PRODUCT( verify_graph_edges(); )
1027   Code_Gen();
1028   if (failing())  return;
1029 
1030 
1031   // Entry point will be accessed using compile->stub_entry_point();
1032   if (code_buffer() == NULL) {
1033     Matcher::soft_match_failure();
1034   } else {
1035     if (PrintAssembly && (WizardMode || Verbose))
1036       tty->print_cr("### Stub::%s", stub_name);
1037 
1038     if (!failing()) {
1039       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1040 
1041       // Make the NMethod
1042       // For now we mark the frame as never safe for profile stackwalking
1043       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1044                                                       code_buffer(),
1045                                                       CodeOffsets::frame_never_safe,
1046                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1047                                                       frame_size_in_words(),
1048                                                       _oop_map_set,
1049                                                       save_arg_registers);
1050       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1051 
1052       _stub_entry_point = rs->entry_point();
1053     }
1054   }
1055 }
1056 
1057 //------------------------------Init-------------------------------------------
1058 // Prepare for a single compilation
1059 void Compile::Init(int aliaslevel) {
1060   _unique  = 0;
1061   _regalloc = NULL;
1062 
1063   _tf      = NULL;  // filled in later
1064   _top     = NULL;  // cached later
1065   _matcher = NULL;  // filled in later
1066   _cfg     = NULL;  // filled in later
1067 
1068   set_24_bit_selection_and_mode(Use24BitFP, false);
1069 
1070   _node_note_array = NULL;
1071   _default_node_notes = NULL;
1072 
1073   _immutable_memory = NULL; // filled in at first inquiry
1074 
1075   // Globally visible Nodes
1076   // First set TOP to NULL to give safe behavior during creation of RootNode
1077   set_cached_top_node(NULL);
1078   set_root(new (this) RootNode());
1079   // Now that you have a Root to point to, create the real TOP
1080   set_cached_top_node( new (this) ConNode(Type::TOP) );
1081   set_recent_alloc(NULL, NULL);
1082 
1083   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1084   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1085   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1086   env()->set_dependencies(new Dependencies(env()));
1087 
1088   _fixed_slots = 0;
1089   set_has_split_ifs(false);
1090   set_has_loops(has_method() && method()->has_loops()); // first approximation
1091   set_has_stringbuilder(false);
1092   set_has_boxed_value(false);
1093   _trap_can_recompile = false;  // no traps emitted yet
1094   _major_progress = true; // start out assuming good things will happen
1095   set_has_unsafe_access(false);
1096   set_max_vector_size(0);
1097   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1098   set_decompile_count(0);
1099 
1100   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1101   set_num_loop_opts(LoopOptsCount);
1102   set_do_inlining(Inline);
1103   set_max_inline_size(MaxInlineSize);
1104   set_freq_inline_size(FreqInlineSize);
1105   set_do_scheduling(OptoScheduling);
1106   set_do_count_invocations(false);
1107   set_do_method_data_update(false);
1108   set_rtm_state(NoRTM); // No RTM lock eliding by default
1109   method_has_option_value("MaxNodeLimit", _max_node_limit);
1110 #if INCLUDE_RTM_OPT
1111   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1112     int rtm_state = method()->method_data()->rtm_state();
1113     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1114       // Don't generate RTM lock eliding code.
1115       set_rtm_state(NoRTM);
1116     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1117       // Generate RTM lock eliding code without abort ratio calculation code.
1118       set_rtm_state(UseRTM);
1119     } else if (UseRTMDeopt) {
1120       // Generate RTM lock eliding code and include abort ratio calculation
1121       // code if UseRTMDeopt is on.
1122       set_rtm_state(ProfileRTM);
1123     }
1124   }
1125 #endif
1126   if (debug_info()->recording_non_safepoints()) {
1127     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1128                         (comp_arena(), 8, 0, NULL));
1129     set_default_node_notes(Node_Notes::make(this));
1130   }
1131 
1132   // // -- Initialize types before each compile --
1133   // // Update cached type information
1134   // if( _method && _method->constants() )
1135   //   Type::update_loaded_types(_method, _method->constants());
1136 
1137   // Init alias_type map.
1138   if (!_do_escape_analysis && aliaslevel == 3)
1139     aliaslevel = 2;  // No unique types without escape analysis
1140   _AliasLevel = aliaslevel;
1141   const int grow_ats = 16;
1142   _max_alias_types = grow_ats;
1143   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1144   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1145   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1146   {
1147     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1148   }
1149   // Initialize the first few types.
1150   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1151   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1152   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1153   _num_alias_types = AliasIdxRaw+1;
1154   // Zero out the alias type cache.
1155   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1156   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1157   probe_alias_cache(NULL)->_index = AliasIdxTop;
1158 
1159   _intrinsics = NULL;
1160   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1161   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1162   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1163   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1164   register_library_intrinsics();
1165 #ifdef ASSERT
1166   _type_verify_symmetry = true;
1167 #endif
1168 }
1169 
1170 //---------------------------init_start----------------------------------------
1171 // Install the StartNode on this compile object.
1172 void Compile::init_start(StartNode* s) {
1173   if (failing())
1174     return; // already failing
1175   assert(s == start(), "");
1176 }
1177 
1178 StartNode* Compile::start() const {
1179   assert(!failing(), "");
1180   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1181     Node* start = root()->fast_out(i);
1182     if( start->is_Start() )
1183       return start->as_Start();
1184   }
1185   fatal("Did not find Start node!");
1186   return NULL;
1187 }
1188 
1189 //-------------------------------immutable_memory-------------------------------------
1190 // Access immutable memory
1191 Node* Compile::immutable_memory() {
1192   if (_immutable_memory != NULL) {
1193     return _immutable_memory;
1194   }
1195   StartNode* s = start();
1196   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1197     Node *p = s->fast_out(i);
1198     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1199       _immutable_memory = p;
1200       return _immutable_memory;
1201     }
1202   }
1203   ShouldNotReachHere();
1204   return NULL;
1205 }
1206 
1207 //----------------------set_cached_top_node------------------------------------
1208 // Install the cached top node, and make sure Node::is_top works correctly.
1209 void Compile::set_cached_top_node(Node* tn) {
1210   if (tn != NULL)  verify_top(tn);
1211   Node* old_top = _top;
1212   _top = tn;
1213   // Calling Node::setup_is_top allows the nodes the chance to adjust
1214   // their _out arrays.
1215   if (_top != NULL)     _top->setup_is_top();
1216   if (old_top != NULL)  old_top->setup_is_top();
1217   assert(_top == NULL || top()->is_top(), "");
1218 }
1219 
1220 #ifdef ASSERT
1221 uint Compile::count_live_nodes_by_graph_walk() {
1222   Unique_Node_List useful(comp_arena());
1223   // Get useful node list by walking the graph.
1224   identify_useful_nodes(useful);
1225   return useful.size();
1226 }
1227 
1228 void Compile::print_missing_nodes() {
1229 
1230   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1231   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1232     return;
1233   }
1234 
1235   // This is an expensive function. It is executed only when the user
1236   // specifies VerifyIdealNodeCount option or otherwise knows the
1237   // additional work that needs to be done to identify reachable nodes
1238   // by walking the flow graph and find the missing ones using
1239   // _dead_node_list.
1240 
1241   Unique_Node_List useful(comp_arena());
1242   // Get useful node list by walking the graph.
1243   identify_useful_nodes(useful);
1244 
1245   uint l_nodes = C->live_nodes();
1246   uint l_nodes_by_walk = useful.size();
1247 
1248   if (l_nodes != l_nodes_by_walk) {
1249     if (_log != NULL) {
1250       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1251       _log->stamp();
1252       _log->end_head();
1253     }
1254     VectorSet& useful_member_set = useful.member_set();
1255     int last_idx = l_nodes_by_walk;
1256     for (int i = 0; i < last_idx; i++) {
1257       if (useful_member_set.test(i)) {
1258         if (_dead_node_list.test(i)) {
1259           if (_log != NULL) {
1260             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1261           }
1262           if (PrintIdealNodeCount) {
1263             // Print the log message to tty
1264               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1265               useful.at(i)->dump();
1266           }
1267         }
1268       }
1269       else if (! _dead_node_list.test(i)) {
1270         if (_log != NULL) {
1271           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1272         }
1273         if (PrintIdealNodeCount) {
1274           // Print the log message to tty
1275           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1276         }
1277       }
1278     }
1279     if (_log != NULL) {
1280       _log->tail("mismatched_nodes");
1281     }
1282   }
1283 }
1284 #endif
1285 
1286 #ifndef PRODUCT
1287 void Compile::verify_top(Node* tn) const {
1288   if (tn != NULL) {
1289     assert(tn->is_Con(), "top node must be a constant");
1290     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1291     assert(tn->in(0) != NULL, "must have live top node");
1292   }
1293 }
1294 #endif
1295 
1296 
1297 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1298 
1299 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1300   guarantee(arr != NULL, "");
1301   int num_blocks = arr->length();
1302   if (grow_by < num_blocks)  grow_by = num_blocks;
1303   int num_notes = grow_by * _node_notes_block_size;
1304   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1305   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1306   while (num_notes > 0) {
1307     arr->append(notes);
1308     notes     += _node_notes_block_size;
1309     num_notes -= _node_notes_block_size;
1310   }
1311   assert(num_notes == 0, "exact multiple, please");
1312 }
1313 
1314 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1315   if (source == NULL || dest == NULL)  return false;
1316 
1317   if (dest->is_Con())
1318     return false;               // Do not push debug info onto constants.
1319 
1320 #ifdef ASSERT
1321   // Leave a bread crumb trail pointing to the original node:
1322   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1323     dest->set_debug_orig(source);
1324   }
1325 #endif
1326 
1327   if (node_note_array() == NULL)
1328     return false;               // Not collecting any notes now.
1329 
1330   // This is a copy onto a pre-existing node, which may already have notes.
1331   // If both nodes have notes, do not overwrite any pre-existing notes.
1332   Node_Notes* source_notes = node_notes_at(source->_idx);
1333   if (source_notes == NULL || source_notes->is_clear())  return false;
1334   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1335   if (dest_notes == NULL || dest_notes->is_clear()) {
1336     return set_node_notes_at(dest->_idx, source_notes);
1337   }
1338 
1339   Node_Notes merged_notes = (*source_notes);
1340   // The order of operations here ensures that dest notes will win...
1341   merged_notes.update_from(dest_notes);
1342   return set_node_notes_at(dest->_idx, &merged_notes);
1343 }
1344 
1345 
1346 //--------------------------allow_range_check_smearing-------------------------
1347 // Gating condition for coalescing similar range checks.
1348 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1349 // single covering check that is at least as strong as any of them.
1350 // If the optimization succeeds, the simplified (strengthened) range check
1351 // will always succeed.  If it fails, we will deopt, and then give up
1352 // on the optimization.
1353 bool Compile::allow_range_check_smearing() const {
1354   // If this method has already thrown a range-check,
1355   // assume it was because we already tried range smearing
1356   // and it failed.
1357   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1358   return !already_trapped;
1359 }
1360 
1361 
1362 //------------------------------flatten_alias_type-----------------------------
1363 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1364   int offset = tj->offset();
1365   TypePtr::PTR ptr = tj->ptr();
1366 
1367   // Known instance (scalarizable allocation) alias only with itself.
1368   bool is_known_inst = tj->isa_oopptr() != NULL &&
1369                        tj->is_oopptr()->is_known_instance();
1370 
1371   // Process weird unsafe references.
1372   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1373     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1374     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1375     tj = TypeOopPtr::BOTTOM;
1376     ptr = tj->ptr();
1377     offset = tj->offset();
1378   }
1379 
1380   // Array pointers need some flattening
1381   const TypeAryPtr *ta = tj->isa_aryptr();
1382   if (ta && ta->is_stable()) {
1383     // Erase stability property for alias analysis.
1384     tj = ta = ta->cast_to_stable(false);
1385   }
1386   if( ta && is_known_inst ) {
1387     if ( offset != Type::OffsetBot &&
1388          offset > arrayOopDesc::length_offset_in_bytes() ) {
1389       offset = Type::OffsetBot; // Flatten constant access into array body only
1390       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1391     }
1392   } else if( ta && _AliasLevel >= 2 ) {
1393     // For arrays indexed by constant indices, we flatten the alias
1394     // space to include all of the array body.  Only the header, klass
1395     // and array length can be accessed un-aliased.
1396     if( offset != Type::OffsetBot ) {
1397       if( ta->const_oop() ) { // MethodData* or Method*
1398         offset = Type::OffsetBot;   // Flatten constant access into array body
1399         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1400       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1401         // range is OK as-is.
1402         tj = ta = TypeAryPtr::RANGE;
1403       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1404         tj = TypeInstPtr::KLASS; // all klass loads look alike
1405         ta = TypeAryPtr::RANGE; // generic ignored junk
1406         ptr = TypePtr::BotPTR;
1407       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1408         tj = TypeInstPtr::MARK;
1409         ta = TypeAryPtr::RANGE; // generic ignored junk
1410         ptr = TypePtr::BotPTR;
1411       } else {                  // Random constant offset into array body
1412         offset = Type::OffsetBot;   // Flatten constant access into array body
1413         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1414       }
1415     }
1416     // Arrays of fixed size alias with arrays of unknown size.
1417     if (ta->size() != TypeInt::POS) {
1418       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1419       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1420     }
1421     // Arrays of known objects become arrays of unknown objects.
1422     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1423       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1424       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1425     }
1426     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1427       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1428       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1429     }
1430     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1431     // cannot be distinguished by bytecode alone.
1432     if (ta->elem() == TypeInt::BOOL) {
1433       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1434       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1435       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1436     }
1437     // During the 2nd round of IterGVN, NotNull castings are removed.
1438     // Make sure the Bottom and NotNull variants alias the same.
1439     // Also, make sure exact and non-exact variants alias the same.
1440     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1441       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1442     }
1443   }
1444 
1445   // Oop pointers need some flattening
1446   const TypeInstPtr *to = tj->isa_instptr();
1447   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1448     ciInstanceKlass *k = to->klass()->as_instance_klass();
1449     if( ptr == TypePtr::Constant ) {
1450       if (to->klass() != ciEnv::current()->Class_klass() ||
1451           offset < k->size_helper() * wordSize) {
1452         // No constant oop pointers (such as Strings); they alias with
1453         // unknown strings.
1454         assert(!is_known_inst, "not scalarizable allocation");
1455         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1456       }
1457     } else if( is_known_inst ) {
1458       tj = to; // Keep NotNull and klass_is_exact for instance type
1459     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1460       // During the 2nd round of IterGVN, NotNull castings are removed.
1461       // Make sure the Bottom and NotNull variants alias the same.
1462       // Also, make sure exact and non-exact variants alias the same.
1463       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1464     }
1465     if (to->speculative() != NULL) {
1466       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1467     }
1468     // Canonicalize the holder of this field
1469     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1470       // First handle header references such as a LoadKlassNode, even if the
1471       // object's klass is unloaded at compile time (4965979).
1472       if (!is_known_inst) { // Do it only for non-instance types
1473         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1474       }
1475     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1476       // Static fields are in the space above the normal instance
1477       // fields in the java.lang.Class instance.
1478       if (to->klass() != ciEnv::current()->Class_klass()) {
1479         to = NULL;
1480         tj = TypeOopPtr::BOTTOM;
1481         offset = tj->offset();
1482       }
1483     } else {
1484       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1485       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1486         if( is_known_inst ) {
1487           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1488         } else {
1489           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1490         }
1491       }
1492     }
1493   }
1494 
1495   // Klass pointers to object array klasses need some flattening
1496   const TypeKlassPtr *tk = tj->isa_klassptr();
1497   if( tk ) {
1498     // If we are referencing a field within a Klass, we need
1499     // to assume the worst case of an Object.  Both exact and
1500     // inexact types must flatten to the same alias class so
1501     // use NotNull as the PTR.
1502     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1503 
1504       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1505                                    TypeKlassPtr::OBJECT->klass(),
1506                                    offset);
1507     }
1508 
1509     ciKlass* klass = tk->klass();
1510     if( klass->is_obj_array_klass() ) {
1511       ciKlass* k = TypeAryPtr::OOPS->klass();
1512       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1513         k = TypeInstPtr::BOTTOM->klass();
1514       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1515     }
1516 
1517     // Check for precise loads from the primary supertype array and force them
1518     // to the supertype cache alias index.  Check for generic array loads from
1519     // the primary supertype array and also force them to the supertype cache
1520     // alias index.  Since the same load can reach both, we need to merge
1521     // these 2 disparate memories into the same alias class.  Since the
1522     // primary supertype array is read-only, there's no chance of confusion
1523     // where we bypass an array load and an array store.
1524     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1525     if (offset == Type::OffsetBot ||
1526         (offset >= primary_supers_offset &&
1527          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1528         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1529       offset = in_bytes(Klass::secondary_super_cache_offset());
1530       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1531     }
1532   }
1533 
1534   // Flatten all Raw pointers together.
1535   if (tj->base() == Type::RawPtr)
1536     tj = TypeRawPtr::BOTTOM;
1537 
1538   if (tj->base() == Type::AnyPtr)
1539     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1540 
1541   // Flatten all to bottom for now
1542   switch( _AliasLevel ) {
1543   case 0:
1544     tj = TypePtr::BOTTOM;
1545     break;
1546   case 1:                       // Flatten to: oop, static, field or array
1547     switch (tj->base()) {
1548     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1549     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1550     case Type::AryPtr:   // do not distinguish arrays at all
1551     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1552     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1553     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1554     default: ShouldNotReachHere();
1555     }
1556     break;
1557   case 2:                       // No collapsing at level 2; keep all splits
1558   case 3:                       // No collapsing at level 3; keep all splits
1559     break;
1560   default:
1561     Unimplemented();
1562   }
1563 
1564   offset = tj->offset();
1565   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1566 
1567   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1568           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1569           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1570           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1571           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1572           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1573           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1574           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1575   assert( tj->ptr() != TypePtr::TopPTR &&
1576           tj->ptr() != TypePtr::AnyNull &&
1577           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1578 //    assert( tj->ptr() != TypePtr::Constant ||
1579 //            tj->base() == Type::RawPtr ||
1580 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1581 
1582   return tj;
1583 }
1584 
1585 void Compile::AliasType::Init(int i, const TypePtr* at) {
1586   _index = i;
1587   _adr_type = at;
1588   _field = NULL;
1589   _element = NULL;
1590   _is_rewritable = true; // default
1591   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1592   if (atoop != NULL && atoop->is_known_instance()) {
1593     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1594     _general_index = Compile::current()->get_alias_index(gt);
1595   } else {
1596     _general_index = 0;
1597   }
1598 }
1599 
1600 BasicType Compile::AliasType::basic_type() const {
1601   if (element() != NULL) {
1602     const Type* element = adr_type()->is_aryptr()->elem();
1603     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1604   } if (field() != NULL) {
1605     return field()->layout_type();
1606   } else {
1607     return T_ILLEGAL; // unknown
1608   }
1609 }
1610 
1611 //---------------------------------print_on------------------------------------
1612 #ifndef PRODUCT
1613 void Compile::AliasType::print_on(outputStream* st) {
1614   if (index() < 10)
1615         st->print("@ <%d> ", index());
1616   else  st->print("@ <%d>",  index());
1617   st->print(is_rewritable() ? "   " : " RO");
1618   int offset = adr_type()->offset();
1619   if (offset == Type::OffsetBot)
1620         st->print(" +any");
1621   else  st->print(" +%-3d", offset);
1622   st->print(" in ");
1623   adr_type()->dump_on(st);
1624   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1625   if (field() != NULL && tjp) {
1626     if (tjp->klass()  != field()->holder() ||
1627         tjp->offset() != field()->offset_in_bytes()) {
1628       st->print(" != ");
1629       field()->print();
1630       st->print(" ***");
1631     }
1632   }
1633 }
1634 
1635 void print_alias_types() {
1636   Compile* C = Compile::current();
1637   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1638   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1639     C->alias_type(idx)->print_on(tty);
1640     tty->cr();
1641   }
1642 }
1643 #endif
1644 
1645 
1646 //----------------------------probe_alias_cache--------------------------------
1647 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1648   intptr_t key = (intptr_t) adr_type;
1649   key ^= key >> logAliasCacheSize;
1650   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1651 }
1652 
1653 
1654 //-----------------------------grow_alias_types--------------------------------
1655 void Compile::grow_alias_types() {
1656   const int old_ats  = _max_alias_types; // how many before?
1657   const int new_ats  = old_ats;          // how many more?
1658   const int grow_ats = old_ats+new_ats;  // how many now?
1659   _max_alias_types = grow_ats;
1660   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1661   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1662   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1663   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1664 }
1665 
1666 
1667 //--------------------------------find_alias_type------------------------------
1668 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1669   if (_AliasLevel == 0)
1670     return alias_type(AliasIdxBot);
1671 
1672   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1673   if (ace->_adr_type == adr_type) {
1674     return alias_type(ace->_index);
1675   }
1676 
1677   // Handle special cases.
1678   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1679   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1680 
1681   // Do it the slow way.
1682   const TypePtr* flat = flatten_alias_type(adr_type);
1683 
1684 #ifdef ASSERT
1685   {
1686     ResourceMark rm;
1687     assert(flat == flatten_alias_type(flat),
1688            err_msg("not idempotent: adr_type = %s; flat = %s => %s", Type::str(adr_type),
1689                    Type::str(flat), Type::str(flatten_alias_type(flat))));
1690     assert(flat != TypePtr::BOTTOM,
1691            err_msg("cannot alias-analyze an untyped ptr: adr_type = %s", Type::str(adr_type)));
1692     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1693       const TypeOopPtr* foop = flat->is_oopptr();
1694       // Scalarizable allocations have exact klass always.
1695       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1696       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1697       assert(foop == flatten_alias_type(xoop),
1698              err_msg("exactness must not affect alias type: foop = %s; xoop = %s",
1699                      Type::str(foop), Type::str(xoop)));
1700     }
1701   }
1702 #endif
1703 
1704   int idx = AliasIdxTop;
1705   for (int i = 0; i < num_alias_types(); i++) {
1706     if (alias_type(i)->adr_type() == flat) {
1707       idx = i;
1708       break;
1709     }
1710   }
1711 
1712   if (idx == AliasIdxTop) {
1713     if (no_create)  return NULL;
1714     // Grow the array if necessary.
1715     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1716     // Add a new alias type.
1717     idx = _num_alias_types++;
1718     _alias_types[idx]->Init(idx, flat);
1719     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1720     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1721     if (flat->isa_instptr()) {
1722       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1723           && flat->is_instptr()->klass() == env()->Class_klass())
1724         alias_type(idx)->set_rewritable(false);
1725     }
1726     if (flat->isa_aryptr()) {
1727 #ifdef ASSERT
1728       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1729       // (T_BYTE has the weakest alignment and size restrictions...)
1730       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1731 #endif
1732       if (flat->offset() == TypePtr::OffsetBot) {
1733         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1734       }
1735     }
1736     if (flat->isa_klassptr()) {
1737       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1738         alias_type(idx)->set_rewritable(false);
1739       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1740         alias_type(idx)->set_rewritable(false);
1741       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1742         alias_type(idx)->set_rewritable(false);
1743       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1744         alias_type(idx)->set_rewritable(false);
1745     }
1746     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1747     // but the base pointer type is not distinctive enough to identify
1748     // references into JavaThread.)
1749 
1750     // Check for final fields.
1751     const TypeInstPtr* tinst = flat->isa_instptr();
1752     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1753       ciField* field;
1754       if (tinst->const_oop() != NULL &&
1755           tinst->klass() == ciEnv::current()->Class_klass() &&
1756           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1757         // static field
1758         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1759         field = k->get_field_by_offset(tinst->offset(), true);
1760       } else {
1761         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1762         field = k->get_field_by_offset(tinst->offset(), false);
1763       }
1764       assert(field == NULL ||
1765              original_field == NULL ||
1766              (field->holder() == original_field->holder() &&
1767               field->offset() == original_field->offset() &&
1768               field->is_static() == original_field->is_static()), "wrong field?");
1769       // Set field() and is_rewritable() attributes.
1770       if (field != NULL)  alias_type(idx)->set_field(field);
1771     }
1772   }
1773 
1774   // Fill the cache for next time.
1775   ace->_adr_type = adr_type;
1776   ace->_index    = idx;
1777   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1778 
1779   // Might as well try to fill the cache for the flattened version, too.
1780   AliasCacheEntry* face = probe_alias_cache(flat);
1781   if (face->_adr_type == NULL) {
1782     face->_adr_type = flat;
1783     face->_index    = idx;
1784     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1785   }
1786 
1787   return alias_type(idx);
1788 }
1789 
1790 
1791 Compile::AliasType* Compile::alias_type(ciField* field) {
1792   const TypeOopPtr* t;
1793   if (field->is_static())
1794     t = TypeInstPtr::make(field->holder()->java_mirror());
1795   else
1796     t = TypeOopPtr::make_from_klass_raw(field->holder());
1797   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1798   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1799   return atp;
1800 }
1801 
1802 
1803 //------------------------------have_alias_type--------------------------------
1804 bool Compile::have_alias_type(const TypePtr* adr_type) {
1805   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1806   if (ace->_adr_type == adr_type) {
1807     return true;
1808   }
1809 
1810   // Handle special cases.
1811   if (adr_type == NULL)             return true;
1812   if (adr_type == TypePtr::BOTTOM)  return true;
1813 
1814   return find_alias_type(adr_type, true, NULL) != NULL;
1815 }
1816 
1817 //-----------------------------must_alias--------------------------------------
1818 // True if all values of the given address type are in the given alias category.
1819 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1820   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1821   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1822   if (alias_idx == AliasIdxTop)         return false; // the empty category
1823   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1824 
1825   // the only remaining possible overlap is identity
1826   int adr_idx = get_alias_index(adr_type);
1827   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1828   assert(adr_idx == alias_idx ||
1829          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1830           && adr_type                       != TypeOopPtr::BOTTOM),
1831          "should not be testing for overlap with an unsafe pointer");
1832   return adr_idx == alias_idx;
1833 }
1834 
1835 //------------------------------can_alias--------------------------------------
1836 // True if any values of the given address type are in the given alias category.
1837 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1838   if (alias_idx == AliasIdxTop)         return false; // the empty category
1839   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1840   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1841   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1842 
1843   // the only remaining possible overlap is identity
1844   int adr_idx = get_alias_index(adr_type);
1845   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1846   return adr_idx == alias_idx;
1847 }
1848 
1849 
1850 
1851 //---------------------------pop_warm_call-------------------------------------
1852 WarmCallInfo* Compile::pop_warm_call() {
1853   WarmCallInfo* wci = _warm_calls;
1854   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1855   return wci;
1856 }
1857 
1858 //----------------------------Inline_Warm--------------------------------------
1859 int Compile::Inline_Warm() {
1860   // If there is room, try to inline some more warm call sites.
1861   // %%% Do a graph index compaction pass when we think we're out of space?
1862   if (!InlineWarmCalls)  return 0;
1863 
1864   int calls_made_hot = 0;
1865   int room_to_grow   = NodeCountInliningCutoff - unique();
1866   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1867   int amount_grown   = 0;
1868   WarmCallInfo* call;
1869   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1870     int est_size = (int)call->size();
1871     if (est_size > (room_to_grow - amount_grown)) {
1872       // This one won't fit anyway.  Get rid of it.
1873       call->make_cold();
1874       continue;
1875     }
1876     call->make_hot();
1877     calls_made_hot++;
1878     amount_grown   += est_size;
1879     amount_to_grow -= est_size;
1880   }
1881 
1882   if (calls_made_hot > 0)  set_major_progress();
1883   return calls_made_hot;
1884 }
1885 
1886 
1887 //----------------------------Finish_Warm--------------------------------------
1888 void Compile::Finish_Warm() {
1889   if (!InlineWarmCalls)  return;
1890   if (failing())  return;
1891   if (warm_calls() == NULL)  return;
1892 
1893   // Clean up loose ends, if we are out of space for inlining.
1894   WarmCallInfo* call;
1895   while ((call = pop_warm_call()) != NULL) {
1896     call->make_cold();
1897   }
1898 }
1899 
1900 //---------------------cleanup_loop_predicates-----------------------
1901 // Remove the opaque nodes that protect the predicates so that all unused
1902 // checks and uncommon_traps will be eliminated from the ideal graph
1903 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1904   if (predicate_count()==0) return;
1905   for (int i = predicate_count(); i > 0; i--) {
1906     Node * n = predicate_opaque1_node(i-1);
1907     assert(n->Opcode() == Op_Opaque1, "must be");
1908     igvn.replace_node(n, n->in(1));
1909   }
1910   assert(predicate_count()==0, "should be clean!");
1911 }
1912 
1913 void Compile::add_range_check_cast(Node* n) {
1914   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1915   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1916   _range_check_casts->append(n);
1917 }
1918 
1919 // Remove all range check dependent CastIINodes.
1920 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1921   for (int i = range_check_cast_count(); i > 0; i--) {
1922     Node* cast = range_check_cast_node(i-1);
1923     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1924     igvn.replace_node(cast, cast->in(1));
1925   }
1926   assert(range_check_cast_count() == 0, "should be empty");
1927 }
1928 
1929 // StringOpts and late inlining of string methods
1930 void Compile::inline_string_calls(bool parse_time) {
1931   {
1932     // remove useless nodes to make the usage analysis simpler
1933     ResourceMark rm;
1934     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1935   }
1936 
1937   {
1938     ResourceMark rm;
1939     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1940     PhaseStringOpts pso(initial_gvn(), for_igvn());
1941     print_method(PHASE_AFTER_STRINGOPTS, 3);
1942   }
1943 
1944   // now inline anything that we skipped the first time around
1945   if (!parse_time) {
1946     _late_inlines_pos = _late_inlines.length();
1947   }
1948 
1949   while (_string_late_inlines.length() > 0) {
1950     CallGenerator* cg = _string_late_inlines.pop();
1951     cg->do_late_inline();
1952     if (failing())  return;
1953   }
1954   _string_late_inlines.trunc_to(0);
1955 }
1956 
1957 // Late inlining of boxing methods
1958 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1959   if (_boxing_late_inlines.length() > 0) {
1960     assert(has_boxed_value(), "inconsistent");
1961 
1962     PhaseGVN* gvn = initial_gvn();
1963     set_inlining_incrementally(true);
1964 
1965     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1966     for_igvn()->clear();
1967     gvn->replace_with(&igvn);
1968 
1969     _late_inlines_pos = _late_inlines.length();
1970 
1971     while (_boxing_late_inlines.length() > 0) {
1972       CallGenerator* cg = _boxing_late_inlines.pop();
1973       cg->do_late_inline();
1974       if (failing())  return;
1975     }
1976     _boxing_late_inlines.trunc_to(0);
1977 
1978     {
1979       ResourceMark rm;
1980       PhaseRemoveUseless pru(gvn, for_igvn());
1981     }
1982 
1983     igvn = PhaseIterGVN(gvn);
1984     igvn.optimize();
1985 
1986     set_inlining_progress(false);
1987     set_inlining_incrementally(false);
1988   }
1989 }
1990 
1991 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1992   assert(IncrementalInline, "incremental inlining should be on");
1993   PhaseGVN* gvn = initial_gvn();
1994 
1995   set_inlining_progress(false);
1996   for_igvn()->clear();
1997   gvn->replace_with(&igvn);
1998 
1999   int i = 0;
2000 
2001   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2002     CallGenerator* cg = _late_inlines.at(i);
2003     _late_inlines_pos = i+1;
2004     cg->do_late_inline();
2005     if (failing())  return;
2006   }
2007   int j = 0;
2008   for (; i < _late_inlines.length(); i++, j++) {
2009     _late_inlines.at_put(j, _late_inlines.at(i));
2010   }
2011   _late_inlines.trunc_to(j);
2012 
2013   {
2014     ResourceMark rm;
2015     PhaseRemoveUseless pru(gvn, for_igvn());
2016   }
2017 
2018   igvn = PhaseIterGVN(gvn);
2019 }
2020 
2021 // Perform incremental inlining until bound on number of live nodes is reached
2022 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2023   PhaseGVN* gvn = initial_gvn();
2024 
2025   set_inlining_incrementally(true);
2026   set_inlining_progress(true);
2027   uint low_live_nodes = 0;
2028 
2029   while(inlining_progress() && _late_inlines.length() > 0) {
2030 
2031     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2032       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2033         // PhaseIdealLoop is expensive so we only try it once we are
2034         // out of live nodes and we only try it again if the previous
2035         // helped got the number of nodes down significantly
2036         PhaseIdealLoop ideal_loop( igvn, false, true );
2037         if (failing())  return;
2038         low_live_nodes = live_nodes();
2039         _major_progress = true;
2040       }
2041 
2042       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2043         break;
2044       }
2045     }
2046 
2047     inline_incrementally_one(igvn);
2048 
2049     if (failing())  return;
2050 
2051     igvn.optimize();
2052 
2053     if (failing())  return;
2054   }
2055 
2056   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2057 
2058   if (_string_late_inlines.length() > 0) {
2059     assert(has_stringbuilder(), "inconsistent");
2060     for_igvn()->clear();
2061     initial_gvn()->replace_with(&igvn);
2062 
2063     inline_string_calls(false);
2064 
2065     if (failing())  return;
2066 
2067     {
2068       ResourceMark rm;
2069       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2070     }
2071 
2072     igvn = PhaseIterGVN(gvn);
2073 
2074     igvn.optimize();
2075   }
2076 
2077   set_inlining_incrementally(false);
2078 }
2079 
2080 
2081 // Remove edges from "root" to each SafePoint at a backward branch.
2082 // They were inserted during parsing (see add_safepoint()) to make
2083 // infinite loops without calls or exceptions visible to root, i.e.,
2084 // useful.
2085 void Compile::remove_root_to_sfpts_edges() {
2086   Node *r = root();
2087   if (r != NULL) {
2088     for (uint i = r->req(); i < r->len(); ++i) {
2089       Node *n = r->in(i);
2090       if (n != NULL && n->is_SafePoint()) {
2091         r->rm_prec(i);
2092         --i;
2093       }
2094     }
2095   }
2096 }
2097 
2098 //------------------------------Optimize---------------------------------------
2099 // Given a graph, optimize it.
2100 void Compile::Optimize() {
2101   TracePhase t1("optimizer", &_t_optimizer, true);
2102 
2103 #ifndef PRODUCT
2104   if (env()->break_at_compile()) {
2105     BREAKPOINT;
2106   }
2107 
2108 #endif
2109 
2110   ResourceMark rm;
2111   int          loop_opts_cnt;
2112 
2113   NOT_PRODUCT( verify_graph_edges(); )
2114 
2115   print_method(PHASE_AFTER_PARSING);
2116 
2117  {
2118   // Iterative Global Value Numbering, including ideal transforms
2119   // Initialize IterGVN with types and values from parse-time GVN
2120   PhaseIterGVN igvn(initial_gvn());
2121   {
2122     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2123     igvn.optimize();
2124   }
2125 
2126   print_method(PHASE_ITER_GVN1, 2);
2127 
2128   if (failing())  return;
2129 
2130   {
2131     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2132     inline_incrementally(igvn);
2133   }
2134 
2135   print_method(PHASE_INCREMENTAL_INLINE, 2);
2136 
2137   if (failing())  return;
2138 
2139   if (eliminate_boxing()) {
2140     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2141     // Inline valueOf() methods now.
2142     inline_boxing_calls(igvn);
2143 
2144     if (AlwaysIncrementalInline) {
2145       inline_incrementally(igvn);
2146     }
2147 
2148     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2149 
2150     if (failing())  return;
2151   }
2152 
2153   // Now that all inlining is over, cut edge from root to loop
2154   // safepoints
2155   remove_root_to_sfpts_edges();
2156 
2157   // Remove the speculative part of types and clean up the graph from
2158   // the extra CastPP nodes whose only purpose is to carry them. Do
2159   // that early so that optimizations are not disrupted by the extra
2160   // CastPP nodes.
2161   remove_speculative_types(igvn);
2162 
2163   // No more new expensive nodes will be added to the list from here
2164   // so keep only the actual candidates for optimizations.
2165   cleanup_expensive_nodes(igvn);
2166 
2167   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2168     NOT_PRODUCT(Compile::TracePhase t2("", &_t_renumberLive, TimeCompiler);)
2169     initial_gvn()->replace_with(&igvn);
2170     for_igvn()->clear();
2171     Unique_Node_List new_worklist(C->comp_arena());
2172     {
2173       ResourceMark rm;
2174       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2175     }
2176     set_for_igvn(&new_worklist);
2177     igvn = PhaseIterGVN(initial_gvn());
2178     igvn.optimize();
2179   }
2180 
2181   // Perform escape analysis
2182   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2183     if (has_loops()) {
2184       // Cleanup graph (remove dead nodes).
2185       TracePhase t2("idealLoop", &_t_idealLoop, true);
2186       PhaseIdealLoop ideal_loop( igvn, false, true );
2187       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2188       if (failing())  return;
2189     }
2190     ConnectionGraph::do_analysis(this, &igvn);
2191 
2192     if (failing())  return;
2193 
2194     // Optimize out fields loads from scalar replaceable allocations.
2195     igvn.optimize();
2196     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2197 
2198     if (failing())  return;
2199 
2200     if (congraph() != NULL && macro_count() > 0) {
2201       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2202       PhaseMacroExpand mexp(igvn);
2203       mexp.eliminate_macro_nodes();
2204       igvn.set_delay_transform(false);
2205 
2206       igvn.optimize();
2207       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2208 
2209       if (failing())  return;
2210     }
2211   }
2212 
2213   // Loop transforms on the ideal graph.  Range Check Elimination,
2214   // peeling, unrolling, etc.
2215 
2216   // Set loop opts counter
2217   loop_opts_cnt = num_loop_opts();
2218   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2219     {
2220       TracePhase t2("idealLoop", &_t_idealLoop, true);
2221       PhaseIdealLoop ideal_loop( igvn, true );
2222       loop_opts_cnt--;
2223       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2224       if (failing())  return;
2225     }
2226     // Loop opts pass if partial peeling occurred in previous pass
2227     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2228       TracePhase t3("idealLoop", &_t_idealLoop, true);
2229       PhaseIdealLoop ideal_loop( igvn, false );
2230       loop_opts_cnt--;
2231       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2232       if (failing())  return;
2233     }
2234     // Loop opts pass for loop-unrolling before CCP
2235     if(major_progress() && (loop_opts_cnt > 0)) {
2236       TracePhase t4("idealLoop", &_t_idealLoop, true);
2237       PhaseIdealLoop ideal_loop( igvn, false );
2238       loop_opts_cnt--;
2239       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2240     }
2241     if (!failing()) {
2242       // Verify that last round of loop opts produced a valid graph
2243       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2244       PhaseIdealLoop::verify(igvn);
2245     }
2246   }
2247   if (failing())  return;
2248 
2249   // Conditional Constant Propagation;
2250   PhaseCCP ccp( &igvn );
2251   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2252   {
2253     TracePhase t2("ccp", &_t_ccp, true);
2254     ccp.do_transform();
2255   }
2256   print_method(PHASE_CPP1, 2);
2257 
2258   assert( true, "Break here to ccp.dump_old2new_map()");
2259 
2260   // Iterative Global Value Numbering, including ideal transforms
2261   {
2262     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2263     igvn = ccp;
2264     igvn.optimize();
2265   }
2266 
2267   print_method(PHASE_ITER_GVN2, 2);
2268 
2269   if (failing())  return;
2270 
2271   // Loop transforms on the ideal graph.  Range Check Elimination,
2272   // peeling, unrolling, etc.
2273   if(loop_opts_cnt > 0) {
2274     debug_only( int cnt = 0; );
2275     while(major_progress() && (loop_opts_cnt > 0)) {
2276       TracePhase t2("idealLoop", &_t_idealLoop, true);
2277       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2278       PhaseIdealLoop ideal_loop( igvn, true);
2279       loop_opts_cnt--;
2280       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2281       if (failing())  return;
2282     }
2283   }
2284 
2285   {
2286     // Verify that all previous optimizations produced a valid graph
2287     // at least to this point, even if no loop optimizations were done.
2288     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2289     PhaseIdealLoop::verify(igvn);
2290   }
2291 
2292   if (range_check_cast_count() > 0) {
2293     // No more loop optimizations. Remove all range check dependent CastIINodes.
2294     C->remove_range_check_casts(igvn);
2295     igvn.optimize();
2296   }
2297 
2298   {
2299     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2300     PhaseMacroExpand  mex(igvn);
2301     if (mex.expand_macro_nodes()) {
2302       assert(failing(), "must bail out w/ explicit message");
2303       return;
2304     }
2305   }
2306 
2307  } // (End scope of igvn; run destructor if necessary for asserts.)
2308 
2309   dump_inlining();
2310   // A method with only infinite loops has no edges entering loops from root
2311   {
2312     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2313     if (final_graph_reshaping()) {
2314       assert(failing(), "must bail out w/ explicit message");
2315       return;
2316     }
2317   }
2318 
2319   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2320 }
2321 
2322 
2323 //------------------------------Code_Gen---------------------------------------
2324 // Given a graph, generate code for it
2325 void Compile::Code_Gen() {
2326   if (failing()) {
2327     return;
2328   }
2329 
2330   // Perform instruction selection.  You might think we could reclaim Matcher
2331   // memory PDQ, but actually the Matcher is used in generating spill code.
2332   // Internals of the Matcher (including some VectorSets) must remain live
2333   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2334   // set a bit in reclaimed memory.
2335 
2336   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2337   // nodes.  Mapping is only valid at the root of each matched subtree.
2338   NOT_PRODUCT( verify_graph_edges(); )
2339 
2340   Matcher matcher;
2341   _matcher = &matcher;
2342   {
2343     TracePhase t2("matcher", &_t_matcher, true);
2344     matcher.match();
2345   }
2346   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2347   // nodes.  Mapping is only valid at the root of each matched subtree.
2348   NOT_PRODUCT( verify_graph_edges(); )
2349 
2350   // If you have too many nodes, or if matching has failed, bail out
2351   check_node_count(0, "out of nodes matching instructions");
2352   if (failing()) {
2353     return;
2354   }
2355 
2356   // Build a proper-looking CFG
2357   PhaseCFG cfg(node_arena(), root(), matcher);
2358   _cfg = &cfg;
2359   {
2360     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2361     bool success = cfg.do_global_code_motion();
2362     if (!success) {
2363       return;
2364     }
2365 
2366     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2367     NOT_PRODUCT( verify_graph_edges(); )
2368     debug_only( cfg.verify(); )
2369   }
2370 
2371   PhaseChaitin regalloc(unique(), cfg, matcher);
2372   _regalloc = &regalloc;
2373   {
2374     TracePhase t2("regalloc", &_t_registerAllocation, true);
2375     // Perform register allocation.  After Chaitin, use-def chains are
2376     // no longer accurate (at spill code) and so must be ignored.
2377     // Node->LRG->reg mappings are still accurate.
2378     _regalloc->Register_Allocate();
2379 
2380     // Bail out if the allocator builds too many nodes
2381     if (failing()) {
2382       return;
2383     }
2384   }
2385 
2386   // Prior to register allocation we kept empty basic blocks in case the
2387   // the allocator needed a place to spill.  After register allocation we
2388   // are not adding any new instructions.  If any basic block is empty, we
2389   // can now safely remove it.
2390   {
2391     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2392     cfg.remove_empty_blocks();
2393     if (do_freq_based_layout()) {
2394       PhaseBlockLayout layout(cfg);
2395     } else {
2396       cfg.set_loop_alignment();
2397     }
2398     cfg.fixup_flow();
2399   }
2400 
2401   // Apply peephole optimizations
2402   if( OptoPeephole ) {
2403     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2404     PhasePeephole peep( _regalloc, cfg);
2405     peep.do_transform();
2406   }
2407 
2408   // Do late expand if CPU requires this.
2409   if (Matcher::require_postalloc_expand) {
2410     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2411     cfg.postalloc_expand(_regalloc);
2412   }
2413 
2414   // Convert Nodes to instruction bits in a buffer
2415   {
2416     // %%%% workspace merge brought two timers together for one job
2417     TracePhase t2a("output", &_t_output, true);
2418     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2419     Output();
2420   }
2421 
2422   print_method(PHASE_FINAL_CODE);
2423 
2424   // He's dead, Jim.
2425   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2426   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2427 }
2428 
2429 
2430 //------------------------------dump_asm---------------------------------------
2431 // Dump formatted assembly
2432 #ifndef PRODUCT
2433 void Compile::dump_asm(int *pcs, uint pc_limit) {
2434   bool cut_short = false;
2435   tty->print_cr("#");
2436   tty->print("#  ");  _tf->dump();  tty->cr();
2437   tty->print_cr("#");
2438 
2439   // For all blocks
2440   int pc = 0x0;                 // Program counter
2441   char starts_bundle = ' ';
2442   _regalloc->dump_frame();
2443 
2444   Node *n = NULL;
2445   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2446     if (VMThread::should_terminate()) {
2447       cut_short = true;
2448       break;
2449     }
2450     Block* block = _cfg->get_block(i);
2451     if (block->is_connector() && !Verbose) {
2452       continue;
2453     }
2454     n = block->head();
2455     if (pcs && n->_idx < pc_limit) {
2456       tty->print("%3.3x   ", pcs[n->_idx]);
2457     } else {
2458       tty->print("      ");
2459     }
2460     block->dump_head(_cfg);
2461     if (block->is_connector()) {
2462       tty->print_cr("        # Empty connector block");
2463     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2464       tty->print_cr("        # Block is sole successor of call");
2465     }
2466 
2467     // For all instructions
2468     Node *delay = NULL;
2469     for (uint j = 0; j < block->number_of_nodes(); j++) {
2470       if (VMThread::should_terminate()) {
2471         cut_short = true;
2472         break;
2473       }
2474       n = block->get_node(j);
2475       if (valid_bundle_info(n)) {
2476         Bundle* bundle = node_bundling(n);
2477         if (bundle->used_in_unconditional_delay()) {
2478           delay = n;
2479           continue;
2480         }
2481         if (bundle->starts_bundle()) {
2482           starts_bundle = '+';
2483         }
2484       }
2485 
2486       if (WizardMode) {
2487         n->dump();
2488       }
2489 
2490       if( !n->is_Region() &&    // Dont print in the Assembly
2491           !n->is_Phi() &&       // a few noisely useless nodes
2492           !n->is_Proj() &&
2493           !n->is_MachTemp() &&
2494           !n->is_SafePointScalarObject() &&
2495           !n->is_Catch() &&     // Would be nice to print exception table targets
2496           !n->is_MergeMem() &&  // Not very interesting
2497           !n->is_top() &&       // Debug info table constants
2498           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2499           ) {
2500         if (pcs && n->_idx < pc_limit)
2501           tty->print("%3.3x", pcs[n->_idx]);
2502         else
2503           tty->print("   ");
2504         tty->print(" %c ", starts_bundle);
2505         starts_bundle = ' ';
2506         tty->print("\t");
2507         n->format(_regalloc, tty);
2508         tty->cr();
2509       }
2510 
2511       // If we have an instruction with a delay slot, and have seen a delay,
2512       // then back up and print it
2513       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2514         assert(delay != NULL, "no unconditional delay instruction");
2515         if (WizardMode) delay->dump();
2516 
2517         if (node_bundling(delay)->starts_bundle())
2518           starts_bundle = '+';
2519         if (pcs && n->_idx < pc_limit)
2520           tty->print("%3.3x", pcs[n->_idx]);
2521         else
2522           tty->print("   ");
2523         tty->print(" %c ", starts_bundle);
2524         starts_bundle = ' ';
2525         tty->print("\t");
2526         delay->format(_regalloc, tty);
2527         tty->cr();
2528         delay = NULL;
2529       }
2530 
2531       // Dump the exception table as well
2532       if( n->is_Catch() && (Verbose || WizardMode) ) {
2533         // Print the exception table for this offset
2534         _handler_table.print_subtable_for(pc);
2535       }
2536     }
2537 
2538     if (pcs && n->_idx < pc_limit)
2539       tty->print_cr("%3.3x", pcs[n->_idx]);
2540     else
2541       tty->cr();
2542 
2543     assert(cut_short || delay == NULL, "no unconditional delay branch");
2544 
2545   } // End of per-block dump
2546   tty->cr();
2547 
2548   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2549 }
2550 #endif
2551 
2552 //------------------------------Final_Reshape_Counts---------------------------
2553 // This class defines counters to help identify when a method
2554 // may/must be executed using hardware with only 24-bit precision.
2555 struct Final_Reshape_Counts : public StackObj {
2556   int  _call_count;             // count non-inlined 'common' calls
2557   int  _float_count;            // count float ops requiring 24-bit precision
2558   int  _double_count;           // count double ops requiring more precision
2559   int  _java_call_count;        // count non-inlined 'java' calls
2560   int  _inner_loop_count;       // count loops which need alignment
2561   VectorSet _visited;           // Visitation flags
2562   Node_List _tests;             // Set of IfNodes & PCTableNodes
2563 
2564   Final_Reshape_Counts() :
2565     _call_count(0), _float_count(0), _double_count(0),
2566     _java_call_count(0), _inner_loop_count(0),
2567     _visited( Thread::current()->resource_area() ) { }
2568 
2569   void inc_call_count  () { _call_count  ++; }
2570   void inc_float_count () { _float_count ++; }
2571   void inc_double_count() { _double_count++; }
2572   void inc_java_call_count() { _java_call_count++; }
2573   void inc_inner_loop_count() { _inner_loop_count++; }
2574 
2575   int  get_call_count  () const { return _call_count  ; }
2576   int  get_float_count () const { return _float_count ; }
2577   int  get_double_count() const { return _double_count; }
2578   int  get_java_call_count() const { return _java_call_count; }
2579   int  get_inner_loop_count() const { return _inner_loop_count; }
2580 };
2581 
2582 #ifdef ASSERT
2583 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2584   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2585   // Make sure the offset goes inside the instance layout.
2586   return k->contains_field_offset(tp->offset());
2587   // Note that OffsetBot and OffsetTop are very negative.
2588 }
2589 #endif
2590 
2591 // Eliminate trivially redundant StoreCMs and accumulate their
2592 // precedence edges.
2593 void Compile::eliminate_redundant_card_marks(Node* n) {
2594   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2595   if (n->in(MemNode::Address)->outcnt() > 1) {
2596     // There are multiple users of the same address so it might be
2597     // possible to eliminate some of the StoreCMs
2598     Node* mem = n->in(MemNode::Memory);
2599     Node* adr = n->in(MemNode::Address);
2600     Node* val = n->in(MemNode::ValueIn);
2601     Node* prev = n;
2602     bool done = false;
2603     // Walk the chain of StoreCMs eliminating ones that match.  As
2604     // long as it's a chain of single users then the optimization is
2605     // safe.  Eliminating partially redundant StoreCMs would require
2606     // cloning copies down the other paths.
2607     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2608       if (adr == mem->in(MemNode::Address) &&
2609           val == mem->in(MemNode::ValueIn)) {
2610         // redundant StoreCM
2611         if (mem->req() > MemNode::OopStore) {
2612           // Hasn't been processed by this code yet.
2613           n->add_prec(mem->in(MemNode::OopStore));
2614         } else {
2615           // Already converted to precedence edge
2616           for (uint i = mem->req(); i < mem->len(); i++) {
2617             // Accumulate any precedence edges
2618             if (mem->in(i) != NULL) {
2619               n->add_prec(mem->in(i));
2620             }
2621           }
2622           // Everything above this point has been processed.
2623           done = true;
2624         }
2625         // Eliminate the previous StoreCM
2626         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2627         assert(mem->outcnt() == 0, "should be dead");
2628         mem->disconnect_inputs(NULL, this);
2629       } else {
2630         prev = mem;
2631       }
2632       mem = prev->in(MemNode::Memory);
2633     }
2634   }
2635 }
2636 
2637 //------------------------------final_graph_reshaping_impl----------------------
2638 // Implement items 1-5 from final_graph_reshaping below.
2639 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2640 
2641   if ( n->outcnt() == 0 ) return; // dead node
2642   uint nop = n->Opcode();
2643 
2644   // Check for 2-input instruction with "last use" on right input.
2645   // Swap to left input.  Implements item (2).
2646   if( n->req() == 3 &&          // two-input instruction
2647       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2648       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2649       n->in(2)->outcnt() == 1 &&// right use IS a last use
2650       !n->in(2)->is_Con() ) {   // right use is not a constant
2651     // Check for commutative opcode
2652     switch( nop ) {
2653     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2654     case Op_MaxI:  case Op_MinI:
2655     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2656     case Op_AndL:  case Op_XorL:  case Op_OrL:
2657     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2658       // Move "last use" input to left by swapping inputs
2659       n->swap_edges(1, 2);
2660       break;
2661     }
2662     default:
2663       break;
2664     }
2665   }
2666 
2667 #ifdef ASSERT
2668   if( n->is_Mem() ) {
2669     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2670     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2671             // oop will be recorded in oop map if load crosses safepoint
2672             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2673                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2674             "raw memory operations should have control edge");
2675   }
2676 #endif
2677   // Count FPU ops and common calls, implements item (3)
2678   switch( nop ) {
2679   // Count all float operations that may use FPU
2680   case Op_AddF:
2681   case Op_SubF:
2682   case Op_MulF:
2683   case Op_DivF:
2684   case Op_NegF:
2685   case Op_ModF:
2686   case Op_ConvI2F:
2687   case Op_ConF:
2688   case Op_CmpF:
2689   case Op_CmpF3:
2690   // case Op_ConvL2F: // longs are split into 32-bit halves
2691     frc.inc_float_count();
2692     break;
2693 
2694   case Op_ConvF2D:
2695   case Op_ConvD2F:
2696     frc.inc_float_count();
2697     frc.inc_double_count();
2698     break;
2699 
2700   // Count all double operations that may use FPU
2701   case Op_AddD:
2702   case Op_SubD:
2703   case Op_MulD:
2704   case Op_DivD:
2705   case Op_NegD:
2706   case Op_ModD:
2707   case Op_ConvI2D:
2708   case Op_ConvD2I:
2709   // case Op_ConvL2D: // handled by leaf call
2710   // case Op_ConvD2L: // handled by leaf call
2711   case Op_ConD:
2712   case Op_CmpD:
2713   case Op_CmpD3:
2714     frc.inc_double_count();
2715     break;
2716   case Op_Opaque1:              // Remove Opaque Nodes before matching
2717   case Op_Opaque2:              // Remove Opaque Nodes before matching
2718   case Op_Opaque3:
2719     n->subsume_by(n->in(1), this);
2720     break;
2721   case Op_CallStaticJava:
2722   case Op_CallJava:
2723   case Op_CallDynamicJava:
2724     frc.inc_java_call_count(); // Count java call site;
2725   case Op_CallRuntime:
2726   case Op_CallLeaf:
2727   case Op_CallLeafNoFP: {
2728     assert( n->is_Call(), "" );
2729     CallNode *call = n->as_Call();
2730     // Count call sites where the FP mode bit would have to be flipped.
2731     // Do not count uncommon runtime calls:
2732     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2733     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2734     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2735       frc.inc_call_count();   // Count the call site
2736     } else {                  // See if uncommon argument is shared
2737       Node *n = call->in(TypeFunc::Parms);
2738       int nop = n->Opcode();
2739       // Clone shared simple arguments to uncommon calls, item (1).
2740       if( n->outcnt() > 1 &&
2741           !n->is_Proj() &&
2742           nop != Op_CreateEx &&
2743           nop != Op_CheckCastPP &&
2744           nop != Op_DecodeN &&
2745           nop != Op_DecodeNKlass &&
2746           !n->is_Mem() ) {
2747         Node *x = n->clone();
2748         call->set_req( TypeFunc::Parms, x );
2749       }
2750     }
2751     break;
2752   }
2753 
2754   case Op_StoreD:
2755   case Op_LoadD:
2756   case Op_LoadD_unaligned:
2757     frc.inc_double_count();
2758     goto handle_mem;
2759   case Op_StoreF:
2760   case Op_LoadF:
2761     frc.inc_float_count();
2762     goto handle_mem;
2763 
2764   case Op_StoreCM:
2765     {
2766       // Convert OopStore dependence into precedence edge
2767       Node* prec = n->in(MemNode::OopStore);
2768       n->del_req(MemNode::OopStore);
2769       n->add_prec(prec);
2770       eliminate_redundant_card_marks(n);
2771     }
2772 
2773     // fall through
2774 
2775   case Op_StoreB:
2776   case Op_StoreC:
2777   case Op_StorePConditional:
2778   case Op_StoreI:
2779   case Op_StoreL:
2780   case Op_StoreIConditional:
2781   case Op_StoreLConditional:
2782   case Op_CompareAndSwapI:
2783   case Op_CompareAndSwapL:
2784   case Op_CompareAndSwapP:
2785   case Op_CompareAndSwapN:
2786   case Op_GetAndAddI:
2787   case Op_GetAndAddL:
2788   case Op_GetAndSetI:
2789   case Op_GetAndSetL:
2790   case Op_GetAndSetP:
2791   case Op_GetAndSetN:
2792   case Op_StoreP:
2793   case Op_StoreN:
2794   case Op_StoreNKlass:
2795   case Op_LoadB:
2796   case Op_LoadUB:
2797   case Op_LoadUS:
2798   case Op_LoadI:
2799   case Op_LoadKlass:
2800   case Op_LoadNKlass:
2801   case Op_LoadL:
2802   case Op_LoadL_unaligned:
2803   case Op_LoadPLocked:
2804   case Op_LoadP:
2805   case Op_LoadN:
2806   case Op_LoadRange:
2807   case Op_LoadS: {
2808   handle_mem:
2809 #ifdef ASSERT
2810     if( VerifyOptoOopOffsets ) {
2811       assert( n->is_Mem(), "" );
2812       MemNode *mem  = (MemNode*)n;
2813       // Check to see if address types have grounded out somehow.
2814       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2815       assert( !tp || oop_offset_is_sane(tp), "" );
2816     }
2817 #endif
2818     break;
2819   }
2820 
2821   case Op_AddP: {               // Assert sane base pointers
2822     Node *addp = n->in(AddPNode::Address);
2823     assert( !addp->is_AddP() ||
2824             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2825             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2826             "Base pointers must match" );
2827 #ifdef _LP64
2828     if ((UseCompressedOops || UseCompressedClassPointers) &&
2829         addp->Opcode() == Op_ConP &&
2830         addp == n->in(AddPNode::Base) &&
2831         n->in(AddPNode::Offset)->is_Con()) {
2832       // Use addressing with narrow klass to load with offset on x86.
2833       // On sparc loading 32-bits constant and decoding it have less
2834       // instructions (4) then load 64-bits constant (7).
2835       // Do this transformation here since IGVN will convert ConN back to ConP.
2836       const Type* t = addp->bottom_type();
2837       if (t->isa_oopptr() || t->isa_klassptr()) {
2838         Node* nn = NULL;
2839 
2840         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2841 
2842         // Look for existing ConN node of the same exact type.
2843         Node* r  = root();
2844         uint cnt = r->outcnt();
2845         for (uint i = 0; i < cnt; i++) {
2846           Node* m = r->raw_out(i);
2847           if (m!= NULL && m->Opcode() == op &&
2848               m->bottom_type()->make_ptr() == t) {
2849             nn = m;
2850             break;
2851           }
2852         }
2853         if (nn != NULL) {
2854           // Decode a narrow oop to match address
2855           // [R12 + narrow_oop_reg<<3 + offset]
2856           if (t->isa_oopptr()) {
2857             nn = new (this) DecodeNNode(nn, t);
2858           } else {
2859             nn = new (this) DecodeNKlassNode(nn, t);
2860           }
2861           n->set_req(AddPNode::Base, nn);
2862           n->set_req(AddPNode::Address, nn);
2863           if (addp->outcnt() == 0) {
2864             addp->disconnect_inputs(NULL, this);
2865           }
2866         }
2867       }
2868     }
2869 #endif
2870     break;
2871   }
2872 
2873 #ifdef _LP64
2874   case Op_CastPP:
2875     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2876       Node* in1 = n->in(1);
2877       const Type* t = n->bottom_type();
2878       Node* new_in1 = in1->clone();
2879       new_in1->as_DecodeN()->set_type(t);
2880 
2881       if (!Matcher::narrow_oop_use_complex_address()) {
2882         //
2883         // x86, ARM and friends can handle 2 adds in addressing mode
2884         // and Matcher can fold a DecodeN node into address by using
2885         // a narrow oop directly and do implicit NULL check in address:
2886         //
2887         // [R12 + narrow_oop_reg<<3 + offset]
2888         // NullCheck narrow_oop_reg
2889         //
2890         // On other platforms (Sparc) we have to keep new DecodeN node and
2891         // use it to do implicit NULL check in address:
2892         //
2893         // decode_not_null narrow_oop_reg, base_reg
2894         // [base_reg + offset]
2895         // NullCheck base_reg
2896         //
2897         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2898         // to keep the information to which NULL check the new DecodeN node
2899         // corresponds to use it as value in implicit_null_check().
2900         //
2901         new_in1->set_req(0, n->in(0));
2902       }
2903 
2904       n->subsume_by(new_in1, this);
2905       if (in1->outcnt() == 0) {
2906         in1->disconnect_inputs(NULL, this);
2907       }
2908     }
2909     break;
2910 
2911   case Op_CmpP:
2912     // Do this transformation here to preserve CmpPNode::sub() and
2913     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2914     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2915       Node* in1 = n->in(1);
2916       Node* in2 = n->in(2);
2917       if (!in1->is_DecodeNarrowPtr()) {
2918         in2 = in1;
2919         in1 = n->in(2);
2920       }
2921       assert(in1->is_DecodeNarrowPtr(), "sanity");
2922 
2923       Node* new_in2 = NULL;
2924       if (in2->is_DecodeNarrowPtr()) {
2925         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2926         new_in2 = in2->in(1);
2927       } else if (in2->Opcode() == Op_ConP) {
2928         const Type* t = in2->bottom_type();
2929         if (t == TypePtr::NULL_PTR) {
2930           assert(in1->is_DecodeN(), "compare klass to null?");
2931           // Don't convert CmpP null check into CmpN if compressed
2932           // oops implicit null check is not generated.
2933           // This will allow to generate normal oop implicit null check.
2934           if (Matcher::gen_narrow_oop_implicit_null_checks())
2935             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2936           //
2937           // This transformation together with CastPP transformation above
2938           // will generated code for implicit NULL checks for compressed oops.
2939           //
2940           // The original code after Optimize()
2941           //
2942           //    LoadN memory, narrow_oop_reg
2943           //    decode narrow_oop_reg, base_reg
2944           //    CmpP base_reg, NULL
2945           //    CastPP base_reg // NotNull
2946           //    Load [base_reg + offset], val_reg
2947           //
2948           // after these transformations will be
2949           //
2950           //    LoadN memory, narrow_oop_reg
2951           //    CmpN narrow_oop_reg, NULL
2952           //    decode_not_null narrow_oop_reg, base_reg
2953           //    Load [base_reg + offset], val_reg
2954           //
2955           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2956           // since narrow oops can be used in debug info now (see the code in
2957           // final_graph_reshaping_walk()).
2958           //
2959           // At the end the code will be matched to
2960           // on x86:
2961           //
2962           //    Load_narrow_oop memory, narrow_oop_reg
2963           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2964           //    NullCheck narrow_oop_reg
2965           //
2966           // and on sparc:
2967           //
2968           //    Load_narrow_oop memory, narrow_oop_reg
2969           //    decode_not_null narrow_oop_reg, base_reg
2970           //    Load [base_reg + offset], val_reg
2971           //    NullCheck base_reg
2972           //
2973         } else if (t->isa_oopptr()) {
2974           new_in2 = ConNode::make(this, t->make_narrowoop());
2975         } else if (t->isa_klassptr()) {
2976           new_in2 = ConNode::make(this, t->make_narrowklass());
2977         }
2978       }
2979       if (new_in2 != NULL) {
2980         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2981         n->subsume_by(cmpN, this);
2982         if (in1->outcnt() == 0) {
2983           in1->disconnect_inputs(NULL, this);
2984         }
2985         if (in2->outcnt() == 0) {
2986           in2->disconnect_inputs(NULL, this);
2987         }
2988       }
2989     }
2990     break;
2991 
2992   case Op_DecodeN:
2993   case Op_DecodeNKlass:
2994     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2995     // DecodeN could be pinned when it can't be fold into
2996     // an address expression, see the code for Op_CastPP above.
2997     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2998     break;
2999 
3000   case Op_EncodeP:
3001   case Op_EncodePKlass: {
3002     Node* in1 = n->in(1);
3003     if (in1->is_DecodeNarrowPtr()) {
3004       n->subsume_by(in1->in(1), this);
3005     } else if (in1->Opcode() == Op_ConP) {
3006       const Type* t = in1->bottom_type();
3007       if (t == TypePtr::NULL_PTR) {
3008         assert(t->isa_oopptr(), "null klass?");
3009         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
3010       } else if (t->isa_oopptr()) {
3011         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
3012       } else if (t->isa_klassptr()) {
3013         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
3014       }
3015     }
3016     if (in1->outcnt() == 0) {
3017       in1->disconnect_inputs(NULL, this);
3018     }
3019     break;
3020   }
3021 
3022   case Op_Proj: {
3023     if (OptimizeStringConcat) {
3024       ProjNode* p = n->as_Proj();
3025       if (p->_is_io_use) {
3026         // Separate projections were used for the exception path which
3027         // are normally removed by a late inline.  If it wasn't inlined
3028         // then they will hang around and should just be replaced with
3029         // the original one.
3030         Node* proj = NULL;
3031         // Replace with just one
3032         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3033           Node *use = i.get();
3034           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3035             proj = use;
3036             break;
3037           }
3038         }
3039         assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop");
3040         if (proj != NULL) {
3041           p->subsume_by(proj, this);
3042         }
3043       }
3044     }
3045     break;
3046   }
3047 
3048   case Op_Phi:
3049     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3050       // The EncodeP optimization may create Phi with the same edges
3051       // for all paths. It is not handled well by Register Allocator.
3052       Node* unique_in = n->in(1);
3053       assert(unique_in != NULL, "");
3054       uint cnt = n->req();
3055       for (uint i = 2; i < cnt; i++) {
3056         Node* m = n->in(i);
3057         assert(m != NULL, "");
3058         if (unique_in != m)
3059           unique_in = NULL;
3060       }
3061       if (unique_in != NULL) {
3062         n->subsume_by(unique_in, this);
3063       }
3064     }
3065     break;
3066 
3067 #endif
3068 
3069 #ifdef ASSERT
3070   case Op_CastII:
3071     // Verify that all range check dependent CastII nodes were removed.
3072     if (n->isa_CastII()->has_range_check()) {
3073       n->dump(3);
3074       assert(false, "Range check dependent CastII node was not removed");
3075     }
3076     break;
3077 #endif
3078 
3079   case Op_ModI:
3080     if (UseDivMod) {
3081       // Check if a%b and a/b both exist
3082       Node* d = n->find_similar(Op_DivI);
3083       if (d) {
3084         // Replace them with a fused divmod if supported
3085         if (Matcher::has_match_rule(Op_DivModI)) {
3086           DivModINode* divmod = DivModINode::make(this, n);
3087           d->subsume_by(divmod->div_proj(), this);
3088           n->subsume_by(divmod->mod_proj(), this);
3089         } else {
3090           // replace a%b with a-((a/b)*b)
3091           Node* mult = new (this) MulINode(d, d->in(2));
3092           Node* sub  = new (this) SubINode(d->in(1), mult);
3093           n->subsume_by(sub, this);
3094         }
3095       }
3096     }
3097     break;
3098 
3099   case Op_ModL:
3100     if (UseDivMod) {
3101       // Check if a%b and a/b both exist
3102       Node* d = n->find_similar(Op_DivL);
3103       if (d) {
3104         // Replace them with a fused divmod if supported
3105         if (Matcher::has_match_rule(Op_DivModL)) {
3106           DivModLNode* divmod = DivModLNode::make(this, n);
3107           d->subsume_by(divmod->div_proj(), this);
3108           n->subsume_by(divmod->mod_proj(), this);
3109         } else {
3110           // replace a%b with a-((a/b)*b)
3111           Node* mult = new (this) MulLNode(d, d->in(2));
3112           Node* sub  = new (this) SubLNode(d->in(1), mult);
3113           n->subsume_by(sub, this);
3114         }
3115       }
3116     }
3117     break;
3118 
3119   case Op_LoadVector:
3120   case Op_StoreVector:
3121     break;
3122 
3123   case Op_PackB:
3124   case Op_PackS:
3125   case Op_PackI:
3126   case Op_PackF:
3127   case Op_PackL:
3128   case Op_PackD:
3129     if (n->req()-1 > 2) {
3130       // Replace many operand PackNodes with a binary tree for matching
3131       PackNode* p = (PackNode*) n;
3132       Node* btp = p->binary_tree_pack(this, 1, n->req());
3133       n->subsume_by(btp, this);
3134     }
3135     break;
3136   case Op_Loop:
3137   case Op_CountedLoop:
3138     if (n->as_Loop()->is_inner_loop()) {
3139       frc.inc_inner_loop_count();
3140     }
3141     break;
3142   case Op_LShiftI:
3143   case Op_RShiftI:
3144   case Op_URShiftI:
3145   case Op_LShiftL:
3146   case Op_RShiftL:
3147   case Op_URShiftL:
3148     if (Matcher::need_masked_shift_count) {
3149       // The cpu's shift instructions don't restrict the count to the
3150       // lower 5/6 bits. We need to do the masking ourselves.
3151       Node* in2 = n->in(2);
3152       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3153       const TypeInt* t = in2->find_int_type();
3154       if (t != NULL && t->is_con()) {
3155         juint shift = t->get_con();
3156         if (shift > mask) { // Unsigned cmp
3157           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
3158         }
3159       } else {
3160         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3161           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3162           n->set_req(2, shift);
3163         }
3164       }
3165       if (in2->outcnt() == 0) { // Remove dead node
3166         in2->disconnect_inputs(NULL, this);
3167       }
3168     }
3169     break;
3170   case Op_MemBarStoreStore:
3171   case Op_MemBarRelease:
3172     // Break the link with AllocateNode: it is no longer useful and
3173     // confuses register allocation.
3174     if (n->req() > MemBarNode::Precedent) {
3175       n->set_req(MemBarNode::Precedent, top());
3176     }
3177     break;
3178   default:
3179     assert( !n->is_Call(), "" );
3180     assert( !n->is_Mem(), "" );
3181     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3182     break;
3183   }
3184 
3185   // Collect CFG split points
3186   if (n->is_MultiBranch())
3187     frc._tests.push(n);
3188 }
3189 
3190 //------------------------------final_graph_reshaping_walk---------------------
3191 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3192 // requires that the walk visits a node's inputs before visiting the node.
3193 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3194   ResourceArea *area = Thread::current()->resource_area();
3195   Unique_Node_List sfpt(area);
3196 
3197   frc._visited.set(root->_idx); // first, mark node as visited
3198   uint cnt = root->req();
3199   Node *n = root;
3200   uint  i = 0;
3201   while (true) {
3202     if (i < cnt) {
3203       // Place all non-visited non-null inputs onto stack
3204       Node* m = n->in(i);
3205       ++i;
3206       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3207         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3208           // compute worst case interpreter size in case of a deoptimization
3209           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3210 
3211           sfpt.push(m);
3212         }
3213         cnt = m->req();
3214         nstack.push(n, i); // put on stack parent and next input's index
3215         n = m;
3216         i = 0;
3217       }
3218     } else {
3219       // Now do post-visit work
3220       final_graph_reshaping_impl( n, frc );
3221       if (nstack.is_empty())
3222         break;             // finished
3223       n = nstack.node();   // Get node from stack
3224       cnt = n->req();
3225       i = nstack.index();
3226       nstack.pop();        // Shift to the next node on stack
3227     }
3228   }
3229 
3230   // Skip next transformation if compressed oops are not used.
3231   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3232       (!UseCompressedOops && !UseCompressedClassPointers))
3233     return;
3234 
3235   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3236   // It could be done for an uncommon traps or any safepoints/calls
3237   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3238   while (sfpt.size() > 0) {
3239     n = sfpt.pop();
3240     JVMState *jvms = n->as_SafePoint()->jvms();
3241     assert(jvms != NULL, "sanity");
3242     int start = jvms->debug_start();
3243     int end   = n->req();
3244     bool is_uncommon = (n->is_CallStaticJava() &&
3245                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3246     for (int j = start; j < end; j++) {
3247       Node* in = n->in(j);
3248       if (in->is_DecodeNarrowPtr()) {
3249         bool safe_to_skip = true;
3250         if (!is_uncommon ) {
3251           // Is it safe to skip?
3252           for (uint i = 0; i < in->outcnt(); i++) {
3253             Node* u = in->raw_out(i);
3254             if (!u->is_SafePoint() ||
3255                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3256               safe_to_skip = false;
3257             }
3258           }
3259         }
3260         if (safe_to_skip) {
3261           n->set_req(j, in->in(1));
3262         }
3263         if (in->outcnt() == 0) {
3264           in->disconnect_inputs(NULL, this);
3265         }
3266       }
3267     }
3268   }
3269 }
3270 
3271 //------------------------------final_graph_reshaping--------------------------
3272 // Final Graph Reshaping.
3273 //
3274 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3275 //     and not commoned up and forced early.  Must come after regular
3276 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3277 //     inputs to Loop Phis; these will be split by the allocator anyways.
3278 //     Remove Opaque nodes.
3279 // (2) Move last-uses by commutative operations to the left input to encourage
3280 //     Intel update-in-place two-address operations and better register usage
3281 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3282 //     calls canonicalizing them back.
3283 // (3) Count the number of double-precision FP ops, single-precision FP ops
3284 //     and call sites.  On Intel, we can get correct rounding either by
3285 //     forcing singles to memory (requires extra stores and loads after each
3286 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3287 //     clearing the mode bit around call sites).  The mode bit is only used
3288 //     if the relative frequency of single FP ops to calls is low enough.
3289 //     This is a key transform for SPEC mpeg_audio.
3290 // (4) Detect infinite loops; blobs of code reachable from above but not
3291 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3292 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3293 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3294 //     Detection is by looking for IfNodes where only 1 projection is
3295 //     reachable from below or CatchNodes missing some targets.
3296 // (5) Assert for insane oop offsets in debug mode.
3297 
3298 bool Compile::final_graph_reshaping() {
3299   // an infinite loop may have been eliminated by the optimizer,
3300   // in which case the graph will be empty.
3301   if (root()->req() == 1) {
3302     record_method_not_compilable("trivial infinite loop");
3303     return true;
3304   }
3305 
3306   // Expensive nodes have their control input set to prevent the GVN
3307   // from freely commoning them. There's no GVN beyond this point so
3308   // no need to keep the control input. We want the expensive nodes to
3309   // be freely moved to the least frequent code path by gcm.
3310   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3311   for (int i = 0; i < expensive_count(); i++) {
3312     _expensive_nodes->at(i)->set_req(0, NULL);
3313   }
3314 
3315   Final_Reshape_Counts frc;
3316 
3317   // Visit everybody reachable!
3318   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3319   Node_Stack nstack(live_nodes() >> 1);
3320   final_graph_reshaping_walk(nstack, root(), frc);
3321 
3322   // Check for unreachable (from below) code (i.e., infinite loops).
3323   for( uint i = 0; i < frc._tests.size(); i++ ) {
3324     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3325     // Get number of CFG targets.
3326     // Note that PCTables include exception targets after calls.
3327     uint required_outcnt = n->required_outcnt();
3328     if (n->outcnt() != required_outcnt) {
3329       // Check for a few special cases.  Rethrow Nodes never take the
3330       // 'fall-thru' path, so expected kids is 1 less.
3331       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3332         if (n->in(0)->in(0)->is_Call()) {
3333           CallNode *call = n->in(0)->in(0)->as_Call();
3334           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3335             required_outcnt--;      // Rethrow always has 1 less kid
3336           } else if (call->req() > TypeFunc::Parms &&
3337                      call->is_CallDynamicJava()) {
3338             // Check for null receiver. In such case, the optimizer has
3339             // detected that the virtual call will always result in a null
3340             // pointer exception. The fall-through projection of this CatchNode
3341             // will not be populated.
3342             Node *arg0 = call->in(TypeFunc::Parms);
3343             if (arg0->is_Type() &&
3344                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3345               required_outcnt--;
3346             }
3347           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3348                      call->req() > TypeFunc::Parms+1 &&
3349                      call->is_CallStaticJava()) {
3350             // Check for negative array length. In such case, the optimizer has
3351             // detected that the allocation attempt will always result in an
3352             // exception. There is no fall-through projection of this CatchNode .
3353             Node *arg1 = call->in(TypeFunc::Parms+1);
3354             if (arg1->is_Type() &&
3355                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3356               required_outcnt--;
3357             }
3358           }
3359         }
3360       }
3361       // Recheck with a better notion of 'required_outcnt'
3362       if (n->outcnt() != required_outcnt) {
3363         record_method_not_compilable("malformed control flow");
3364         return true;            // Not all targets reachable!
3365       }
3366     }
3367     // Check that I actually visited all kids.  Unreached kids
3368     // must be infinite loops.
3369     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3370       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3371         record_method_not_compilable("infinite loop");
3372         return true;            // Found unvisited kid; must be unreach
3373       }
3374   }
3375 
3376   // If original bytecodes contained a mixture of floats and doubles
3377   // check if the optimizer has made it homogenous, item (3).
3378   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3379       frc.get_float_count() > 32 &&
3380       frc.get_double_count() == 0 &&
3381       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3382     set_24_bit_selection_and_mode( false,  true );
3383   }
3384 
3385   set_java_calls(frc.get_java_call_count());
3386   set_inner_loops(frc.get_inner_loop_count());
3387 
3388   // No infinite loops, no reason to bail out.
3389   return false;
3390 }
3391 
3392 //-----------------------------too_many_traps----------------------------------
3393 // Report if there are too many traps at the current method and bci.
3394 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3395 bool Compile::too_many_traps(ciMethod* method,
3396                              int bci,
3397                              Deoptimization::DeoptReason reason) {
3398   ciMethodData* md = method->method_data();
3399   if (md->is_empty()) {
3400     // Assume the trap has not occurred, or that it occurred only
3401     // because of a transient condition during start-up in the interpreter.
3402     return false;
3403   }
3404   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3405   if (md->has_trap_at(bci, m, reason) != 0) {
3406     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3407     // Also, if there are multiple reasons, or if there is no per-BCI record,
3408     // assume the worst.
3409     if (log())
3410       log()->elem("observe trap='%s' count='%d'",
3411                   Deoptimization::trap_reason_name(reason),
3412                   md->trap_count(reason));
3413     return true;
3414   } else {
3415     // Ignore method/bci and see if there have been too many globally.
3416     return too_many_traps(reason, md);
3417   }
3418 }
3419 
3420 // Less-accurate variant which does not require a method and bci.
3421 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3422                              ciMethodData* logmd) {
3423   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3424     // Too many traps globally.
3425     // Note that we use cumulative trap_count, not just md->trap_count.
3426     if (log()) {
3427       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3428       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3429                   Deoptimization::trap_reason_name(reason),
3430                   mcount, trap_count(reason));
3431     }
3432     return true;
3433   } else {
3434     // The coast is clear.
3435     return false;
3436   }
3437 }
3438 
3439 //--------------------------too_many_recompiles--------------------------------
3440 // Report if there are too many recompiles at the current method and bci.
3441 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3442 // Is not eager to return true, since this will cause the compiler to use
3443 // Action_none for a trap point, to avoid too many recompilations.
3444 bool Compile::too_many_recompiles(ciMethod* method,
3445                                   int bci,
3446                                   Deoptimization::DeoptReason reason) {
3447   ciMethodData* md = method->method_data();
3448   if (md->is_empty()) {
3449     // Assume the trap has not occurred, or that it occurred only
3450     // because of a transient condition during start-up in the interpreter.
3451     return false;
3452   }
3453   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3454   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3455   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3456   Deoptimization::DeoptReason per_bc_reason
3457     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3458   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3459   if ((per_bc_reason == Deoptimization::Reason_none
3460        || md->has_trap_at(bci, m, reason) != 0)
3461       // The trap frequency measure we care about is the recompile count:
3462       && md->trap_recompiled_at(bci, m)
3463       && md->overflow_recompile_count() >= bc_cutoff) {
3464     // Do not emit a trap here if it has already caused recompilations.
3465     // Also, if there are multiple reasons, or if there is no per-BCI record,
3466     // assume the worst.
3467     if (log())
3468       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3469                   Deoptimization::trap_reason_name(reason),
3470                   md->trap_count(reason),
3471                   md->overflow_recompile_count());
3472     return true;
3473   } else if (trap_count(reason) != 0
3474              && decompile_count() >= m_cutoff) {
3475     // Too many recompiles globally, and we have seen this sort of trap.
3476     // Use cumulative decompile_count, not just md->decompile_count.
3477     if (log())
3478       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3479                   Deoptimization::trap_reason_name(reason),
3480                   md->trap_count(reason), trap_count(reason),
3481                   md->decompile_count(), decompile_count());
3482     return true;
3483   } else {
3484     // The coast is clear.
3485     return false;
3486   }
3487 }
3488 
3489 // Compute when not to trap. Used by matching trap based nodes and
3490 // NullCheck optimization.
3491 void Compile::set_allowed_deopt_reasons() {
3492   _allowed_reasons = 0;
3493   if (is_method_compilation()) {
3494     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3495       assert(rs < BitsPerInt, "recode bit map");
3496       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3497         _allowed_reasons |= nth_bit(rs);
3498       }
3499     }
3500   }
3501 }
3502 
3503 #ifndef PRODUCT
3504 //------------------------------verify_graph_edges---------------------------
3505 // Walk the Graph and verify that there is a one-to-one correspondence
3506 // between Use-Def edges and Def-Use edges in the graph.
3507 void Compile::verify_graph_edges(bool no_dead_code) {
3508   if (VerifyGraphEdges) {
3509     ResourceArea *area = Thread::current()->resource_area();
3510     Unique_Node_List visited(area);
3511     // Call recursive graph walk to check edges
3512     _root->verify_edges(visited);
3513     if (no_dead_code) {
3514       // Now make sure that no visited node is used by an unvisited node.
3515       bool dead_nodes = false;
3516       Unique_Node_List checked(area);
3517       while (visited.size() > 0) {
3518         Node* n = visited.pop();
3519         checked.push(n);
3520         for (uint i = 0; i < n->outcnt(); i++) {
3521           Node* use = n->raw_out(i);
3522           if (checked.member(use))  continue;  // already checked
3523           if (visited.member(use))  continue;  // already in the graph
3524           if (use->is_Con())        continue;  // a dead ConNode is OK
3525           // At this point, we have found a dead node which is DU-reachable.
3526           if (!dead_nodes) {
3527             tty->print_cr("*** Dead nodes reachable via DU edges:");
3528             dead_nodes = true;
3529           }
3530           use->dump(2);
3531           tty->print_cr("---");
3532           checked.push(use);  // No repeats; pretend it is now checked.
3533         }
3534       }
3535       assert(!dead_nodes, "using nodes must be reachable from root");
3536     }
3537   }
3538 }
3539 
3540 // Verify GC barriers consistency
3541 // Currently supported:
3542 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3543 void Compile::verify_barriers() {
3544   if (UseG1GC) {
3545     // Verify G1 pre-barriers
3546     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3547 
3548     ResourceArea *area = Thread::current()->resource_area();
3549     Unique_Node_List visited(area);
3550     Node_List worklist(area);
3551     // We're going to walk control flow backwards starting from the Root
3552     worklist.push(_root);
3553     while (worklist.size() > 0) {
3554       Node* x = worklist.pop();
3555       if (x == NULL || x == top()) continue;
3556       if (visited.member(x)) {
3557         continue;
3558       } else {
3559         visited.push(x);
3560       }
3561 
3562       if (x->is_Region()) {
3563         for (uint i = 1; i < x->req(); i++) {
3564           worklist.push(x->in(i));
3565         }
3566       } else {
3567         worklist.push(x->in(0));
3568         // We are looking for the pattern:
3569         //                            /->ThreadLocal
3570         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3571         //              \->ConI(0)
3572         // We want to verify that the If and the LoadB have the same control
3573         // See GraphKit::g1_write_barrier_pre()
3574         if (x->is_If()) {
3575           IfNode *iff = x->as_If();
3576           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3577             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3578             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3579                 && cmp->in(1)->is_Load()) {
3580               LoadNode* load = cmp->in(1)->as_Load();
3581               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3582                   && load->in(2)->in(3)->is_Con()
3583                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3584 
3585                 Node* if_ctrl = iff->in(0);
3586                 Node* load_ctrl = load->in(0);
3587 
3588                 if (if_ctrl != load_ctrl) {
3589                   // Skip possible CProj->NeverBranch in infinite loops
3590                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3591                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3592                     if_ctrl = if_ctrl->in(0)->in(0);
3593                   }
3594                 }
3595                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3596               }
3597             }
3598           }
3599         }
3600       }
3601     }
3602   }
3603 }
3604 
3605 #endif
3606 
3607 // The Compile object keeps track of failure reasons separately from the ciEnv.
3608 // This is required because there is not quite a 1-1 relation between the
3609 // ciEnv and its compilation task and the Compile object.  Note that one
3610 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3611 // to backtrack and retry without subsuming loads.  Other than this backtracking
3612 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3613 // by the logic in C2Compiler.
3614 void Compile::record_failure(const char* reason) {
3615   if (log() != NULL) {
3616     log()->elem("failure reason='%s' phase='compile'", reason);
3617   }
3618   if (_failure_reason == NULL) {
3619     // Record the first failure reason.
3620     _failure_reason = reason;
3621   }
3622 
3623   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3624     C->print_method(PHASE_FAILURE);
3625   }
3626   _root = NULL;  // flush the graph, too
3627 }
3628 
3629 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3630   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3631     _phase_name(name), _dolog(dolog)
3632 {
3633   if (dolog) {
3634     C = Compile::current();
3635     _log = C->log();
3636   } else {
3637     C = NULL;
3638     _log = NULL;
3639   }
3640   if (_log != NULL) {
3641     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3642     _log->stamp();
3643     _log->end_head();
3644   }
3645 }
3646 
3647 Compile::TracePhase::~TracePhase() {
3648 
3649   C = Compile::current();
3650   if (_dolog) {
3651     _log = C->log();
3652   } else {
3653     _log = NULL;
3654   }
3655 
3656 #ifdef ASSERT
3657   if (PrintIdealNodeCount) {
3658     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3659                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3660   }
3661 
3662   if (VerifyIdealNodeCount) {
3663     Compile::current()->print_missing_nodes();
3664   }
3665 #endif
3666 
3667   if (_log != NULL) {
3668     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3669   }
3670 }
3671 
3672 //=============================================================================
3673 // Two Constant's are equal when the type and the value are equal.
3674 bool Compile::Constant::operator==(const Constant& other) {
3675   if (type()          != other.type()         )  return false;
3676   if (can_be_reused() != other.can_be_reused())  return false;
3677   // For floating point values we compare the bit pattern.
3678   switch (type()) {
3679   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3680   case T_LONG:
3681   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3682   case T_OBJECT:
3683   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3684   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3685   case T_METADATA: return (_v._metadata == other._v._metadata);
3686   default: ShouldNotReachHere();
3687   }
3688   return false;
3689 }
3690 
3691 static int type_to_size_in_bytes(BasicType t) {
3692   switch (t) {
3693   case T_LONG:    return sizeof(jlong  );
3694   case T_FLOAT:   return sizeof(jfloat );
3695   case T_DOUBLE:  return sizeof(jdouble);
3696   case T_METADATA: return sizeof(Metadata*);
3697     // We use T_VOID as marker for jump-table entries (labels) which
3698     // need an internal word relocation.
3699   case T_VOID:
3700   case T_ADDRESS:
3701   case T_OBJECT:  return sizeof(jobject);
3702   }
3703 
3704   ShouldNotReachHere();
3705   return -1;
3706 }
3707 
3708 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3709   // sort descending
3710   if (a->freq() > b->freq())  return -1;
3711   if (a->freq() < b->freq())  return  1;
3712   return 0;
3713 }
3714 
3715 void Compile::ConstantTable::calculate_offsets_and_size() {
3716   // First, sort the array by frequencies.
3717   _constants.sort(qsort_comparator);
3718 
3719 #ifdef ASSERT
3720   // Make sure all jump-table entries were sorted to the end of the
3721   // array (they have a negative frequency).
3722   bool found_void = false;
3723   for (int i = 0; i < _constants.length(); i++) {
3724     Constant con = _constants.at(i);
3725     if (con.type() == T_VOID)
3726       found_void = true;  // jump-tables
3727     else
3728       assert(!found_void, "wrong sorting");
3729   }
3730 #endif
3731 
3732   int offset = 0;
3733   for (int i = 0; i < _constants.length(); i++) {
3734     Constant* con = _constants.adr_at(i);
3735 
3736     // Align offset for type.
3737     int typesize = type_to_size_in_bytes(con->type());
3738     offset = align_size_up(offset, typesize);
3739     con->set_offset(offset);   // set constant's offset
3740 
3741     if (con->type() == T_VOID) {
3742       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3743       offset = offset + typesize * n->outcnt();  // expand jump-table
3744     } else {
3745       offset = offset + typesize;
3746     }
3747   }
3748 
3749   // Align size up to the next section start (which is insts; see
3750   // CodeBuffer::align_at_start).
3751   assert(_size == -1, "already set?");
3752   _size = align_size_up(offset, CodeEntryAlignment);
3753 }
3754 
3755 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3756   MacroAssembler _masm(&cb);
3757   for (int i = 0; i < _constants.length(); i++) {
3758     Constant con = _constants.at(i);
3759     address constant_addr = NULL;
3760     switch (con.type()) {
3761     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3762     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3763     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3764     case T_OBJECT: {
3765       jobject obj = con.get_jobject();
3766       int oop_index = _masm.oop_recorder()->find_index(obj);
3767       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3768       break;
3769     }
3770     case T_ADDRESS: {
3771       address addr = (address) con.get_jobject();
3772       constant_addr = _masm.address_constant(addr);
3773       break;
3774     }
3775     // We use T_VOID as marker for jump-table entries (labels) which
3776     // need an internal word relocation.
3777     case T_VOID: {
3778       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3779       // Fill the jump-table with a dummy word.  The real value is
3780       // filled in later in fill_jump_table.
3781       address dummy = (address) n;
3782       constant_addr = _masm.address_constant(dummy);
3783       // Expand jump-table
3784       for (uint i = 1; i < n->outcnt(); i++) {
3785         address temp_addr = _masm.address_constant(dummy + i);
3786         assert(temp_addr, "consts section too small");
3787       }
3788       break;
3789     }
3790     case T_METADATA: {
3791       Metadata* obj = con.get_metadata();
3792       int metadata_index = _masm.oop_recorder()->find_index(obj);
3793       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3794       break;
3795     }
3796     default: ShouldNotReachHere();
3797     }
3798     assert(constant_addr, "consts section too small");
3799     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3800             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3801   }
3802 }
3803 
3804 int Compile::ConstantTable::find_offset(Constant& con) const {
3805   int idx = _constants.find(con);
3806   assert(idx != -1, "constant must be in constant table");
3807   int offset = _constants.at(idx).offset();
3808   assert(offset != -1, "constant table not emitted yet?");
3809   return offset;
3810 }
3811 
3812 void Compile::ConstantTable::add(Constant& con) {
3813   if (con.can_be_reused()) {
3814     int idx = _constants.find(con);
3815     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3816       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3817       return;
3818     }
3819   }
3820   (void) _constants.append(con);
3821 }
3822 
3823 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3824   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3825   Constant con(type, value, b->_freq);
3826   add(con);
3827   return con;
3828 }
3829 
3830 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3831   Constant con(metadata);
3832   add(con);
3833   return con;
3834 }
3835 
3836 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3837   jvalue value;
3838   BasicType type = oper->type()->basic_type();
3839   switch (type) {
3840   case T_LONG:    value.j = oper->constantL(); break;
3841   case T_FLOAT:   value.f = oper->constantF(); break;
3842   case T_DOUBLE:  value.d = oper->constantD(); break;
3843   case T_OBJECT:
3844   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3845   case T_METADATA: return add((Metadata*)oper->constant()); break;
3846   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3847   }
3848   return add(n, type, value);
3849 }
3850 
3851 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3852   jvalue value;
3853   // We can use the node pointer here to identify the right jump-table
3854   // as this method is called from Compile::Fill_buffer right before
3855   // the MachNodes are emitted and the jump-table is filled (means the
3856   // MachNode pointers do not change anymore).
3857   value.l = (jobject) n;
3858   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3859   add(con);
3860   return con;
3861 }
3862 
3863 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3864   // If called from Compile::scratch_emit_size do nothing.
3865   if (Compile::current()->in_scratch_emit_size())  return;
3866 
3867   assert(labels.is_nonempty(), "must be");
3868   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3869 
3870   // Since MachConstantNode::constant_offset() also contains
3871   // table_base_offset() we need to subtract the table_base_offset()
3872   // to get the plain offset into the constant table.
3873   int offset = n->constant_offset() - table_base_offset();
3874 
3875   MacroAssembler _masm(&cb);
3876   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3877 
3878   for (uint i = 0; i < n->outcnt(); i++) {
3879     address* constant_addr = &jump_table_base[i];
3880     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3881     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3882     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3883   }
3884 }
3885 
3886 void Compile::dump_inlining() {
3887   if (print_inlining() || print_intrinsics()) {
3888     // Print inlining message for candidates that we couldn't inline
3889     // for lack of space or non constant receiver
3890     for (int i = 0; i < _late_inlines.length(); i++) {
3891       CallGenerator* cg = _late_inlines.at(i);
3892       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3893     }
3894     Unique_Node_List useful;
3895     useful.push(root());
3896     for (uint next = 0; next < useful.size(); ++next) {
3897       Node* n  = useful.at(next);
3898       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3899         CallNode* call = n->as_Call();
3900         CallGenerator* cg = call->generator();
3901         cg->print_inlining_late("receiver not constant");
3902       }
3903       uint max = n->len();
3904       for ( uint i = 0; i < max; ++i ) {
3905         Node *m = n->in(i);
3906         if ( m == NULL ) continue;
3907         useful.push(m);
3908       }
3909     }
3910     for (int i = 0; i < _print_inlining_list->length(); i++) {
3911       tty->print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
3912     }
3913   }
3914 }
3915 
3916 // Dump inlining replay data to the stream.
3917 // Don't change thread state and acquire any locks.
3918 void Compile::dump_inline_data(outputStream* out) {
3919   InlineTree* inl_tree = ilt();
3920   if (inl_tree != NULL) {
3921     out->print(" inline %d", inl_tree->count());
3922     inl_tree->dump_replay_data(out);
3923   }
3924 }
3925 
3926 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3927   if (n1->Opcode() < n2->Opcode())      return -1;
3928   else if (n1->Opcode() > n2->Opcode()) return 1;
3929 
3930   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3931   for (uint i = 1; i < n1->req(); i++) {
3932     if (n1->in(i) < n2->in(i))      return -1;
3933     else if (n1->in(i) > n2->in(i)) return 1;
3934   }
3935 
3936   return 0;
3937 }
3938 
3939 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3940   Node* n1 = *n1p;
3941   Node* n2 = *n2p;
3942 
3943   return cmp_expensive_nodes(n1, n2);
3944 }
3945 
3946 void Compile::sort_expensive_nodes() {
3947   if (!expensive_nodes_sorted()) {
3948     _expensive_nodes->sort(cmp_expensive_nodes);
3949   }
3950 }
3951 
3952 bool Compile::expensive_nodes_sorted() const {
3953   for (int i = 1; i < _expensive_nodes->length(); i++) {
3954     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3955       return false;
3956     }
3957   }
3958   return true;
3959 }
3960 
3961 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3962   if (_expensive_nodes->length() == 0) {
3963     return false;
3964   }
3965 
3966   assert(OptimizeExpensiveOps, "optimization off?");
3967 
3968   // Take this opportunity to remove dead nodes from the list
3969   int j = 0;
3970   for (int i = 0; i < _expensive_nodes->length(); i++) {
3971     Node* n = _expensive_nodes->at(i);
3972     if (!n->is_unreachable(igvn)) {
3973       assert(n->is_expensive(), "should be expensive");
3974       _expensive_nodes->at_put(j, n);
3975       j++;
3976     }
3977   }
3978   _expensive_nodes->trunc_to(j);
3979 
3980   // Then sort the list so that similar nodes are next to each other
3981   // and check for at least two nodes of identical kind with same data
3982   // inputs.
3983   sort_expensive_nodes();
3984 
3985   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3986     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3987       return true;
3988     }
3989   }
3990 
3991   return false;
3992 }
3993 
3994 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3995   if (_expensive_nodes->length() == 0) {
3996     return;
3997   }
3998 
3999   assert(OptimizeExpensiveOps, "optimization off?");
4000 
4001   // Sort to bring similar nodes next to each other and clear the
4002   // control input of nodes for which there's only a single copy.
4003   sort_expensive_nodes();
4004 
4005   int j = 0;
4006   int identical = 0;
4007   int i = 0;
4008   for (; i < _expensive_nodes->length()-1; i++) {
4009     assert(j <= i, "can't write beyond current index");
4010     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4011       identical++;
4012       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4013       continue;
4014     }
4015     if (identical > 0) {
4016       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4017       identical = 0;
4018     } else {
4019       Node* n = _expensive_nodes->at(i);
4020       igvn.hash_delete(n);
4021       n->set_req(0, NULL);
4022       igvn.hash_insert(n);
4023     }
4024   }
4025   if (identical > 0) {
4026     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4027   } else if (_expensive_nodes->length() >= 1) {
4028     Node* n = _expensive_nodes->at(i);
4029     igvn.hash_delete(n);
4030     n->set_req(0, NULL);
4031     igvn.hash_insert(n);
4032   }
4033   _expensive_nodes->trunc_to(j);
4034 }
4035 
4036 void Compile::add_expensive_node(Node * n) {
4037   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4038   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4039   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4040   if (OptimizeExpensiveOps) {
4041     _expensive_nodes->append(n);
4042   } else {
4043     // Clear control input and let IGVN optimize expensive nodes if
4044     // OptimizeExpensiveOps is off.
4045     n->set_req(0, NULL);
4046   }
4047 }
4048 
4049 /**
4050  * Remove the speculative part of types and clean up the graph
4051  */
4052 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4053   if (UseTypeSpeculation) {
4054     Unique_Node_List worklist;
4055     worklist.push(root());
4056     int modified = 0;
4057     // Go over all type nodes that carry a speculative type, drop the
4058     // speculative part of the type and enqueue the node for an igvn
4059     // which may optimize it out.
4060     for (uint next = 0; next < worklist.size(); ++next) {
4061       Node *n  = worklist.at(next);
4062       if (n->is_Type()) {
4063         TypeNode* tn = n->as_Type();
4064         const Type* t = tn->type();
4065         const Type* t_no_spec = t->remove_speculative();
4066         if (t_no_spec != t) {
4067           bool in_hash = igvn.hash_delete(n);
4068           assert(in_hash, "node should be in igvn hash table");
4069           tn->set_type(t_no_spec);
4070           igvn.hash_insert(n);
4071           igvn._worklist.push(n); // give it a chance to go away
4072           modified++;
4073         }
4074       }
4075       uint max = n->len();
4076       for( uint i = 0; i < max; ++i ) {
4077         Node *m = n->in(i);
4078         if (not_a_node(m))  continue;
4079         worklist.push(m);
4080       }
4081     }
4082     // Drop the speculative part of all types in the igvn's type table
4083     igvn.remove_speculative_types();
4084     if (modified > 0) {
4085       igvn.optimize();
4086     }
4087 #ifdef ASSERT
4088     // Verify that after the IGVN is over no speculative type has resurfaced
4089     worklist.clear();
4090     worklist.push(root());
4091     for (uint next = 0; next < worklist.size(); ++next) {
4092       Node *n  = worklist.at(next);
4093       const Type* t = igvn.type_or_null(n);
4094       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4095       if (n->is_Type()) {
4096         t = n->as_Type()->type();
4097         assert(t == t->remove_speculative(), "no more speculative types");
4098       }
4099       uint max = n->len();
4100       for( uint i = 0; i < max; ++i ) {
4101         Node *m = n->in(i);
4102         if (not_a_node(m))  continue;
4103         worklist.push(m);
4104       }
4105     }
4106     igvn.check_no_speculative_types();
4107 #endif
4108   }
4109 }
4110 
4111 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4112 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4113   if (ctrl != NULL) {
4114     // Express control dependency by a CastII node with a narrow type.
4115     value = new (phase->C) CastIINode(value, itype, false, true /* range check dependency */);
4116     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4117     // node from floating above the range check during loop optimizations. Otherwise, the
4118     // ConvI2L node may be eliminated independently of the range check, causing the data path
4119     // to become TOP while the control path is still there (although it's unreachable).
4120     value->set_req(0, ctrl);
4121     // Save CastII node to remove it after loop optimizations.
4122     phase->C->add_range_check_cast(value);
4123     value = phase->transform(value);
4124   }
4125   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4126   return phase->transform(new (phase->C) ConvI2LNode(value, ltype));
4127 }
4128 
4129 // Auxiliary method to support randomized stressing/fuzzing.
4130 //
4131 // This method can be called the arbitrary number of times, with current count
4132 // as the argument. The logic allows selecting a single candidate from the
4133 // running list of candidates as follows:
4134 //    int count = 0;
4135 //    Cand* selected = null;
4136 //    while(cand = cand->next()) {
4137 //      if (randomized_select(++count)) {
4138 //        selected = cand;
4139 //      }
4140 //    }
4141 //
4142 // Including count equalizes the chances any candidate is "selected".
4143 // This is useful when we don't have the complete list of candidates to choose
4144 // from uniformly. In this case, we need to adjust the randomicity of the
4145 // selection, or else we will end up biasing the selection towards the latter
4146 // candidates.
4147 //
4148 // Quick back-envelope calculation shows that for the list of n candidates
4149 // the equal probability for the candidate to persist as "best" can be
4150 // achieved by replacing it with "next" k-th candidate with the probability
4151 // of 1/k. It can be easily shown that by the end of the run, the
4152 // probability for any candidate is converged to 1/n, thus giving the
4153 // uniform distribution among all the candidates.
4154 //
4155 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4156 #define RANDOMIZED_DOMAIN_POW 29
4157 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4158 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4159 bool Compile::randomized_select(int count) {
4160   assert(count > 0, "only positive");
4161   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4162 }