1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "jfr/support/jfrIntrinsics.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/connode.hpp"
  36 #include "opto/idealKit.hpp"
  37 #include "opto/mathexactnode.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/parse.hpp"
  40 #include "opto/runtime.hpp"
  41 #include "opto/subnode.hpp"
  42 #include "prims/nativeLookup.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "utilities/macros.hpp"
  45 
  46 class LibraryIntrinsic : public InlineCallGenerator {
  47   // Extend the set of intrinsics known to the runtime:
  48  public:
  49  private:
  50   bool             _is_virtual;
  51   bool             _does_virtual_dispatch;
  52   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  53   int8_t           _last_predicate; // Last generated predicate
  54   vmIntrinsics::ID _intrinsic_id;
  55 
  56  public:
  57   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  58     : InlineCallGenerator(m),
  59       _is_virtual(is_virtual),
  60       _does_virtual_dispatch(does_virtual_dispatch),
  61       _predicates_count((int8_t)predicates_count),
  62       _last_predicate((int8_t)-1),
  63       _intrinsic_id(id)
  64   {
  65   }
  66   virtual bool is_intrinsic() const { return true; }
  67   virtual bool is_virtual()   const { return _is_virtual; }
  68   virtual bool is_predicated() const { return _predicates_count > 0; }
  69   virtual int  predicates_count() const { return _predicates_count; }
  70   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  71   virtual JVMState* generate(JVMState* jvms);
  72   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  73   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  74 };
  75 
  76 
  77 // Local helper class for LibraryIntrinsic:
  78 class LibraryCallKit : public GraphKit {
  79  private:
  80   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  81   Node*             _result;        // the result node, if any
  82   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  83 
  84   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  85 
  86  public:
  87   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  88     : GraphKit(jvms),
  89       _intrinsic(intrinsic),
  90       _result(NULL)
  91   {
  92     // Check if this is a root compile.  In that case we don't have a caller.
  93     if (!jvms->has_method()) {
  94       _reexecute_sp = sp();
  95     } else {
  96       // Find out how many arguments the interpreter needs when deoptimizing
  97       // and save the stack pointer value so it can used by uncommon_trap.
  98       // We find the argument count by looking at the declared signature.
  99       bool ignored_will_link;
 100       ciSignature* declared_signature = NULL;
 101       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 102       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 103       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 104     }
 105   }
 106 
 107   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 108 
 109   ciMethod*         caller()    const    { return jvms()->method(); }
 110   int               bci()       const    { return jvms()->bci(); }
 111   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 112   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 113   ciMethod*         callee()    const    { return _intrinsic->method(); }
 114 
 115   bool  try_to_inline(int predicate);
 116   Node* try_to_predicate(int predicate);
 117 
 118   void push_result() {
 119     // Push the result onto the stack.
 120     if (!stopped() && result() != NULL) {
 121       BasicType bt = result()->bottom_type()->basic_type();
 122       push_node(bt, result());
 123     }
 124   }
 125 
 126  private:
 127   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 128     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 129   }
 130 
 131   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 132   void  set_result(RegionNode* region, PhiNode* value);
 133   Node*     result() { return _result; }
 134 
 135   virtual int reexecute_sp() { return _reexecute_sp; }
 136 
 137   // Helper functions to inline natives
 138   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 139   Node* generate_slow_guard(Node* test, RegionNode* region);
 140   Node* generate_fair_guard(Node* test, RegionNode* region);
 141   Node* generate_negative_guard(Node* index, RegionNode* region,
 142                                 // resulting CastII of index:
 143                                 Node* *pos_index = NULL);
 144   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 145                                    // resulting CastII of index:
 146                                    Node* *pos_index = NULL);
 147   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 148                              Node* array_length,
 149                              RegionNode* region);
 150   Node* generate_current_thread(Node* &tls_output);
 151   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 152                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 153   Node* load_mirror_from_klass(Node* klass);
 154   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 155                                       RegionNode* region, int null_path,
 156                                       int offset);
 157   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 158                                RegionNode* region, int null_path) {
 159     int offset = java_lang_Class::klass_offset_in_bytes();
 160     return load_klass_from_mirror_common(mirror, never_see_null,
 161                                          region, null_path,
 162                                          offset);
 163   }
 164   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 165                                      RegionNode* region, int null_path) {
 166     int offset = java_lang_Class::array_klass_offset_in_bytes();
 167     return load_klass_from_mirror_common(mirror, never_see_null,
 168                                          region, null_path,
 169                                          offset);
 170   }
 171   Node* generate_access_flags_guard(Node* kls,
 172                                     int modifier_mask, int modifier_bits,
 173                                     RegionNode* region);
 174   Node* generate_interface_guard(Node* kls, RegionNode* region);
 175   Node* generate_array_guard(Node* kls, RegionNode* region) {
 176     return generate_array_guard_common(kls, region, false, false);
 177   }
 178   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 179     return generate_array_guard_common(kls, region, false, true);
 180   }
 181   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 182     return generate_array_guard_common(kls, region, true, false);
 183   }
 184   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 185     return generate_array_guard_common(kls, region, true, true);
 186   }
 187   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 188                                     bool obj_array, bool not_array);
 189   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 190   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 191                                      bool is_virtual = false, bool is_static = false);
 192   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 193     return generate_method_call(method_id, false, true);
 194   }
 195   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 196     return generate_method_call(method_id, true, false);
 197   }
 198   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 199 
 200   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 201   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 202   bool inline_string_compareTo();
 203   bool inline_string_indexOf();
 204   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 205   bool inline_string_equals();
 206   Node* round_double_node(Node* n);
 207   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 208   bool inline_math_native(vmIntrinsics::ID id);
 209   bool inline_trig(vmIntrinsics::ID id);
 210   bool inline_math(vmIntrinsics::ID id);
 211   template <typename OverflowOp>
 212   bool inline_math_overflow(Node* arg1, Node* arg2);
 213   void inline_math_mathExact(Node* math, Node* test);
 214   bool inline_math_addExactI(bool is_increment);
 215   bool inline_math_addExactL(bool is_increment);
 216   bool inline_math_multiplyExactI();
 217   bool inline_math_multiplyExactL();
 218   bool inline_math_negateExactI();
 219   bool inline_math_negateExactL();
 220   bool inline_math_subtractExactI(bool is_decrement);
 221   bool inline_math_subtractExactL(bool is_decrement);
 222   bool inline_exp();
 223   bool inline_pow();
 224   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 225   bool inline_min_max(vmIntrinsics::ID id);
 226   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 227   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 228   int classify_unsafe_addr(Node* &base, Node* &offset);
 229   Node* make_unsafe_address(Node* base, Node* offset);
 230   // Helper for inline_unsafe_access.
 231   // Generates the guards that check whether the result of
 232   // Unsafe.getObject should be recorded in an SATB log buffer.
 233   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 234   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile, bool is_unaligned);
 235   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 236   static bool klass_needs_init_guard(Node* kls);
 237   bool inline_unsafe_allocate();
 238   bool inline_unsafe_copyMemory();
 239   bool inline_native_currentThread();
 240 #ifdef JFR_HAVE_INTRINSICS
 241   bool inline_native_classID();
 242   bool inline_native_getEventWriter();
 243 #endif
 244   bool inline_native_time_funcs(address method, const char* funcName);
 245   bool inline_native_isInterrupted();
 246   bool inline_native_Class_query(vmIntrinsics::ID id);
 247   bool inline_native_subtype_check();
 248 
 249   bool inline_native_newArray();
 250   bool inline_native_getLength();
 251   bool inline_array_copyOf(bool is_copyOfRange);
 252   bool inline_array_equals();
 253   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 254   bool inline_native_clone(bool is_virtual);
 255   bool inline_native_Reflection_getCallerClass();
 256   // Helper function for inlining native object hash method
 257   bool inline_native_hashcode(bool is_virtual, bool is_static);
 258   bool inline_native_getClass();
 259 
 260   // Helper functions for inlining arraycopy
 261   bool inline_arraycopy();
 262   void generate_arraycopy(const TypePtr* adr_type,
 263                           BasicType basic_elem_type,
 264                           Node* src,  Node* src_offset,
 265                           Node* dest, Node* dest_offset,
 266                           Node* copy_length,
 267                           bool disjoint_bases = false,
 268                           bool length_never_negative = false,
 269                           RegionNode* slow_region = NULL);
 270   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 271                                                 RegionNode* slow_region);
 272   void generate_clear_array(const TypePtr* adr_type,
 273                             Node* dest,
 274                             BasicType basic_elem_type,
 275                             Node* slice_off,
 276                             Node* slice_len,
 277                             Node* slice_end);
 278   bool generate_block_arraycopy(const TypePtr* adr_type,
 279                                 BasicType basic_elem_type,
 280                                 AllocateNode* alloc,
 281                                 Node* src,  Node* src_offset,
 282                                 Node* dest, Node* dest_offset,
 283                                 Node* dest_size, bool dest_uninitialized);
 284   void generate_slow_arraycopy(const TypePtr* adr_type,
 285                                Node* src,  Node* src_offset,
 286                                Node* dest, Node* dest_offset,
 287                                Node* copy_length, bool dest_uninitialized);
 288   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 289                                      Node* dest_elem_klass,
 290                                      Node* src,  Node* src_offset,
 291                                      Node* dest, Node* dest_offset,
 292                                      Node* copy_length, bool dest_uninitialized);
 293   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 294                                    Node* src,  Node* src_offset,
 295                                    Node* dest, Node* dest_offset,
 296                                    Node* copy_length, bool dest_uninitialized);
 297   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 298                                     BasicType basic_elem_type,
 299                                     bool disjoint_bases,
 300                                     Node* src,  Node* src_offset,
 301                                     Node* dest, Node* dest_offset,
 302                                     Node* copy_length, bool dest_uninitialized);
 303   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 304   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 305   bool inline_unsafe_ordered_store(BasicType type);
 306   bool inline_unsafe_fence(vmIntrinsics::ID id);
 307   bool inline_fp_conversions(vmIntrinsics::ID id);
 308   bool inline_number_methods(vmIntrinsics::ID id);
 309   bool inline_reference_get();
 310   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 311   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 312   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 313   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 314   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 315   bool inline_ghash_processBlocks();
 316   bool inline_sha_implCompress(vmIntrinsics::ID id);
 317   bool inline_digestBase_implCompressMB(int predicate);
 318   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 319                                  bool long_state, address stubAddr, const char *stubName,
 320                                  Node* src_start, Node* ofs, Node* limit);
 321   Node* get_state_from_sha_object(Node *sha_object);
 322   Node* get_state_from_sha5_object(Node *sha_object);
 323   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 324   bool inline_encodeISOArray();
 325   bool inline_updateCRC32();
 326   bool inline_updateBytesCRC32();
 327   bool inline_updateByteBufferCRC32();
 328   bool inline_multiplyToLen();
 329   bool inline_squareToLen();
 330   bool inline_mulAdd();
 331   bool inline_montgomeryMultiply();
 332   bool inline_montgomerySquare();
 333 
 334   bool inline_profileBoolean();
 335 };
 336 
 337 
 338 //---------------------------make_vm_intrinsic----------------------------
 339 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 340   vmIntrinsics::ID id = m->intrinsic_id();
 341   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 342 
 343   ccstr disable_intr = NULL;
 344 
 345   if ((DisableIntrinsic[0] != '\0'
 346        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 347       (method_has_option_value("DisableIntrinsic", disable_intr)
 348        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 349     // disabled by a user request on the command line:
 350     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 351     return NULL;
 352   }
 353 
 354   if (!m->is_loaded()) {
 355     // do not attempt to inline unloaded methods
 356     return NULL;
 357   }
 358 
 359   // Only a few intrinsics implement a virtual dispatch.
 360   // They are expensive calls which are also frequently overridden.
 361   if (is_virtual) {
 362     switch (id) {
 363     case vmIntrinsics::_hashCode:
 364     case vmIntrinsics::_clone:
 365       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 366       break;
 367     default:
 368       return NULL;
 369     }
 370   }
 371 
 372   // -XX:-InlineNatives disables nearly all intrinsics:
 373   if (!InlineNatives) {
 374     switch (id) {
 375     case vmIntrinsics::_indexOf:
 376     case vmIntrinsics::_compareTo:
 377     case vmIntrinsics::_equals:
 378     case vmIntrinsics::_equalsC:
 379     case vmIntrinsics::_getAndAddInt:
 380     case vmIntrinsics::_getAndAddLong:
 381     case vmIntrinsics::_getAndSetInt:
 382     case vmIntrinsics::_getAndSetLong:
 383     case vmIntrinsics::_getAndSetObject:
 384     case vmIntrinsics::_loadFence:
 385     case vmIntrinsics::_storeFence:
 386     case vmIntrinsics::_fullFence:
 387       break;  // InlineNatives does not control String.compareTo
 388     case vmIntrinsics::_Reference_get:
 389       break;  // InlineNatives does not control Reference.get
 390     default:
 391       return NULL;
 392     }
 393   }
 394 
 395   int predicates = 0;
 396   bool does_virtual_dispatch = false;
 397 
 398   switch (id) {
 399   case vmIntrinsics::_compareTo:
 400     if (!SpecialStringCompareTo)  return NULL;
 401     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 402     break;
 403   case vmIntrinsics::_indexOf:
 404     if (!SpecialStringIndexOf)  return NULL;
 405     break;
 406   case vmIntrinsics::_equals:
 407     if (!SpecialStringEquals)  return NULL;
 408     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 409     break;
 410   case vmIntrinsics::_equalsC:
 411     if (!SpecialArraysEquals)  return NULL;
 412     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 413     break;
 414   case vmIntrinsics::_arraycopy:
 415     if (!InlineArrayCopy)  return NULL;
 416     break;
 417   case vmIntrinsics::_copyMemory:
 418     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 419     if (!InlineArrayCopy)  return NULL;
 420     break;
 421   case vmIntrinsics::_hashCode:
 422     if (!InlineObjectHash)  return NULL;
 423     does_virtual_dispatch = true;
 424     break;
 425   case vmIntrinsics::_clone:
 426     does_virtual_dispatch = true;
 427   case vmIntrinsics::_copyOf:
 428   case vmIntrinsics::_copyOfRange:
 429     if (!InlineObjectCopy)  return NULL;
 430     // These also use the arraycopy intrinsic mechanism:
 431     if (!InlineArrayCopy)  return NULL;
 432     break;
 433   case vmIntrinsics::_encodeISOArray:
 434     if (!SpecialEncodeISOArray)  return NULL;
 435     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 436     break;
 437   case vmIntrinsics::_checkIndex:
 438     // We do not intrinsify this.  The optimizer does fine with it.
 439     return NULL;
 440 
 441   case vmIntrinsics::_getCallerClass:
 442     if (!UseNewReflection)  return NULL;
 443     if (!InlineReflectionGetCallerClass)  return NULL;
 444     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 445     break;
 446 
 447   case vmIntrinsics::_bitCount_i:
 448     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 449     break;
 450 
 451   case vmIntrinsics::_bitCount_l:
 452     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 453     break;
 454 
 455   case vmIntrinsics::_numberOfLeadingZeros_i:
 456     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 457     break;
 458 
 459   case vmIntrinsics::_numberOfLeadingZeros_l:
 460     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 461     break;
 462 
 463   case vmIntrinsics::_numberOfTrailingZeros_i:
 464     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 465     break;
 466 
 467   case vmIntrinsics::_numberOfTrailingZeros_l:
 468     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 469     break;
 470 
 471   case vmIntrinsics::_reverseBytes_c:
 472     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 473     break;
 474   case vmIntrinsics::_reverseBytes_s:
 475     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 476     break;
 477   case vmIntrinsics::_reverseBytes_i:
 478     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 479     break;
 480   case vmIntrinsics::_reverseBytes_l:
 481     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 482     break;
 483 
 484   case vmIntrinsics::_Reference_get:
 485     // Use the intrinsic version of Reference.get() so that the value in
 486     // the referent field can be registered by the G1 pre-barrier code.
 487     // Also add memory barrier to prevent commoning reads from this field
 488     // across safepoint since GC can change it value.
 489     break;
 490 
 491   case vmIntrinsics::_compareAndSwapObject:
 492 #ifdef _LP64
 493     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 494 #endif
 495     break;
 496 
 497   case vmIntrinsics::_compareAndSwapLong:
 498     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 499     break;
 500 
 501   case vmIntrinsics::_getAndAddInt:
 502     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 503     break;
 504 
 505   case vmIntrinsics::_getAndAddLong:
 506     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 507     break;
 508 
 509   case vmIntrinsics::_getAndSetInt:
 510     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 511     break;
 512 
 513   case vmIntrinsics::_getAndSetLong:
 514     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 515     break;
 516 
 517   case vmIntrinsics::_getAndSetObject:
 518 #ifdef _LP64
 519     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 520     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 521     break;
 522 #else
 523     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 524     break;
 525 #endif
 526 
 527   case vmIntrinsics::_aescrypt_encryptBlock:
 528   case vmIntrinsics::_aescrypt_decryptBlock:
 529     if (!UseAESIntrinsics) return NULL;
 530     break;
 531 
 532   case vmIntrinsics::_multiplyToLen:
 533     if (!UseMultiplyToLenIntrinsic) return NULL;
 534     break;
 535 
 536   case vmIntrinsics::_squareToLen:
 537     if (!UseSquareToLenIntrinsic) return NULL;
 538     break;
 539 
 540   case vmIntrinsics::_mulAdd:
 541     if (!UseMulAddIntrinsic) return NULL;
 542     break;
 543 
 544   case vmIntrinsics::_montgomeryMultiply:
 545      if (!UseMontgomeryMultiplyIntrinsic) return NULL;
 546     break;
 547   case vmIntrinsics::_montgomerySquare:
 548      if (!UseMontgomerySquareIntrinsic) return NULL;
 549     break;
 550 
 551   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 552   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 553     if (!UseAESIntrinsics) return NULL;
 554     // these two require the predicated logic
 555     predicates = 1;
 556     break;
 557 
 558   case vmIntrinsics::_sha_implCompress:
 559     if (!UseSHA1Intrinsics) return NULL;
 560     break;
 561 
 562   case vmIntrinsics::_sha2_implCompress:
 563     if (!UseSHA256Intrinsics) return NULL;
 564     break;
 565 
 566   case vmIntrinsics::_sha5_implCompress:
 567     if (!UseSHA512Intrinsics) return NULL;
 568     break;
 569 
 570   case vmIntrinsics::_digestBase_implCompressMB:
 571     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 572     predicates = 3;
 573     break;
 574 
 575   case vmIntrinsics::_ghash_processBlocks:
 576     if (!UseGHASHIntrinsics) return NULL;
 577     break;
 578 
 579   case vmIntrinsics::_updateCRC32:
 580   case vmIntrinsics::_updateBytesCRC32:
 581   case vmIntrinsics::_updateByteBufferCRC32:
 582     if (!UseCRC32Intrinsics) return NULL;
 583     break;
 584 
 585   case vmIntrinsics::_incrementExactI:
 586   case vmIntrinsics::_addExactI:
 587     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 588     break;
 589   case vmIntrinsics::_incrementExactL:
 590   case vmIntrinsics::_addExactL:
 591     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 592     break;
 593   case vmIntrinsics::_decrementExactI:
 594   case vmIntrinsics::_subtractExactI:
 595     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 596     break;
 597   case vmIntrinsics::_decrementExactL:
 598   case vmIntrinsics::_subtractExactL:
 599     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 600     break;
 601   case vmIntrinsics::_negateExactI:
 602     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 603     break;
 604   case vmIntrinsics::_negateExactL:
 605     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 606     break;
 607   case vmIntrinsics::_multiplyExactI:
 608     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 609     break;
 610   case vmIntrinsics::_multiplyExactL:
 611     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 612     break;
 613 
 614  default:
 615     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 616     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 617     break;
 618   }
 619 
 620   // -XX:-InlineClassNatives disables natives from the Class class.
 621   // The flag applies to all reflective calls, notably Array.newArray
 622   // (visible to Java programmers as Array.newInstance).
 623   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 624       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 625     if (!InlineClassNatives)  return NULL;
 626   }
 627 
 628   // -XX:-InlineThreadNatives disables natives from the Thread class.
 629   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 630     if (!InlineThreadNatives)  return NULL;
 631   }
 632 
 633   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 634   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 635       m->holder()->name() == ciSymbol::java_lang_Float() ||
 636       m->holder()->name() == ciSymbol::java_lang_Double()) {
 637     if (!InlineMathNatives)  return NULL;
 638   }
 639 
 640   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 641   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 642     if (!InlineUnsafeOps)  return NULL;
 643   }
 644 
 645   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 646 }
 647 
 648 //----------------------register_library_intrinsics-----------------------
 649 // Initialize this file's data structures, for each Compile instance.
 650 void Compile::register_library_intrinsics() {
 651   // Nothing to do here.
 652 }
 653 
 654 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 655   LibraryCallKit kit(jvms, this);
 656   Compile* C = kit.C;
 657   int nodes = C->unique();
 658 #ifndef PRODUCT
 659   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 660     char buf[1000];
 661     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 662     tty->print_cr("Intrinsic %s", str);
 663   }
 664 #endif
 665   ciMethod* callee = kit.callee();
 666   const int bci    = kit.bci();
 667 
 668   // Try to inline the intrinsic.
 669   if (kit.try_to_inline(_last_predicate)) {
 670     if (C->print_intrinsics() || C->print_inlining()) {
 671       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 672     }
 673     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 674     if (C->log()) {
 675       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 676                      vmIntrinsics::name_at(intrinsic_id()),
 677                      (is_virtual() ? " virtual='1'" : ""),
 678                      C->unique() - nodes);
 679     }
 680     // Push the result from the inlined method onto the stack.
 681     kit.push_result();
 682     return kit.transfer_exceptions_into_jvms();
 683   }
 684 
 685   // The intrinsic bailed out
 686   if (C->print_intrinsics() || C->print_inlining()) {
 687     if (jvms->has_method()) {
 688       // Not a root compile.
 689       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 690       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 691     } else {
 692       // Root compile
 693       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 694                vmIntrinsics::name_at(intrinsic_id()),
 695                (is_virtual() ? " (virtual)" : ""), bci);
 696     }
 697   }
 698   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 699   return NULL;
 700 }
 701 
 702 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 703   LibraryCallKit kit(jvms, this);
 704   Compile* C = kit.C;
 705   int nodes = C->unique();
 706   _last_predicate = predicate;
 707 #ifndef PRODUCT
 708   assert(is_predicated() && predicate < predicates_count(), "sanity");
 709   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 710     char buf[1000];
 711     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 712     tty->print_cr("Predicate for intrinsic %s", str);
 713   }
 714 #endif
 715   ciMethod* callee = kit.callee();
 716   const int bci    = kit.bci();
 717 
 718   Node* slow_ctl = kit.try_to_predicate(predicate);
 719   if (!kit.failing()) {
 720     if (C->print_intrinsics() || C->print_inlining()) {
 721       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 722     }
 723     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 724     if (C->log()) {
 725       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 726                      vmIntrinsics::name_at(intrinsic_id()),
 727                      (is_virtual() ? " virtual='1'" : ""),
 728                      C->unique() - nodes);
 729     }
 730     return slow_ctl; // Could be NULL if the check folds.
 731   }
 732 
 733   // The intrinsic bailed out
 734   if (C->print_intrinsics() || C->print_inlining()) {
 735     if (jvms->has_method()) {
 736       // Not a root compile.
 737       const char* msg = "failed to generate predicate for intrinsic";
 738       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 739     } else {
 740       // Root compile
 741       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 742                                         vmIntrinsics::name_at(intrinsic_id()),
 743                                         (is_virtual() ? " (virtual)" : ""), bci);
 744     }
 745   }
 746   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 747   return NULL;
 748 }
 749 
 750 bool LibraryCallKit::try_to_inline(int predicate) {
 751   // Handle symbolic names for otherwise undistinguished boolean switches:
 752   const bool is_store       = true;
 753   const bool is_native_ptr  = true;
 754   const bool is_static      = true;
 755   const bool is_volatile    = true;
 756 
 757   if (!jvms()->has_method()) {
 758     // Root JVMState has a null method.
 759     assert(map()->memory()->Opcode() == Op_Parm, "");
 760     // Insert the memory aliasing node
 761     set_all_memory(reset_memory());
 762   }
 763   assert(merged_memory(), "");
 764 
 765 
 766   switch (intrinsic_id()) {
 767   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 768   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 769   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 770 
 771   case vmIntrinsics::_dsin:
 772   case vmIntrinsics::_dcos:
 773   case vmIntrinsics::_dtan:
 774   case vmIntrinsics::_dabs:
 775   case vmIntrinsics::_datan2:
 776   case vmIntrinsics::_dsqrt:
 777   case vmIntrinsics::_dexp:
 778   case vmIntrinsics::_dlog:
 779   case vmIntrinsics::_dlog10:
 780   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 781 
 782   case vmIntrinsics::_min:
 783   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 784 
 785   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 786   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 787   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 788   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 789   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 790   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 791   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 792   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 793   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 794   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 795   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 796   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 797 
 798   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 799 
 800   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 801   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 802   case vmIntrinsics::_equals:                   return inline_string_equals();
 803 
 804   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile, false);
 805   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile, false);
 806   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile, false);
 807   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile, false);
 808   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile, false);
 809   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile, false);
 810   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile, false);
 811   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile, false);
 812   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile, false);
 813 
 814   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile, false);
 815   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile, false);
 816   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile, false);
 817   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile, false);
 818   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile, false);
 819   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile, false);
 820   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile, false);
 821   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile, false);
 822   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile, false);
 823 
 824   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile, false);
 825   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile, false);
 826   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile, false);
 827   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile, false);
 828   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile, false);
 829   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile, false);
 830   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile, false);
 831   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile, false);
 832 
 833   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile, false);
 834   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile, false);
 835   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile, false);
 836   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile, false);
 837   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile, false);
 838   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile, false);
 839   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile, false);
 840   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile, false);
 841 
 842   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile, false);
 843   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile, false);
 844   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile, false);
 845   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile, false);
 846   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile, false);
 847   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile, false);
 848   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile, false);
 849   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile, false);
 850   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile, false);
 851 
 852   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile, false);
 853   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile, false);
 854   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile, false);
 855   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile, false);
 856   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile, false);
 857   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile, false);
 858   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile, false);
 859   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile, false);
 860   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile, false);
 861 
 862   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 863   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 864   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 865   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 866 
 867   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 868   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 869   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 870 
 871   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 872   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 873   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 874 
 875   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 876   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 877   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 878   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 879   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 880 
 881   case vmIntrinsics::_loadFence:
 882   case vmIntrinsics::_storeFence:
 883   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 884 
 885   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 886   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 887 
 888 #ifdef JFR_HAVE_INTRINSICS
 889   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), "counterTime");
 890   case vmIntrinsics::_getClassId:               return inline_native_classID();
 891   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 892 #endif
 893   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 894   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 895   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 896   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 897   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 898   case vmIntrinsics::_getLength:                return inline_native_getLength();
 899   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 900   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 901   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 902   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 903 
 904   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 905 
 906   case vmIntrinsics::_isInstance:
 907   case vmIntrinsics::_getModifiers:
 908   case vmIntrinsics::_isInterface:
 909   case vmIntrinsics::_isArray:
 910   case vmIntrinsics::_isPrimitive:
 911   case vmIntrinsics::_getSuperclass:
 912   case vmIntrinsics::_getComponentType:
 913   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 914 
 915   case vmIntrinsics::_floatToRawIntBits:
 916   case vmIntrinsics::_floatToIntBits:
 917   case vmIntrinsics::_intBitsToFloat:
 918   case vmIntrinsics::_doubleToRawLongBits:
 919   case vmIntrinsics::_doubleToLongBits:
 920   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 921 
 922   case vmIntrinsics::_numberOfLeadingZeros_i:
 923   case vmIntrinsics::_numberOfLeadingZeros_l:
 924   case vmIntrinsics::_numberOfTrailingZeros_i:
 925   case vmIntrinsics::_numberOfTrailingZeros_l:
 926   case vmIntrinsics::_bitCount_i:
 927   case vmIntrinsics::_bitCount_l:
 928   case vmIntrinsics::_reverseBytes_i:
 929   case vmIntrinsics::_reverseBytes_l:
 930   case vmIntrinsics::_reverseBytes_s:
 931   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 932 
 933   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 934 
 935   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 936 
 937   case vmIntrinsics::_aescrypt_encryptBlock:
 938   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 939 
 940   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 941   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 942     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 943 
 944   case vmIntrinsics::_sha_implCompress:
 945   case vmIntrinsics::_sha2_implCompress:
 946   case vmIntrinsics::_sha5_implCompress:
 947     return inline_sha_implCompress(intrinsic_id());
 948 
 949   case vmIntrinsics::_digestBase_implCompressMB:
 950     return inline_digestBase_implCompressMB(predicate);
 951 
 952   case vmIntrinsics::_multiplyToLen:
 953     return inline_multiplyToLen();
 954 
 955   case vmIntrinsics::_squareToLen:
 956     return inline_squareToLen();
 957 
 958   case vmIntrinsics::_mulAdd:
 959     return inline_mulAdd();
 960 
 961   case vmIntrinsics::_montgomeryMultiply:
 962     return inline_montgomeryMultiply();
 963   case vmIntrinsics::_montgomerySquare:
 964     return inline_montgomerySquare();
 965 
 966   case vmIntrinsics::_ghash_processBlocks:
 967     return inline_ghash_processBlocks();
 968 
 969   case vmIntrinsics::_encodeISOArray:
 970     return inline_encodeISOArray();
 971 
 972   case vmIntrinsics::_updateCRC32:
 973     return inline_updateCRC32();
 974   case vmIntrinsics::_updateBytesCRC32:
 975     return inline_updateBytesCRC32();
 976   case vmIntrinsics::_updateByteBufferCRC32:
 977     return inline_updateByteBufferCRC32();
 978 
 979   case vmIntrinsics::_profileBoolean:
 980     return inline_profileBoolean();
 981 
 982   default:
 983     // If you get here, it may be that someone has added a new intrinsic
 984     // to the list in vmSymbols.hpp without implementing it here.
 985 #ifndef PRODUCT
 986     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 987       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 988                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 989     }
 990 #endif
 991     return false;
 992   }
 993 }
 994 
 995 Node* LibraryCallKit::try_to_predicate(int predicate) {
 996   if (!jvms()->has_method()) {
 997     // Root JVMState has a null method.
 998     assert(map()->memory()->Opcode() == Op_Parm, "");
 999     // Insert the memory aliasing node
1000     set_all_memory(reset_memory());
1001   }
1002   assert(merged_memory(), "");
1003 
1004   switch (intrinsic_id()) {
1005   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
1006     return inline_cipherBlockChaining_AESCrypt_predicate(false);
1007   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
1008     return inline_cipherBlockChaining_AESCrypt_predicate(true);
1009   case vmIntrinsics::_digestBase_implCompressMB:
1010     return inline_digestBase_implCompressMB_predicate(predicate);
1011 
1012   default:
1013     // If you get here, it may be that someone has added a new intrinsic
1014     // to the list in vmSymbols.hpp without implementing it here.
1015 #ifndef PRODUCT
1016     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
1017       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
1018                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
1019     }
1020 #endif
1021     Node* slow_ctl = control();
1022     set_control(top()); // No fast path instrinsic
1023     return slow_ctl;
1024   }
1025 }
1026 
1027 //------------------------------set_result-------------------------------
1028 // Helper function for finishing intrinsics.
1029 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
1030   record_for_igvn(region);
1031   set_control(_gvn.transform(region));
1032   set_result( _gvn.transform(value));
1033   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
1034 }
1035 
1036 //------------------------------generate_guard---------------------------
1037 // Helper function for generating guarded fast-slow graph structures.
1038 // The given 'test', if true, guards a slow path.  If the test fails
1039 // then a fast path can be taken.  (We generally hope it fails.)
1040 // In all cases, GraphKit::control() is updated to the fast path.
1041 // The returned value represents the control for the slow path.
1042 // The return value is never 'top'; it is either a valid control
1043 // or NULL if it is obvious that the slow path can never be taken.
1044 // Also, if region and the slow control are not NULL, the slow edge
1045 // is appended to the region.
1046 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
1047   if (stopped()) {
1048     // Already short circuited.
1049     return NULL;
1050   }
1051 
1052   // Build an if node and its projections.
1053   // If test is true we take the slow path, which we assume is uncommon.
1054   if (_gvn.type(test) == TypeInt::ZERO) {
1055     // The slow branch is never taken.  No need to build this guard.
1056     return NULL;
1057   }
1058 
1059   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
1060 
1061   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
1062   if (if_slow == top()) {
1063     // The slow branch is never taken.  No need to build this guard.
1064     return NULL;
1065   }
1066 
1067   if (region != NULL)
1068     region->add_req(if_slow);
1069 
1070   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
1071   set_control(if_fast);
1072 
1073   return if_slow;
1074 }
1075 
1076 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1077   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1078 }
1079 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1080   return generate_guard(test, region, PROB_FAIR);
1081 }
1082 
1083 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1084                                                      Node* *pos_index) {
1085   if (stopped())
1086     return NULL;                // already stopped
1087   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1088     return NULL;                // index is already adequately typed
1089   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1090   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1091   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1092   if (is_neg != NULL && pos_index != NULL) {
1093     // Emulate effect of Parse::adjust_map_after_if.
1094     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
1095     ccast->set_req(0, control());
1096     (*pos_index) = _gvn.transform(ccast);
1097   }
1098   return is_neg;
1099 }
1100 
1101 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1102                                                         Node* *pos_index) {
1103   if (stopped())
1104     return NULL;                // already stopped
1105   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1106     return NULL;                // index is already adequately typed
1107   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1108   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1109   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
1110   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1111   if (is_notp != NULL && pos_index != NULL) {
1112     // Emulate effect of Parse::adjust_map_after_if.
1113     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
1114     ccast->set_req(0, control());
1115     (*pos_index) = _gvn.transform(ccast);
1116   }
1117   return is_notp;
1118 }
1119 
1120 // Make sure that 'position' is a valid limit index, in [0..length].
1121 // There are two equivalent plans for checking this:
1122 //   A. (offset + copyLength)  unsigned<=  arrayLength
1123 //   B. offset  <=  (arrayLength - copyLength)
1124 // We require that all of the values above, except for the sum and
1125 // difference, are already known to be non-negative.
1126 // Plan A is robust in the face of overflow, if offset and copyLength
1127 // are both hugely positive.
1128 //
1129 // Plan B is less direct and intuitive, but it does not overflow at
1130 // all, since the difference of two non-negatives is always
1131 // representable.  Whenever Java methods must perform the equivalent
1132 // check they generally use Plan B instead of Plan A.
1133 // For the moment we use Plan A.
1134 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1135                                                   Node* subseq_length,
1136                                                   Node* array_length,
1137                                                   RegionNode* region) {
1138   if (stopped())
1139     return NULL;                // already stopped
1140   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1141   if (zero_offset && subseq_length->eqv_uncast(array_length))
1142     return NULL;                // common case of whole-array copy
1143   Node* last = subseq_length;
1144   if (!zero_offset)             // last += offset
1145     last = _gvn.transform(new (C) AddINode(last, offset));
1146   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
1147   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1148   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1149   return is_over;
1150 }
1151 
1152 
1153 //--------------------------generate_current_thread--------------------
1154 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1155   ciKlass*    thread_klass = env()->Thread_klass();
1156   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1157   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1158   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1159   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1160   tls_output = thread;
1161   return threadObj;
1162 }
1163 
1164 
1165 //------------------------------make_string_method_node------------------------
1166 // Helper method for String intrinsic functions. This version is called
1167 // with str1 and str2 pointing to String object nodes.
1168 //
1169 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1170   Node* no_ctrl = NULL;
1171 
1172   // Get start addr of string
1173   Node* str1_value   = load_String_value(no_ctrl, str1);
1174   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1175   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1176 
1177   // Get length of string 1
1178   Node* str1_len  = load_String_length(no_ctrl, str1);
1179 
1180   Node* str2_value   = load_String_value(no_ctrl, str2);
1181   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1182   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1183 
1184   Node* str2_len = NULL;
1185   Node* result = NULL;
1186 
1187   switch (opcode) {
1188   case Op_StrIndexOf:
1189     // Get length of string 2
1190     str2_len = load_String_length(no_ctrl, str2);
1191 
1192     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1193                                  str1_start, str1_len, str2_start, str2_len);
1194     break;
1195   case Op_StrComp:
1196     // Get length of string 2
1197     str2_len = load_String_length(no_ctrl, str2);
1198 
1199     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1200                                  str1_start, str1_len, str2_start, str2_len);
1201     break;
1202   case Op_StrEquals:
1203     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1204                                str1_start, str2_start, str1_len);
1205     break;
1206   default:
1207     ShouldNotReachHere();
1208     return NULL;
1209   }
1210 
1211   // All these intrinsics have checks.
1212   C->set_has_split_ifs(true); // Has chance for split-if optimization
1213 
1214   return _gvn.transform(result);
1215 }
1216 
1217 // Helper method for String intrinsic functions. This version is called
1218 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1219 // to Int nodes containing the lenghts of str1 and str2.
1220 //
1221 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1222   Node* result = NULL;
1223   switch (opcode) {
1224   case Op_StrIndexOf:
1225     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1226                                  str1_start, cnt1, str2_start, cnt2);
1227     break;
1228   case Op_StrComp:
1229     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1230                                  str1_start, cnt1, str2_start, cnt2);
1231     break;
1232   case Op_StrEquals:
1233     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1234                                  str1_start, str2_start, cnt1);
1235     break;
1236   default:
1237     ShouldNotReachHere();
1238     return NULL;
1239   }
1240 
1241   // All these intrinsics have checks.
1242   C->set_has_split_ifs(true); // Has chance for split-if optimization
1243 
1244   return _gvn.transform(result);
1245 }
1246 
1247 //------------------------------inline_string_compareTo------------------------
1248 // public int java.lang.String.compareTo(String anotherString);
1249 bool LibraryCallKit::inline_string_compareTo() {
1250   Node* receiver = null_check(argument(0));
1251   Node* arg      = null_check(argument(1));
1252   if (stopped()) {
1253     return true;
1254   }
1255   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1256   return true;
1257 }
1258 
1259 //------------------------------inline_string_equals------------------------
1260 bool LibraryCallKit::inline_string_equals() {
1261   Node* receiver = null_check_receiver();
1262   // NOTE: Do not null check argument for String.equals() because spec
1263   // allows to specify NULL as argument.
1264   Node* argument = this->argument(1);
1265   if (stopped()) {
1266     return true;
1267   }
1268 
1269   // paths (plus control) merge
1270   RegionNode* region = new (C) RegionNode(5);
1271   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1272 
1273   // does source == target string?
1274   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1275   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1276 
1277   Node* if_eq = generate_slow_guard(bol, NULL);
1278   if (if_eq != NULL) {
1279     // receiver == argument
1280     phi->init_req(2, intcon(1));
1281     region->init_req(2, if_eq);
1282   }
1283 
1284   // get String klass for instanceOf
1285   ciInstanceKlass* klass = env()->String_klass();
1286 
1287   if (!stopped()) {
1288     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1289     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1290     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1291 
1292     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1293     //instanceOf == true, fallthrough
1294 
1295     if (inst_false != NULL) {
1296       phi->init_req(3, intcon(0));
1297       region->init_req(3, inst_false);
1298     }
1299   }
1300 
1301   if (!stopped()) {
1302     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1303 
1304     // Properly cast the argument to String
1305     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1306     // This path is taken only when argument's type is String:NotNull.
1307     argument = cast_not_null(argument, false);
1308 
1309     Node* no_ctrl = NULL;
1310 
1311     // Get start addr of receiver
1312     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1313     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1314     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1315 
1316     // Get length of receiver
1317     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1318 
1319     // Get start addr of argument
1320     Node* argument_val    = load_String_value(no_ctrl, argument);
1321     Node* argument_offset = load_String_offset(no_ctrl, argument);
1322     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1323 
1324     // Get length of argument
1325     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1326 
1327     // Check for receiver count != argument count
1328     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1329     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1330     Node* if_ne = generate_slow_guard(bol, NULL);
1331     if (if_ne != NULL) {
1332       phi->init_req(4, intcon(0));
1333       region->init_req(4, if_ne);
1334     }
1335 
1336     // Check for count == 0 is done by assembler code for StrEquals.
1337 
1338     if (!stopped()) {
1339       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1340       phi->init_req(1, equals);
1341       region->init_req(1, control());
1342     }
1343   }
1344 
1345   // post merge
1346   set_control(_gvn.transform(region));
1347   record_for_igvn(region);
1348 
1349   set_result(_gvn.transform(phi));
1350   return true;
1351 }
1352 
1353 //------------------------------inline_array_equals----------------------------
1354 bool LibraryCallKit::inline_array_equals() {
1355   Node* arg1 = argument(0);
1356   Node* arg2 = argument(1);
1357   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1358   return true;
1359 }
1360 
1361 // Java version of String.indexOf(constant string)
1362 // class StringDecl {
1363 //   StringDecl(char[] ca) {
1364 //     offset = 0;
1365 //     count = ca.length;
1366 //     value = ca;
1367 //   }
1368 //   int offset;
1369 //   int count;
1370 //   char[] value;
1371 // }
1372 //
1373 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1374 //                             int targetOffset, int cache_i, int md2) {
1375 //   int cache = cache_i;
1376 //   int sourceOffset = string_object.offset;
1377 //   int sourceCount = string_object.count;
1378 //   int targetCount = target_object.length;
1379 //
1380 //   int targetCountLess1 = targetCount - 1;
1381 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1382 //
1383 //   char[] source = string_object.value;
1384 //   char[] target = target_object;
1385 //   int lastChar = target[targetCountLess1];
1386 //
1387 //  outer_loop:
1388 //   for (int i = sourceOffset; i < sourceEnd; ) {
1389 //     int src = source[i + targetCountLess1];
1390 //     if (src == lastChar) {
1391 //       // With random strings and a 4-character alphabet,
1392 //       // reverse matching at this point sets up 0.8% fewer
1393 //       // frames, but (paradoxically) makes 0.3% more probes.
1394 //       // Since those probes are nearer the lastChar probe,
1395 //       // there is may be a net D$ win with reverse matching.
1396 //       // But, reversing loop inhibits unroll of inner loop
1397 //       // for unknown reason.  So, does running outer loop from
1398 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1399 //       for (int j = 0; j < targetCountLess1; j++) {
1400 //         if (target[targetOffset + j] != source[i+j]) {
1401 //           if ((cache & (1 << source[i+j])) == 0) {
1402 //             if (md2 < j+1) {
1403 //               i += j+1;
1404 //               continue outer_loop;
1405 //             }
1406 //           }
1407 //           i += md2;
1408 //           continue outer_loop;
1409 //         }
1410 //       }
1411 //       return i - sourceOffset;
1412 //     }
1413 //     if ((cache & (1 << src)) == 0) {
1414 //       i += targetCountLess1;
1415 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1416 //     i++;
1417 //   }
1418 //   return -1;
1419 // }
1420 
1421 //------------------------------string_indexOf------------------------
1422 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1423                                      jint cache_i, jint md2_i) {
1424 
1425   Node* no_ctrl  = NULL;
1426   float likely   = PROB_LIKELY(0.9);
1427   float unlikely = PROB_UNLIKELY(0.9);
1428 
1429   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1430 
1431   Node* source        = load_String_value(no_ctrl, string_object);
1432   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1433   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1434 
1435   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1436   jint target_length = target_array->length();
1437   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1438   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1439 
1440   // String.value field is known to be @Stable.
1441   if (UseImplicitStableValues) {
1442     target = cast_array_to_stable(target, target_type);
1443   }
1444 
1445   IdealKit kit(this, false, true);
1446 #define __ kit.
1447   Node* zero             = __ ConI(0);
1448   Node* one              = __ ConI(1);
1449   Node* cache            = __ ConI(cache_i);
1450   Node* md2              = __ ConI(md2_i);
1451   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1452   Node* targetCount      = __ ConI(target_length);
1453   Node* targetCountLess1 = __ ConI(target_length - 1);
1454   Node* targetOffset     = __ ConI(targetOffset_i);
1455   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1456 
1457   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1458   Node* outer_loop = __ make_label(2 /* goto */);
1459   Node* return_    = __ make_label(1);
1460 
1461   __ set(rtn,__ ConI(-1));
1462   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1463        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1464        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1465        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1466        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1467          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1468               Node* tpj = __ AddI(targetOffset, __ value(j));
1469               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1470               Node* ipj  = __ AddI(__ value(i), __ value(j));
1471               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1472               __ if_then(targ, BoolTest::ne, src2); {
1473                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1474                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1475                     __ increment(i, __ AddI(__ value(j), one));
1476                     __ goto_(outer_loop);
1477                   } __ end_if(); __ dead(j);
1478                 }__ end_if(); __ dead(j);
1479                 __ increment(i, md2);
1480                 __ goto_(outer_loop);
1481               }__ end_if();
1482               __ increment(j, one);
1483          }__ end_loop(); __ dead(j);
1484          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1485          __ goto_(return_);
1486        }__ end_if();
1487        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1488          __ increment(i, targetCountLess1);
1489        }__ end_if();
1490        __ increment(i, one);
1491        __ bind(outer_loop);
1492   }__ end_loop(); __ dead(i);
1493   __ bind(return_);
1494 
1495   // Final sync IdealKit and GraphKit.
1496   final_sync(kit);
1497   Node* result = __ value(rtn);
1498 #undef __
1499   C->set_has_loops(true);
1500   return result;
1501 }
1502 
1503 //------------------------------inline_string_indexOf------------------------
1504 bool LibraryCallKit::inline_string_indexOf() {
1505   Node* receiver = argument(0);
1506   Node* arg      = argument(1);
1507 
1508   Node* result;
1509   // Disable the use of pcmpestri until it can be guaranteed that
1510   // the load doesn't cross into the uncommited space.
1511   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1512       UseSSE42Intrinsics) {
1513     // Generate SSE4.2 version of indexOf
1514     // We currently only have match rules that use SSE4.2
1515 
1516     receiver = null_check(receiver);
1517     arg      = null_check(arg);
1518     if (stopped()) {
1519       return true;
1520     }
1521 
1522     ciInstanceKlass* str_klass = env()->String_klass();
1523     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1524 
1525     // Make the merge point
1526     RegionNode* result_rgn = new (C) RegionNode(4);
1527     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1528     Node* no_ctrl  = NULL;
1529 
1530     // Get start addr of source string
1531     Node* source = load_String_value(no_ctrl, receiver);
1532     Node* source_offset = load_String_offset(no_ctrl, receiver);
1533     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1534 
1535     // Get length of source string
1536     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1537 
1538     // Get start addr of substring
1539     Node* substr = load_String_value(no_ctrl, arg);
1540     Node* substr_offset = load_String_offset(no_ctrl, arg);
1541     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1542 
1543     // Get length of source string
1544     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1545 
1546     // Check for substr count > string count
1547     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1548     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1549     Node* if_gt = generate_slow_guard(bol, NULL);
1550     if (if_gt != NULL) {
1551       result_phi->init_req(2, intcon(-1));
1552       result_rgn->init_req(2, if_gt);
1553     }
1554 
1555     if (!stopped()) {
1556       // Check for substr count == 0
1557       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1558       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1559       Node* if_zero = generate_slow_guard(bol, NULL);
1560       if (if_zero != NULL) {
1561         result_phi->init_req(3, intcon(0));
1562         result_rgn->init_req(3, if_zero);
1563       }
1564     }
1565 
1566     if (!stopped()) {
1567       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1568       result_phi->init_req(1, result);
1569       result_rgn->init_req(1, control());
1570     }
1571     set_control(_gvn.transform(result_rgn));
1572     record_for_igvn(result_rgn);
1573     result = _gvn.transform(result_phi);
1574 
1575   } else { // Use LibraryCallKit::string_indexOf
1576     // don't intrinsify if argument isn't a constant string.
1577     if (!arg->is_Con()) {
1578      return false;
1579     }
1580     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1581     if (str_type == NULL) {
1582       return false;
1583     }
1584     ciInstanceKlass* klass = env()->String_klass();
1585     ciObject* str_const = str_type->const_oop();
1586     if (str_const == NULL || str_const->klass() != klass) {
1587       return false;
1588     }
1589     ciInstance* str = str_const->as_instance();
1590     assert(str != NULL, "must be instance");
1591 
1592     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1593     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1594 
1595     int o;
1596     int c;
1597     if (java_lang_String::has_offset_field()) {
1598       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1599       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1600     } else {
1601       o = 0;
1602       c = pat->length();
1603     }
1604 
1605     // constant strings have no offset and count == length which
1606     // simplifies the resulting code somewhat so lets optimize for that.
1607     if (o != 0 || c != pat->length()) {
1608      return false;
1609     }
1610 
1611     receiver = null_check(receiver, T_OBJECT);
1612     // NOTE: No null check on the argument is needed since it's a constant String oop.
1613     if (stopped()) {
1614       return true;
1615     }
1616 
1617     // The null string as a pattern always returns 0 (match at beginning of string)
1618     if (c == 0) {
1619       set_result(intcon(0));
1620       return true;
1621     }
1622 
1623     // Generate default indexOf
1624     jchar lastChar = pat->char_at(o + (c - 1));
1625     int cache = 0;
1626     int i;
1627     for (i = 0; i < c - 1; i++) {
1628       assert(i < pat->length(), "out of range");
1629       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1630     }
1631 
1632     int md2 = c;
1633     for (i = 0; i < c - 1; i++) {
1634       assert(i < pat->length(), "out of range");
1635       if (pat->char_at(o + i) == lastChar) {
1636         md2 = (c - 1) - i;
1637       }
1638     }
1639 
1640     result = string_indexOf(receiver, pat, o, cache, md2);
1641   }
1642   set_result(result);
1643   return true;
1644 }
1645 
1646 //--------------------------round_double_node--------------------------------
1647 // Round a double node if necessary.
1648 Node* LibraryCallKit::round_double_node(Node* n) {
1649   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1650     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1651   return n;
1652 }
1653 
1654 //------------------------------inline_math-----------------------------------
1655 // public static double Math.abs(double)
1656 // public static double Math.sqrt(double)
1657 // public static double Math.log(double)
1658 // public static double Math.log10(double)
1659 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1660   Node* arg = round_double_node(argument(0));
1661   Node* n = NULL;
1662   switch (id) {
1663   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1664   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1665   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1666   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1667   default:  fatal_unexpected_iid(id);  break;
1668   }
1669   set_result(_gvn.transform(n));
1670   return true;
1671 }
1672 
1673 //------------------------------inline_trig----------------------------------
1674 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1675 // argument reduction which will turn into a fast/slow diamond.
1676 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1677   Node* arg = round_double_node(argument(0));
1678   Node* n = NULL;
1679 
1680   switch (id) {
1681   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1682   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1683   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1684   default:  fatal_unexpected_iid(id);  break;
1685   }
1686   n = _gvn.transform(n);
1687 
1688   // Rounding required?  Check for argument reduction!
1689   if (Matcher::strict_fp_requires_explicit_rounding) {
1690     static const double     pi_4 =  0.7853981633974483;
1691     static const double neg_pi_4 = -0.7853981633974483;
1692     // pi/2 in 80-bit extended precision
1693     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1694     // -pi/2 in 80-bit extended precision
1695     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1696     // Cutoff value for using this argument reduction technique
1697     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1698     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1699 
1700     // Pseudocode for sin:
1701     // if (x <= Math.PI / 4.0) {
1702     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1703     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1704     // } else {
1705     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1706     // }
1707     // return StrictMath.sin(x);
1708 
1709     // Pseudocode for cos:
1710     // if (x <= Math.PI / 4.0) {
1711     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1712     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1713     // } else {
1714     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1715     // }
1716     // return StrictMath.cos(x);
1717 
1718     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1719     // requires a special machine instruction to load it.  Instead we'll try
1720     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1721     // probably do the math inside the SIN encoding.
1722 
1723     // Make the merge point
1724     RegionNode* r = new (C) RegionNode(3);
1725     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1726 
1727     // Flatten arg so we need only 1 test
1728     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1729     // Node for PI/4 constant
1730     Node *pi4 = makecon(TypeD::make(pi_4));
1731     // Check PI/4 : abs(arg)
1732     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1733     // Check: If PI/4 < abs(arg) then go slow
1734     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1735     // Branch either way
1736     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1737     set_control(opt_iff(r,iff));
1738 
1739     // Set fast path result
1740     phi->init_req(2, n);
1741 
1742     // Slow path - non-blocking leaf call
1743     Node* call = NULL;
1744     switch (id) {
1745     case vmIntrinsics::_dsin:
1746       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1747                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1748                                "Sin", NULL, arg, top());
1749       break;
1750     case vmIntrinsics::_dcos:
1751       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1752                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1753                                "Cos", NULL, arg, top());
1754       break;
1755     case vmIntrinsics::_dtan:
1756       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1757                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1758                                "Tan", NULL, arg, top());
1759       break;
1760     }
1761     assert(control()->in(0) == call, "");
1762     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1763     r->init_req(1, control());
1764     phi->init_req(1, slow_result);
1765 
1766     // Post-merge
1767     set_control(_gvn.transform(r));
1768     record_for_igvn(r);
1769     n = _gvn.transform(phi);
1770 
1771     C->set_has_split_ifs(true); // Has chance for split-if optimization
1772   }
1773   set_result(n);
1774   return true;
1775 }
1776 
1777 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1778   //-------------------
1779   //result=(result.isNaN())? funcAddr():result;
1780   // Check: If isNaN() by checking result!=result? then either trap
1781   // or go to runtime
1782   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1783   // Build the boolean node
1784   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1785 
1786   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1787     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1788       // The pow or exp intrinsic returned a NaN, which requires a call
1789       // to the runtime.  Recompile with the runtime call.
1790       uncommon_trap(Deoptimization::Reason_intrinsic,
1791                     Deoptimization::Action_make_not_entrant);
1792     }
1793     return result;
1794   } else {
1795     // If this inlining ever returned NaN in the past, we compile a call
1796     // to the runtime to properly handle corner cases
1797 
1798     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1799     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1800     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1801 
1802     if (!if_slow->is_top()) {
1803       RegionNode* result_region = new (C) RegionNode(3);
1804       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1805 
1806       result_region->init_req(1, if_fast);
1807       result_val->init_req(1, result);
1808 
1809       set_control(if_slow);
1810 
1811       const TypePtr* no_memory_effects = NULL;
1812       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1813                                    no_memory_effects,
1814                                    x, top(), y, y ? top() : NULL);
1815       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1816 #ifdef ASSERT
1817       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1818       assert(value_top == top(), "second value must be top");
1819 #endif
1820 
1821       result_region->init_req(2, control());
1822       result_val->init_req(2, value);
1823       set_control(_gvn.transform(result_region));
1824       return _gvn.transform(result_val);
1825     } else {
1826       return result;
1827     }
1828   }
1829 }
1830 
1831 //------------------------------inline_exp-------------------------------------
1832 // Inline exp instructions, if possible.  The Intel hardware only misses
1833 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1834 bool LibraryCallKit::inline_exp() {
1835   Node* arg = round_double_node(argument(0));
1836   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1837 
1838   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1839   set_result(n);
1840 
1841   C->set_has_split_ifs(true); // Has chance for split-if optimization
1842   return true;
1843 }
1844 
1845 //------------------------------inline_pow-------------------------------------
1846 // Inline power instructions, if possible.
1847 bool LibraryCallKit::inline_pow() {
1848   // Pseudocode for pow
1849   // if (y == 2) {
1850   //   return x * x;
1851   // } else {
1852   //   if (x <= 0.0) {
1853   //     long longy = (long)y;
1854   //     if ((double)longy == y) { // if y is long
1855   //       if (y + 1 == y) longy = 0; // huge number: even
1856   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1857   //     } else {
1858   //       result = NaN;
1859   //     }
1860   //   } else {
1861   //     result = DPow(x,y);
1862   //   }
1863   //   if (result != result)?  {
1864   //     result = uncommon_trap() or runtime_call();
1865   //   }
1866   //   return result;
1867   // }
1868 
1869   Node* x = round_double_node(argument(0));
1870   Node* y = round_double_node(argument(2));
1871 
1872   Node* result = NULL;
1873 
1874   Node*   const_two_node = makecon(TypeD::make(2.0));
1875   Node*   cmp_node       = _gvn.transform(new (C) CmpDNode(y, const_two_node));
1876   Node*   bool_node      = _gvn.transform(new (C) BoolNode(cmp_node, BoolTest::eq));
1877   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1878   Node*   if_true        = _gvn.transform(new (C) IfTrueNode(if_node));
1879   Node*   if_false       = _gvn.transform(new (C) IfFalseNode(if_node));
1880 
1881   RegionNode* region_node = new (C) RegionNode(3);
1882   region_node->init_req(1, if_true);
1883 
1884   Node* phi_node = new (C) PhiNode(region_node, Type::DOUBLE);
1885   // special case for x^y where y == 2, we can convert it to x * x
1886   phi_node->init_req(1, _gvn.transform(new (C) MulDNode(x, x)));
1887 
1888   // set control to if_false since we will now process the false branch
1889   set_control(if_false);
1890 
1891   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1892     // Short form: skip the fancy tests and just check for NaN result.
1893     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1894   } else {
1895     // If this inlining ever returned NaN in the past, include all
1896     // checks + call to the runtime.
1897 
1898     // Set the merge point for If node with condition of (x <= 0.0)
1899     // There are four possible paths to region node and phi node
1900     RegionNode *r = new (C) RegionNode(4);
1901     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1902 
1903     // Build the first if node: if (x <= 0.0)
1904     // Node for 0 constant
1905     Node *zeronode = makecon(TypeD::ZERO);
1906     // Check x:0
1907     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1908     // Check: If (x<=0) then go complex path
1909     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1910     // Branch either way
1911     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1912     // Fast path taken; set region slot 3
1913     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1914     r->init_req(3,fast_taken); // Capture fast-control
1915 
1916     // Fast path not-taken, i.e. slow path
1917     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1918 
1919     // Set fast path result
1920     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1921     phi->init_req(3, fast_result);
1922 
1923     // Complex path
1924     // Build the second if node (if y is long)
1925     // Node for (long)y
1926     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1927     // Node for (double)((long) y)
1928     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1929     // Check (double)((long) y) : y
1930     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1931     // Check if (y isn't long) then go to slow path
1932 
1933     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1934     // Branch either way
1935     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1936     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1937 
1938     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1939 
1940     // Calculate DPow(abs(x), y)*(1 & (long)y)
1941     // Node for constant 1
1942     Node *conone = longcon(1);
1943     // 1& (long)y
1944     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1945 
1946     // A huge number is always even. Detect a huge number by checking
1947     // if y + 1 == y and set integer to be tested for parity to 0.
1948     // Required for corner case:
1949     // (long)9.223372036854776E18 = max_jlong
1950     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1951     // max_jlong is odd but 9.223372036854776E18 is even
1952     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1953     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1954     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1955     Node* correctedsign = NULL;
1956     if (ConditionalMoveLimit != 0) {
1957       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1958     } else {
1959       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1960       RegionNode *r = new (C) RegionNode(3);
1961       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1962       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1963       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1964       phi->init_req(1, signnode);
1965       phi->init_req(2, longcon(0));
1966       correctedsign = _gvn.transform(phi);
1967       ylong_path = _gvn.transform(r);
1968       record_for_igvn(r);
1969     }
1970 
1971     // zero node
1972     Node *conzero = longcon(0);
1973     // Check (1&(long)y)==0?
1974     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1975     // Check if (1&(long)y)!=0?, if so the result is negative
1976     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1977     // abs(x)
1978     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1979     // abs(x)^y
1980     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1981     // -abs(x)^y
1982     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1983     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1984     Node *signresult = NULL;
1985     if (ConditionalMoveLimit != 0) {
1986       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1987     } else {
1988       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1989       RegionNode *r = new (C) RegionNode(3);
1990       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1991       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1992       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1993       phi->init_req(1, absxpowy);
1994       phi->init_req(2, negabsxpowy);
1995       signresult = _gvn.transform(phi);
1996       ylong_path = _gvn.transform(r);
1997       record_for_igvn(r);
1998     }
1999     // Set complex path fast result
2000     r->init_req(2, ylong_path);
2001     phi->init_req(2, signresult);
2002 
2003     static const jlong nan_bits = CONST64(0x7ff8000000000000);
2004     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
2005     r->init_req(1,slow_path);
2006     phi->init_req(1,slow_result);
2007 
2008     // Post merge
2009     set_control(_gvn.transform(r));
2010     record_for_igvn(r);
2011     result = _gvn.transform(phi);
2012   }
2013 
2014   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
2015 
2016   // control from finish_pow_exp is now input to the region node
2017   region_node->set_req(2, control());
2018   // the result from finish_pow_exp is now input to the phi node
2019   phi_node->init_req(2, result);
2020   set_control(_gvn.transform(region_node));
2021   record_for_igvn(region_node);
2022   set_result(_gvn.transform(phi_node));
2023 
2024   C->set_has_split_ifs(true); // Has chance for split-if optimization
2025   return true;
2026 }
2027 
2028 //------------------------------runtime_math-----------------------------
2029 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
2030   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
2031          "must be (DD)D or (D)D type");
2032 
2033   // Inputs
2034   Node* a = round_double_node(argument(0));
2035   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
2036 
2037   const TypePtr* no_memory_effects = NULL;
2038   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
2039                                  no_memory_effects,
2040                                  a, top(), b, b ? top() : NULL);
2041   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
2042 #ifdef ASSERT
2043   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
2044   assert(value_top == top(), "second value must be top");
2045 #endif
2046 
2047   set_result(value);
2048   return true;
2049 }
2050 
2051 //------------------------------inline_math_native-----------------------------
2052 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
2053 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
2054   switch (id) {
2055     // These intrinsics are not properly supported on all hardware
2056   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
2057     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
2058   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
2059     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
2060   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
2061     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
2062 
2063   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
2064     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
2065   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
2066     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
2067 
2068     // These intrinsics are supported on all hardware
2069   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
2070   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
2071 
2072   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
2073     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
2074   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
2075     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
2076 #undef FN_PTR
2077 
2078    // These intrinsics are not yet correctly implemented
2079   case vmIntrinsics::_datan2:
2080     return false;
2081 
2082   default:
2083     fatal_unexpected_iid(id);
2084     return false;
2085   }
2086 }
2087 
2088 static bool is_simple_name(Node* n) {
2089   return (n->req() == 1         // constant
2090           || (n->is_Type() && n->as_Type()->type()->singleton())
2091           || n->is_Proj()       // parameter or return value
2092           || n->is_Phi()        // local of some sort
2093           );
2094 }
2095 
2096 //----------------------------inline_min_max-----------------------------------
2097 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2098   set_result(generate_min_max(id, argument(0), argument(1)));
2099   return true;
2100 }
2101 
2102 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2103   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
2104   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2105   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
2106   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
2107 
2108   {
2109     PreserveJVMState pjvms(this);
2110     PreserveReexecuteState preexecs(this);
2111     jvms()->set_should_reexecute(true);
2112 
2113     set_control(slow_path);
2114     set_i_o(i_o());
2115 
2116     uncommon_trap(Deoptimization::Reason_intrinsic,
2117                   Deoptimization::Action_none);
2118   }
2119 
2120   set_control(fast_path);
2121   set_result(math);
2122 }
2123 
2124 template <typename OverflowOp>
2125 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2126   typedef typename OverflowOp::MathOp MathOp;
2127 
2128   MathOp* mathOp = new(C) MathOp(arg1, arg2);
2129   Node* operation = _gvn.transform( mathOp );
2130   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
2131   inline_math_mathExact(operation, ofcheck);
2132   return true;
2133 }
2134 
2135 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2136   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2137 }
2138 
2139 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2140   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2141 }
2142 
2143 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2144   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2145 }
2146 
2147 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2148   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2149 }
2150 
2151 bool LibraryCallKit::inline_math_negateExactI() {
2152   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2153 }
2154 
2155 bool LibraryCallKit::inline_math_negateExactL() {
2156   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2157 }
2158 
2159 bool LibraryCallKit::inline_math_multiplyExactI() {
2160   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2161 }
2162 
2163 bool LibraryCallKit::inline_math_multiplyExactL() {
2164   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2165 }
2166 
2167 Node*
2168 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2169   // These are the candidate return value:
2170   Node* xvalue = x0;
2171   Node* yvalue = y0;
2172 
2173   if (xvalue == yvalue) {
2174     return xvalue;
2175   }
2176 
2177   bool want_max = (id == vmIntrinsics::_max);
2178 
2179   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2180   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2181   if (txvalue == NULL || tyvalue == NULL)  return top();
2182   // This is not really necessary, but it is consistent with a
2183   // hypothetical MaxINode::Value method:
2184   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2185 
2186   // %%% This folding logic should (ideally) be in a different place.
2187   // Some should be inside IfNode, and there to be a more reliable
2188   // transformation of ?: style patterns into cmoves.  We also want
2189   // more powerful optimizations around cmove and min/max.
2190 
2191   // Try to find a dominating comparison of these guys.
2192   // It can simplify the index computation for Arrays.copyOf
2193   // and similar uses of System.arraycopy.
2194   // First, compute the normalized version of CmpI(x, y).
2195   int   cmp_op = Op_CmpI;
2196   Node* xkey = xvalue;
2197   Node* ykey = yvalue;
2198   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
2199   if (ideal_cmpxy->is_Cmp()) {
2200     // E.g., if we have CmpI(length - offset, count),
2201     // it might idealize to CmpI(length, count + offset)
2202     cmp_op = ideal_cmpxy->Opcode();
2203     xkey = ideal_cmpxy->in(1);
2204     ykey = ideal_cmpxy->in(2);
2205   }
2206 
2207   // Start by locating any relevant comparisons.
2208   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2209   Node* cmpxy = NULL;
2210   Node* cmpyx = NULL;
2211   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2212     Node* cmp = start_from->fast_out(k);
2213     if (cmp->outcnt() > 0 &&            // must have prior uses
2214         cmp->in(0) == NULL &&           // must be context-independent
2215         cmp->Opcode() == cmp_op) {      // right kind of compare
2216       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2217       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2218     }
2219   }
2220 
2221   const int NCMPS = 2;
2222   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2223   int cmpn;
2224   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2225     if (cmps[cmpn] != NULL)  break;     // find a result
2226   }
2227   if (cmpn < NCMPS) {
2228     // Look for a dominating test that tells us the min and max.
2229     int depth = 0;                // Limit search depth for speed
2230     Node* dom = control();
2231     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2232       if (++depth >= 100)  break;
2233       Node* ifproj = dom;
2234       if (!ifproj->is_Proj())  continue;
2235       Node* iff = ifproj->in(0);
2236       if (!iff->is_If())  continue;
2237       Node* bol = iff->in(1);
2238       if (!bol->is_Bool())  continue;
2239       Node* cmp = bol->in(1);
2240       if (cmp == NULL)  continue;
2241       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2242         if (cmps[cmpn] == cmp)  break;
2243       if (cmpn == NCMPS)  continue;
2244       BoolTest::mask btest = bol->as_Bool()->_test._test;
2245       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2246       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2247       // At this point, we know that 'x btest y' is true.
2248       switch (btest) {
2249       case BoolTest::eq:
2250         // They are proven equal, so we can collapse the min/max.
2251         // Either value is the answer.  Choose the simpler.
2252         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2253           return yvalue;
2254         return xvalue;
2255       case BoolTest::lt:          // x < y
2256       case BoolTest::le:          // x <= y
2257         return (want_max ? yvalue : xvalue);
2258       case BoolTest::gt:          // x > y
2259       case BoolTest::ge:          // x >= y
2260         return (want_max ? xvalue : yvalue);
2261       }
2262     }
2263   }
2264 
2265   // We failed to find a dominating test.
2266   // Let's pick a test that might GVN with prior tests.
2267   Node*          best_bol   = NULL;
2268   BoolTest::mask best_btest = BoolTest::illegal;
2269   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2270     Node* cmp = cmps[cmpn];
2271     if (cmp == NULL)  continue;
2272     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2273       Node* bol = cmp->fast_out(j);
2274       if (!bol->is_Bool())  continue;
2275       BoolTest::mask btest = bol->as_Bool()->_test._test;
2276       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2277       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2278       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2279         best_bol   = bol->as_Bool();
2280         best_btest = btest;
2281       }
2282     }
2283   }
2284 
2285   Node* answer_if_true  = NULL;
2286   Node* answer_if_false = NULL;
2287   switch (best_btest) {
2288   default:
2289     if (cmpxy == NULL)
2290       cmpxy = ideal_cmpxy;
2291     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2292     // and fall through:
2293   case BoolTest::lt:          // x < y
2294   case BoolTest::le:          // x <= y
2295     answer_if_true  = (want_max ? yvalue : xvalue);
2296     answer_if_false = (want_max ? xvalue : yvalue);
2297     break;
2298   case BoolTest::gt:          // x > y
2299   case BoolTest::ge:          // x >= y
2300     answer_if_true  = (want_max ? xvalue : yvalue);
2301     answer_if_false = (want_max ? yvalue : xvalue);
2302     break;
2303   }
2304 
2305   jint hi, lo;
2306   if (want_max) {
2307     // We can sharpen the minimum.
2308     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2309     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2310   } else {
2311     // We can sharpen the maximum.
2312     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2313     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2314   }
2315 
2316   // Use a flow-free graph structure, to avoid creating excess control edges
2317   // which could hinder other optimizations.
2318   // Since Math.min/max is often used with arraycopy, we want
2319   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2320   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2321                                answer_if_false, answer_if_true,
2322                                TypeInt::make(lo, hi, widen));
2323 
2324   return _gvn.transform(cmov);
2325 
2326   /*
2327   // This is not as desirable as it may seem, since Min and Max
2328   // nodes do not have a full set of optimizations.
2329   // And they would interfere, anyway, with 'if' optimizations
2330   // and with CMoveI canonical forms.
2331   switch (id) {
2332   case vmIntrinsics::_min:
2333     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2334   case vmIntrinsics::_max:
2335     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2336   default:
2337     ShouldNotReachHere();
2338   }
2339   */
2340 }
2341 
2342 inline int
2343 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2344   const TypePtr* base_type = TypePtr::NULL_PTR;
2345   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2346   if (base_type == NULL) {
2347     // Unknown type.
2348     return Type::AnyPtr;
2349   } else if (base_type == TypePtr::NULL_PTR) {
2350     // Since this is a NULL+long form, we have to switch to a rawptr.
2351     base   = _gvn.transform(new (C) CastX2PNode(offset));
2352     offset = MakeConX(0);
2353     return Type::RawPtr;
2354   } else if (base_type->base() == Type::RawPtr) {
2355     return Type::RawPtr;
2356   } else if (base_type->isa_oopptr()) {
2357     // Base is never null => always a heap address.
2358     if (base_type->ptr() == TypePtr::NotNull) {
2359       return Type::OopPtr;
2360     }
2361     // Offset is small => always a heap address.
2362     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2363     if (offset_type != NULL &&
2364         base_type->offset() == 0 &&     // (should always be?)
2365         offset_type->_lo >= 0 &&
2366         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2367       return Type::OopPtr;
2368     }
2369     // Otherwise, it might either be oop+off or NULL+addr.
2370     return Type::AnyPtr;
2371   } else {
2372     // No information:
2373     return Type::AnyPtr;
2374   }
2375 }
2376 
2377 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2378   int kind = classify_unsafe_addr(base, offset);
2379   if (kind == Type::RawPtr) {
2380     return basic_plus_adr(top(), base, offset);
2381   } else {
2382     return basic_plus_adr(base, offset);
2383   }
2384 }
2385 
2386 //--------------------------inline_number_methods-----------------------------
2387 // inline int     Integer.numberOfLeadingZeros(int)
2388 // inline int        Long.numberOfLeadingZeros(long)
2389 //
2390 // inline int     Integer.numberOfTrailingZeros(int)
2391 // inline int        Long.numberOfTrailingZeros(long)
2392 //
2393 // inline int     Integer.bitCount(int)
2394 // inline int        Long.bitCount(long)
2395 //
2396 // inline char  Character.reverseBytes(char)
2397 // inline short     Short.reverseBytes(short)
2398 // inline int     Integer.reverseBytes(int)
2399 // inline long       Long.reverseBytes(long)
2400 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2401   Node* arg = argument(0);
2402   Node* n = NULL;
2403   switch (id) {
2404   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2405   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2406   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2407   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2408   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2409   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2410   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2411   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2412   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2413   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2414   default:  fatal_unexpected_iid(id);  break;
2415   }
2416   set_result(_gvn.transform(n));
2417   return true;
2418 }
2419 
2420 //----------------------------inline_unsafe_access----------------------------
2421 
2422 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2423 
2424 // Helper that guards and inserts a pre-barrier.
2425 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2426                                         Node* pre_val, bool need_mem_bar) {
2427   // We could be accessing the referent field of a reference object. If so, when G1
2428   // is enabled, we need to log the value in the referent field in an SATB buffer.
2429   // This routine performs some compile time filters and generates suitable
2430   // runtime filters that guard the pre-barrier code.
2431   // Also add memory barrier for non volatile load from the referent field
2432   // to prevent commoning of loads across safepoint.
2433   if (!UseG1GC && !need_mem_bar)
2434     return;
2435 
2436   // Some compile time checks.
2437 
2438   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2439   const TypeX* otype = offset->find_intptr_t_type();
2440   if (otype != NULL && otype->is_con() &&
2441       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2442     // Constant offset but not the reference_offset so just return
2443     return;
2444   }
2445 
2446   // We only need to generate the runtime guards for instances.
2447   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2448   if (btype != NULL) {
2449     if (btype->isa_aryptr()) {
2450       // Array type so nothing to do
2451       return;
2452     }
2453 
2454     const TypeInstPtr* itype = btype->isa_instptr();
2455     if (itype != NULL) {
2456       // Can the klass of base_oop be statically determined to be
2457       // _not_ a sub-class of Reference and _not_ Object?
2458       ciKlass* klass = itype->klass();
2459       if ( klass->is_loaded() &&
2460           !klass->is_subtype_of(env()->Reference_klass()) &&
2461           !env()->Object_klass()->is_subtype_of(klass)) {
2462         return;
2463       }
2464     }
2465   }
2466 
2467   // The compile time filters did not reject base_oop/offset so
2468   // we need to generate the following runtime filters
2469   //
2470   // if (offset == java_lang_ref_Reference::_reference_offset) {
2471   //   if (instance_of(base, java.lang.ref.Reference)) {
2472   //     pre_barrier(_, pre_val, ...);
2473   //   }
2474   // }
2475 
2476   float likely   = PROB_LIKELY(  0.999);
2477   float unlikely = PROB_UNLIKELY(0.999);
2478 
2479   IdealKit ideal(this);
2480 #define __ ideal.
2481 
2482   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2483 
2484   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2485       // Update graphKit memory and control from IdealKit.
2486       sync_kit(ideal);
2487 
2488       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2489       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2490 
2491       // Update IdealKit memory and control from graphKit.
2492       __ sync_kit(this);
2493 
2494       Node* one = __ ConI(1);
2495       // is_instof == 0 if base_oop == NULL
2496       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2497 
2498         // Update graphKit from IdeakKit.
2499         sync_kit(ideal);
2500 
2501         // Use the pre-barrier to record the value in the referent field
2502         pre_barrier(false /* do_load */,
2503                     __ ctrl(),
2504                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2505                     pre_val /* pre_val */,
2506                     T_OBJECT);
2507         if (need_mem_bar) {
2508           // Add memory barrier to prevent commoning reads from this field
2509           // across safepoint since GC can change its value.
2510           insert_mem_bar(Op_MemBarCPUOrder);
2511         }
2512         // Update IdealKit from graphKit.
2513         __ sync_kit(this);
2514 
2515       } __ end_if(); // _ref_type != ref_none
2516   } __ end_if(); // offset == referent_offset
2517 
2518   // Final sync IdealKit and GraphKit.
2519   final_sync(ideal);
2520 #undef __
2521 }
2522 
2523 
2524 // Interpret Unsafe.fieldOffset cookies correctly:
2525 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2526 
2527 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2528   // Attempt to infer a sharper value type from the offset and base type.
2529   ciKlass* sharpened_klass = NULL;
2530 
2531   // See if it is an instance field, with an object type.
2532   if (alias_type->field() != NULL) {
2533     assert(!is_native_ptr, "native pointer op cannot use a java address");
2534     if (alias_type->field()->type()->is_klass()) {
2535       sharpened_klass = alias_type->field()->type()->as_klass();
2536     }
2537   }
2538 
2539   // See if it is a narrow oop array.
2540   if (adr_type->isa_aryptr()) {
2541     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2542       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2543       if (elem_type != NULL) {
2544         sharpened_klass = elem_type->klass();
2545       }
2546     }
2547   }
2548 
2549   // The sharpened class might be unloaded if there is no class loader
2550   // contraint in place.
2551   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2552     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2553 
2554 #ifndef PRODUCT
2555     if (C->print_intrinsics() || C->print_inlining()) {
2556       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2557       tty->print("  sharpened value: ");  tjp->dump();      tty->cr();
2558     }
2559 #endif
2560     // Sharpen the value type.
2561     return tjp;
2562   }
2563   return NULL;
2564 }
2565 
2566 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile, bool unaligned) {
2567   if (callee()->is_static())  return false;  // caller must have the capability!
2568   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2569 
2570 #ifndef PRODUCT
2571   {
2572     ResourceMark rm;
2573     // Check the signatures.
2574     ciSignature* sig = callee()->signature();
2575 #ifdef ASSERT
2576     if (!is_store) {
2577       // Object getObject(Object base, int/long offset), etc.
2578       BasicType rtype = sig->return_type()->basic_type();
2579       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2580           rtype = T_ADDRESS;  // it is really a C void*
2581       assert(rtype == type, "getter must return the expected value");
2582       if (!is_native_ptr) {
2583         assert(sig->count() == 2, "oop getter has 2 arguments");
2584         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2585         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2586       } else {
2587         assert(sig->count() == 1, "native getter has 1 argument");
2588         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2589       }
2590     } else {
2591       // void putObject(Object base, int/long offset, Object x), etc.
2592       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2593       if (!is_native_ptr) {
2594         assert(sig->count() == 3, "oop putter has 3 arguments");
2595         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2596         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2597       } else {
2598         assert(sig->count() == 2, "native putter has 2 arguments");
2599         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2600       }
2601       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2602       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2603         vtype = T_ADDRESS;  // it is really a C void*
2604       assert(vtype == type, "putter must accept the expected value");
2605     }
2606 #endif // ASSERT
2607  }
2608 #endif //PRODUCT
2609 
2610   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2611 
2612   Node* receiver = argument(0);  // type: oop
2613 
2614   // Build address expression.  See the code in inline_unsafe_prefetch.
2615   Node* adr;
2616   Node* heap_base_oop = top();
2617   Node* offset = top();
2618   Node* val;
2619 
2620   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2621   Node* base = argument(1);  // type: oop
2622 
2623   if (!is_native_ptr) {
2624     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2625     offset = argument(2);  // type: long
2626     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2627     // to be plain byte offsets, which are also the same as those accepted
2628     // by oopDesc::field_base.
2629     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2630            "fieldOffset must be byte-scaled");
2631     // 32-bit machines ignore the high half!
2632     offset = ConvL2X(offset);
2633     adr = make_unsafe_address(base, offset);
2634     heap_base_oop = base;
2635     val = is_store ? argument(4) : NULL;
2636   } else {
2637     Node* ptr = argument(1);  // type: long
2638     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2639     adr = make_unsafe_address(NULL, ptr);
2640     val = is_store ? argument(3) : NULL;
2641   }
2642 
2643   if ((_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) && type == T_OBJECT) {
2644     return false; // off-heap oop accesses are not supported
2645   }
2646 
2647   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2648 
2649   // Try to categorize the address.
2650   Compile::AliasType* alias_type = C->alias_type(adr_type);
2651   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2652 
2653   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2654       alias_type->adr_type() == TypeAryPtr::RANGE) {
2655     return false; // not supported
2656   }
2657 
2658   bool mismatched = false;
2659   BasicType bt = alias_type->basic_type();
2660   if (bt != T_ILLEGAL) {
2661     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2662     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2663       // Alias type doesn't differentiate between byte[] and boolean[]).
2664       // Use address type to get the element type.
2665       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2666     }
2667     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2668       // accessing an array field with getObject is not a mismatch
2669       bt = T_OBJECT;
2670     }
2671     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2672       // Don't intrinsify mismatched object accesses
2673       return false;
2674     }
2675     mismatched = (bt != type);
2676   }
2677 
2678   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2679 
2680   // First guess at the value type.
2681   const Type *value_type = Type::get_const_basic_type(type);
2682 
2683   // We will need memory barriers unless we can determine a unique
2684   // alias category for this reference.  (Note:  If for some reason
2685   // the barriers get omitted and the unsafe reference begins to "pollute"
2686   // the alias analysis of the rest of the graph, either Compile::can_alias
2687   // or Compile::must_alias will throw a diagnostic assert.)
2688   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2689 
2690   // If we are reading the value of the referent field of a Reference
2691   // object (either by using Unsafe directly or through reflection)
2692   // then, if G1 is enabled, we need to record the referent in an
2693   // SATB log buffer using the pre-barrier mechanism.
2694   // Also we need to add memory barrier to prevent commoning reads
2695   // from this field across safepoint since GC can change its value.
2696   bool need_read_barrier = !is_native_ptr && !is_store &&
2697                            offset != top() && heap_base_oop != top();
2698 
2699   if (!is_store && type == T_OBJECT) {
2700     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2701     if (tjp != NULL) {
2702       value_type = tjp;
2703     }
2704   }
2705 
2706   receiver = null_check(receiver);
2707   if (stopped()) {
2708     return true;
2709   }
2710   // Heap pointers get a null-check from the interpreter,
2711   // as a courtesy.  However, this is not guaranteed by Unsafe,
2712   // and it is not possible to fully distinguish unintended nulls
2713   // from intended ones in this API.
2714 
2715   if (is_volatile) {
2716     // We need to emit leading and trailing CPU membars (see below) in
2717     // addition to memory membars when is_volatile. This is a little
2718     // too strong, but avoids the need to insert per-alias-type
2719     // volatile membars (for stores; compare Parse::do_put_xxx), which
2720     // we cannot do effectively here because we probably only have a
2721     // rough approximation of type.
2722     need_mem_bar = true;
2723     // For Stores, place a memory ordering barrier now.
2724     if (is_store) {
2725       insert_mem_bar(Op_MemBarRelease);
2726     } else {
2727       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2728         insert_mem_bar(Op_MemBarVolatile);
2729       }
2730     }
2731   }
2732 
2733   // Memory barrier to prevent normal and 'unsafe' accesses from
2734   // bypassing each other.  Happens after null checks, so the
2735   // exception paths do not take memory state from the memory barrier,
2736   // so there's no problems making a strong assert about mixing users
2737   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2738   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2739   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2740 
2741   if (!is_store) {
2742     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2743     // To be valid, unsafe loads may depend on other conditions than
2744     // the one that guards them: pin the Load node
2745     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile, unaligned, mismatched);
2746     // load value
2747     switch (type) {
2748     case T_BOOLEAN:
2749     case T_CHAR:
2750     case T_BYTE:
2751     case T_SHORT:
2752     case T_INT:
2753     case T_LONG:
2754     case T_FLOAT:
2755     case T_DOUBLE:
2756       break;
2757     case T_OBJECT:
2758       if (need_read_barrier) {
2759         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2760       }
2761       break;
2762     case T_ADDRESS:
2763       // Cast to an int type.
2764       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2765       p = ConvX2UL(p);
2766       break;
2767     default:
2768       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2769       break;
2770     }
2771     // The load node has the control of the preceding MemBarCPUOrder.  All
2772     // following nodes will have the control of the MemBarCPUOrder inserted at
2773     // the end of this method.  So, pushing the load onto the stack at a later
2774     // point is fine.
2775     set_result(p);
2776   } else {
2777     // place effect of store into memory
2778     switch (type) {
2779     case T_DOUBLE:
2780       val = dstore_rounding(val);
2781       break;
2782     case T_ADDRESS:
2783       // Repackage the long as a pointer.
2784       val = ConvL2X(val);
2785       val = _gvn.transform(new (C) CastX2PNode(val));
2786       break;
2787     }
2788 
2789     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2790     if (type == T_OBJECT ) {
2791       (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2792     } else {
2793       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile, unaligned, mismatched);
2794     }
2795   }
2796 
2797   if (is_volatile) {
2798     if (!is_store) {
2799       insert_mem_bar(Op_MemBarAcquire);
2800     } else {
2801       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2802         insert_mem_bar(Op_MemBarVolatile);
2803       }
2804     }
2805   }
2806 
2807   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2808 
2809   return true;
2810 }
2811 
2812 //----------------------------inline_unsafe_prefetch----------------------------
2813 
2814 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2815 #ifndef PRODUCT
2816   {
2817     ResourceMark rm;
2818     // Check the signatures.
2819     ciSignature* sig = callee()->signature();
2820 #ifdef ASSERT
2821     // Object getObject(Object base, int/long offset), etc.
2822     BasicType rtype = sig->return_type()->basic_type();
2823     if (!is_native_ptr) {
2824       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2825       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2826       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2827     } else {
2828       assert(sig->count() == 1, "native prefetch has 1 argument");
2829       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2830     }
2831 #endif // ASSERT
2832   }
2833 #endif // !PRODUCT
2834 
2835   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2836 
2837   const int idx = is_static ? 0 : 1;
2838   if (!is_static) {
2839     null_check_receiver();
2840     if (stopped()) {
2841       return true;
2842     }
2843   }
2844 
2845   // Build address expression.  See the code in inline_unsafe_access.
2846   Node *adr;
2847   if (!is_native_ptr) {
2848     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2849     Node* base   = argument(idx + 0);  // type: oop
2850     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2851     Node* offset = argument(idx + 1);  // type: long
2852     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2853     // to be plain byte offsets, which are also the same as those accepted
2854     // by oopDesc::field_base.
2855     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2856            "fieldOffset must be byte-scaled");
2857     // 32-bit machines ignore the high half!
2858     offset = ConvL2X(offset);
2859     adr = make_unsafe_address(base, offset);
2860   } else {
2861     Node* ptr = argument(idx + 0);  // type: long
2862     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2863     adr = make_unsafe_address(NULL, ptr);
2864   }
2865 
2866   // Generate the read or write prefetch
2867   Node *prefetch;
2868   if (is_store) {
2869     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2870   } else {
2871     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2872   }
2873   prefetch->init_req(0, control());
2874   set_i_o(_gvn.transform(prefetch));
2875 
2876   return true;
2877 }
2878 
2879 //----------------------------inline_unsafe_load_store----------------------------
2880 // This method serves a couple of different customers (depending on LoadStoreKind):
2881 //
2882 // LS_cmpxchg:
2883 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2884 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2885 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2886 //
2887 // LS_xadd:
2888 //   public int  getAndAddInt( Object o, long offset, int  delta)
2889 //   public long getAndAddLong(Object o, long offset, long delta)
2890 //
2891 // LS_xchg:
2892 //   int    getAndSet(Object o, long offset, int    newValue)
2893 //   long   getAndSet(Object o, long offset, long   newValue)
2894 //   Object getAndSet(Object o, long offset, Object newValue)
2895 //
2896 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2897   // This basic scheme here is the same as inline_unsafe_access, but
2898   // differs in enough details that combining them would make the code
2899   // overly confusing.  (This is a true fact! I originally combined
2900   // them, but even I was confused by it!) As much code/comments as
2901   // possible are retained from inline_unsafe_access though to make
2902   // the correspondences clearer. - dl
2903 
2904   if (callee()->is_static())  return false;  // caller must have the capability!
2905 
2906 #ifndef PRODUCT
2907   BasicType rtype;
2908   {
2909     ResourceMark rm;
2910     // Check the signatures.
2911     ciSignature* sig = callee()->signature();
2912     rtype = sig->return_type()->basic_type();
2913     if (kind == LS_xadd || kind == LS_xchg) {
2914       // Check the signatures.
2915 #ifdef ASSERT
2916       assert(rtype == type, "get and set must return the expected type");
2917       assert(sig->count() == 3, "get and set has 3 arguments");
2918       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2919       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2920       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2921 #endif // ASSERT
2922     } else if (kind == LS_cmpxchg) {
2923       // Check the signatures.
2924 #ifdef ASSERT
2925       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2926       assert(sig->count() == 4, "CAS has 4 arguments");
2927       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2928       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2929 #endif // ASSERT
2930     } else {
2931       ShouldNotReachHere();
2932     }
2933   }
2934 #endif //PRODUCT
2935 
2936   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2937 
2938   // Get arguments:
2939   Node* receiver = NULL;
2940   Node* base     = NULL;
2941   Node* offset   = NULL;
2942   Node* oldval   = NULL;
2943   Node* newval   = NULL;
2944   if (kind == LS_cmpxchg) {
2945     const bool two_slot_type = type2size[type] == 2;
2946     receiver = argument(0);  // type: oop
2947     base     = argument(1);  // type: oop
2948     offset   = argument(2);  // type: long
2949     oldval   = argument(4);  // type: oop, int, or long
2950     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2951   } else if (kind == LS_xadd || kind == LS_xchg){
2952     receiver = argument(0);  // type: oop
2953     base     = argument(1);  // type: oop
2954     offset   = argument(2);  // type: long
2955     oldval   = NULL;
2956     newval   = argument(4);  // type: oop, int, or long
2957   }
2958 
2959   // Build field offset expression.
2960   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2961   // to be plain byte offsets, which are also the same as those accepted
2962   // by oopDesc::field_base.
2963   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2964   // 32-bit machines ignore the high half of long offsets
2965   offset = ConvL2X(offset);
2966   Node* adr = make_unsafe_address(base, offset);
2967   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2968 
2969   Compile::AliasType* alias_type = C->alias_type(adr_type);
2970   BasicType bt = alias_type->basic_type();
2971   if (bt != T_ILLEGAL &&
2972       ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
2973     // Don't intrinsify mismatched object accesses.
2974     return false;
2975   }
2976 
2977   // For CAS, unlike inline_unsafe_access, there seems no point in
2978   // trying to refine types. Just use the coarse types here.
2979   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2980   const Type *value_type = Type::get_const_basic_type(type);
2981 
2982   if (kind == LS_xchg && type == T_OBJECT) {
2983     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2984     if (tjp != NULL) {
2985       value_type = tjp;
2986     }
2987   }
2988 
2989   // Null check receiver.
2990   receiver = null_check(receiver);
2991   if (stopped()) {
2992     return true;
2993   }
2994 
2995   int alias_idx = C->get_alias_index(adr_type);
2996 
2997   // Memory-model-wise, a LoadStore acts like a little synchronized
2998   // block, so needs barriers on each side.  These don't translate
2999   // into actual barriers on most machines, but we still need rest of
3000   // compiler to respect ordering.
3001 
3002   insert_mem_bar(Op_MemBarRelease);
3003   insert_mem_bar(Op_MemBarCPUOrder);
3004 
3005   // 4984716: MemBars must be inserted before this
3006   //          memory node in order to avoid a false
3007   //          dependency which will confuse the scheduler.
3008   Node *mem = memory(alias_idx);
3009 
3010   // For now, we handle only those cases that actually exist: ints,
3011   // longs, and Object. Adding others should be straightforward.
3012   Node* load_store = NULL;
3013   switch(type) {
3014   case T_INT:
3015     if (kind == LS_xadd) {
3016       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
3017     } else if (kind == LS_xchg) {
3018       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
3019     } else if (kind == LS_cmpxchg) {
3020       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
3021     } else {
3022       ShouldNotReachHere();
3023     }
3024     break;
3025   case T_LONG:
3026     if (kind == LS_xadd) {
3027       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
3028     } else if (kind == LS_xchg) {
3029       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
3030     } else if (kind == LS_cmpxchg) {
3031       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
3032     } else {
3033       ShouldNotReachHere();
3034     }
3035     break;
3036   case T_OBJECT:
3037     // Transformation of a value which could be NULL pointer (CastPP #NULL)
3038     // could be delayed during Parse (for example, in adjust_map_after_if()).
3039     // Execute transformation here to avoid barrier generation in such case.
3040     if (_gvn.type(newval) == TypePtr::NULL_PTR)
3041       newval = _gvn.makecon(TypePtr::NULL_PTR);
3042 
3043     // Reference stores need a store barrier.
3044     if (kind == LS_xchg) {
3045       // If pre-barrier must execute before the oop store, old value will require do_load here.
3046       if (!can_move_pre_barrier()) {
3047         pre_barrier(true /* do_load*/,
3048                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
3049                     NULL /* pre_val*/,
3050                     T_OBJECT);
3051       } // Else move pre_barrier to use load_store value, see below.
3052     } else if (kind == LS_cmpxchg) {
3053       // Same as for newval above:
3054       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
3055         oldval = _gvn.makecon(TypePtr::NULL_PTR);
3056       }
3057       // The only known value which might get overwritten is oldval.
3058       pre_barrier(false /* do_load */,
3059                   control(), NULL, NULL, max_juint, NULL, NULL,
3060                   oldval /* pre_val */,
3061                   T_OBJECT);
3062     } else {
3063       ShouldNotReachHere();
3064     }
3065 
3066 #ifdef _LP64
3067     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3068       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
3069       if (kind == LS_xchg) {
3070         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
3071                                                            newval_enc, adr_type, value_type->make_narrowoop()));
3072       } else {
3073         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3074         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3075         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
3076                                                                 newval_enc, oldval_enc));
3077       }
3078     } else
3079 #endif
3080     {
3081       if (kind == LS_xchg) {
3082         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
3083       } else {
3084         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3085         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
3086       }
3087     }
3088     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3089     break;
3090   default:
3091     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
3092     break;
3093   }
3094 
3095   // SCMemProjNodes represent the memory state of a LoadStore. Their
3096   // main role is to prevent LoadStore nodes from being optimized away
3097   // when their results aren't used.
3098   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
3099   set_memory(proj, alias_idx);
3100 
3101   if (type == T_OBJECT && kind == LS_xchg) {
3102 #ifdef _LP64
3103     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3104       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
3105     }
3106 #endif
3107     if (can_move_pre_barrier()) {
3108       // Don't need to load pre_val. The old value is returned by load_store.
3109       // The pre_barrier can execute after the xchg as long as no safepoint
3110       // gets inserted between them.
3111       pre_barrier(false /* do_load */,
3112                   control(), NULL, NULL, max_juint, NULL, NULL,
3113                   load_store /* pre_val */,
3114                   T_OBJECT);
3115     }
3116   }
3117 
3118   // Add the trailing membar surrounding the access
3119   insert_mem_bar(Op_MemBarCPUOrder);
3120   insert_mem_bar(Op_MemBarAcquire);
3121 
3122   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3123   set_result(load_store);
3124   return true;
3125 }
3126 
3127 //----------------------------inline_unsafe_ordered_store----------------------
3128 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3129 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3130 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3131 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3132   // This is another variant of inline_unsafe_access, differing in
3133   // that it always issues store-store ("release") barrier and ensures
3134   // store-atomicity (which only matters for "long").
3135 
3136   if (callee()->is_static())  return false;  // caller must have the capability!
3137 
3138 #ifndef PRODUCT
3139   {
3140     ResourceMark rm;
3141     // Check the signatures.
3142     ciSignature* sig = callee()->signature();
3143 #ifdef ASSERT
3144     BasicType rtype = sig->return_type()->basic_type();
3145     assert(rtype == T_VOID, "must return void");
3146     assert(sig->count() == 3, "has 3 arguments");
3147     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3148     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3149 #endif // ASSERT
3150   }
3151 #endif //PRODUCT
3152 
3153   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3154 
3155   // Get arguments:
3156   Node* receiver = argument(0);  // type: oop
3157   Node* base     = argument(1);  // type: oop
3158   Node* offset   = argument(2);  // type: long
3159   Node* val      = argument(4);  // type: oop, int, or long
3160 
3161   // Null check receiver.
3162   receiver = null_check(receiver);
3163   if (stopped()) {
3164     return true;
3165   }
3166 
3167   // Build field offset expression.
3168   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3169   // 32-bit machines ignore the high half of long offsets
3170   offset = ConvL2X(offset);
3171   Node* adr = make_unsafe_address(base, offset);
3172   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3173   const Type *value_type = Type::get_const_basic_type(type);
3174   Compile::AliasType* alias_type = C->alias_type(adr_type);
3175 
3176   insert_mem_bar(Op_MemBarRelease);
3177   insert_mem_bar(Op_MemBarCPUOrder);
3178   // Ensure that the store is atomic for longs:
3179   const bool require_atomic_access = true;
3180   Node* store;
3181   if (type == T_OBJECT) // reference stores need a store barrier.
3182     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3183   else {
3184     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3185   }
3186   insert_mem_bar(Op_MemBarCPUOrder);
3187   return true;
3188 }
3189 
3190 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3191   // Regardless of form, don't allow previous ld/st to move down,
3192   // then issue acquire, release, or volatile mem_bar.
3193   insert_mem_bar(Op_MemBarCPUOrder);
3194   switch(id) {
3195     case vmIntrinsics::_loadFence:
3196       insert_mem_bar(Op_LoadFence);
3197       return true;
3198     case vmIntrinsics::_storeFence:
3199       insert_mem_bar(Op_StoreFence);
3200       return true;
3201     case vmIntrinsics::_fullFence:
3202       insert_mem_bar(Op_MemBarVolatile);
3203       return true;
3204     default:
3205       fatal_unexpected_iid(id);
3206       return false;
3207   }
3208 }
3209 
3210 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3211   if (!kls->is_Con()) {
3212     return true;
3213   }
3214   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3215   if (klsptr == NULL) {
3216     return true;
3217   }
3218   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3219   // don't need a guard for a klass that is already initialized
3220   return !ik->is_initialized();
3221 }
3222 
3223 //----------------------------inline_unsafe_allocate---------------------------
3224 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3225 bool LibraryCallKit::inline_unsafe_allocate() {
3226   if (callee()->is_static())  return false;  // caller must have the capability!
3227 
3228   null_check_receiver();  // null-check, then ignore
3229   Node* cls = null_check(argument(1));
3230   if (stopped())  return true;
3231 
3232   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3233   kls = null_check(kls);
3234   if (stopped())  return true;  // argument was like int.class
3235 
3236   Node* test = NULL;
3237   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3238     // Note:  The argument might still be an illegal value like
3239     // Serializable.class or Object[].class.   The runtime will handle it.
3240     // But we must make an explicit check for initialization.
3241     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3242     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3243     // can generate code to load it as unsigned byte.
3244     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3245     Node* bits = intcon(InstanceKlass::fully_initialized);
3246     test = _gvn.transform(new (C) SubINode(inst, bits));
3247     // The 'test' is non-zero if we need to take a slow path.
3248   }
3249 
3250   Node* obj = new_instance(kls, test);
3251   set_result(obj);
3252   return true;
3253 }
3254 
3255 #ifdef JFR_HAVE_INTRINSICS
3256 /*
3257  * oop -> myklass
3258  * myklass->trace_id |= USED
3259  * return myklass->trace_id & ~0x3
3260  */
3261 bool LibraryCallKit::inline_native_classID() {
3262   Node* cls = null_check(argument(0), T_OBJECT);
3263   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3264   kls = null_check(kls, T_OBJECT);
3265 
3266   ByteSize offset = KLASS_TRACE_ID_OFFSET;
3267   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3268   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3269 
3270   Node* clsused = longcon(0x01l); // set the class bit
3271   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
3272   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3273   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3274 
3275 #ifdef TRACE_ID_META_BITS
3276   Node* mbits = longcon(~TRACE_ID_META_BITS);
3277   tvalue = _gvn.transform(new (C) AndLNode(tvalue, mbits));
3278 #endif
3279 #ifdef TRACE_ID_SHIFT
3280   Node* cbits = intcon(TRACE_ID_SHIFT);
3281   tvalue = _gvn.transform(new (C) URShiftLNode(tvalue, cbits));
3282 #endif
3283 
3284   set_result(tvalue);
3285   return true;
3286 }
3287 
3288 bool LibraryCallKit::inline_native_getEventWriter() {
3289   Node* tls_ptr = _gvn.transform(new (C) ThreadLocalNode());
3290 
3291   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr,
3292                                   in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)
3293                                   );
3294 
3295   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3296 
3297   Node* jobj_cmp_null = _gvn.transform( new (C) CmpPNode(jobj, null()) );
3298   Node* test_jobj_eq_null  = _gvn.transform( new (C) BoolNode(jobj_cmp_null, BoolTest::eq) );
3299 
3300   IfNode* iff_jobj_null =
3301     create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN);
3302 
3303   enum { _normal_path = 1,
3304          _null_path = 2,
3305          PATH_LIMIT };
3306 
3307   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3308   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypePtr::BOTTOM);
3309 
3310   Node* jobj_is_null = _gvn.transform(new (C) IfTrueNode(iff_jobj_null));
3311   result_rgn->init_req(_null_path, jobj_is_null);
3312   result_val->init_req(_null_path, null());
3313 
3314   Node* jobj_is_not_null = _gvn.transform(new (C) IfFalseNode(iff_jobj_null));
3315   result_rgn->init_req(_normal_path, jobj_is_not_null);
3316 
3317   Node* res = make_load(jobj_is_not_null, jobj, TypeInstPtr::NOTNULL, T_OBJECT, MemNode::unordered);
3318   result_val->init_req(_normal_path, res);
3319 
3320   set_result(result_rgn, result_val);
3321 
3322   return true;
3323 }
3324 #endif // JFR_HAVE_INTRINSICS
3325 
3326 //------------------------inline_native_time_funcs--------------
3327 // inline code for System.currentTimeMillis() and System.nanoTime()
3328 // these have the same type and signature
3329 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3330   const TypeFunc* tf = OptoRuntime::void_long_Type();
3331   const TypePtr* no_memory_effects = NULL;
3332   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3333   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3334 #ifdef ASSERT
3335   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3336   assert(value_top == top(), "second value must be top");
3337 #endif
3338   set_result(value);
3339   return true;
3340 }
3341 
3342 //------------------------inline_native_currentThread------------------
3343 bool LibraryCallKit::inline_native_currentThread() {
3344   Node* junk = NULL;
3345   set_result(generate_current_thread(junk));
3346   return true;
3347 }
3348 
3349 //------------------------inline_native_isInterrupted------------------
3350 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3351 bool LibraryCallKit::inline_native_isInterrupted() {
3352   // Add a fast path to t.isInterrupted(clear_int):
3353   //   (t == Thread.current() &&
3354   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3355   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3356   // So, in the common case that the interrupt bit is false,
3357   // we avoid making a call into the VM.  Even if the interrupt bit
3358   // is true, if the clear_int argument is false, we avoid the VM call.
3359   // However, if the receiver is not currentThread, we must call the VM,
3360   // because there must be some locking done around the operation.
3361 
3362   // We only go to the fast case code if we pass two guards.
3363   // Paths which do not pass are accumulated in the slow_region.
3364 
3365   enum {
3366     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3367     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3368     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3369     PATH_LIMIT
3370   };
3371 
3372   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3373   // out of the function.
3374   insert_mem_bar(Op_MemBarCPUOrder);
3375 
3376   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3377   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3378 
3379   RegionNode* slow_region = new (C) RegionNode(1);
3380   record_for_igvn(slow_region);
3381 
3382   // (a) Receiving thread must be the current thread.
3383   Node* rec_thr = argument(0);
3384   Node* tls_ptr = NULL;
3385   Node* cur_thr = generate_current_thread(tls_ptr);
3386   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3387   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3388 
3389   generate_slow_guard(bol_thr, slow_region);
3390 
3391   // (b) Interrupt bit on TLS must be false.
3392   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3393   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3394   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3395 
3396   // Set the control input on the field _interrupted read to prevent it floating up.
3397   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3398   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3399   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3400 
3401   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3402 
3403   // First fast path:  if (!TLS._interrupted) return false;
3404   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3405   result_rgn->init_req(no_int_result_path, false_bit);
3406   result_val->init_req(no_int_result_path, intcon(0));
3407 
3408   // drop through to next case
3409   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3410 
3411 #ifndef TARGET_OS_FAMILY_windows
3412   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3413   Node* clr_arg = argument(1);
3414   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3415   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3416   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3417 
3418   // Second fast path:  ... else if (!clear_int) return true;
3419   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3420   result_rgn->init_req(no_clear_result_path, false_arg);
3421   result_val->init_req(no_clear_result_path, intcon(1));
3422 
3423   // drop through to next case
3424   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3425 #else
3426   // To return true on Windows you must read the _interrupted field
3427   // and check the the event state i.e. take the slow path.
3428 #endif // TARGET_OS_FAMILY_windows
3429 
3430   // (d) Otherwise, go to the slow path.
3431   slow_region->add_req(control());
3432   set_control( _gvn.transform(slow_region));
3433 
3434   if (stopped()) {
3435     // There is no slow path.
3436     result_rgn->init_req(slow_result_path, top());
3437     result_val->init_req(slow_result_path, top());
3438   } else {
3439     // non-virtual because it is a private non-static
3440     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3441 
3442     Node* slow_val = set_results_for_java_call(slow_call);
3443     // this->control() comes from set_results_for_java_call
3444 
3445     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3446     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3447 
3448     // These two phis are pre-filled with copies of of the fast IO and Memory
3449     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3450     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3451 
3452     result_rgn->init_req(slow_result_path, control());
3453     result_io ->init_req(slow_result_path, i_o());
3454     result_mem->init_req(slow_result_path, reset_memory());
3455     result_val->init_req(slow_result_path, slow_val);
3456 
3457     set_all_memory(_gvn.transform(result_mem));
3458     set_i_o(       _gvn.transform(result_io));
3459   }
3460 
3461   C->set_has_split_ifs(true); // Has chance for split-if optimization
3462   set_result(result_rgn, result_val);
3463   return true;
3464 }
3465 
3466 //---------------------------load_mirror_from_klass----------------------------
3467 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3468 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3469   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3470   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3471 }
3472 
3473 //-----------------------load_klass_from_mirror_common-------------------------
3474 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3475 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3476 // and branch to the given path on the region.
3477 // If never_see_null, take an uncommon trap on null, so we can optimistically
3478 // compile for the non-null case.
3479 // If the region is NULL, force never_see_null = true.
3480 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3481                                                     bool never_see_null,
3482                                                     RegionNode* region,
3483                                                     int null_path,
3484                                                     int offset) {
3485   if (region == NULL)  never_see_null = true;
3486   Node* p = basic_plus_adr(mirror, offset);
3487   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3488   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3489   Node* null_ctl = top();
3490   kls = null_check_oop(kls, &null_ctl, never_see_null);
3491   if (region != NULL) {
3492     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3493     region->init_req(null_path, null_ctl);
3494   } else {
3495     assert(null_ctl == top(), "no loose ends");
3496   }
3497   return kls;
3498 }
3499 
3500 //--------------------(inline_native_Class_query helpers)---------------------
3501 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3502 // Fall through if (mods & mask) == bits, take the guard otherwise.
3503 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3504   // Branch around if the given klass has the given modifier bit set.
3505   // Like generate_guard, adds a new path onto the region.
3506   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3507   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3508   Node* mask = intcon(modifier_mask);
3509   Node* bits = intcon(modifier_bits);
3510   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3511   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3512   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3513   return generate_fair_guard(bol, region);
3514 }
3515 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3516   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3517 }
3518 
3519 //-------------------------inline_native_Class_query-------------------
3520 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3521   const Type* return_type = TypeInt::BOOL;
3522   Node* prim_return_value = top();  // what happens if it's a primitive class?
3523   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3524   bool expect_prim = false;     // most of these guys expect to work on refs
3525 
3526   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3527 
3528   Node* mirror = argument(0);
3529   Node* obj    = top();
3530 
3531   switch (id) {
3532   case vmIntrinsics::_isInstance:
3533     // nothing is an instance of a primitive type
3534     prim_return_value = intcon(0);
3535     obj = argument(1);
3536     break;
3537   case vmIntrinsics::_getModifiers:
3538     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3539     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3540     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3541     break;
3542   case vmIntrinsics::_isInterface:
3543     prim_return_value = intcon(0);
3544     break;
3545   case vmIntrinsics::_isArray:
3546     prim_return_value = intcon(0);
3547     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3548     break;
3549   case vmIntrinsics::_isPrimitive:
3550     prim_return_value = intcon(1);
3551     expect_prim = true;  // obviously
3552     break;
3553   case vmIntrinsics::_getSuperclass:
3554     prim_return_value = null();
3555     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3556     break;
3557   case vmIntrinsics::_getComponentType:
3558     prim_return_value = null();
3559     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3560     break;
3561   case vmIntrinsics::_getClassAccessFlags:
3562     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3563     return_type = TypeInt::INT;  // not bool!  6297094
3564     break;
3565   default:
3566     fatal_unexpected_iid(id);
3567     break;
3568   }
3569 
3570   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3571   if (mirror_con == NULL)  return false;  // cannot happen?
3572 
3573 #ifndef PRODUCT
3574   if (C->print_intrinsics() || C->print_inlining()) {
3575     ciType* k = mirror_con->java_mirror_type();
3576     if (k) {
3577       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3578       k->print_name();
3579       tty->cr();
3580     }
3581   }
3582 #endif
3583 
3584   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3585   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3586   record_for_igvn(region);
3587   PhiNode* phi = new (C) PhiNode(region, return_type);
3588 
3589   // The mirror will never be null of Reflection.getClassAccessFlags, however
3590   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3591   // if it is. See bug 4774291.
3592 
3593   // For Reflection.getClassAccessFlags(), the null check occurs in
3594   // the wrong place; see inline_unsafe_access(), above, for a similar
3595   // situation.
3596   mirror = null_check(mirror);
3597   // If mirror or obj is dead, only null-path is taken.
3598   if (stopped())  return true;
3599 
3600   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3601 
3602   // Now load the mirror's klass metaobject, and null-check it.
3603   // Side-effects region with the control path if the klass is null.
3604   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3605   // If kls is null, we have a primitive mirror.
3606   phi->init_req(_prim_path, prim_return_value);
3607   if (stopped()) { set_result(region, phi); return true; }
3608   bool safe_for_replace = (region->in(_prim_path) == top());
3609 
3610   Node* p;  // handy temp
3611   Node* null_ctl;
3612 
3613   // Now that we have the non-null klass, we can perform the real query.
3614   // For constant classes, the query will constant-fold in LoadNode::Value.
3615   Node* query_value = top();
3616   switch (id) {
3617   case vmIntrinsics::_isInstance:
3618     // nothing is an instance of a primitive type
3619     query_value = gen_instanceof(obj, kls, safe_for_replace);
3620     break;
3621 
3622   case vmIntrinsics::_getModifiers:
3623     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3624     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3625     break;
3626 
3627   case vmIntrinsics::_isInterface:
3628     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3629     if (generate_interface_guard(kls, region) != NULL)
3630       // A guard was added.  If the guard is taken, it was an interface.
3631       phi->add_req(intcon(1));
3632     // If we fall through, it's a plain class.
3633     query_value = intcon(0);
3634     break;
3635 
3636   case vmIntrinsics::_isArray:
3637     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3638     if (generate_array_guard(kls, region) != NULL)
3639       // A guard was added.  If the guard is taken, it was an array.
3640       phi->add_req(intcon(1));
3641     // If we fall through, it's a plain class.
3642     query_value = intcon(0);
3643     break;
3644 
3645   case vmIntrinsics::_isPrimitive:
3646     query_value = intcon(0); // "normal" path produces false
3647     break;
3648 
3649   case vmIntrinsics::_getSuperclass:
3650     // The rules here are somewhat unfortunate, but we can still do better
3651     // with random logic than with a JNI call.
3652     // Interfaces store null or Object as _super, but must report null.
3653     // Arrays store an intermediate super as _super, but must report Object.
3654     // Other types can report the actual _super.
3655     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3656     if (generate_interface_guard(kls, region) != NULL)
3657       // A guard was added.  If the guard is taken, it was an interface.
3658       phi->add_req(null());
3659     if (generate_array_guard(kls, region) != NULL)
3660       // A guard was added.  If the guard is taken, it was an array.
3661       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3662     // If we fall through, it's a plain class.  Get its _super.
3663     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3664     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3665     null_ctl = top();
3666     kls = null_check_oop(kls, &null_ctl);
3667     if (null_ctl != top()) {
3668       // If the guard is taken, Object.superClass is null (both klass and mirror).
3669       region->add_req(null_ctl);
3670       phi   ->add_req(null());
3671     }
3672     if (!stopped()) {
3673       query_value = load_mirror_from_klass(kls);
3674     }
3675     break;
3676 
3677   case vmIntrinsics::_getComponentType:
3678     if (generate_array_guard(kls, region) != NULL) {
3679       // Be sure to pin the oop load to the guard edge just created:
3680       Node* is_array_ctrl = region->in(region->req()-1);
3681       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3682       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3683       phi->add_req(cmo);
3684     }
3685     query_value = null();  // non-array case is null
3686     break;
3687 
3688   case vmIntrinsics::_getClassAccessFlags:
3689     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3690     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3691     break;
3692 
3693   default:
3694     fatal_unexpected_iid(id);
3695     break;
3696   }
3697 
3698   // Fall-through is the normal case of a query to a real class.
3699   phi->init_req(1, query_value);
3700   region->init_req(1, control());
3701 
3702   C->set_has_split_ifs(true); // Has chance for split-if optimization
3703   set_result(region, phi);
3704   return true;
3705 }
3706 
3707 //--------------------------inline_native_subtype_check------------------------
3708 // This intrinsic takes the JNI calls out of the heart of
3709 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3710 bool LibraryCallKit::inline_native_subtype_check() {
3711   // Pull both arguments off the stack.
3712   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3713   args[0] = argument(0);
3714   args[1] = argument(1);
3715   Node* klasses[2];             // corresponding Klasses: superk, subk
3716   klasses[0] = klasses[1] = top();
3717 
3718   enum {
3719     // A full decision tree on {superc is prim, subc is prim}:
3720     _prim_0_path = 1,           // {P,N} => false
3721                                 // {P,P} & superc!=subc => false
3722     _prim_same_path,            // {P,P} & superc==subc => true
3723     _prim_1_path,               // {N,P} => false
3724     _ref_subtype_path,          // {N,N} & subtype check wins => true
3725     _both_ref_path,             // {N,N} & subtype check loses => false
3726     PATH_LIMIT
3727   };
3728 
3729   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3730   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3731   record_for_igvn(region);
3732 
3733   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3734   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3735   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3736 
3737   // First null-check both mirrors and load each mirror's klass metaobject.
3738   int which_arg;
3739   for (which_arg = 0; which_arg <= 1; which_arg++) {
3740     Node* arg = args[which_arg];
3741     arg = null_check(arg);
3742     if (stopped())  break;
3743     args[which_arg] = arg;
3744 
3745     Node* p = basic_plus_adr(arg, class_klass_offset);
3746     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3747     klasses[which_arg] = _gvn.transform(kls);
3748   }
3749 
3750   // Having loaded both klasses, test each for null.
3751   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3752   for (which_arg = 0; which_arg <= 1; which_arg++) {
3753     Node* kls = klasses[which_arg];
3754     Node* null_ctl = top();
3755     kls = null_check_oop(kls, &null_ctl, never_see_null);
3756     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3757     region->init_req(prim_path, null_ctl);
3758     if (stopped())  break;
3759     klasses[which_arg] = kls;
3760   }
3761 
3762   if (!stopped()) {
3763     // now we have two reference types, in klasses[0..1]
3764     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3765     Node* superk = klasses[0];  // the receiver
3766     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3767     // now we have a successful reference subtype check
3768     region->set_req(_ref_subtype_path, control());
3769   }
3770 
3771   // If both operands are primitive (both klasses null), then
3772   // we must return true when they are identical primitives.
3773   // It is convenient to test this after the first null klass check.
3774   set_control(region->in(_prim_0_path)); // go back to first null check
3775   if (!stopped()) {
3776     // Since superc is primitive, make a guard for the superc==subc case.
3777     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3778     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3779     generate_guard(bol_eq, region, PROB_FAIR);
3780     if (region->req() == PATH_LIMIT+1) {
3781       // A guard was added.  If the added guard is taken, superc==subc.
3782       region->swap_edges(PATH_LIMIT, _prim_same_path);
3783       region->del_req(PATH_LIMIT);
3784     }
3785     region->set_req(_prim_0_path, control()); // Not equal after all.
3786   }
3787 
3788   // these are the only paths that produce 'true':
3789   phi->set_req(_prim_same_path,   intcon(1));
3790   phi->set_req(_ref_subtype_path, intcon(1));
3791 
3792   // pull together the cases:
3793   assert(region->req() == PATH_LIMIT, "sane region");
3794   for (uint i = 1; i < region->req(); i++) {
3795     Node* ctl = region->in(i);
3796     if (ctl == NULL || ctl == top()) {
3797       region->set_req(i, top());
3798       phi   ->set_req(i, top());
3799     } else if (phi->in(i) == NULL) {
3800       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3801     }
3802   }
3803 
3804   set_control(_gvn.transform(region));
3805   set_result(_gvn.transform(phi));
3806   return true;
3807 }
3808 
3809 //---------------------generate_array_guard_common------------------------
3810 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3811                                                   bool obj_array, bool not_array) {
3812   // If obj_array/non_array==false/false:
3813   // Branch around if the given klass is in fact an array (either obj or prim).
3814   // If obj_array/non_array==false/true:
3815   // Branch around if the given klass is not an array klass of any kind.
3816   // If obj_array/non_array==true/true:
3817   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3818   // If obj_array/non_array==true/false:
3819   // Branch around if the kls is an oop array (Object[] or subtype)
3820   //
3821   // Like generate_guard, adds a new path onto the region.
3822   jint  layout_con = 0;
3823   Node* layout_val = get_layout_helper(kls, layout_con);
3824   if (layout_val == NULL) {
3825     bool query = (obj_array
3826                   ? Klass::layout_helper_is_objArray(layout_con)
3827                   : Klass::layout_helper_is_array(layout_con));
3828     if (query == not_array) {
3829       return NULL;                       // never a branch
3830     } else {                             // always a branch
3831       Node* always_branch = control();
3832       if (region != NULL)
3833         region->add_req(always_branch);
3834       set_control(top());
3835       return always_branch;
3836     }
3837   }
3838   // Now test the correct condition.
3839   jint  nval = (obj_array
3840                 ? (jint)(Klass::_lh_array_tag_type_value
3841                    <<    Klass::_lh_array_tag_shift)
3842                 : Klass::_lh_neutral_value);
3843   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3844   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3845   // invert the test if we are looking for a non-array
3846   if (not_array)  btest = BoolTest(btest).negate();
3847   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3848   return generate_fair_guard(bol, region);
3849 }
3850 
3851 
3852 //-----------------------inline_native_newArray--------------------------
3853 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3854 bool LibraryCallKit::inline_native_newArray() {
3855   Node* mirror    = argument(0);
3856   Node* count_val = argument(1);
3857 
3858   mirror = null_check(mirror);
3859   // If mirror or obj is dead, only null-path is taken.
3860   if (stopped())  return true;
3861 
3862   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3863   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3864   PhiNode*    result_val = new(C) PhiNode(result_reg,
3865                                           TypeInstPtr::NOTNULL);
3866   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3867   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3868                                           TypePtr::BOTTOM);
3869 
3870   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3871   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3872                                                   result_reg, _slow_path);
3873   Node* normal_ctl   = control();
3874   Node* no_array_ctl = result_reg->in(_slow_path);
3875 
3876   // Generate code for the slow case.  We make a call to newArray().
3877   set_control(no_array_ctl);
3878   if (!stopped()) {
3879     // Either the input type is void.class, or else the
3880     // array klass has not yet been cached.  Either the
3881     // ensuing call will throw an exception, or else it
3882     // will cache the array klass for next time.
3883     PreserveJVMState pjvms(this);
3884     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3885     Node* slow_result = set_results_for_java_call(slow_call);
3886     // this->control() comes from set_results_for_java_call
3887     result_reg->set_req(_slow_path, control());
3888     result_val->set_req(_slow_path, slow_result);
3889     result_io ->set_req(_slow_path, i_o());
3890     result_mem->set_req(_slow_path, reset_memory());
3891   }
3892 
3893   set_control(normal_ctl);
3894   if (!stopped()) {
3895     // Normal case:  The array type has been cached in the java.lang.Class.
3896     // The following call works fine even if the array type is polymorphic.
3897     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3898     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3899     result_reg->init_req(_normal_path, control());
3900     result_val->init_req(_normal_path, obj);
3901     result_io ->init_req(_normal_path, i_o());
3902     result_mem->init_req(_normal_path, reset_memory());
3903   }
3904 
3905   // Return the combined state.
3906   set_i_o(        _gvn.transform(result_io)  );
3907   set_all_memory( _gvn.transform(result_mem));
3908 
3909   C->set_has_split_ifs(true); // Has chance for split-if optimization
3910   set_result(result_reg, result_val);
3911   return true;
3912 }
3913 
3914 //----------------------inline_native_getLength--------------------------
3915 // public static native int java.lang.reflect.Array.getLength(Object array);
3916 bool LibraryCallKit::inline_native_getLength() {
3917   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3918 
3919   Node* array = null_check(argument(0));
3920   // If array is dead, only null-path is taken.
3921   if (stopped())  return true;
3922 
3923   // Deoptimize if it is a non-array.
3924   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3925 
3926   if (non_array != NULL) {
3927     PreserveJVMState pjvms(this);
3928     set_control(non_array);
3929     uncommon_trap(Deoptimization::Reason_intrinsic,
3930                   Deoptimization::Action_maybe_recompile);
3931   }
3932 
3933   // If control is dead, only non-array-path is taken.
3934   if (stopped())  return true;
3935 
3936   // The works fine even if the array type is polymorphic.
3937   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3938   Node* result = load_array_length(array);
3939 
3940   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3941   set_result(result);
3942   return true;
3943 }
3944 
3945 //------------------------inline_array_copyOf----------------------------
3946 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3947 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3948 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3949   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3950 
3951   // Get the arguments.
3952   Node* original          = argument(0);
3953   Node* start             = is_copyOfRange? argument(1): intcon(0);
3954   Node* end               = is_copyOfRange? argument(2): argument(1);
3955   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3956 
3957   Node* newcopy = NULL;
3958 
3959   // Set the original stack and the reexecute bit for the interpreter to reexecute
3960   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3961   { PreserveReexecuteState preexecs(this);
3962     jvms()->set_should_reexecute(true);
3963 
3964     array_type_mirror = null_check(array_type_mirror);
3965     original          = null_check(original);
3966 
3967     // Check if a null path was taken unconditionally.
3968     if (stopped())  return true;
3969 
3970     Node* orig_length = load_array_length(original);
3971 
3972     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3973     klass_node = null_check(klass_node);
3974 
3975     RegionNode* bailout = new (C) RegionNode(1);
3976     record_for_igvn(bailout);
3977 
3978     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3979     // Bail out if that is so.
3980     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3981     if (not_objArray != NULL) {
3982       // Improve the klass node's type from the new optimistic assumption:
3983       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3984       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3985       Node* cast = new (C) CastPPNode(klass_node, akls);
3986       cast->init_req(0, control());
3987       klass_node = _gvn.transform(cast);
3988     }
3989 
3990     // Bail out if either start or end is negative.
3991     generate_negative_guard(start, bailout, &start);
3992     generate_negative_guard(end,   bailout, &end);
3993 
3994     Node* length = end;
3995     if (_gvn.type(start) != TypeInt::ZERO) {
3996       length = _gvn.transform(new (C) SubINode(end, start));
3997     }
3998 
3999     // Bail out if length is negative.
4000     // Without this the new_array would throw
4001     // NegativeArraySizeException but IllegalArgumentException is what
4002     // should be thrown
4003     generate_negative_guard(length, bailout, &length);
4004 
4005     if (bailout->req() > 1) {
4006       PreserveJVMState pjvms(this);
4007       set_control(_gvn.transform(bailout));
4008       uncommon_trap(Deoptimization::Reason_intrinsic,
4009                     Deoptimization::Action_maybe_recompile);
4010     }
4011 
4012     if (!stopped()) {
4013       // How many elements will we copy from the original?
4014       // The answer is MinI(orig_length - start, length).
4015       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
4016       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4017 
4018       newcopy = new_array(klass_node, length, 0);  // no argments to push
4019 
4020       // Generate a direct call to the right arraycopy function(s).
4021       // We know the copy is disjoint but we might not know if the
4022       // oop stores need checking.
4023       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4024       // This will fail a store-check if x contains any non-nulls.
4025       bool disjoint_bases = true;
4026       // if start > orig_length then the length of the copy may be
4027       // negative.
4028       bool length_never_negative = !is_copyOfRange;
4029       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4030                          original, start, newcopy, intcon(0), moved,
4031                          disjoint_bases, length_never_negative);
4032     }
4033   } // original reexecute is set back here
4034 
4035   C->set_has_split_ifs(true); // Has chance for split-if optimization
4036   if (!stopped()) {
4037     set_result(newcopy);
4038   }
4039   return true;
4040 }
4041 
4042 
4043 //----------------------generate_virtual_guard---------------------------
4044 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4045 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4046                                              RegionNode* slow_region) {
4047   ciMethod* method = callee();
4048   int vtable_index = method->vtable_index();
4049   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4050          err_msg_res("bad index %d", vtable_index));
4051   // Get the Method* out of the appropriate vtable entry.
4052   int entry_offset  = (InstanceKlass::vtable_start_offset() +
4053                      vtable_index*vtableEntry::size()) * wordSize +
4054                      vtableEntry::method_offset_in_bytes();
4055   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4056   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4057 
4058   // Compare the target method with the expected method (e.g., Object.hashCode).
4059   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4060 
4061   Node* native_call = makecon(native_call_addr);
4062   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
4063   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
4064 
4065   return generate_slow_guard(test_native, slow_region);
4066 }
4067 
4068 //-----------------------generate_method_call----------------------------
4069 // Use generate_method_call to make a slow-call to the real
4070 // method if the fast path fails.  An alternative would be to
4071 // use a stub like OptoRuntime::slow_arraycopy_Java.
4072 // This only works for expanding the current library call,
4073 // not another intrinsic.  (E.g., don't use this for making an
4074 // arraycopy call inside of the copyOf intrinsic.)
4075 CallJavaNode*
4076 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4077   // When compiling the intrinsic method itself, do not use this technique.
4078   guarantee(callee() != C->method(), "cannot make slow-call to self");
4079 
4080   ciMethod* method = callee();
4081   // ensure the JVMS we have will be correct for this call
4082   guarantee(method_id == method->intrinsic_id(), "must match");
4083 
4084   const TypeFunc* tf = TypeFunc::make(method);
4085   CallJavaNode* slow_call;
4086   if (is_static) {
4087     assert(!is_virtual, "");
4088     slow_call = new(C) CallStaticJavaNode(C, tf,
4089                            SharedRuntime::get_resolve_static_call_stub(),
4090                            method, bci());
4091   } else if (is_virtual) {
4092     null_check_receiver();
4093     int vtable_index = Method::invalid_vtable_index;
4094     if (UseInlineCaches) {
4095       // Suppress the vtable call
4096     } else {
4097       // hashCode and clone are not a miranda methods,
4098       // so the vtable index is fixed.
4099       // No need to use the linkResolver to get it.
4100        vtable_index = method->vtable_index();
4101        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4102               err_msg_res("bad index %d", vtable_index));
4103     }
4104     slow_call = new(C) CallDynamicJavaNode(tf,
4105                           SharedRuntime::get_resolve_virtual_call_stub(),
4106                           method, vtable_index, bci());
4107   } else {  // neither virtual nor static:  opt_virtual
4108     null_check_receiver();
4109     slow_call = new(C) CallStaticJavaNode(C, tf,
4110                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4111                                 method, bci());
4112     slow_call->set_optimized_virtual(true);
4113   }
4114   set_arguments_for_java_call(slow_call);
4115   set_edges_for_java_call(slow_call);
4116   return slow_call;
4117 }
4118 
4119 
4120 /**
4121  * Build special case code for calls to hashCode on an object. This call may
4122  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4123  * slightly different code.
4124  */
4125 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4126   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4127   assert(!(is_virtual && is_static), "either virtual, special, or static");
4128 
4129   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4130 
4131   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4132   PhiNode*    result_val = new(C) PhiNode(result_reg, TypeInt::INT);
4133   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
4134   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4135   Node* obj = NULL;
4136   if (!is_static) {
4137     // Check for hashing null object
4138     obj = null_check_receiver();
4139     if (stopped())  return true;        // unconditionally null
4140     result_reg->init_req(_null_path, top());
4141     result_val->init_req(_null_path, top());
4142   } else {
4143     // Do a null check, and return zero if null.
4144     // System.identityHashCode(null) == 0
4145     obj = argument(0);
4146     Node* null_ctl = top();
4147     obj = null_check_oop(obj, &null_ctl);
4148     result_reg->init_req(_null_path, null_ctl);
4149     result_val->init_req(_null_path, _gvn.intcon(0));
4150   }
4151 
4152   // Unconditionally null?  Then return right away.
4153   if (stopped()) {
4154     set_control( result_reg->in(_null_path));
4155     if (!stopped())
4156       set_result(result_val->in(_null_path));
4157     return true;
4158   }
4159 
4160   // We only go to the fast case code if we pass a number of guards.  The
4161   // paths which do not pass are accumulated in the slow_region.
4162   RegionNode* slow_region = new (C) RegionNode(1);
4163   record_for_igvn(slow_region);
4164 
4165   // If this is a virtual call, we generate a funny guard.  We pull out
4166   // the vtable entry corresponding to hashCode() from the target object.
4167   // If the target method which we are calling happens to be the native
4168   // Object hashCode() method, we pass the guard.  We do not need this
4169   // guard for non-virtual calls -- the caller is known to be the native
4170   // Object hashCode().
4171   if (is_virtual) {
4172     // After null check, get the object's klass.
4173     Node* obj_klass = load_object_klass(obj);
4174     generate_virtual_guard(obj_klass, slow_region);
4175   }
4176 
4177   // Get the header out of the object, use LoadMarkNode when available
4178   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4179   // The control of the load must be NULL. Otherwise, the load can move before
4180   // the null check after castPP removal.
4181   Node* no_ctrl = NULL;
4182   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4183 
4184   // Test the header to see if it is unlocked.
4185   Node* lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4186   Node* lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
4187   Node* unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4188   Node* chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
4189   Node* test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
4190 
4191   generate_slow_guard(test_unlocked, slow_region);
4192 
4193   // Get the hash value and check to see that it has been properly assigned.
4194   // We depend on hash_mask being at most 32 bits and avoid the use of
4195   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4196   // vm: see markOop.hpp.
4197   Node* hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4198   Node* hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4199   Node* hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
4200   // This hack lets the hash bits live anywhere in the mark object now, as long
4201   // as the shift drops the relevant bits into the low 32 bits.  Note that
4202   // Java spec says that HashCode is an int so there's no point in capturing
4203   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4204   hshifted_header      = ConvX2I(hshifted_header);
4205   Node* hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
4206 
4207   Node* no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4208   Node* chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
4209   Node* test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
4210 
4211   generate_slow_guard(test_assigned, slow_region);
4212 
4213   Node* init_mem = reset_memory();
4214   // fill in the rest of the null path:
4215   result_io ->init_req(_null_path, i_o());
4216   result_mem->init_req(_null_path, init_mem);
4217 
4218   result_val->init_req(_fast_path, hash_val);
4219   result_reg->init_req(_fast_path, control());
4220   result_io ->init_req(_fast_path, i_o());
4221   result_mem->init_req(_fast_path, init_mem);
4222 
4223   // Generate code for the slow case.  We make a call to hashCode().
4224   set_control(_gvn.transform(slow_region));
4225   if (!stopped()) {
4226     // No need for PreserveJVMState, because we're using up the present state.
4227     set_all_memory(init_mem);
4228     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4229     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4230     Node* slow_result = set_results_for_java_call(slow_call);
4231     // this->control() comes from set_results_for_java_call
4232     result_reg->init_req(_slow_path, control());
4233     result_val->init_req(_slow_path, slow_result);
4234     result_io  ->set_req(_slow_path, i_o());
4235     result_mem ->set_req(_slow_path, reset_memory());
4236   }
4237 
4238   // Return the combined state.
4239   set_i_o(        _gvn.transform(result_io)  );
4240   set_all_memory( _gvn.transform(result_mem));
4241 
4242   set_result(result_reg, result_val);
4243   return true;
4244 }
4245 
4246 //---------------------------inline_native_getClass----------------------------
4247 // public final native Class<?> java.lang.Object.getClass();
4248 //
4249 // Build special case code for calls to getClass on an object.
4250 bool LibraryCallKit::inline_native_getClass() {
4251   Node* obj = null_check_receiver();
4252   if (stopped())  return true;
4253   set_result(load_mirror_from_klass(load_object_klass(obj)));
4254   return true;
4255 }
4256 
4257 //-----------------inline_native_Reflection_getCallerClass---------------------
4258 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4259 //
4260 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4261 //
4262 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4263 // in that it must skip particular security frames and checks for
4264 // caller sensitive methods.
4265 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4266 #ifndef PRODUCT
4267   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4268     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4269   }
4270 #endif
4271 
4272   if (!jvms()->has_method()) {
4273 #ifndef PRODUCT
4274     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4275       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4276     }
4277 #endif
4278     return false;
4279   }
4280 
4281   // Walk back up the JVM state to find the caller at the required
4282   // depth.
4283   JVMState* caller_jvms = jvms();
4284 
4285   // Cf. JVM_GetCallerClass
4286   // NOTE: Start the loop at depth 1 because the current JVM state does
4287   // not include the Reflection.getCallerClass() frame.
4288   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4289     ciMethod* m = caller_jvms->method();
4290     switch (n) {
4291     case 0:
4292       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4293       break;
4294     case 1:
4295       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4296       if (!m->caller_sensitive()) {
4297 #ifndef PRODUCT
4298         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4299           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4300         }
4301 #endif
4302         return false;  // bail-out; let JVM_GetCallerClass do the work
4303       }
4304       break;
4305     default:
4306       if (!m->is_ignored_by_security_stack_walk()) {
4307         // We have reached the desired frame; return the holder class.
4308         // Acquire method holder as java.lang.Class and push as constant.
4309         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4310         ciInstance* caller_mirror = caller_klass->java_mirror();
4311         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4312 
4313 #ifndef PRODUCT
4314         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4315           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4316           tty->print_cr("  JVM state at this point:");
4317           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4318             ciMethod* m = jvms()->of_depth(i)->method();
4319             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4320           }
4321         }
4322 #endif
4323         return true;
4324       }
4325       break;
4326     }
4327   }
4328 
4329 #ifndef PRODUCT
4330   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4331     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4332     tty->print_cr("  JVM state at this point:");
4333     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4334       ciMethod* m = jvms()->of_depth(i)->method();
4335       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4336     }
4337   }
4338 #endif
4339 
4340   return false;  // bail-out; let JVM_GetCallerClass do the work
4341 }
4342 
4343 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4344   Node* arg = argument(0);
4345   Node* result = NULL;
4346 
4347   switch (id) {
4348   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4349   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4350   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4351   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4352 
4353   case vmIntrinsics::_doubleToLongBits: {
4354     // two paths (plus control) merge in a wood
4355     RegionNode *r = new (C) RegionNode(3);
4356     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4357 
4358     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4359     // Build the boolean node
4360     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4361 
4362     // Branch either way.
4363     // NaN case is less traveled, which makes all the difference.
4364     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4365     Node *opt_isnan = _gvn.transform(ifisnan);
4366     assert( opt_isnan->is_If(), "Expect an IfNode");
4367     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4368     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4369 
4370     set_control(iftrue);
4371 
4372     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4373     Node *slow_result = longcon(nan_bits); // return NaN
4374     phi->init_req(1, _gvn.transform( slow_result ));
4375     r->init_req(1, iftrue);
4376 
4377     // Else fall through
4378     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4379     set_control(iffalse);
4380 
4381     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4382     r->init_req(2, iffalse);
4383 
4384     // Post merge
4385     set_control(_gvn.transform(r));
4386     record_for_igvn(r);
4387 
4388     C->set_has_split_ifs(true); // Has chance for split-if optimization
4389     result = phi;
4390     assert(result->bottom_type()->isa_long(), "must be");
4391     break;
4392   }
4393 
4394   case vmIntrinsics::_floatToIntBits: {
4395     // two paths (plus control) merge in a wood
4396     RegionNode *r = new (C) RegionNode(3);
4397     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4398 
4399     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4400     // Build the boolean node
4401     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4402 
4403     // Branch either way.
4404     // NaN case is less traveled, which makes all the difference.
4405     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4406     Node *opt_isnan = _gvn.transform(ifisnan);
4407     assert( opt_isnan->is_If(), "Expect an IfNode");
4408     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4409     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4410 
4411     set_control(iftrue);
4412 
4413     static const jint nan_bits = 0x7fc00000;
4414     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4415     phi->init_req(1, _gvn.transform( slow_result ));
4416     r->init_req(1, iftrue);
4417 
4418     // Else fall through
4419     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4420     set_control(iffalse);
4421 
4422     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4423     r->init_req(2, iffalse);
4424 
4425     // Post merge
4426     set_control(_gvn.transform(r));
4427     record_for_igvn(r);
4428 
4429     C->set_has_split_ifs(true); // Has chance for split-if optimization
4430     result = phi;
4431     assert(result->bottom_type()->isa_int(), "must be");
4432     break;
4433   }
4434 
4435   default:
4436     fatal_unexpected_iid(id);
4437     break;
4438   }
4439   set_result(_gvn.transform(result));
4440   return true;
4441 }
4442 
4443 #ifdef _LP64
4444 #define XTOP ,top() /*additional argument*/
4445 #else  //_LP64
4446 #define XTOP        /*no additional argument*/
4447 #endif //_LP64
4448 
4449 //----------------------inline_unsafe_copyMemory-------------------------
4450 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4451 bool LibraryCallKit::inline_unsafe_copyMemory() {
4452   if (callee()->is_static())  return false;  // caller must have the capability!
4453   null_check_receiver();  // null-check receiver
4454   if (stopped())  return true;
4455 
4456   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4457 
4458   Node* src_ptr =         argument(1);   // type: oop
4459   Node* src_off = ConvL2X(argument(2));  // type: long
4460   Node* dst_ptr =         argument(4);   // type: oop
4461   Node* dst_off = ConvL2X(argument(5));  // type: long
4462   Node* size    = ConvL2X(argument(7));  // type: long
4463 
4464   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4465          "fieldOffset must be byte-scaled");
4466 
4467   Node* src = make_unsafe_address(src_ptr, src_off);
4468   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4469 
4470   // Conservatively insert a memory barrier on all memory slices.
4471   // Do not let writes of the copy source or destination float below the copy.
4472   insert_mem_bar(Op_MemBarCPUOrder);
4473 
4474   // Call it.  Note that the length argument is not scaled.
4475   make_runtime_call(RC_LEAF|RC_NO_FP,
4476                     OptoRuntime::fast_arraycopy_Type(),
4477                     StubRoutines::unsafe_arraycopy(),
4478                     "unsafe_arraycopy",
4479                     TypeRawPtr::BOTTOM,
4480                     src, dst, size XTOP);
4481 
4482   // Do not let reads of the copy destination float above the copy.
4483   insert_mem_bar(Op_MemBarCPUOrder);
4484 
4485   return true;
4486 }
4487 
4488 //------------------------clone_coping-----------------------------------
4489 // Helper function for inline_native_clone.
4490 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4491   assert(obj_size != NULL, "");
4492   Node* raw_obj = alloc_obj->in(1);
4493   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4494 
4495   AllocateNode* alloc = NULL;
4496   if (ReduceBulkZeroing) {
4497     // We will be completely responsible for initializing this object -
4498     // mark Initialize node as complete.
4499     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4500     // The object was just allocated - there should be no any stores!
4501     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4502     // Mark as complete_with_arraycopy so that on AllocateNode
4503     // expansion, we know this AllocateNode is initialized by an array
4504     // copy and a StoreStore barrier exists after the array copy.
4505     alloc->initialization()->set_complete_with_arraycopy();
4506   }
4507 
4508   // Copy the fastest available way.
4509   // TODO: generate fields copies for small objects instead.
4510   Node* src  = obj;
4511   Node* dest = alloc_obj;
4512   Node* size = _gvn.transform(obj_size);
4513 
4514   // Exclude the header but include array length to copy by 8 bytes words.
4515   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4516   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4517                             instanceOopDesc::base_offset_in_bytes();
4518   // base_off:
4519   // 8  - 32-bit VM
4520   // 12 - 64-bit VM, compressed klass
4521   // 16 - 64-bit VM, normal klass
4522   if (base_off % BytesPerLong != 0) {
4523     assert(UseCompressedClassPointers, "");
4524     if (is_array) {
4525       // Exclude length to copy by 8 bytes words.
4526       base_off += sizeof(int);
4527     } else {
4528       // Include klass to copy by 8 bytes words.
4529       base_off = instanceOopDesc::klass_offset_in_bytes();
4530     }
4531     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4532   }
4533   src  = basic_plus_adr(src,  base_off);
4534   dest = basic_plus_adr(dest, base_off);
4535 
4536   // Compute the length also, if needed:
4537   Node* countx = size;
4538   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4539   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4540 
4541   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4542   bool disjoint_bases = true;
4543   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4544                                src, NULL, dest, NULL, countx,
4545                                /*dest_uninitialized*/true);
4546 
4547   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4548   if (card_mark) {
4549     assert(!is_array, "");
4550     // Put in store barrier for any and all oops we are sticking
4551     // into this object.  (We could avoid this if we could prove
4552     // that the object type contains no oop fields at all.)
4553     Node* no_particular_value = NULL;
4554     Node* no_particular_field = NULL;
4555     int raw_adr_idx = Compile::AliasIdxRaw;
4556     post_barrier(control(),
4557                  memory(raw_adr_type),
4558                  alloc_obj,
4559                  no_particular_field,
4560                  raw_adr_idx,
4561                  no_particular_value,
4562                  T_OBJECT,
4563                  false);
4564   }
4565 
4566   // Do not let reads from the cloned object float above the arraycopy.
4567   if (alloc != NULL) {
4568     // Do not let stores that initialize this object be reordered with
4569     // a subsequent store that would make this object accessible by
4570     // other threads.
4571     // Record what AllocateNode this StoreStore protects so that
4572     // escape analysis can go from the MemBarStoreStoreNode to the
4573     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4574     // based on the escape status of the AllocateNode.
4575     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4576   } else {
4577     insert_mem_bar(Op_MemBarCPUOrder);
4578   }
4579 }
4580 
4581 //------------------------inline_native_clone----------------------------
4582 // protected native Object java.lang.Object.clone();
4583 //
4584 // Here are the simple edge cases:
4585 //  null receiver => normal trap
4586 //  virtual and clone was overridden => slow path to out-of-line clone
4587 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4588 //
4589 // The general case has two steps, allocation and copying.
4590 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4591 //
4592 // Copying also has two cases, oop arrays and everything else.
4593 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4594 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4595 //
4596 // These steps fold up nicely if and when the cloned object's klass
4597 // can be sharply typed as an object array, a type array, or an instance.
4598 //
4599 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4600   PhiNode* result_val;
4601 
4602   // Set the reexecute bit for the interpreter to reexecute
4603   // the bytecode that invokes Object.clone if deoptimization happens.
4604   { PreserveReexecuteState preexecs(this);
4605     jvms()->set_should_reexecute(true);
4606 
4607     Node* obj = null_check_receiver();
4608     if (stopped())  return true;
4609 
4610     Node* obj_klass = load_object_klass(obj);
4611     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4612     const TypeOopPtr*   toop   = ((tklass != NULL)
4613                                 ? tklass->as_instance_type()
4614                                 : TypeInstPtr::NOTNULL);
4615 
4616     // Conservatively insert a memory barrier on all memory slices.
4617     // Do not let writes into the original float below the clone.
4618     insert_mem_bar(Op_MemBarCPUOrder);
4619 
4620     // paths into result_reg:
4621     enum {
4622       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4623       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4624       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4625       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4626       PATH_LIMIT
4627     };
4628     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4629     result_val             = new(C) PhiNode(result_reg,
4630                                             TypeInstPtr::NOTNULL);
4631     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4632     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4633                                             TypePtr::BOTTOM);
4634     record_for_igvn(result_reg);
4635 
4636     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4637     int raw_adr_idx = Compile::AliasIdxRaw;
4638 
4639     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4640     if (array_ctl != NULL) {
4641       // It's an array.
4642       PreserveJVMState pjvms(this);
4643       set_control(array_ctl);
4644       Node* obj_length = load_array_length(obj);
4645       Node* obj_size  = NULL;
4646       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4647 
4648       if (!use_ReduceInitialCardMarks()) {
4649         // If it is an oop array, it requires very special treatment,
4650         // because card marking is required on each card of the array.
4651         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4652         if (is_obja != NULL) {
4653           PreserveJVMState pjvms2(this);
4654           set_control(is_obja);
4655           // Generate a direct call to the right arraycopy function(s).
4656           bool disjoint_bases = true;
4657           bool length_never_negative = true;
4658           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4659                              obj, intcon(0), alloc_obj, intcon(0),
4660                              obj_length,
4661                              disjoint_bases, length_never_negative);
4662           result_reg->init_req(_objArray_path, control());
4663           result_val->init_req(_objArray_path, alloc_obj);
4664           result_i_o ->set_req(_objArray_path, i_o());
4665           result_mem ->set_req(_objArray_path, reset_memory());
4666         }
4667       }
4668       // Otherwise, there are no card marks to worry about.
4669       // (We can dispense with card marks if we know the allocation
4670       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4671       //  causes the non-eden paths to take compensating steps to
4672       //  simulate a fresh allocation, so that no further
4673       //  card marks are required in compiled code to initialize
4674       //  the object.)
4675 
4676       if (!stopped()) {
4677         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4678 
4679         // Present the results of the copy.
4680         result_reg->init_req(_array_path, control());
4681         result_val->init_req(_array_path, alloc_obj);
4682         result_i_o ->set_req(_array_path, i_o());
4683         result_mem ->set_req(_array_path, reset_memory());
4684       }
4685     }
4686 
4687     // We only go to the instance fast case code if we pass a number of guards.
4688     // The paths which do not pass are accumulated in the slow_region.
4689     RegionNode* slow_region = new (C) RegionNode(1);
4690     record_for_igvn(slow_region);
4691     if (!stopped()) {
4692       // It's an instance (we did array above).  Make the slow-path tests.
4693       // If this is a virtual call, we generate a funny guard.  We grab
4694       // the vtable entry corresponding to clone() from the target object.
4695       // If the target method which we are calling happens to be the
4696       // Object clone() method, we pass the guard.  We do not need this
4697       // guard for non-virtual calls; the caller is known to be the native
4698       // Object clone().
4699       if (is_virtual) {
4700         generate_virtual_guard(obj_klass, slow_region);
4701       }
4702 
4703       // The object must be cloneable and must not have a finalizer.
4704       // Both of these conditions may be checked in a single test.
4705       // We could optimize the cloneable test further, but we don't care.
4706       generate_access_flags_guard(obj_klass,
4707                                   // Test both conditions:
4708                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4709                                   // Must be cloneable but not finalizer:
4710                                   JVM_ACC_IS_CLONEABLE,
4711                                   slow_region);
4712     }
4713 
4714     if (!stopped()) {
4715       // It's an instance, and it passed the slow-path tests.
4716       PreserveJVMState pjvms(this);
4717       Node* obj_size  = NULL;
4718       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4719       // is reexecuted if deoptimization occurs and there could be problems when merging
4720       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4721       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4722 
4723       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4724 
4725       // Present the results of the slow call.
4726       result_reg->init_req(_instance_path, control());
4727       result_val->init_req(_instance_path, alloc_obj);
4728       result_i_o ->set_req(_instance_path, i_o());
4729       result_mem ->set_req(_instance_path, reset_memory());
4730     }
4731 
4732     // Generate code for the slow case.  We make a call to clone().
4733     set_control(_gvn.transform(slow_region));
4734     if (!stopped()) {
4735       PreserveJVMState pjvms(this);
4736       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4737       Node* slow_result = set_results_for_java_call(slow_call);
4738       // this->control() comes from set_results_for_java_call
4739       result_reg->init_req(_slow_path, control());
4740       result_val->init_req(_slow_path, slow_result);
4741       result_i_o ->set_req(_slow_path, i_o());
4742       result_mem ->set_req(_slow_path, reset_memory());
4743     }
4744 
4745     // Return the combined state.
4746     set_control(    _gvn.transform(result_reg));
4747     set_i_o(        _gvn.transform(result_i_o));
4748     set_all_memory( _gvn.transform(result_mem));
4749   } // original reexecute is set back here
4750 
4751   set_result(_gvn.transform(result_val));
4752   return true;
4753 }
4754 
4755 //------------------------------basictype2arraycopy----------------------------
4756 address LibraryCallKit::basictype2arraycopy(BasicType t,
4757                                             Node* src_offset,
4758                                             Node* dest_offset,
4759                                             bool disjoint_bases,
4760                                             const char* &name,
4761                                             bool dest_uninitialized) {
4762   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4763   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4764 
4765   bool aligned = false;
4766   bool disjoint = disjoint_bases;
4767 
4768   // if the offsets are the same, we can treat the memory regions as
4769   // disjoint, because either the memory regions are in different arrays,
4770   // or they are identical (which we can treat as disjoint.)  We can also
4771   // treat a copy with a destination index  less that the source index
4772   // as disjoint since a low->high copy will work correctly in this case.
4773   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4774       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4775     // both indices are constants
4776     int s_offs = src_offset_inttype->get_con();
4777     int d_offs = dest_offset_inttype->get_con();
4778     int element_size = type2aelembytes(t);
4779     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4780               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4781     if (s_offs >= d_offs)  disjoint = true;
4782   } else if (src_offset == dest_offset && src_offset != NULL) {
4783     // This can occur if the offsets are identical non-constants.
4784     disjoint = true;
4785   }
4786 
4787   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4788 }
4789 
4790 
4791 //------------------------------inline_arraycopy-----------------------
4792 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4793 //                                                      Object dest, int destPos,
4794 //                                                      int length);
4795 bool LibraryCallKit::inline_arraycopy() {
4796   // Get the arguments.
4797   Node* src         = argument(0);  // type: oop
4798   Node* src_offset  = argument(1);  // type: int
4799   Node* dest        = argument(2);  // type: oop
4800   Node* dest_offset = argument(3);  // type: int
4801   Node* length      = argument(4);  // type: int
4802 
4803   // Compile time checks.  If any of these checks cannot be verified at compile time,
4804   // we do not make a fast path for this call.  Instead, we let the call remain as it
4805   // is.  The checks we choose to mandate at compile time are:
4806   //
4807   // (1) src and dest are arrays.
4808   const Type* src_type  = src->Value(&_gvn);
4809   const Type* dest_type = dest->Value(&_gvn);
4810   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4811   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4812 
4813   // Do we have the type of src?
4814   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4815   // Do we have the type of dest?
4816   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4817   // Is the type for src from speculation?
4818   bool src_spec = false;
4819   // Is the type for dest from speculation?
4820   bool dest_spec = false;
4821 
4822   if (!has_src || !has_dest) {
4823     // We don't have sufficient type information, let's see if
4824     // speculative types can help. We need to have types for both src
4825     // and dest so that it pays off.
4826 
4827     // Do we already have or could we have type information for src
4828     bool could_have_src = has_src;
4829     // Do we already have or could we have type information for dest
4830     bool could_have_dest = has_dest;
4831 
4832     ciKlass* src_k = NULL;
4833     if (!has_src) {
4834       src_k = src_type->speculative_type();
4835       if (src_k != NULL && src_k->is_array_klass()) {
4836         could_have_src = true;
4837       }
4838     }
4839 
4840     ciKlass* dest_k = NULL;
4841     if (!has_dest) {
4842       dest_k = dest_type->speculative_type();
4843       if (dest_k != NULL && dest_k->is_array_klass()) {
4844         could_have_dest = true;
4845       }
4846     }
4847 
4848     if (could_have_src && could_have_dest) {
4849       // This is going to pay off so emit the required guards
4850       if (!has_src) {
4851         src = maybe_cast_profiled_obj(src, src_k);
4852         src_type  = _gvn.type(src);
4853         top_src  = src_type->isa_aryptr();
4854         has_src = (top_src != NULL && top_src->klass() != NULL);
4855         src_spec = true;
4856       }
4857       if (!has_dest) {
4858         dest = maybe_cast_profiled_obj(dest, dest_k);
4859         dest_type  = _gvn.type(dest);
4860         top_dest  = dest_type->isa_aryptr();
4861         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4862         dest_spec = true;
4863       }
4864     }
4865   }
4866 
4867   if (!has_src || !has_dest) {
4868     // Conservatively insert a memory barrier on all memory slices.
4869     // Do not let writes into the source float below the arraycopy.
4870     insert_mem_bar(Op_MemBarCPUOrder);
4871 
4872     // Call StubRoutines::generic_arraycopy stub.
4873     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4874                        src, src_offset, dest, dest_offset, length);
4875 
4876     // Do not let reads from the destination float above the arraycopy.
4877     // Since we cannot type the arrays, we don't know which slices
4878     // might be affected.  We could restrict this barrier only to those
4879     // memory slices which pertain to array elements--but don't bother.
4880     if (!InsertMemBarAfterArraycopy)
4881       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4882       insert_mem_bar(Op_MemBarCPUOrder);
4883     return true;
4884   }
4885 
4886   // (2) src and dest arrays must have elements of the same BasicType
4887   // Figure out the size and type of the elements we will be copying.
4888   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4889   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4890   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4891   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4892 
4893   if (src_elem != dest_elem || dest_elem == T_VOID) {
4894     // The component types are not the same or are not recognized.  Punt.
4895     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4896     generate_slow_arraycopy(TypePtr::BOTTOM,
4897                             src, src_offset, dest, dest_offset, length,
4898                             /*dest_uninitialized*/false);
4899     return true;
4900   }
4901 
4902   if (src_elem == T_OBJECT) {
4903     // If both arrays are object arrays then having the exact types
4904     // for both will remove the need for a subtype check at runtime
4905     // before the call and may make it possible to pick a faster copy
4906     // routine (without a subtype check on every element)
4907     // Do we have the exact type of src?
4908     bool could_have_src = src_spec;
4909     // Do we have the exact type of dest?
4910     bool could_have_dest = dest_spec;
4911     ciKlass* src_k = top_src->klass();
4912     ciKlass* dest_k = top_dest->klass();
4913     if (!src_spec) {
4914       src_k = src_type->speculative_type();
4915       if (src_k != NULL && src_k->is_array_klass()) {
4916           could_have_src = true;
4917       }
4918     }
4919     if (!dest_spec) {
4920       dest_k = dest_type->speculative_type();
4921       if (dest_k != NULL && dest_k->is_array_klass()) {
4922         could_have_dest = true;
4923       }
4924     }
4925     if (could_have_src && could_have_dest) {
4926       // If we can have both exact types, emit the missing guards
4927       if (could_have_src && !src_spec) {
4928         src = maybe_cast_profiled_obj(src, src_k);
4929       }
4930       if (could_have_dest && !dest_spec) {
4931         dest = maybe_cast_profiled_obj(dest, dest_k);
4932       }
4933     }
4934   }
4935 
4936   //---------------------------------------------------------------------------
4937   // We will make a fast path for this call to arraycopy.
4938 
4939   // We have the following tests left to perform:
4940   //
4941   // (3) src and dest must not be null.
4942   // (4) src_offset must not be negative.
4943   // (5) dest_offset must not be negative.
4944   // (6) length must not be negative.
4945   // (7) src_offset + length must not exceed length of src.
4946   // (8) dest_offset + length must not exceed length of dest.
4947   // (9) each element of an oop array must be assignable
4948 
4949   RegionNode* slow_region = new (C) RegionNode(1);
4950   record_for_igvn(slow_region);
4951 
4952   // (3) operands must not be null
4953   // We currently perform our null checks with the null_check routine.
4954   // This means that the null exceptions will be reported in the caller
4955   // rather than (correctly) reported inside of the native arraycopy call.
4956   // This should be corrected, given time.  We do our null check with the
4957   // stack pointer restored.
4958   src  = null_check(src,  T_ARRAY);
4959   dest = null_check(dest, T_ARRAY);
4960 
4961   // (4) src_offset must not be negative.
4962   generate_negative_guard(src_offset, slow_region);
4963 
4964   // (5) dest_offset must not be negative.
4965   generate_negative_guard(dest_offset, slow_region);
4966 
4967   // (6) length must not be negative (moved to generate_arraycopy()).
4968   // generate_negative_guard(length, slow_region);
4969 
4970   // (7) src_offset + length must not exceed length of src.
4971   generate_limit_guard(src_offset, length,
4972                        load_array_length(src),
4973                        slow_region);
4974 
4975   // (8) dest_offset + length must not exceed length of dest.
4976   generate_limit_guard(dest_offset, length,
4977                        load_array_length(dest),
4978                        slow_region);
4979 
4980   // (9) each element of an oop array must be assignable
4981   // The generate_arraycopy subroutine checks this.
4982 
4983   // This is where the memory effects are placed:
4984   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4985   generate_arraycopy(adr_type, dest_elem,
4986                      src, src_offset, dest, dest_offset, length,
4987                      false, false, slow_region);
4988 
4989   return true;
4990 }
4991 
4992 //-----------------------------generate_arraycopy----------------------
4993 // Generate an optimized call to arraycopy.
4994 // Caller must guard against non-arrays.
4995 // Caller must determine a common array basic-type for both arrays.
4996 // Caller must validate offsets against array bounds.
4997 // The slow_region has already collected guard failure paths
4998 // (such as out of bounds length or non-conformable array types).
4999 // The generated code has this shape, in general:
5000 //
5001 //     if (length == 0)  return   // via zero_path
5002 //     slowval = -1
5003 //     if (types unknown) {
5004 //       slowval = call generic copy loop
5005 //       if (slowval == 0)  return  // via checked_path
5006 //     } else if (indexes in bounds) {
5007 //       if ((is object array) && !(array type check)) {
5008 //         slowval = call checked copy loop
5009 //         if (slowval == 0)  return  // via checked_path
5010 //       } else {
5011 //         call bulk copy loop
5012 //         return  // via fast_path
5013 //       }
5014 //     }
5015 //     // adjust params for remaining work:
5016 //     if (slowval != -1) {
5017 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
5018 //     }
5019 //   slow_region:
5020 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
5021 //     return  // via slow_call_path
5022 //
5023 // This routine is used from several intrinsics:  System.arraycopy,
5024 // Object.clone (the array subcase), and Arrays.copyOf[Range].
5025 //
5026 void
5027 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
5028                                    BasicType basic_elem_type,
5029                                    Node* src,  Node* src_offset,
5030                                    Node* dest, Node* dest_offset,
5031                                    Node* copy_length,
5032                                    bool disjoint_bases,
5033                                    bool length_never_negative,
5034                                    RegionNode* slow_region) {
5035 
5036   if (slow_region == NULL) {
5037     slow_region = new(C) RegionNode(1);
5038     record_for_igvn(slow_region);
5039   }
5040 
5041   Node* original_dest      = dest;
5042   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
5043   bool  dest_uninitialized = false;
5044 
5045   // See if this is the initialization of a newly-allocated array.
5046   // If so, we will take responsibility here for initializing it to zero.
5047   // (Note:  Because tightly_coupled_allocation performs checks on the
5048   // out-edges of the dest, we need to avoid making derived pointers
5049   // from it until we have checked its uses.)
5050   if (ReduceBulkZeroing
5051       && !ZeroTLAB              // pointless if already zeroed
5052       && basic_elem_type != T_CONFLICT // avoid corner case
5053       && !src->eqv_uncast(dest)
5054       && ((alloc = tightly_coupled_allocation(dest, slow_region))
5055           != NULL)
5056       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
5057       && alloc->maybe_set_complete(&_gvn)) {
5058     // "You break it, you buy it."
5059     InitializeNode* init = alloc->initialization();
5060     assert(init->is_complete(), "we just did this");
5061     init->set_complete_with_arraycopy();
5062     assert(dest->is_CheckCastPP(), "sanity");
5063     assert(dest->in(0)->in(0) == init, "dest pinned");
5064     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
5065     // From this point on, every exit path is responsible for
5066     // initializing any non-copied parts of the object to zero.
5067     // Also, if this flag is set we make sure that arraycopy interacts properly
5068     // with G1, eliding pre-barriers. See CR 6627983.
5069     dest_uninitialized = true;
5070   } else {
5071     // No zeroing elimination here.
5072     alloc             = NULL;
5073     //original_dest   = dest;
5074     //dest_uninitialized = false;
5075   }
5076 
5077   // Results are placed here:
5078   enum { fast_path        = 1,  // normal void-returning assembly stub
5079          checked_path     = 2,  // special assembly stub with cleanup
5080          slow_call_path   = 3,  // something went wrong; call the VM
5081          zero_path        = 4,  // bypass when length of copy is zero
5082          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
5083          PATH_LIMIT       = 6
5084   };
5085   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
5086   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
5087   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
5088   record_for_igvn(result_region);
5089   _gvn.set_type_bottom(result_i_o);
5090   _gvn.set_type_bottom(result_memory);
5091   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
5092 
5093   // The slow_control path:
5094   Node* slow_control;
5095   Node* slow_i_o = i_o();
5096   Node* slow_mem = memory(adr_type);
5097   debug_only(slow_control = (Node*) badAddress);
5098 
5099   // Checked control path:
5100   Node* checked_control = top();
5101   Node* checked_mem     = NULL;
5102   Node* checked_i_o     = NULL;
5103   Node* checked_value   = NULL;
5104 
5105   if (basic_elem_type == T_CONFLICT) {
5106     assert(!dest_uninitialized, "");
5107     Node* cv = generate_generic_arraycopy(adr_type,
5108                                           src, src_offset, dest, dest_offset,
5109                                           copy_length, dest_uninitialized);
5110     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5111     checked_control = control();
5112     checked_i_o     = i_o();
5113     checked_mem     = memory(adr_type);
5114     checked_value   = cv;
5115     set_control(top());         // no fast path
5116   }
5117 
5118   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
5119   if (not_pos != NULL) {
5120     PreserveJVMState pjvms(this);
5121     set_control(not_pos);
5122 
5123     // (6) length must not be negative.
5124     if (!length_never_negative) {
5125       generate_negative_guard(copy_length, slow_region);
5126     }
5127 
5128     // copy_length is 0.
5129     if (!stopped() && dest_uninitialized) {
5130       Node* dest_length = alloc->in(AllocateNode::ALength);
5131       if (copy_length->eqv_uncast(dest_length)
5132           || _gvn.find_int_con(dest_length, 1) <= 0) {
5133         // There is no zeroing to do. No need for a secondary raw memory barrier.
5134       } else {
5135         // Clear the whole thing since there are no source elements to copy.
5136         generate_clear_array(adr_type, dest, basic_elem_type,
5137                              intcon(0), NULL,
5138                              alloc->in(AllocateNode::AllocSize));
5139         // Use a secondary InitializeNode as raw memory barrier.
5140         // Currently it is needed only on this path since other
5141         // paths have stub or runtime calls as raw memory barriers.
5142         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
5143                                                        Compile::AliasIdxRaw,
5144                                                        top())->as_Initialize();
5145         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
5146       }
5147     }
5148 
5149     // Present the results of the fast call.
5150     result_region->init_req(zero_path, control());
5151     result_i_o   ->init_req(zero_path, i_o());
5152     result_memory->init_req(zero_path, memory(adr_type));
5153   }
5154 
5155   if (!stopped() && dest_uninitialized) {
5156     // We have to initialize the *uncopied* part of the array to zero.
5157     // The copy destination is the slice dest[off..off+len].  The other slices
5158     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
5159     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
5160     Node* dest_length = alloc->in(AllocateNode::ALength);
5161     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
5162                                                           copy_length));
5163 
5164     // If there is a head section that needs zeroing, do it now.
5165     if (find_int_con(dest_offset, -1) != 0) {
5166       generate_clear_array(adr_type, dest, basic_elem_type,
5167                            intcon(0), dest_offset,
5168                            NULL);
5169     }
5170 
5171     // Next, perform a dynamic check on the tail length.
5172     // It is often zero, and we can win big if we prove this.
5173     // There are two wins:  Avoid generating the ClearArray
5174     // with its attendant messy index arithmetic, and upgrade
5175     // the copy to a more hardware-friendly word size of 64 bits.
5176     Node* tail_ctl = NULL;
5177     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
5178       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
5179       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
5180       tail_ctl = generate_slow_guard(bol_lt, NULL);
5181       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
5182     }
5183 
5184     // At this point, let's assume there is no tail.
5185     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
5186       // There is no tail.  Try an upgrade to a 64-bit copy.
5187       bool didit = false;
5188       { PreserveJVMState pjvms(this);
5189         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
5190                                          src, src_offset, dest, dest_offset,
5191                                          dest_size, dest_uninitialized);
5192         if (didit) {
5193           // Present the results of the block-copying fast call.
5194           result_region->init_req(bcopy_path, control());
5195           result_i_o   ->init_req(bcopy_path, i_o());
5196           result_memory->init_req(bcopy_path, memory(adr_type));
5197         }
5198       }
5199       if (didit)
5200         set_control(top());     // no regular fast path
5201     }
5202 
5203     // Clear the tail, if any.
5204     if (tail_ctl != NULL) {
5205       Node* notail_ctl = stopped() ? NULL : control();
5206       set_control(tail_ctl);
5207       if (notail_ctl == NULL) {
5208         generate_clear_array(adr_type, dest, basic_elem_type,
5209                              dest_tail, NULL,
5210                              dest_size);
5211       } else {
5212         // Make a local merge.
5213         Node* done_ctl = new(C) RegionNode(3);
5214         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
5215         done_ctl->init_req(1, notail_ctl);
5216         done_mem->init_req(1, memory(adr_type));
5217         generate_clear_array(adr_type, dest, basic_elem_type,
5218                              dest_tail, NULL,
5219                              dest_size);
5220         done_ctl->init_req(2, control());
5221         done_mem->init_req(2, memory(adr_type));
5222         set_control( _gvn.transform(done_ctl));
5223         set_memory(  _gvn.transform(done_mem), adr_type );
5224       }
5225     }
5226   }
5227 
5228   BasicType copy_type = basic_elem_type;
5229   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5230   if (!stopped() && copy_type == T_OBJECT) {
5231     // If src and dest have compatible element types, we can copy bits.
5232     // Types S[] and D[] are compatible if D is a supertype of S.
5233     //
5234     // If they are not, we will use checked_oop_disjoint_arraycopy,
5235     // which performs a fast optimistic per-oop check, and backs off
5236     // further to JVM_ArrayCopy on the first per-oop check that fails.
5237     // (Actually, we don't move raw bits only; the GC requires card marks.)
5238 
5239     // Get the Klass* for both src and dest
5240     Node* src_klass  = load_object_klass(src);
5241     Node* dest_klass = load_object_klass(dest);
5242 
5243     // Generate the subtype check.
5244     // This might fold up statically, or then again it might not.
5245     //
5246     // Non-static example:  Copying List<String>.elements to a new String[].
5247     // The backing store for a List<String> is always an Object[],
5248     // but its elements are always type String, if the generic types
5249     // are correct at the source level.
5250     //
5251     // Test S[] against D[], not S against D, because (probably)
5252     // the secondary supertype cache is less busy for S[] than S.
5253     // This usually only matters when D is an interface.
5254     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5255     // Plug failing path into checked_oop_disjoint_arraycopy
5256     if (not_subtype_ctrl != top()) {
5257       PreserveJVMState pjvms(this);
5258       set_control(not_subtype_ctrl);
5259       // (At this point we can assume disjoint_bases, since types differ.)
5260       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5261       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5262       Node* n1 = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5263       Node* dest_elem_klass = _gvn.transform(n1);
5264       Node* cv = generate_checkcast_arraycopy(adr_type,
5265                                               dest_elem_klass,
5266                                               src, src_offset, dest, dest_offset,
5267                                               ConvI2X(copy_length), dest_uninitialized);
5268       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5269       checked_control = control();
5270       checked_i_o     = i_o();
5271       checked_mem     = memory(adr_type);
5272       checked_value   = cv;
5273     }
5274     // At this point we know we do not need type checks on oop stores.
5275 
5276     // Let's see if we need card marks:
5277     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5278       // If we do not need card marks, copy using the jint or jlong stub.
5279       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5280       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5281              "sizes agree");
5282     }
5283   }
5284 
5285   if (!stopped()) {
5286     // Generate the fast path, if possible.
5287     PreserveJVMState pjvms(this);
5288     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5289                                  src, src_offset, dest, dest_offset,
5290                                  ConvI2X(copy_length), dest_uninitialized);
5291 
5292     // Present the results of the fast call.
5293     result_region->init_req(fast_path, control());
5294     result_i_o   ->init_req(fast_path, i_o());
5295     result_memory->init_req(fast_path, memory(adr_type));
5296   }
5297 
5298   // Here are all the slow paths up to this point, in one bundle:
5299   slow_control = top();
5300   if (slow_region != NULL)
5301     slow_control = _gvn.transform(slow_region);
5302   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5303 
5304   set_control(checked_control);
5305   if (!stopped()) {
5306     // Clean up after the checked call.
5307     // The returned value is either 0 or -1^K,
5308     // where K = number of partially transferred array elements.
5309     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
5310     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
5311     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5312 
5313     // If it is 0, we are done, so transfer to the end.
5314     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
5315     result_region->init_req(checked_path, checks_done);
5316     result_i_o   ->init_req(checked_path, checked_i_o);
5317     result_memory->init_req(checked_path, checked_mem);
5318 
5319     // If it is not zero, merge into the slow call.
5320     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
5321     RegionNode* slow_reg2 = new(C) RegionNode(3);
5322     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
5323     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
5324     record_for_igvn(slow_reg2);
5325     slow_reg2  ->init_req(1, slow_control);
5326     slow_i_o2  ->init_req(1, slow_i_o);
5327     slow_mem2  ->init_req(1, slow_mem);
5328     slow_reg2  ->init_req(2, control());
5329     slow_i_o2  ->init_req(2, checked_i_o);
5330     slow_mem2  ->init_req(2, checked_mem);
5331 
5332     slow_control = _gvn.transform(slow_reg2);
5333     slow_i_o     = _gvn.transform(slow_i_o2);
5334     slow_mem     = _gvn.transform(slow_mem2);
5335 
5336     if (alloc != NULL) {
5337       // We'll restart from the very beginning, after zeroing the whole thing.
5338       // This can cause double writes, but that's OK since dest is brand new.
5339       // So we ignore the low 31 bits of the value returned from the stub.
5340     } else {
5341       // We must continue the copy exactly where it failed, or else
5342       // another thread might see the wrong number of writes to dest.
5343       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
5344       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
5345       slow_offset->init_req(1, intcon(0));
5346       slow_offset->init_req(2, checked_offset);
5347       slow_offset  = _gvn.transform(slow_offset);
5348 
5349       // Adjust the arguments by the conditionally incoming offset.
5350       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
5351       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
5352       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
5353 
5354       // Tweak the node variables to adjust the code produced below:
5355       src_offset  = src_off_plus;
5356       dest_offset = dest_off_plus;
5357       copy_length = length_minus;
5358     }
5359   }
5360 
5361   set_control(slow_control);
5362   if (!stopped()) {
5363     // Generate the slow path, if needed.
5364     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5365 
5366     set_memory(slow_mem, adr_type);
5367     set_i_o(slow_i_o);
5368 
5369     if (dest_uninitialized) {
5370       generate_clear_array(adr_type, dest, basic_elem_type,
5371                            intcon(0), NULL,
5372                            alloc->in(AllocateNode::AllocSize));
5373     }
5374 
5375     generate_slow_arraycopy(adr_type,
5376                             src, src_offset, dest, dest_offset,
5377                             copy_length, /*dest_uninitialized*/false);
5378 
5379     result_region->init_req(slow_call_path, control());
5380     result_i_o   ->init_req(slow_call_path, i_o());
5381     result_memory->init_req(slow_call_path, memory(adr_type));
5382   }
5383 
5384   // Remove unused edges.
5385   for (uint i = 1; i < result_region->req(); i++) {
5386     if (result_region->in(i) == NULL)
5387       result_region->init_req(i, top());
5388   }
5389 
5390   // Finished; return the combined state.
5391   set_control( _gvn.transform(result_region));
5392   set_i_o(     _gvn.transform(result_i_o)    );
5393   set_memory(  _gvn.transform(result_memory), adr_type );
5394 
5395   // The memory edges above are precise in order to model effects around
5396   // array copies accurately to allow value numbering of field loads around
5397   // arraycopy.  Such field loads, both before and after, are common in Java
5398   // collections and similar classes involving header/array data structures.
5399   //
5400   // But with low number of register or when some registers are used or killed
5401   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5402   // The next memory barrier is added to avoid it. If the arraycopy can be
5403   // optimized away (which it can, sometimes) then we can manually remove
5404   // the membar also.
5405   //
5406   // Do not let reads from the cloned object float above the arraycopy.
5407   if (alloc != NULL) {
5408     // Do not let stores that initialize this object be reordered with
5409     // a subsequent store that would make this object accessible by
5410     // other threads.
5411     // Record what AllocateNode this StoreStore protects so that
5412     // escape analysis can go from the MemBarStoreStoreNode to the
5413     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5414     // based on the escape status of the AllocateNode.
5415     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5416   } else if (InsertMemBarAfterArraycopy)
5417     insert_mem_bar(Op_MemBarCPUOrder);
5418 }
5419 
5420 
5421 // Helper function which determines if an arraycopy immediately follows
5422 // an allocation, with no intervening tests or other escapes for the object.
5423 AllocateArrayNode*
5424 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5425                                            RegionNode* slow_region) {
5426   if (stopped())             return NULL;  // no fast path
5427   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5428 
5429   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5430   if (alloc == NULL)  return NULL;
5431 
5432   Node* rawmem = memory(Compile::AliasIdxRaw);
5433   // Is the allocation's memory state untouched?
5434   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5435     // Bail out if there have been raw-memory effects since the allocation.
5436     // (Example:  There might have been a call or safepoint.)
5437     return NULL;
5438   }
5439   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5440   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5441     return NULL;
5442   }
5443 
5444   // There must be no unexpected observers of this allocation.
5445   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5446     Node* obs = ptr->fast_out(i);
5447     if (obs != this->map()) {
5448       return NULL;
5449     }
5450   }
5451 
5452   // This arraycopy must unconditionally follow the allocation of the ptr.
5453   Node* alloc_ctl = ptr->in(0);
5454   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5455 
5456   Node* ctl = control();
5457   while (ctl != alloc_ctl) {
5458     // There may be guards which feed into the slow_region.
5459     // Any other control flow means that we might not get a chance
5460     // to finish initializing the allocated object.
5461     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5462       IfNode* iff = ctl->in(0)->as_If();
5463       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5464       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5465       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5466         ctl = iff->in(0);       // This test feeds the known slow_region.
5467         continue;
5468       }
5469       // One more try:  Various low-level checks bottom out in
5470       // uncommon traps.  If the debug-info of the trap omits
5471       // any reference to the allocation, as we've already
5472       // observed, then there can be no objection to the trap.
5473       bool found_trap = false;
5474       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5475         Node* obs = not_ctl->fast_out(j);
5476         if (obs->in(0) == not_ctl && obs->is_Call() &&
5477             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5478           found_trap = true; break;
5479         }
5480       }
5481       if (found_trap) {
5482         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5483         continue;
5484       }
5485     }
5486     return NULL;
5487   }
5488 
5489   // If we get this far, we have an allocation which immediately
5490   // precedes the arraycopy, and we can take over zeroing the new object.
5491   // The arraycopy will finish the initialization, and provide
5492   // a new control state to which we will anchor the destination pointer.
5493 
5494   return alloc;
5495 }
5496 
5497 // Helper for initialization of arrays, creating a ClearArray.
5498 // It writes zero bits in [start..end), within the body of an array object.
5499 // The memory effects are all chained onto the 'adr_type' alias category.
5500 //
5501 // Since the object is otherwise uninitialized, we are free
5502 // to put a little "slop" around the edges of the cleared area,
5503 // as long as it does not go back into the array's header,
5504 // or beyond the array end within the heap.
5505 //
5506 // The lower edge can be rounded down to the nearest jint and the
5507 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5508 //
5509 // Arguments:
5510 //   adr_type           memory slice where writes are generated
5511 //   dest               oop of the destination array
5512 //   basic_elem_type    element type of the destination
5513 //   slice_idx          array index of first element to store
5514 //   slice_len          number of elements to store (or NULL)
5515 //   dest_size          total size in bytes of the array object
5516 //
5517 // Exactly one of slice_len or dest_size must be non-NULL.
5518 // If dest_size is non-NULL, zeroing extends to the end of the object.
5519 // If slice_len is non-NULL, the slice_idx value must be a constant.
5520 void
5521 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5522                                      Node* dest,
5523                                      BasicType basic_elem_type,
5524                                      Node* slice_idx,
5525                                      Node* slice_len,
5526                                      Node* dest_size) {
5527   // one or the other but not both of slice_len and dest_size:
5528   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5529   if (slice_len == NULL)  slice_len = top();
5530   if (dest_size == NULL)  dest_size = top();
5531 
5532   // operate on this memory slice:
5533   Node* mem = memory(adr_type); // memory slice to operate on
5534 
5535   // scaling and rounding of indexes:
5536   int scale = exact_log2(type2aelembytes(basic_elem_type));
5537   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5538   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5539   int bump_bit  = (-1 << scale) & BytesPerInt;
5540 
5541   // determine constant starts and ends
5542   const intptr_t BIG_NEG = -128;
5543   assert(BIG_NEG + 2*abase < 0, "neg enough");
5544   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5545   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5546   if (slice_len_con == 0) {
5547     return;                     // nothing to do here
5548   }
5549   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5550   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5551   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5552     assert(end_con < 0, "not two cons");
5553     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5554                        BytesPerLong);
5555   }
5556 
5557   if (start_con >= 0 && end_con >= 0) {
5558     // Constant start and end.  Simple.
5559     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5560                                        start_con, end_con, &_gvn);
5561   } else if (start_con >= 0 && dest_size != top()) {
5562     // Constant start, pre-rounded end after the tail of the array.
5563     Node* end = dest_size;
5564     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5565                                        start_con, end, &_gvn);
5566   } else if (start_con >= 0 && slice_len != top()) {
5567     // Constant start, non-constant end.  End needs rounding up.
5568     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5569     intptr_t end_base  = abase + (slice_idx_con << scale);
5570     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5571     Node*    end       = ConvI2X(slice_len);
5572     if (scale != 0)
5573       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5574     end_base += end_round;
5575     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5576     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5577     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5578                                        start_con, end, &_gvn);
5579   } else if (start_con < 0 && dest_size != top()) {
5580     // Non-constant start, pre-rounded end after the tail of the array.
5581     // This is almost certainly a "round-to-end" operation.
5582     Node* start = slice_idx;
5583     start = ConvI2X(start);
5584     if (scale != 0)
5585       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5586     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5587     if ((bump_bit | clear_low) != 0) {
5588       int to_clear = (bump_bit | clear_low);
5589       // Align up mod 8, then store a jint zero unconditionally
5590       // just before the mod-8 boundary.
5591       if (((abase + bump_bit) & ~to_clear) - bump_bit
5592           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5593         bump_bit = 0;
5594         assert((abase & to_clear) == 0, "array base must be long-aligned");
5595       } else {
5596         // Bump 'start' up to (or past) the next jint boundary:
5597         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5598         assert((abase & clear_low) == 0, "array base must be int-aligned");
5599       }
5600       // Round bumped 'start' down to jlong boundary in body of array.
5601       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5602       if (bump_bit != 0) {
5603         // Store a zero to the immediately preceding jint:
5604         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5605         Node* p1 = basic_plus_adr(dest, x1);
5606         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
5607         mem = _gvn.transform(mem);
5608       }
5609     }
5610     Node* end = dest_size; // pre-rounded
5611     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5612                                        start, end, &_gvn);
5613   } else {
5614     // Non-constant start, unrounded non-constant end.
5615     // (Nobody zeroes a random midsection of an array using this routine.)
5616     ShouldNotReachHere();       // fix caller
5617   }
5618 
5619   // Done.
5620   set_memory(mem, adr_type);
5621 }
5622 
5623 
5624 bool
5625 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5626                                          BasicType basic_elem_type,
5627                                          AllocateNode* alloc,
5628                                          Node* src,  Node* src_offset,
5629                                          Node* dest, Node* dest_offset,
5630                                          Node* dest_size, bool dest_uninitialized) {
5631   // See if there is an advantage from block transfer.
5632   int scale = exact_log2(type2aelembytes(basic_elem_type));
5633   if (scale >= LogBytesPerLong)
5634     return false;               // it is already a block transfer
5635 
5636   // Look at the alignment of the starting offsets.
5637   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5638 
5639   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5640   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5641   if (src_off_con < 0 || dest_off_con < 0)
5642     // At present, we can only understand constants.
5643     return false;
5644 
5645   intptr_t src_off  = abase + (src_off_con  << scale);
5646   intptr_t dest_off = abase + (dest_off_con << scale);
5647 
5648   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5649     // Non-aligned; too bad.
5650     // One more chance:  Pick off an initial 32-bit word.
5651     // This is a common case, since abase can be odd mod 8.
5652     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5653         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5654       Node* sptr = basic_plus_adr(src,  src_off);
5655       Node* dptr = basic_plus_adr(dest, dest_off);
5656       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
5657       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
5658       src_off += BytesPerInt;
5659       dest_off += BytesPerInt;
5660     } else {
5661       return false;
5662     }
5663   }
5664   assert(src_off % BytesPerLong == 0, "");
5665   assert(dest_off % BytesPerLong == 0, "");
5666 
5667   // Do this copy by giant steps.
5668   Node* sptr  = basic_plus_adr(src,  src_off);
5669   Node* dptr  = basic_plus_adr(dest, dest_off);
5670   Node* countx = dest_size;
5671   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5672   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5673 
5674   bool disjoint_bases = true;   // since alloc != NULL
5675   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5676                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5677 
5678   return true;
5679 }
5680 
5681 
5682 // Helper function; generates code for the slow case.
5683 // We make a call to a runtime method which emulates the native method,
5684 // but without the native wrapper overhead.
5685 void
5686 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5687                                         Node* src,  Node* src_offset,
5688                                         Node* dest, Node* dest_offset,
5689                                         Node* copy_length, bool dest_uninitialized) {
5690   assert(!dest_uninitialized, "Invariant");
5691   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5692                                  OptoRuntime::slow_arraycopy_Type(),
5693                                  OptoRuntime::slow_arraycopy_Java(),
5694                                  "slow_arraycopy", adr_type,
5695                                  src, src_offset, dest, dest_offset,
5696                                  copy_length);
5697 
5698   // Handle exceptions thrown by this fellow:
5699   make_slow_call_ex(call, env()->Throwable_klass(), false);
5700 }
5701 
5702 // Helper function; generates code for cases requiring runtime checks.
5703 Node*
5704 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5705                                              Node* dest_elem_klass,
5706                                              Node* src,  Node* src_offset,
5707                                              Node* dest, Node* dest_offset,
5708                                              Node* copy_length, bool dest_uninitialized) {
5709   if (stopped())  return NULL;
5710 
5711   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5712   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5713     return NULL;
5714   }
5715 
5716   // Pick out the parameters required to perform a store-check
5717   // for the target array.  This is an optimistic check.  It will
5718   // look in each non-null element's class, at the desired klass's
5719   // super_check_offset, for the desired klass.
5720   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5721   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5722   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
5723   Node* check_offset = ConvI2X(_gvn.transform(n3));
5724   Node* check_value  = dest_elem_klass;
5725 
5726   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5727   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5728 
5729   // (We know the arrays are never conjoint, because their types differ.)
5730   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5731                                  OptoRuntime::checkcast_arraycopy_Type(),
5732                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5733                                  // five arguments, of which two are
5734                                  // intptr_t (jlong in LP64)
5735                                  src_start, dest_start,
5736                                  copy_length XTOP,
5737                                  check_offset XTOP,
5738                                  check_value);
5739 
5740   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5741 }
5742 
5743 
5744 // Helper function; generates code for cases requiring runtime checks.
5745 Node*
5746 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5747                                            Node* src,  Node* src_offset,
5748                                            Node* dest, Node* dest_offset,
5749                                            Node* copy_length, bool dest_uninitialized) {
5750   assert(!dest_uninitialized, "Invariant");
5751   if (stopped())  return NULL;
5752   address copyfunc_addr = StubRoutines::generic_arraycopy();
5753   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5754     return NULL;
5755   }
5756 
5757   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5758                     OptoRuntime::generic_arraycopy_Type(),
5759                     copyfunc_addr, "generic_arraycopy", adr_type,
5760                     src, src_offset, dest, dest_offset, copy_length);
5761 
5762   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5763 }
5764 
5765 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5766 void
5767 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5768                                              BasicType basic_elem_type,
5769                                              bool disjoint_bases,
5770                                              Node* src,  Node* src_offset,
5771                                              Node* dest, Node* dest_offset,
5772                                              Node* copy_length, bool dest_uninitialized) {
5773   if (stopped())  return;               // nothing to do
5774 
5775   Node* src_start  = src;
5776   Node* dest_start = dest;
5777   if (src_offset != NULL || dest_offset != NULL) {
5778     assert(src_offset != NULL && dest_offset != NULL, "");
5779     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5780     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5781   }
5782 
5783   // Figure out which arraycopy runtime method to call.
5784   const char* copyfunc_name = "arraycopy";
5785   address     copyfunc_addr =
5786       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5787                           disjoint_bases, copyfunc_name, dest_uninitialized);
5788 
5789   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5790   make_runtime_call(RC_LEAF|RC_NO_FP,
5791                     OptoRuntime::fast_arraycopy_Type(),
5792                     copyfunc_addr, copyfunc_name, adr_type,
5793                     src_start, dest_start, copy_length XTOP);
5794 }
5795 
5796 //-------------inline_encodeISOArray-----------------------------------
5797 // encode char[] to byte[] in ISO_8859_1
5798 bool LibraryCallKit::inline_encodeISOArray() {
5799   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5800   // no receiver since it is static method
5801   Node *src         = argument(0);
5802   Node *src_offset  = argument(1);
5803   Node *dst         = argument(2);
5804   Node *dst_offset  = argument(3);
5805   Node *length      = argument(4);
5806 
5807   const Type* src_type = src->Value(&_gvn);
5808   const Type* dst_type = dst->Value(&_gvn);
5809   const TypeAryPtr* top_src = src_type->isa_aryptr();
5810   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5811   if (top_src  == NULL || top_src->klass()  == NULL ||
5812       top_dest == NULL || top_dest->klass() == NULL) {
5813     // failed array check
5814     return false;
5815   }
5816 
5817   // Figure out the size and type of the elements we will be copying.
5818   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5819   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5820   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5821     return false;
5822   }
5823   Node* src_start = array_element_address(src, src_offset, src_elem);
5824   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5825   // 'src_start' points to src array + scaled offset
5826   // 'dst_start' points to dst array + scaled offset
5827 
5828   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5829   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5830   enc = _gvn.transform(enc);
5831   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5832   set_memory(res_mem, mtype);
5833   set_result(enc);
5834   return true;
5835 }
5836 
5837 //-------------inline_multiplyToLen-----------------------------------
5838 bool LibraryCallKit::inline_multiplyToLen() {
5839   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
5840 
5841   address stubAddr = StubRoutines::multiplyToLen();
5842   if (stubAddr == NULL) {
5843     return false; // Intrinsic's stub is not implemented on this platform
5844   }
5845   const char* stubName = "multiplyToLen";
5846 
5847   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5848 
5849   // no receiver because it is a static method
5850   Node* x    = argument(0);
5851   Node* xlen = argument(1);
5852   Node* y    = argument(2);
5853   Node* ylen = argument(3);
5854   Node* z    = argument(4);
5855 
5856   const Type* x_type = x->Value(&_gvn);
5857   const Type* y_type = y->Value(&_gvn);
5858   const TypeAryPtr* top_x = x_type->isa_aryptr();
5859   const TypeAryPtr* top_y = y_type->isa_aryptr();
5860   if (top_x  == NULL || top_x->klass()  == NULL ||
5861       top_y == NULL || top_y->klass() == NULL) {
5862     // failed array check
5863     return false;
5864   }
5865 
5866   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5867   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5868   if (x_elem != T_INT || y_elem != T_INT) {
5869     return false;
5870   }
5871 
5872   // Set the original stack and the reexecute bit for the interpreter to reexecute
5873   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5874   // on the return from z array allocation in runtime.
5875   { PreserveReexecuteState preexecs(this);
5876     jvms()->set_should_reexecute(true);
5877 
5878     Node* x_start = array_element_address(x, intcon(0), x_elem);
5879     Node* y_start = array_element_address(y, intcon(0), y_elem);
5880     // 'x_start' points to x array + scaled xlen
5881     // 'y_start' points to y array + scaled ylen
5882 
5883     // Allocate the result array
5884     Node* zlen = _gvn.transform(new(C) AddINode(xlen, ylen));
5885     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5886     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5887 
5888     IdealKit ideal(this);
5889 
5890 #define __ ideal.
5891      Node* one = __ ConI(1);
5892      Node* zero = __ ConI(0);
5893      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5894      __ set(need_alloc, zero);
5895      __ set(z_alloc, z);
5896      __ if_then(z, BoolTest::eq, null()); {
5897        __ increment (need_alloc, one);
5898      } __ else_(); {
5899        // Update graphKit memory and control from IdealKit.
5900        sync_kit(ideal);
5901        Node* zlen_arg = load_array_length(z);
5902        // Update IdealKit memory and control from graphKit.
5903        __ sync_kit(this);
5904        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5905          __ increment (need_alloc, one);
5906        } __ end_if();
5907      } __ end_if();
5908 
5909      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5910        // Update graphKit memory and control from IdealKit.
5911        sync_kit(ideal);
5912        Node * narr = new_array(klass_node, zlen, 1);
5913        // Update IdealKit memory and control from graphKit.
5914        __ sync_kit(this);
5915        __ set(z_alloc, narr);
5916      } __ end_if();
5917 
5918      sync_kit(ideal);
5919      z = __ value(z_alloc);
5920      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5921      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5922      // Final sync IdealKit and GraphKit.
5923      final_sync(ideal);
5924 #undef __
5925 
5926     Node* z_start = array_element_address(z, intcon(0), T_INT);
5927 
5928     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5929                                    OptoRuntime::multiplyToLen_Type(),
5930                                    stubAddr, stubName, TypePtr::BOTTOM,
5931                                    x_start, xlen, y_start, ylen, z_start, zlen);
5932   } // original reexecute is set back here
5933 
5934   C->set_has_split_ifs(true); // Has chance for split-if optimization
5935   set_result(z);
5936   return true;
5937 }
5938 
5939 //-------------inline_squareToLen------------------------------------
5940 bool LibraryCallKit::inline_squareToLen() {
5941   assert(UseSquareToLenIntrinsic, "not implementated on this platform");
5942 
5943   address stubAddr = StubRoutines::squareToLen();
5944   if (stubAddr == NULL) {
5945     return false; // Intrinsic's stub is not implemented on this platform
5946   }
5947   const char* stubName = "squareToLen";
5948 
5949   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5950 
5951   Node* x    = argument(0);
5952   Node* len  = argument(1);
5953   Node* z    = argument(2);
5954   Node* zlen = argument(3);
5955 
5956   const Type* x_type = x->Value(&_gvn);
5957   const Type* z_type = z->Value(&_gvn);
5958   const TypeAryPtr* top_x = x_type->isa_aryptr();
5959   const TypeAryPtr* top_z = z_type->isa_aryptr();
5960   if (top_x  == NULL || top_x->klass()  == NULL ||
5961       top_z  == NULL || top_z->klass()  == NULL) {
5962     // failed array check
5963     return false;
5964   }
5965 
5966   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5967   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5968   if (x_elem != T_INT || z_elem != T_INT) {
5969     return false;
5970   }
5971 
5972 
5973   Node* x_start = array_element_address(x, intcon(0), x_elem);
5974   Node* z_start = array_element_address(z, intcon(0), z_elem);
5975 
5976   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5977                                   OptoRuntime::squareToLen_Type(),
5978                                   stubAddr, stubName, TypePtr::BOTTOM,
5979                                   x_start, len, z_start, zlen);
5980 
5981   set_result(z);
5982   return true;
5983 }
5984 
5985 //-------------inline_mulAdd------------------------------------------
5986 bool LibraryCallKit::inline_mulAdd() {
5987   assert(UseMulAddIntrinsic, "not implementated on this platform");
5988 
5989   address stubAddr = StubRoutines::mulAdd();
5990   if (stubAddr == NULL) {
5991     return false; // Intrinsic's stub is not implemented on this platform
5992   }
5993   const char* stubName = "mulAdd";
5994 
5995   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5996 
5997   Node* out      = argument(0);
5998   Node* in       = argument(1);
5999   Node* offset   = argument(2);
6000   Node* len      = argument(3);
6001   Node* k        = argument(4);
6002 
6003   const Type* out_type = out->Value(&_gvn);
6004   const Type* in_type = in->Value(&_gvn);
6005   const TypeAryPtr* top_out = out_type->isa_aryptr();
6006   const TypeAryPtr* top_in = in_type->isa_aryptr();
6007   if (top_out  == NULL || top_out->klass()  == NULL ||
6008       top_in == NULL || top_in->klass() == NULL) {
6009     // failed array check
6010     return false;
6011   }
6012 
6013   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6014   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6015   if (out_elem != T_INT || in_elem != T_INT) {
6016     return false;
6017   }
6018 
6019   Node* outlen = load_array_length(out);
6020   Node* new_offset = _gvn.transform(new (C) SubINode(outlen, offset));
6021   Node* out_start = array_element_address(out, intcon(0), out_elem);
6022   Node* in_start = array_element_address(in, intcon(0), in_elem);
6023 
6024   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6025                                   OptoRuntime::mulAdd_Type(),
6026                                   stubAddr, stubName, TypePtr::BOTTOM,
6027                                   out_start,in_start, new_offset, len, k);
6028   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
6029   set_result(result);
6030   return true;
6031 }
6032 
6033 //-------------inline_montgomeryMultiply-----------------------------------
6034 bool LibraryCallKit::inline_montgomeryMultiply() {
6035   address stubAddr = StubRoutines::montgomeryMultiply();
6036   if (stubAddr == NULL) {
6037     return false; // Intrinsic's stub is not implemented on this platform
6038   }
6039 
6040   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
6041   const char* stubName = "montgomery_multiply";
6042 
6043   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
6044 
6045   Node* a    = argument(0);
6046   Node* b    = argument(1);
6047   Node* n    = argument(2);
6048   Node* len  = argument(3);
6049   Node* inv  = argument(4);
6050   Node* m    = argument(6);
6051 
6052   const Type* a_type = a->Value(&_gvn);
6053   const TypeAryPtr* top_a = a_type->isa_aryptr();
6054   const Type* b_type = b->Value(&_gvn);
6055   const TypeAryPtr* top_b = b_type->isa_aryptr();
6056   const Type* n_type = a->Value(&_gvn);
6057   const TypeAryPtr* top_n = n_type->isa_aryptr();
6058   const Type* m_type = a->Value(&_gvn);
6059   const TypeAryPtr* top_m = m_type->isa_aryptr();
6060   if (top_a  == NULL || top_a->klass()  == NULL ||
6061       top_b == NULL || top_b->klass()  == NULL ||
6062       top_n == NULL || top_n->klass()  == NULL ||
6063       top_m == NULL || top_m->klass()  == NULL) {
6064     // failed array check
6065     return false;
6066   }
6067 
6068   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6069   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6070   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6071   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6072   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6073     return false;
6074   }
6075 
6076   // Make the call
6077   {
6078     Node* a_start = array_element_address(a, intcon(0), a_elem);
6079     Node* b_start = array_element_address(b, intcon(0), b_elem);
6080     Node* n_start = array_element_address(n, intcon(0), n_elem);
6081     Node* m_start = array_element_address(m, intcon(0), m_elem);
6082 
6083     Node* call = NULL;
6084     if (CCallingConventionRequiresIntsAsLongs) {
6085       Node* len_I2L = ConvI2L(len);
6086       call = make_runtime_call(RC_LEAF,
6087                                OptoRuntime::montgomeryMultiply_Type(),
6088                                stubAddr, stubName, TypePtr::BOTTOM,
6089                                a_start, b_start, n_start, len_I2L XTOP, inv,
6090                                top(), m_start);
6091     } else {
6092       call = make_runtime_call(RC_LEAF,
6093                                OptoRuntime::montgomeryMultiply_Type(),
6094                                stubAddr, stubName, TypePtr::BOTTOM,
6095                                a_start, b_start, n_start, len, inv, top(),
6096                                m_start);
6097     }
6098     set_result(m);
6099   }
6100 
6101   return true;
6102 }
6103 
6104 bool LibraryCallKit::inline_montgomerySquare() {
6105   address stubAddr = StubRoutines::montgomerySquare();
6106   if (stubAddr == NULL) {
6107     return false; // Intrinsic's stub is not implemented on this platform
6108   }
6109 
6110   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
6111   const char* stubName = "montgomery_square";
6112 
6113   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
6114 
6115   Node* a    = argument(0);
6116   Node* n    = argument(1);
6117   Node* len  = argument(2);
6118   Node* inv  = argument(3);
6119   Node* m    = argument(5);
6120 
6121   const Type* a_type = a->Value(&_gvn);
6122   const TypeAryPtr* top_a = a_type->isa_aryptr();
6123   const Type* n_type = a->Value(&_gvn);
6124   const TypeAryPtr* top_n = n_type->isa_aryptr();
6125   const Type* m_type = a->Value(&_gvn);
6126   const TypeAryPtr* top_m = m_type->isa_aryptr();
6127   if (top_a  == NULL || top_a->klass()  == NULL ||
6128       top_n == NULL || top_n->klass()  == NULL ||
6129       top_m == NULL || top_m->klass()  == NULL) {
6130     // failed array check
6131     return false;
6132   }
6133 
6134   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6135   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6136   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6137   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6138     return false;
6139   }
6140 
6141   // Make the call
6142   {
6143     Node* a_start = array_element_address(a, intcon(0), a_elem);
6144     Node* n_start = array_element_address(n, intcon(0), n_elem);
6145     Node* m_start = array_element_address(m, intcon(0), m_elem);
6146 
6147     Node* call = NULL;
6148     if (CCallingConventionRequiresIntsAsLongs) {
6149       Node* len_I2L = ConvI2L(len);
6150       call = make_runtime_call(RC_LEAF,
6151                                OptoRuntime::montgomerySquare_Type(),
6152                                stubAddr, stubName, TypePtr::BOTTOM,
6153                                a_start, n_start, len_I2L XTOP, inv, top(),
6154                                m_start);
6155     } else {
6156       call = make_runtime_call(RC_LEAF,
6157                                OptoRuntime::montgomerySquare_Type(),
6158                                stubAddr, stubName, TypePtr::BOTTOM,
6159                                a_start, n_start, len, inv, top(),
6160                                m_start);
6161     }
6162 
6163     set_result(m);
6164   }
6165 
6166   return true;
6167 }
6168 
6169 
6170 /**
6171  * Calculate CRC32 for byte.
6172  * int java.util.zip.CRC32.update(int crc, int b)
6173  */
6174 bool LibraryCallKit::inline_updateCRC32() {
6175   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6176   assert(callee()->signature()->size() == 2, "update has 2 parameters");
6177   // no receiver since it is static method
6178   Node* crc  = argument(0); // type: int
6179   Node* b    = argument(1); // type: int
6180 
6181   /*
6182    *    int c = ~ crc;
6183    *    b = timesXtoThe32[(b ^ c) & 0xFF];
6184    *    b = b ^ (c >>> 8);
6185    *    crc = ~b;
6186    */
6187 
6188   Node* M1 = intcon(-1);
6189   crc = _gvn.transform(new (C) XorINode(crc, M1));
6190   Node* result = _gvn.transform(new (C) XorINode(crc, b));
6191   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
6192 
6193   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
6194   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
6195   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
6196   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
6197 
6198   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
6199   result = _gvn.transform(new (C) XorINode(crc, result));
6200   result = _gvn.transform(new (C) XorINode(result, M1));
6201   set_result(result);
6202   return true;
6203 }
6204 
6205 /**
6206  * Calculate CRC32 for byte[] array.
6207  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
6208  */
6209 bool LibraryCallKit::inline_updateBytesCRC32() {
6210   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6211   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6212   // no receiver since it is static method
6213   Node* crc     = argument(0); // type: int
6214   Node* src     = argument(1); // type: oop
6215   Node* offset  = argument(2); // type: int
6216   Node* length  = argument(3); // type: int
6217 
6218   const Type* src_type = src->Value(&_gvn);
6219   const TypeAryPtr* top_src = src_type->isa_aryptr();
6220   if (top_src  == NULL || top_src->klass()  == NULL) {
6221     // failed array check
6222     return false;
6223   }
6224 
6225   // Figure out the size and type of the elements we will be copying.
6226   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6227   if (src_elem != T_BYTE) {
6228     return false;
6229   }
6230 
6231   // 'src_start' points to src array + scaled offset
6232   Node* src_start = array_element_address(src, offset, src_elem);
6233 
6234   // We assume that range check is done by caller.
6235   // TODO: generate range check (offset+length < src.length) in debug VM.
6236 
6237   // Call the stub.
6238   address stubAddr = StubRoutines::updateBytesCRC32();
6239   const char *stubName = "updateBytesCRC32";
6240   Node* call;
6241   if (CCallingConventionRequiresIntsAsLongs) {
6242    call =  make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6243                              stubAddr, stubName, TypePtr::BOTTOM,
6244                              crc XTOP, src_start, length XTOP);
6245   } else {
6246     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6247                              stubAddr, stubName, TypePtr::BOTTOM,
6248                              crc, src_start, length);
6249   }
6250   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
6251   set_result(result);
6252   return true;
6253 }
6254 
6255 /**
6256  * Calculate CRC32 for ByteBuffer.
6257  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
6258  */
6259 bool LibraryCallKit::inline_updateByteBufferCRC32() {
6260   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6261   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6262   // no receiver since it is static method
6263   Node* crc     = argument(0); // type: int
6264   Node* src     = argument(1); // type: long
6265   Node* offset  = argument(3); // type: int
6266   Node* length  = argument(4); // type: int
6267 
6268   src = ConvL2X(src);  // adjust Java long to machine word
6269   Node* base = _gvn.transform(new (C) CastX2PNode(src));
6270   offset = ConvI2X(offset);
6271 
6272   // 'src_start' points to src array + scaled offset
6273   Node* src_start = basic_plus_adr(top(), base, offset);
6274 
6275   // Call the stub.
6276   address stubAddr = StubRoutines::updateBytesCRC32();
6277   const char *stubName = "updateBytesCRC32";
6278   Node* call;
6279   if (CCallingConventionRequiresIntsAsLongs) {
6280     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6281                       stubAddr, stubName, TypePtr::BOTTOM,
6282                       crc XTOP, src_start, length XTOP);
6283   } else {
6284     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6285                              stubAddr, stubName, TypePtr::BOTTOM,
6286                              crc, src_start, length);
6287   }
6288   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
6289   set_result(result);
6290   return true;
6291 }
6292 
6293 //----------------------------inline_reference_get----------------------------
6294 // public T java.lang.ref.Reference.get();
6295 bool LibraryCallKit::inline_reference_get() {
6296   const int referent_offset = java_lang_ref_Reference::referent_offset;
6297   guarantee(referent_offset > 0, "should have already been set");
6298 
6299   // Get the argument:
6300   Node* reference_obj = null_check_receiver();
6301   if (stopped()) return true;
6302 
6303   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
6304 
6305   ciInstanceKlass* klass = env()->Object_klass();
6306   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
6307 
6308   Node* no_ctrl = NULL;
6309   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
6310 
6311   // Use the pre-barrier to record the value in the referent field
6312   pre_barrier(false /* do_load */,
6313               control(),
6314               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
6315               result /* pre_val */,
6316               T_OBJECT);
6317 
6318   // Add memory barrier to prevent commoning reads from this field
6319   // across safepoint since GC can change its value.
6320   insert_mem_bar(Op_MemBarCPUOrder);
6321 
6322   set_result(result);
6323   return true;
6324 }
6325 
6326 
6327 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6328                                               bool is_exact=true, bool is_static=false) {
6329 
6330   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6331   assert(tinst != NULL, "obj is null");
6332   assert(tinst->klass()->is_loaded(), "obj is not loaded");
6333   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6334 
6335   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
6336                                                                           ciSymbol::make(fieldTypeString),
6337                                                                           is_static);
6338   if (field == NULL) return (Node *) NULL;
6339   assert (field != NULL, "undefined field");
6340 
6341   // Next code  copied from Parse::do_get_xxx():
6342 
6343   // Compute address and memory type.
6344   int offset  = field->offset_in_bytes();
6345   bool is_vol = field->is_volatile();
6346   ciType* field_klass = field->type();
6347   assert(field_klass->is_loaded(), "should be loaded");
6348   const TypePtr* adr_type = C->alias_type(field)->adr_type();
6349   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6350   BasicType bt = field->layout_type();
6351 
6352   // Build the resultant type of the load
6353   const Type *type;
6354   if (bt == T_OBJECT) {
6355     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6356   } else {
6357     type = Type::get_const_basic_type(bt);
6358   }
6359 
6360   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
6361     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
6362   }
6363   // Build the load.
6364   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
6365   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
6366   // If reference is volatile, prevent following memory ops from
6367   // floating up past the volatile read.  Also prevents commoning
6368   // another volatile read.
6369   if (is_vol) {
6370     // Memory barrier includes bogus read of value to force load BEFORE membar
6371     insert_mem_bar(Op_MemBarAcquire, loadedField);
6372   }
6373   return loadedField;
6374 }
6375 
6376 
6377 //------------------------------inline_aescrypt_Block-----------------------
6378 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6379   address stubAddr = NULL;
6380   const char *stubName;
6381   assert(UseAES, "need AES instruction support");
6382 
6383   switch(id) {
6384   case vmIntrinsics::_aescrypt_encryptBlock:
6385     stubAddr = StubRoutines::aescrypt_encryptBlock();
6386     stubName = "aescrypt_encryptBlock";
6387     break;
6388   case vmIntrinsics::_aescrypt_decryptBlock:
6389     stubAddr = StubRoutines::aescrypt_decryptBlock();
6390     stubName = "aescrypt_decryptBlock";
6391     break;
6392   }
6393   if (stubAddr == NULL) return false;
6394 
6395   Node* aescrypt_object = argument(0);
6396   Node* src             = argument(1);
6397   Node* src_offset      = argument(2);
6398   Node* dest            = argument(3);
6399   Node* dest_offset     = argument(4);
6400 
6401   // (1) src and dest are arrays.
6402   const Type* src_type = src->Value(&_gvn);
6403   const Type* dest_type = dest->Value(&_gvn);
6404   const TypeAryPtr* top_src = src_type->isa_aryptr();
6405   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6406   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6407 
6408   // for the quick and dirty code we will skip all the checks.
6409   // we are just trying to get the call to be generated.
6410   Node* src_start  = src;
6411   Node* dest_start = dest;
6412   if (src_offset != NULL || dest_offset != NULL) {
6413     assert(src_offset != NULL && dest_offset != NULL, "");
6414     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6415     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6416   }
6417 
6418   // now need to get the start of its expanded key array
6419   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6420   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6421   if (k_start == NULL) return false;
6422 
6423   if (Matcher::pass_original_key_for_aes()) {
6424     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6425     // compatibility issues between Java key expansion and SPARC crypto instructions
6426     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6427     if (original_k_start == NULL) return false;
6428 
6429     // Call the stub.
6430     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6431                       stubAddr, stubName, TypePtr::BOTTOM,
6432                       src_start, dest_start, k_start, original_k_start);
6433   } else {
6434     // Call the stub.
6435     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6436                       stubAddr, stubName, TypePtr::BOTTOM,
6437                       src_start, dest_start, k_start);
6438   }
6439 
6440   return true;
6441 }
6442 
6443 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6444 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6445   address stubAddr = NULL;
6446   const char *stubName = NULL;
6447 
6448   assert(UseAES, "need AES instruction support");
6449 
6450   switch(id) {
6451   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6452     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6453     stubName = "cipherBlockChaining_encryptAESCrypt";
6454     break;
6455   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6456     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6457     stubName = "cipherBlockChaining_decryptAESCrypt";
6458     break;
6459   }
6460   if (stubAddr == NULL) return false;
6461 
6462   Node* cipherBlockChaining_object = argument(0);
6463   Node* src                        = argument(1);
6464   Node* src_offset                 = argument(2);
6465   Node* len                        = argument(3);
6466   Node* dest                       = argument(4);
6467   Node* dest_offset                = argument(5);
6468 
6469   // (1) src and dest are arrays.
6470   const Type* src_type = src->Value(&_gvn);
6471   const Type* dest_type = dest->Value(&_gvn);
6472   const TypeAryPtr* top_src = src_type->isa_aryptr();
6473   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6474   assert (top_src  != NULL && top_src->klass()  != NULL
6475           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6476 
6477   // checks are the responsibility of the caller
6478   Node* src_start  = src;
6479   Node* dest_start = dest;
6480   if (src_offset != NULL || dest_offset != NULL) {
6481     assert(src_offset != NULL && dest_offset != NULL, "");
6482     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6483     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6484   }
6485 
6486   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6487   // (because of the predicated logic executed earlier).
6488   // so we cast it here safely.
6489   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6490 
6491   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6492   if (embeddedCipherObj == NULL) return false;
6493 
6494   // cast it to what we know it will be at runtime
6495   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6496   assert(tinst != NULL, "CBC obj is null");
6497   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6498   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6499   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6500 
6501   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6502   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6503   const TypeOopPtr* xtype = aklass->as_instance_type();
6504   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
6505   aescrypt_object = _gvn.transform(aescrypt_object);
6506 
6507   // we need to get the start of the aescrypt_object's expanded key array
6508   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6509   if (k_start == NULL) return false;
6510 
6511   // similarly, get the start address of the r vector
6512   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6513   if (objRvec == NULL) return false;
6514   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6515 
6516   Node* cbcCrypt;
6517   if (Matcher::pass_original_key_for_aes()) {
6518     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6519     // compatibility issues between Java key expansion and SPARC crypto instructions
6520     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6521     if (original_k_start == NULL) return false;
6522 
6523     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6524     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6525                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6526                                  stubAddr, stubName, TypePtr::BOTTOM,
6527                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6528   } else {
6529     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6530     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6531                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6532                                  stubAddr, stubName, TypePtr::BOTTOM,
6533                                  src_start, dest_start, k_start, r_start, len);
6534   }
6535 
6536   // return cipher length (int)
6537   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
6538   set_result(retvalue);
6539   return true;
6540 }
6541 
6542 //------------------------------get_key_start_from_aescrypt_object-----------------------
6543 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6544 #ifdef PPC64
6545   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6546   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6547   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6548   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6549   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6550   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6551   if (objSessionK == NULL) {
6552     return (Node *) NULL;
6553   }
6554   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6555 #else
6556   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6557 #endif // PPC64
6558   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6559   if (objAESCryptKey == NULL) return (Node *) NULL;
6560 
6561   // now have the array, need to get the start address of the K array
6562   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6563   return k_start;
6564 }
6565 
6566 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6567 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6568   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6569   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6570   if (objAESCryptKey == NULL) return (Node *) NULL;
6571 
6572   // now have the array, need to get the start address of the lastKey array
6573   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6574   return original_k_start;
6575 }
6576 
6577 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6578 // Return node representing slow path of predicate check.
6579 // the pseudo code we want to emulate with this predicate is:
6580 // for encryption:
6581 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6582 // for decryption:
6583 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6584 //    note cipher==plain is more conservative than the original java code but that's OK
6585 //
6586 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6587   // The receiver was checked for NULL already.
6588   Node* objCBC = argument(0);
6589 
6590   // Load embeddedCipher field of CipherBlockChaining object.
6591   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6592 
6593   // get AESCrypt klass for instanceOf check
6594   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6595   // will have same classloader as CipherBlockChaining object
6596   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6597   assert(tinst != NULL, "CBCobj is null");
6598   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6599 
6600   // we want to do an instanceof comparison against the AESCrypt class
6601   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6602   if (!klass_AESCrypt->is_loaded()) {
6603     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6604     Node* ctrl = control();
6605     set_control(top()); // no regular fast path
6606     return ctrl;
6607   }
6608   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6609 
6610   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6611   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
6612   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6613 
6614   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6615 
6616   // for encryption, we are done
6617   if (!decrypting)
6618     return instof_false;  // even if it is NULL
6619 
6620   // for decryption, we need to add a further check to avoid
6621   // taking the intrinsic path when cipher and plain are the same
6622   // see the original java code for why.
6623   RegionNode* region = new(C) RegionNode(3);
6624   region->init_req(1, instof_false);
6625   Node* src = argument(1);
6626   Node* dest = argument(4);
6627   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
6628   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
6629   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6630   region->init_req(2, src_dest_conjoint);
6631 
6632   record_for_igvn(region);
6633   return _gvn.transform(region);
6634 }
6635 
6636 //------------------------------inline_ghash_processBlocks
6637 bool LibraryCallKit::inline_ghash_processBlocks() {
6638   address stubAddr;
6639   const char *stubName;
6640   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6641 
6642   stubAddr = StubRoutines::ghash_processBlocks();
6643   stubName = "ghash_processBlocks";
6644 
6645   Node* data           = argument(0);
6646   Node* offset         = argument(1);
6647   Node* len            = argument(2);
6648   Node* state          = argument(3);
6649   Node* subkeyH        = argument(4);
6650 
6651   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6652   assert(state_start, "state is NULL");
6653   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6654   assert(subkeyH_start, "subkeyH is NULL");
6655   Node* data_start  = array_element_address(data, offset, T_BYTE);
6656   assert(data_start, "data is NULL");
6657 
6658   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6659                                   OptoRuntime::ghash_processBlocks_Type(),
6660                                   stubAddr, stubName, TypePtr::BOTTOM,
6661                                   state_start, subkeyH_start, data_start, len);
6662   return true;
6663 }
6664 
6665 //------------------------------inline_sha_implCompress-----------------------
6666 //
6667 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6668 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6669 //
6670 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6671 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6672 //
6673 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6674 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6675 //
6676 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6677   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6678 
6679   Node* sha_obj = argument(0);
6680   Node* src     = argument(1); // type oop
6681   Node* ofs     = argument(2); // type int
6682 
6683   const Type* src_type = src->Value(&_gvn);
6684   const TypeAryPtr* top_src = src_type->isa_aryptr();
6685   if (top_src  == NULL || top_src->klass()  == NULL) {
6686     // failed array check
6687     return false;
6688   }
6689   // Figure out the size and type of the elements we will be copying.
6690   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6691   if (src_elem != T_BYTE) {
6692     return false;
6693   }
6694   // 'src_start' points to src array + offset
6695   Node* src_start = array_element_address(src, ofs, src_elem);
6696   Node* state = NULL;
6697   address stubAddr;
6698   const char *stubName;
6699 
6700   switch(id) {
6701   case vmIntrinsics::_sha_implCompress:
6702     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6703     state = get_state_from_sha_object(sha_obj);
6704     stubAddr = StubRoutines::sha1_implCompress();
6705     stubName = "sha1_implCompress";
6706     break;
6707   case vmIntrinsics::_sha2_implCompress:
6708     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6709     state = get_state_from_sha_object(sha_obj);
6710     stubAddr = StubRoutines::sha256_implCompress();
6711     stubName = "sha256_implCompress";
6712     break;
6713   case vmIntrinsics::_sha5_implCompress:
6714     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6715     state = get_state_from_sha5_object(sha_obj);
6716     stubAddr = StubRoutines::sha512_implCompress();
6717     stubName = "sha512_implCompress";
6718     break;
6719   default:
6720     fatal_unexpected_iid(id);
6721     return false;
6722   }
6723   if (state == NULL) return false;
6724 
6725   // Call the stub.
6726   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6727                                  stubAddr, stubName, TypePtr::BOTTOM,
6728                                  src_start, state);
6729 
6730   return true;
6731 }
6732 
6733 //------------------------------inline_digestBase_implCompressMB-----------------------
6734 //
6735 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6736 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6737 //
6738 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6739   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6740          "need SHA1/SHA256/SHA512 instruction support");
6741   assert((uint)predicate < 3, "sanity");
6742   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6743 
6744   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6745   Node* src            = argument(1); // byte[] array
6746   Node* ofs            = argument(2); // type int
6747   Node* limit          = argument(3); // type int
6748 
6749   const Type* src_type = src->Value(&_gvn);
6750   const TypeAryPtr* top_src = src_type->isa_aryptr();
6751   if (top_src  == NULL || top_src->klass()  == NULL) {
6752     // failed array check
6753     return false;
6754   }
6755   // Figure out the size and type of the elements we will be copying.
6756   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6757   if (src_elem != T_BYTE) {
6758     return false;
6759   }
6760   // 'src_start' points to src array + offset
6761   Node* src_start = array_element_address(src, ofs, src_elem);
6762 
6763   const char* klass_SHA_name = NULL;
6764   const char* stub_name = NULL;
6765   address     stub_addr = NULL;
6766   bool        long_state = false;
6767 
6768   switch (predicate) {
6769   case 0:
6770     if (UseSHA1Intrinsics) {
6771       klass_SHA_name = "sun/security/provider/SHA";
6772       stub_name = "sha1_implCompressMB";
6773       stub_addr = StubRoutines::sha1_implCompressMB();
6774     }
6775     break;
6776   case 1:
6777     if (UseSHA256Intrinsics) {
6778       klass_SHA_name = "sun/security/provider/SHA2";
6779       stub_name = "sha256_implCompressMB";
6780       stub_addr = StubRoutines::sha256_implCompressMB();
6781     }
6782     break;
6783   case 2:
6784     if (UseSHA512Intrinsics) {
6785       klass_SHA_name = "sun/security/provider/SHA5";
6786       stub_name = "sha512_implCompressMB";
6787       stub_addr = StubRoutines::sha512_implCompressMB();
6788       long_state = true;
6789     }
6790     break;
6791   default:
6792     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6793   }
6794   if (klass_SHA_name != NULL) {
6795     // get DigestBase klass to lookup for SHA klass
6796     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6797     assert(tinst != NULL, "digestBase_obj is not instance???");
6798     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6799 
6800     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6801     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6802     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6803     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6804   }
6805   return false;
6806 }
6807 //------------------------------inline_sha_implCompressMB-----------------------
6808 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6809                                                bool long_state, address stubAddr, const char *stubName,
6810                                                Node* src_start, Node* ofs, Node* limit) {
6811   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6812   const TypeOopPtr* xtype = aklass->as_instance_type();
6813   Node* sha_obj = new (C) CheckCastPPNode(control(), digestBase_obj, xtype);
6814   sha_obj = _gvn.transform(sha_obj);
6815 
6816   Node* state;
6817   if (long_state) {
6818     state = get_state_from_sha5_object(sha_obj);
6819   } else {
6820     state = get_state_from_sha_object(sha_obj);
6821   }
6822   if (state == NULL) return false;
6823 
6824   // Call the stub.
6825   Node *call;
6826   if (CCallingConventionRequiresIntsAsLongs) {
6827     call = make_runtime_call(RC_LEAF|RC_NO_FP,
6828                              OptoRuntime::digestBase_implCompressMB_Type(),
6829                              stubAddr, stubName, TypePtr::BOTTOM,
6830                              src_start, state, ofs XTOP, limit XTOP);
6831   } else {
6832     call = make_runtime_call(RC_LEAF|RC_NO_FP,
6833                              OptoRuntime::digestBase_implCompressMB_Type(),
6834                              stubAddr, stubName, TypePtr::BOTTOM,
6835                              src_start, state, ofs, limit);
6836   }
6837   // return ofs (int)
6838   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
6839   set_result(result);
6840 
6841   return true;
6842 }
6843 
6844 //------------------------------get_state_from_sha_object-----------------------
6845 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6846   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6847   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6848   if (sha_state == NULL) return (Node *) NULL;
6849 
6850   // now have the array, need to get the start address of the state array
6851   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6852   return state;
6853 }
6854 
6855 //------------------------------get_state_from_sha5_object-----------------------
6856 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6857   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6858   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6859   if (sha_state == NULL) return (Node *) NULL;
6860 
6861   // now have the array, need to get the start address of the state array
6862   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6863   return state;
6864 }
6865 
6866 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6867 // Return node representing slow path of predicate check.
6868 // the pseudo code we want to emulate with this predicate is:
6869 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6870 //
6871 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6872   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6873          "need SHA1/SHA256/SHA512 instruction support");
6874   assert((uint)predicate < 3, "sanity");
6875 
6876   // The receiver was checked for NULL already.
6877   Node* digestBaseObj = argument(0);
6878 
6879   // get DigestBase klass for instanceOf check
6880   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6881   assert(tinst != NULL, "digestBaseObj is null");
6882   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6883 
6884   const char* klass_SHA_name = NULL;
6885   switch (predicate) {
6886   case 0:
6887     if (UseSHA1Intrinsics) {
6888       // we want to do an instanceof comparison against the SHA class
6889       klass_SHA_name = "sun/security/provider/SHA";
6890     }
6891     break;
6892   case 1:
6893     if (UseSHA256Intrinsics) {
6894       // we want to do an instanceof comparison against the SHA2 class
6895       klass_SHA_name = "sun/security/provider/SHA2";
6896     }
6897     break;
6898   case 2:
6899     if (UseSHA512Intrinsics) {
6900       // we want to do an instanceof comparison against the SHA5 class
6901       klass_SHA_name = "sun/security/provider/SHA5";
6902     }
6903     break;
6904   default:
6905     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6906   }
6907 
6908   ciKlass* klass_SHA = NULL;
6909   if (klass_SHA_name != NULL) {
6910     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6911   }
6912   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6913     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6914     Node* ctrl = control();
6915     set_control(top()); // no intrinsic path
6916     return ctrl;
6917   }
6918   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6919 
6920   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6921   Node* cmp_instof = _gvn.transform(new (C) CmpINode(instofSHA, intcon(1)));
6922   Node* bool_instof = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6923   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6924 
6925   return instof_false;  // even if it is NULL
6926 }
6927 
6928 bool LibraryCallKit::inline_profileBoolean() {
6929   Node* counts = argument(1);
6930   const TypeAryPtr* ary = NULL;
6931   ciArray* aobj = NULL;
6932   if (counts->is_Con()
6933       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6934       && (aobj = ary->const_oop()->as_array()) != NULL
6935       && (aobj->length() == 2)) {
6936     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6937     jint false_cnt = aobj->element_value(0).as_int();
6938     jint  true_cnt = aobj->element_value(1).as_int();
6939 
6940     if (C->log() != NULL) {
6941       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6942                      false_cnt, true_cnt);
6943     }
6944 
6945     if (false_cnt + true_cnt == 0) {
6946       // According to profile, never executed.
6947       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6948                           Deoptimization::Action_reinterpret);
6949       return true;
6950     }
6951 
6952     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6953     // is a number of each value occurrences.
6954     Node* result = argument(0);
6955     if (false_cnt == 0 || true_cnt == 0) {
6956       // According to profile, one value has been never seen.
6957       int expected_val = (false_cnt == 0) ? 1 : 0;
6958 
6959       Node* cmp  = _gvn.transform(new (C) CmpINode(result, intcon(expected_val)));
6960       Node* test = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
6961 
6962       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6963       Node* fast_path = _gvn.transform(new (C) IfTrueNode(check));
6964       Node* slow_path = _gvn.transform(new (C) IfFalseNode(check));
6965 
6966       { // Slow path: uncommon trap for never seen value and then reexecute
6967         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6968         // the value has been seen at least once.
6969         PreserveJVMState pjvms(this);
6970         PreserveReexecuteState preexecs(this);
6971         jvms()->set_should_reexecute(true);
6972 
6973         set_control(slow_path);
6974         set_i_o(i_o());
6975 
6976         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6977                             Deoptimization::Action_reinterpret);
6978       }
6979       // The guard for never seen value enables sharpening of the result and
6980       // returning a constant. It allows to eliminate branches on the same value
6981       // later on.
6982       set_control(fast_path);
6983       result = intcon(expected_val);
6984     }
6985     // Stop profiling.
6986     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6987     // By replacing method body with profile data (represented as ProfileBooleanNode
6988     // on IR level) we effectively disable profiling.
6989     // It enables full speed execution once optimized code is generated.
6990     Node* profile = _gvn.transform(new (C) ProfileBooleanNode(result, false_cnt, true_cnt));
6991     C->record_for_igvn(profile);
6992     set_result(profile);
6993     return true;
6994   } else {
6995     // Continue profiling.
6996     // Profile data isn't available at the moment. So, execute method's bytecode version.
6997     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6998     // is compiled and counters aren't available since corresponding MethodHandle
6999     // isn't a compile-time constant.
7000     return false;
7001   }
7002 }