1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/callnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/idealGraphPrinter.hpp"
  31 #include "opto/matcher.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/regmask.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "opto/type.hpp"
  38 #include "opto/vectornode.hpp"
  39 #include "runtime/atomic.hpp"
  40 #include "runtime/os.hpp"
  41 #if defined AD_MD_HPP
  42 # include AD_MD_HPP
  43 #elif defined TARGET_ARCH_MODEL_x86_32
  44 # include "adfiles/ad_x86_32.hpp"
  45 #elif defined TARGET_ARCH_MODEL_x86_64
  46 # include "adfiles/ad_x86_64.hpp"
  47 #elif defined TARGET_ARCH_MODEL_aarch64
  48 # include "adfiles/ad_aarch64.hpp"
  49 #elif defined TARGET_ARCH_MODEL_sparc
  50 # include "adfiles/ad_sparc.hpp"
  51 #elif defined TARGET_ARCH_MODEL_zero
  52 # include "adfiles/ad_zero.hpp"
  53 #elif defined TARGET_ARCH_MODEL_ppc_64
  54 # include "adfiles/ad_ppc_64.hpp"
  55 #endif
  56 
  57 OptoReg::Name OptoReg::c_frame_pointer;
  58 
  59 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  60 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  61 RegMask Matcher::STACK_ONLY_mask;
  62 RegMask Matcher::c_frame_ptr_mask;
  63 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  64 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  65 
  66 //---------------------------Matcher-------------------------------------------
  67 Matcher::Matcher()
  68 : PhaseTransform( Phase::Ins_Select ),
  69 #ifdef ASSERT
  70   _old2new_map(C->comp_arena()),
  71   _new2old_map(C->comp_arena()),
  72 #endif
  73   _shared_nodes(C->comp_arena()),
  74   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  75   _swallowed(swallowed),
  76   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  77   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  78   _must_clone(must_clone),
  79   _register_save_policy(register_save_policy),
  80   _c_reg_save_policy(c_reg_save_policy),
  81   _register_save_type(register_save_type),
  82   _ruleName(ruleName),
  83   _allocation_started(false),
  84   _states_arena(Chunk::medium_size, mtCompiler),
  85   _visited(&_states_arena),
  86   _shared(&_states_arena),
  87   _dontcare(&_states_arena) {
  88   C->set_matcher(this);
  89 
  90   idealreg2spillmask  [Op_RegI] = NULL;
  91   idealreg2spillmask  [Op_RegN] = NULL;
  92   idealreg2spillmask  [Op_RegL] = NULL;
  93   idealreg2spillmask  [Op_RegF] = NULL;
  94   idealreg2spillmask  [Op_RegD] = NULL;
  95   idealreg2spillmask  [Op_RegP] = NULL;
  96   idealreg2spillmask  [Op_VecS] = NULL;
  97   idealreg2spillmask  [Op_VecD] = NULL;
  98   idealreg2spillmask  [Op_VecX] = NULL;
  99   idealreg2spillmask  [Op_VecY] = NULL;
 100   idealreg2spillmask  [Op_RegFlags] = NULL;
 101 
 102   idealreg2debugmask  [Op_RegI] = NULL;
 103   idealreg2debugmask  [Op_RegN] = NULL;
 104   idealreg2debugmask  [Op_RegL] = NULL;
 105   idealreg2debugmask  [Op_RegF] = NULL;
 106   idealreg2debugmask  [Op_RegD] = NULL;
 107   idealreg2debugmask  [Op_RegP] = NULL;
 108   idealreg2debugmask  [Op_VecS] = NULL;
 109   idealreg2debugmask  [Op_VecD] = NULL;
 110   idealreg2debugmask  [Op_VecX] = NULL;
 111   idealreg2debugmask  [Op_VecY] = NULL;
 112   idealreg2debugmask  [Op_RegFlags] = NULL;
 113 
 114   idealreg2mhdebugmask[Op_RegI] = NULL;
 115   idealreg2mhdebugmask[Op_RegN] = NULL;
 116   idealreg2mhdebugmask[Op_RegL] = NULL;
 117   idealreg2mhdebugmask[Op_RegF] = NULL;
 118   idealreg2mhdebugmask[Op_RegD] = NULL;
 119   idealreg2mhdebugmask[Op_RegP] = NULL;
 120   idealreg2mhdebugmask[Op_VecS] = NULL;
 121   idealreg2mhdebugmask[Op_VecD] = NULL;
 122   idealreg2mhdebugmask[Op_VecX] = NULL;
 123   idealreg2mhdebugmask[Op_VecY] = NULL;
 124   idealreg2mhdebugmask[Op_RegFlags] = NULL;
 125 
 126   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
 127 }
 128 
 129 //------------------------------warp_incoming_stk_arg------------------------
 130 // This warps a VMReg into an OptoReg::Name
 131 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 132   OptoReg::Name warped;
 133   if( reg->is_stack() ) {  // Stack slot argument?
 134     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 135     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 136     if( warped >= _in_arg_limit )
 137       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 138     if (!RegMask::can_represent_arg(warped)) {
 139       // the compiler cannot represent this method's calling sequence
 140       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
 141       return OptoReg::Bad;
 142     }
 143     return warped;
 144   }
 145   return OptoReg::as_OptoReg(reg);
 146 }
 147 
 148 //---------------------------compute_old_SP------------------------------------
 149 OptoReg::Name Compile::compute_old_SP() {
 150   int fixed    = fixed_slots();
 151   int preserve = in_preserve_stack_slots();
 152   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 153 }
 154 
 155 
 156 
 157 #ifdef ASSERT
 158 void Matcher::verify_new_nodes_only(Node* xroot) {
 159   // Make sure that the new graph only references new nodes
 160   ResourceMark rm;
 161   Unique_Node_List worklist;
 162   VectorSet visited(Thread::current()->resource_area());
 163   worklist.push(xroot);
 164   while (worklist.size() > 0) {
 165     Node* n = worklist.pop();
 166     visited <<= n->_idx;
 167     assert(C->node_arena()->contains(n), "dead node");
 168     for (uint j = 0; j < n->req(); j++) {
 169       Node* in = n->in(j);
 170       if (in != NULL) {
 171         assert(C->node_arena()->contains(in), "dead node");
 172         if (!visited.test(in->_idx)) {
 173           worklist.push(in);
 174         }
 175       }
 176     }
 177   }
 178 }
 179 #endif
 180 
 181 
 182 //---------------------------match---------------------------------------------
 183 void Matcher::match( ) {
 184   if( MaxLabelRootDepth < 100 ) { // Too small?
 185     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 186     MaxLabelRootDepth = 100;
 187   }
 188   // One-time initialization of some register masks.
 189   init_spill_mask( C->root()->in(1) );
 190   _return_addr_mask = return_addr();
 191 #ifdef _LP64
 192   // Pointers take 2 slots in 64-bit land
 193   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 194 #endif
 195 
 196   // Map a Java-signature return type into return register-value
 197   // machine registers for 0, 1 and 2 returned values.
 198   const TypeTuple *range = C->tf()->range();
 199   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 200     // Get ideal-register return type
 201     uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
 202     // Get machine return register
 203     uint sop = C->start()->Opcode();
 204     OptoRegPair regs = return_value(ireg, false);
 205 
 206     // And mask for same
 207     _return_value_mask = RegMask(regs.first());
 208     if( OptoReg::is_valid(regs.second()) )
 209       _return_value_mask.Insert(regs.second());
 210   }
 211 
 212   // ---------------
 213   // Frame Layout
 214 
 215   // Need the method signature to determine the incoming argument types,
 216   // because the types determine which registers the incoming arguments are
 217   // in, and this affects the matched code.
 218   const TypeTuple *domain = C->tf()->domain();
 219   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 220   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 221   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 222   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 223   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 224   uint i;
 225   for( i = 0; i<argcnt; i++ ) {
 226     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 227   }
 228 
 229   // Pass array of ideal registers and length to USER code (from the AD file)
 230   // that will convert this to an array of register numbers.
 231   const StartNode *start = C->start();
 232   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 233 #ifdef ASSERT
 234   // Sanity check users' calling convention.  Real handy while trying to
 235   // get the initial port correct.
 236   { for (uint i = 0; i<argcnt; i++) {
 237       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 238         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 239         _parm_regs[i].set_bad();
 240         continue;
 241       }
 242       VMReg parm_reg = vm_parm_regs[i].first();
 243       assert(parm_reg->is_valid(), "invalid arg?");
 244       if (parm_reg->is_reg()) {
 245         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 246         assert(can_be_java_arg(opto_parm_reg) ||
 247                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 248                opto_parm_reg == inline_cache_reg(),
 249                "parameters in register must be preserved by runtime stubs");
 250       }
 251       for (uint j = 0; j < i; j++) {
 252         assert(parm_reg != vm_parm_regs[j].first(),
 253                "calling conv. must produce distinct regs");
 254       }
 255     }
 256   }
 257 #endif
 258 
 259   // Do some initial frame layout.
 260 
 261   // Compute the old incoming SP (may be called FP) as
 262   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 263   _old_SP = C->compute_old_SP();
 264   assert( is_even(_old_SP), "must be even" );
 265 
 266   // Compute highest incoming stack argument as
 267   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 268   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 269   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 270   for( i = 0; i < argcnt; i++ ) {
 271     // Permit args to have no register
 272     _calling_convention_mask[i].Clear();
 273     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 274       continue;
 275     }
 276     // calling_convention returns stack arguments as a count of
 277     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 278     // the allocators point of view, taking into account all the
 279     // preserve area, locks & pad2.
 280 
 281     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 282     if( OptoReg::is_valid(reg1))
 283       _calling_convention_mask[i].Insert(reg1);
 284 
 285     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 286     if( OptoReg::is_valid(reg2))
 287       _calling_convention_mask[i].Insert(reg2);
 288 
 289     // Saved biased stack-slot register number
 290     _parm_regs[i].set_pair(reg2, reg1);
 291   }
 292 
 293   // Finally, make sure the incoming arguments take up an even number of
 294   // words, in case the arguments or locals need to contain doubleword stack
 295   // slots.  The rest of the system assumes that stack slot pairs (in
 296   // particular, in the spill area) which look aligned will in fact be
 297   // aligned relative to the stack pointer in the target machine.  Double
 298   // stack slots will always be allocated aligned.
 299   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 300 
 301   // Compute highest outgoing stack argument as
 302   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 303   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 304   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 305 
 306   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
 307     // the compiler cannot represent this method's calling sequence
 308     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 309   }
 310 
 311   if (C->failing())  return;  // bailed out on incoming arg failure
 312 
 313   // ---------------
 314   // Collect roots of matcher trees.  Every node for which
 315   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 316   // can be a valid interior of some tree.
 317   find_shared( C->root() );
 318   find_shared( C->top() );
 319 
 320   C->print_method(PHASE_BEFORE_MATCHING);
 321 
 322   // Create new ideal node ConP #NULL even if it does exist in old space
 323   // to avoid false sharing if the corresponding mach node is not used.
 324   // The corresponding mach node is only used in rare cases for derived
 325   // pointers.
 326   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
 327 
 328   // Swap out to old-space; emptying new-space
 329   Arena *old = C->node_arena()->move_contents(C->old_arena());
 330 
 331   // Save debug and profile information for nodes in old space:
 332   _old_node_note_array = C->node_note_array();
 333   if (_old_node_note_array != NULL) {
 334     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 335                            (C->comp_arena(), _old_node_note_array->length(),
 336                             0, NULL));
 337   }
 338 
 339   // Pre-size the new_node table to avoid the need for range checks.
 340   grow_new_node_array(C->unique());
 341 
 342   // Reset node counter so MachNodes start with _idx at 0
 343   int live_nodes = C->live_nodes();
 344   C->set_unique(0);
 345   C->reset_dead_node_list();
 346 
 347   // Recursively match trees from old space into new space.
 348   // Correct leaves of new-space Nodes; they point to old-space.
 349   _visited.Clear();             // Clear visit bits for xform call
 350   C->set_cached_top_node(xform( C->top(), live_nodes));
 351   if (!C->failing()) {
 352     Node* xroot =        xform( C->root(), 1 );
 353     if (xroot == NULL) {
 354       Matcher::soft_match_failure();  // recursive matching process failed
 355       C->record_method_not_compilable("instruction match failed");
 356     } else {
 357       // During matching shared constants were attached to C->root()
 358       // because xroot wasn't available yet, so transfer the uses to
 359       // the xroot.
 360       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 361         Node* n = C->root()->fast_out(j);
 362         if (C->node_arena()->contains(n)) {
 363           assert(n->in(0) == C->root(), "should be control user");
 364           n->set_req(0, xroot);
 365           --j;
 366           --jmax;
 367         }
 368       }
 369 
 370       // Generate new mach node for ConP #NULL
 371       assert(new_ideal_null != NULL, "sanity");
 372       _mach_null = match_tree(new_ideal_null);
 373       // Don't set control, it will confuse GCM since there are no uses.
 374       // The control will be set when this node is used first time
 375       // in find_base_for_derived().
 376       assert(_mach_null != NULL, "");
 377 
 378       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 379 
 380 #ifdef ASSERT
 381       verify_new_nodes_only(xroot);
 382 #endif
 383     }
 384   }
 385   if (C->top() == NULL || C->root() == NULL) {
 386     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 387   }
 388   if (C->failing()) {
 389     // delete old;
 390     old->destruct_contents();
 391     return;
 392   }
 393   assert( C->top(), "" );
 394   assert( C->root(), "" );
 395   validate_null_checks();
 396 
 397   // Now smoke old-space
 398   NOT_DEBUG( old->destruct_contents() );
 399 
 400   // ------------------------
 401   // Set up save-on-entry registers
 402   Fixup_Save_On_Entry( );
 403 }
 404 
 405 
 406 //------------------------------Fixup_Save_On_Entry----------------------------
 407 // The stated purpose of this routine is to take care of save-on-entry
 408 // registers.  However, the overall goal of the Match phase is to convert into
 409 // machine-specific instructions which have RegMasks to guide allocation.
 410 // So what this procedure really does is put a valid RegMask on each input
 411 // to the machine-specific variations of all Return, TailCall and Halt
 412 // instructions.  It also adds edgs to define the save-on-entry values (and of
 413 // course gives them a mask).
 414 
 415 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 416   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 417   // Do all the pre-defined register masks
 418   rms[TypeFunc::Control  ] = RegMask::Empty;
 419   rms[TypeFunc::I_O      ] = RegMask::Empty;
 420   rms[TypeFunc::Memory   ] = RegMask::Empty;
 421   rms[TypeFunc::ReturnAdr] = ret_adr;
 422   rms[TypeFunc::FramePtr ] = fp;
 423   return rms;
 424 }
 425 
 426 //---------------------------init_first_stack_mask-----------------------------
 427 // Create the initial stack mask used by values spilling to the stack.
 428 // Disallow any debug info in outgoing argument areas by setting the
 429 // initial mask accordingly.
 430 void Matcher::init_first_stack_mask() {
 431 
 432   // Allocate storage for spill masks as masks for the appropriate load type.
 433   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
 434 
 435   idealreg2spillmask  [Op_RegN] = &rms[0];
 436   idealreg2spillmask  [Op_RegI] = &rms[1];
 437   idealreg2spillmask  [Op_RegL] = &rms[2];
 438   idealreg2spillmask  [Op_RegF] = &rms[3];
 439   idealreg2spillmask  [Op_RegD] = &rms[4];
 440   idealreg2spillmask  [Op_RegP] = &rms[5];
 441 
 442   idealreg2debugmask  [Op_RegN] = &rms[6];
 443   idealreg2debugmask  [Op_RegI] = &rms[7];
 444   idealreg2debugmask  [Op_RegL] = &rms[8];
 445   idealreg2debugmask  [Op_RegF] = &rms[9];
 446   idealreg2debugmask  [Op_RegD] = &rms[10];
 447   idealreg2debugmask  [Op_RegP] = &rms[11];
 448 
 449   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 450   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 451   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 452   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 453   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 454   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 455 
 456   idealreg2spillmask  [Op_VecS] = &rms[18];
 457   idealreg2spillmask  [Op_VecD] = &rms[19];
 458   idealreg2spillmask  [Op_VecX] = &rms[20];
 459   idealreg2spillmask  [Op_VecY] = &rms[21];
 460 
 461   OptoReg::Name i;
 462 
 463   // At first, start with the empty mask
 464   C->FIRST_STACK_mask().Clear();
 465 
 466   // Add in the incoming argument area
 467   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 468   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
 469     C->FIRST_STACK_mask().Insert(i);
 470   }
 471   // Add in all bits past the outgoing argument area
 472   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
 473             "must be able to represent all call arguments in reg mask");
 474   OptoReg::Name init = _out_arg_limit;
 475   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
 476     C->FIRST_STACK_mask().Insert(i);
 477   }
 478   // Finally, set the "infinite stack" bit.
 479   C->FIRST_STACK_mask().set_AllStack();
 480 
 481   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 482   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
 483   // Keep spill masks aligned.
 484   aligned_stack_mask.clear_to_pairs();
 485   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 486 
 487   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 488 #ifdef _LP64
 489   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 490    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 491    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
 492 #else
 493    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 494 #endif
 495   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 496    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 497   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 498    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
 499   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 500    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 501   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 502    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
 503 
 504   if (Matcher::vector_size_supported(T_BYTE,4)) {
 505     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
 506      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
 507   }
 508   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 509     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
 510     // RA guarantees such alignment since it is needed for Double and Long values.
 511     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
 512      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
 513   }
 514   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 515     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
 516     //
 517     // RA can use input arguments stack slots for spills but until RA
 518     // we don't know frame size and offset of input arg stack slots.
 519     //
 520     // Exclude last input arg stack slots to avoid spilling vectors there
 521     // otherwise vector spills could stomp over stack slots in caller frame.
 522     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 523     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
 524       aligned_stack_mask.Remove(in);
 525       in = OptoReg::add(in, -1);
 526     }
 527      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
 528      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 529     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
 530      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
 531   }
 532   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 533     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
 534     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 535     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
 536       aligned_stack_mask.Remove(in);
 537       in = OptoReg::add(in, -1);
 538     }
 539      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
 540      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 541     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
 542      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
 543   }
 544    if (UseFPUForSpilling) {
 545      // This mask logic assumes that the spill operations are
 546      // symmetric and that the registers involved are the same size.
 547      // On sparc for instance we may have to use 64 bit moves will
 548      // kill 2 registers when used with F0-F31.
 549      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 550      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 551 #ifdef _LP64
 552      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 553      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 554      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 555      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 556 #else
 557      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 558 #ifdef ARM
 559      // ARM has support for moving 64bit values between a pair of
 560      // integer registers and a double register
 561      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 562      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 563 #endif
 564 #endif
 565    }
 566 
 567   // Make up debug masks.  Any spill slot plus callee-save registers.
 568   // Caller-save registers are assumed to be trashable by the various
 569   // inline-cache fixup routines.
 570   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 571   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 572   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 573   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 574   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 575   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 576 
 577   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 578   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 579   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 580   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 581   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 582   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 583 
 584   // Prevent stub compilations from attempting to reference
 585   // callee-saved registers from debug info
 586   bool exclude_soe = !Compile::current()->is_method_compilation();
 587 
 588   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 589     // registers the caller has to save do not work
 590     if( _register_save_policy[i] == 'C' ||
 591         _register_save_policy[i] == 'A' ||
 592         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 593       idealreg2debugmask  [Op_RegN]->Remove(i);
 594       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 595       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 596       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 597       idealreg2debugmask  [Op_RegD]->Remove(i);
 598       idealreg2debugmask  [Op_RegP]->Remove(i);
 599 
 600       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 601       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 602       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 603       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 604       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 605       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 606     }
 607   }
 608 
 609   // Subtract the register we use to save the SP for MethodHandle
 610   // invokes to from the debug mask.
 611   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 612   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 613   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 614   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 615   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 616   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 617   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 618 }
 619 
 620 //---------------------------is_save_on_entry----------------------------------
 621 bool Matcher::is_save_on_entry( int reg ) {
 622   return
 623     _register_save_policy[reg] == 'E' ||
 624     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 625     // Also save argument registers in the trampolining stubs
 626     (C->save_argument_registers() && is_spillable_arg(reg));
 627 }
 628 
 629 //---------------------------Fixup_Save_On_Entry-------------------------------
 630 void Matcher::Fixup_Save_On_Entry( ) {
 631   init_first_stack_mask();
 632 
 633   Node *root = C->root();       // Short name for root
 634   // Count number of save-on-entry registers.
 635   uint soe_cnt = number_of_saved_registers();
 636   uint i;
 637 
 638   // Find the procedure Start Node
 639   StartNode *start = C->start();
 640   assert( start, "Expect a start node" );
 641 
 642   // Save argument registers in the trampolining stubs
 643   if( C->save_argument_registers() )
 644     for( i = 0; i < _last_Mach_Reg; i++ )
 645       if( is_spillable_arg(i) )
 646         soe_cnt++;
 647 
 648   // Input RegMask array shared by all Returns.
 649   // The type for doubles and longs has a count of 2, but
 650   // there is only 1 returned value
 651   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 652   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 653   // Returns have 0 or 1 returned values depending on call signature.
 654   // Return register is specified by return_value in the AD file.
 655   if (ret_edge_cnt > TypeFunc::Parms)
 656     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 657 
 658   // Input RegMask array shared by all Rethrows.
 659   uint reth_edge_cnt = TypeFunc::Parms+1;
 660   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 661   // Rethrow takes exception oop only, but in the argument 0 slot.
 662   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
 663 #ifdef _LP64
 664   // Need two slots for ptrs in 64-bit land
 665   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
 666 #endif
 667 
 668   // Input RegMask array shared by all TailCalls
 669   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 670   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 671 
 672   // Input RegMask array shared by all TailJumps
 673   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 674   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 675 
 676   // TailCalls have 2 returned values (target & moop), whose masks come
 677   // from the usual MachNode/MachOper mechanism.  Find a sample
 678   // TailCall to extract these masks and put the correct masks into
 679   // the tail_call_rms array.
 680   for( i=1; i < root->req(); i++ ) {
 681     MachReturnNode *m = root->in(i)->as_MachReturn();
 682     if( m->ideal_Opcode() == Op_TailCall ) {
 683       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 684       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 685       break;
 686     }
 687   }
 688 
 689   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 690   // from the usual MachNode/MachOper mechanism.  Find a sample
 691   // TailJump to extract these masks and put the correct masks into
 692   // the tail_jump_rms array.
 693   for( i=1; i < root->req(); i++ ) {
 694     MachReturnNode *m = root->in(i)->as_MachReturn();
 695     if( m->ideal_Opcode() == Op_TailJump ) {
 696       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 697       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 698       break;
 699     }
 700   }
 701 
 702   // Input RegMask array shared by all Halts
 703   uint halt_edge_cnt = TypeFunc::Parms;
 704   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 705 
 706   // Capture the return input masks into each exit flavor
 707   for( i=1; i < root->req(); i++ ) {
 708     MachReturnNode *exit = root->in(i)->as_MachReturn();
 709     switch( exit->ideal_Opcode() ) {
 710       case Op_Return   : exit->_in_rms = ret_rms;  break;
 711       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 712       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 713       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 714       case Op_Halt     : exit->_in_rms = halt_rms; break;
 715       default          : ShouldNotReachHere();
 716     }
 717   }
 718 
 719   // Next unused projection number from Start.
 720   int proj_cnt = C->tf()->domain()->cnt();
 721 
 722   // Do all the save-on-entry registers.  Make projections from Start for
 723   // them, and give them a use at the exit points.  To the allocator, they
 724   // look like incoming register arguments.
 725   for( i = 0; i < _last_Mach_Reg; i++ ) {
 726     if( is_save_on_entry(i) ) {
 727 
 728       // Add the save-on-entry to the mask array
 729       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 730       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 731       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 732       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 733       // Halts need the SOE registers, but only in the stack as debug info.
 734       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 735       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 736 
 737       Node *mproj;
 738 
 739       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 740       // into a single RegD.
 741       if( (i&1) == 0 &&
 742           _register_save_type[i  ] == Op_RegF &&
 743           _register_save_type[i+1] == Op_RegF &&
 744           is_save_on_entry(i+1) ) {
 745         // Add other bit for double
 746         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 747         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 748         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 749         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 750         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 751         mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 752         proj_cnt += 2;          // Skip 2 for doubles
 753       }
 754       else if( (i&1) == 1 &&    // Else check for high half of double
 755                _register_save_type[i-1] == Op_RegF &&
 756                _register_save_type[i  ] == Op_RegF &&
 757                is_save_on_entry(i-1) ) {
 758         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 759         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 760         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 761         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 762         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 763         mproj = C->top();
 764       }
 765       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 766       // into a single RegL.
 767       else if( (i&1) == 0 &&
 768           _register_save_type[i  ] == Op_RegI &&
 769           _register_save_type[i+1] == Op_RegI &&
 770         is_save_on_entry(i+1) ) {
 771         // Add other bit for long
 772         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 773         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 774         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 775         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 776         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 777         mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 778         proj_cnt += 2;          // Skip 2 for longs
 779       }
 780       else if( (i&1) == 1 &&    // Else check for high half of long
 781                _register_save_type[i-1] == Op_RegI &&
 782                _register_save_type[i  ] == Op_RegI &&
 783                is_save_on_entry(i-1) ) {
 784         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 785         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 786         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 787         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 788         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 789         mproj = C->top();
 790       } else {
 791         // Make a projection for it off the Start
 792         mproj = new (C) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 793       }
 794 
 795       ret_edge_cnt ++;
 796       reth_edge_cnt ++;
 797       tail_call_edge_cnt ++;
 798       tail_jump_edge_cnt ++;
 799       halt_edge_cnt ++;
 800 
 801       // Add a use of the SOE register to all exit paths
 802       for( uint j=1; j < root->req(); j++ )
 803         root->in(j)->add_req(mproj);
 804     } // End of if a save-on-entry register
 805   } // End of for all machine registers
 806 }
 807 
 808 //------------------------------init_spill_mask--------------------------------
 809 void Matcher::init_spill_mask( Node *ret ) {
 810   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 811 
 812   OptoReg::c_frame_pointer = c_frame_pointer();
 813   c_frame_ptr_mask = c_frame_pointer();
 814 #ifdef _LP64
 815   // pointers are twice as big
 816   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 817 #endif
 818 
 819   // Start at OptoReg::stack0()
 820   STACK_ONLY_mask.Clear();
 821   OptoReg::Name init = OptoReg::stack2reg(0);
 822   // STACK_ONLY_mask is all stack bits
 823   OptoReg::Name i;
 824   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 825     STACK_ONLY_mask.Insert(i);
 826   // Also set the "infinite stack" bit.
 827   STACK_ONLY_mask.set_AllStack();
 828 
 829   // Copy the register names over into the shared world
 830   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 831     // SharedInfo::regName[i] = regName[i];
 832     // Handy RegMasks per machine register
 833     mreg2regmask[i].Insert(i);
 834   }
 835 
 836   // Grab the Frame Pointer
 837   Node *fp  = ret->in(TypeFunc::FramePtr);
 838   Node *mem = ret->in(TypeFunc::Memory);
 839   const TypePtr* atp = TypePtr::BOTTOM;
 840   // Share frame pointer while making spill ops
 841   set_shared(fp);
 842 
 843   // Compute generic short-offset Loads
 844 #ifdef _LP64
 845   MachNode *spillCP = match_tree(new (C) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 846 #endif
 847   MachNode *spillI  = match_tree(new (C) LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
 848   MachNode *spillL  = match_tree(new (C) LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered, LoadNode::DependsOnlyOnTest,false));
 849   MachNode *spillF  = match_tree(new (C) LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
 850   MachNode *spillD  = match_tree(new (C) LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
 851   MachNode *spillP  = match_tree(new (C) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 852   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 853          spillD != NULL && spillP != NULL, "");
 854   // Get the ADLC notion of the right regmask, for each basic type.
 855 #ifdef _LP64
 856   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 857 #endif
 858   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 859   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 860   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 861   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 862   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 863 
 864   // Vector regmasks.
 865   if (Matcher::vector_size_supported(T_BYTE,4)) {
 866     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 867     MachNode *spillVectS = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
 868     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
 869   }
 870   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 871     MachNode *spillVectD = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
 872     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
 873   }
 874   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 875     MachNode *spillVectX = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
 876     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
 877   }
 878   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 879     MachNode *spillVectY = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
 880     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
 881   }
 882 }
 883 
 884 #ifdef ASSERT
 885 static void match_alias_type(Compile* C, Node* n, Node* m) {
 886   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 887   const TypePtr* nat = n->adr_type();
 888   const TypePtr* mat = m->adr_type();
 889   int nidx = C->get_alias_index(nat);
 890   int midx = C->get_alias_index(mat);
 891   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 892   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 893     for (uint i = 1; i < n->req(); i++) {
 894       Node* n1 = n->in(i);
 895       const TypePtr* n1at = n1->adr_type();
 896       if (n1at != NULL) {
 897         nat = n1at;
 898         nidx = C->get_alias_index(n1at);
 899       }
 900     }
 901   }
 902   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 903   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 904     switch (n->Opcode()) {
 905     case Op_PrefetchRead:
 906     case Op_PrefetchWrite:
 907     case Op_PrefetchAllocation:
 908       nidx = Compile::AliasIdxRaw;
 909       nat = TypeRawPtr::BOTTOM;
 910       break;
 911     }
 912   }
 913   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 914     switch (n->Opcode()) {
 915     case Op_ClearArray:
 916       midx = Compile::AliasIdxRaw;
 917       mat = TypeRawPtr::BOTTOM;
 918       break;
 919     }
 920   }
 921   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 922     switch (n->Opcode()) {
 923     case Op_Return:
 924     case Op_Rethrow:
 925     case Op_Halt:
 926     case Op_TailCall:
 927     case Op_TailJump:
 928       nidx = Compile::AliasIdxBot;
 929       nat = TypePtr::BOTTOM;
 930       break;
 931     }
 932   }
 933   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 934     switch (n->Opcode()) {
 935     case Op_StrComp:
 936     case Op_StrEquals:
 937     case Op_StrIndexOf:
 938     case Op_AryEq:
 939     case Op_MemBarVolatile:
 940     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 941     case Op_EncodeISOArray:
 942       nidx = Compile::AliasIdxTop;
 943       nat = NULL;
 944       break;
 945     }
 946   }
 947   if (nidx != midx) {
 948     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 949       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 950       n->dump();
 951       m->dump();
 952     }
 953     assert(C->subsume_loads() && C->must_alias(nat, midx),
 954            "must not lose alias info when matching");
 955   }
 956 }
 957 #endif
 958 
 959 
 960 //------------------------------MStack-----------------------------------------
 961 // State and MStack class used in xform() and find_shared() iterative methods.
 962 enum Node_State { Pre_Visit,  // node has to be pre-visited
 963                       Visit,  // visit node
 964                  Post_Visit,  // post-visit node
 965              Alt_Post_Visit   // alternative post-visit path
 966                 };
 967 
 968 class MStack: public Node_Stack {
 969   public:
 970     MStack(int size) : Node_Stack(size) { }
 971 
 972     void push(Node *n, Node_State ns) {
 973       Node_Stack::push(n, (uint)ns);
 974     }
 975     void push(Node *n, Node_State ns, Node *parent, int indx) {
 976       ++_inode_top;
 977       if ((_inode_top + 1) >= _inode_max) grow();
 978       _inode_top->node = parent;
 979       _inode_top->indx = (uint)indx;
 980       ++_inode_top;
 981       _inode_top->node = n;
 982       _inode_top->indx = (uint)ns;
 983     }
 984     Node *parent() {
 985       pop();
 986       return node();
 987     }
 988     Node_State state() const {
 989       return (Node_State)index();
 990     }
 991     void set_state(Node_State ns) {
 992       set_index((uint)ns);
 993     }
 994 };
 995 
 996 
 997 //------------------------------xform------------------------------------------
 998 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
 999 // Node in new-space.  Given a new-space Node, recursively walk his children.
1000 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
1001 Node *Matcher::xform( Node *n, int max_stack ) {
1002   // Use one stack to keep both: child's node/state and parent's node/index
1003   MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2
1004   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
1005 
1006   while (mstack.is_nonempty()) {
1007     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
1008     if (C->failing()) return NULL;
1009     n = mstack.node();          // Leave node on stack
1010     Node_State nstate = mstack.state();
1011     if (nstate == Visit) {
1012       mstack.set_state(Post_Visit);
1013       Node *oldn = n;
1014       // Old-space or new-space check
1015       if (!C->node_arena()->contains(n)) {
1016         // Old space!
1017         Node* m;
1018         if (has_new_node(n)) {  // Not yet Label/Reduced
1019           m = new_node(n);
1020         } else {
1021           if (!is_dontcare(n)) { // Matcher can match this guy
1022             // Calls match special.  They match alone with no children.
1023             // Their children, the incoming arguments, match normally.
1024             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1025             if (C->failing())  return NULL;
1026             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
1027           } else {                  // Nothing the matcher cares about
1028             if (n->is_Proj() && n->in(0) != NULL && n->in(0)->is_Multi()) {       // Projections?
1029               // Convert to machine-dependent projection
1030               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1031 #ifdef ASSERT
1032               _new2old_map.map(m->_idx, n);
1033 #endif
1034               if (m->in(0) != NULL) // m might be top
1035                 collect_null_checks(m, n);
1036             } else {                // Else just a regular 'ol guy
1037               m = n->clone();       // So just clone into new-space
1038 #ifdef ASSERT
1039               _new2old_map.map(m->_idx, n);
1040 #endif
1041               // Def-Use edges will be added incrementally as Uses
1042               // of this node are matched.
1043               assert(m->outcnt() == 0, "no Uses of this clone yet");
1044             }
1045           }
1046 
1047           set_new_node(n, m);       // Map old to new
1048           if (_old_node_note_array != NULL) {
1049             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1050                                                   n->_idx);
1051             C->set_node_notes_at(m->_idx, nn);
1052           }
1053           debug_only(match_alias_type(C, n, m));
1054         }
1055         n = m;    // n is now a new-space node
1056         mstack.set_node(n);
1057       }
1058 
1059       // New space!
1060       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1061 
1062       int i;
1063       // Put precedence edges on stack first (match them last).
1064       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1065         Node *m = oldn->in(i);
1066         if (m == NULL) break;
1067         // set -1 to call add_prec() instead of set_req() during Step1
1068         mstack.push(m, Visit, n, -1);
1069       }
1070 
1071       // For constant debug info, I'd rather have unmatched constants.
1072       int cnt = n->req();
1073       JVMState* jvms = n->jvms();
1074       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1075 
1076       // Now do only debug info.  Clone constants rather than matching.
1077       // Constants are represented directly in the debug info without
1078       // the need for executable machine instructions.
1079       // Monitor boxes are also represented directly.
1080       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1081         Node *m = n->in(i);          // Get input
1082         int op = m->Opcode();
1083         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1084         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1085             op == Op_ConF || op == Op_ConD || op == Op_ConL
1086             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1087             ) {
1088           m = m->clone();
1089 #ifdef ASSERT
1090           _new2old_map.map(m->_idx, n);
1091 #endif
1092           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1093           mstack.push(m->in(0), Visit, m, 0);
1094         } else {
1095           mstack.push(m, Visit, n, i);
1096         }
1097       }
1098 
1099       // And now walk his children, and convert his inputs to new-space.
1100       for( ; i >= 0; --i ) { // For all normal inputs do
1101         Node *m = n->in(i);  // Get input
1102         if(m != NULL)
1103           mstack.push(m, Visit, n, i);
1104       }
1105 
1106     }
1107     else if (nstate == Post_Visit) {
1108       // Set xformed input
1109       Node *p = mstack.parent();
1110       if (p != NULL) { // root doesn't have parent
1111         int i = (int)mstack.index();
1112         if (i >= 0)
1113           p->set_req(i, n); // required input
1114         else if (i == -1)
1115           p->add_prec(n);   // precedence input
1116         else
1117           ShouldNotReachHere();
1118       }
1119       mstack.pop(); // remove processed node from stack
1120     }
1121     else {
1122       ShouldNotReachHere();
1123     }
1124   } // while (mstack.is_nonempty())
1125   return n; // Return new-space Node
1126 }
1127 
1128 //------------------------------warp_outgoing_stk_arg------------------------
1129 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1130   // Convert outgoing argument location to a pre-biased stack offset
1131   if (reg->is_stack()) {
1132     OptoReg::Name warped = reg->reg2stack();
1133     // Adjust the stack slot offset to be the register number used
1134     // by the allocator.
1135     warped = OptoReg::add(begin_out_arg_area, warped);
1136     // Keep track of the largest numbered stack slot used for an arg.
1137     // Largest used slot per call-site indicates the amount of stack
1138     // that is killed by the call.
1139     if( warped >= out_arg_limit_per_call )
1140       out_arg_limit_per_call = OptoReg::add(warped,1);
1141     if (!RegMask::can_represent_arg(warped)) {
1142       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1143       return OptoReg::Bad;
1144     }
1145     return warped;
1146   }
1147   return OptoReg::as_OptoReg(reg);
1148 }
1149 
1150 
1151 //------------------------------match_sfpt-------------------------------------
1152 // Helper function to match call instructions.  Calls match special.
1153 // They match alone with no children.  Their children, the incoming
1154 // arguments, match normally.
1155 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1156   MachSafePointNode *msfpt = NULL;
1157   MachCallNode      *mcall = NULL;
1158   uint               cnt;
1159   // Split out case for SafePoint vs Call
1160   CallNode *call;
1161   const TypeTuple *domain;
1162   ciMethod*        method = NULL;
1163   bool             is_method_handle_invoke = false;  // for special kill effects
1164   if( sfpt->is_Call() ) {
1165     call = sfpt->as_Call();
1166     domain = call->tf()->domain();
1167     cnt = domain->cnt();
1168 
1169     // Match just the call, nothing else
1170     MachNode *m = match_tree(call);
1171     if (C->failing())  return NULL;
1172     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1173 
1174     // Copy data from the Ideal SafePoint to the machine version
1175     mcall = m->as_MachCall();
1176 
1177     mcall->set_tf(         call->tf());
1178     mcall->set_entry_point(call->entry_point());
1179     mcall->set_cnt(        call->cnt());
1180 
1181     if( mcall->is_MachCallJava() ) {
1182       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1183       const CallJavaNode *call_java =  call->as_CallJava();
1184       method = call_java->method();
1185       mcall_java->_method = method;
1186       mcall_java->_bci = call_java->_bci;
1187       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1188       is_method_handle_invoke = call_java->is_method_handle_invoke();
1189       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1190       if (is_method_handle_invoke) {
1191         C->set_has_method_handle_invokes(true);
1192       }
1193       if( mcall_java->is_MachCallStaticJava() )
1194         mcall_java->as_MachCallStaticJava()->_name =
1195          call_java->as_CallStaticJava()->_name;
1196       if( mcall_java->is_MachCallDynamicJava() )
1197         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1198          call_java->as_CallDynamicJava()->_vtable_index;
1199     }
1200     else if( mcall->is_MachCallRuntime() ) {
1201       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1202     }
1203     msfpt = mcall;
1204   }
1205   // This is a non-call safepoint
1206   else {
1207     call = NULL;
1208     domain = NULL;
1209     MachNode *mn = match_tree(sfpt);
1210     if (C->failing())  return NULL;
1211     msfpt = mn->as_MachSafePoint();
1212     cnt = TypeFunc::Parms;
1213   }
1214 
1215   // Advertise the correct memory effects (for anti-dependence computation).
1216   msfpt->set_adr_type(sfpt->adr_type());
1217 
1218   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1219   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1220   // Empty them all.
1221   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1222 
1223   // Do all the pre-defined non-Empty register masks
1224   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1225   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1226 
1227   // Place first outgoing argument can possibly be put.
1228   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1229   assert( is_even(begin_out_arg_area), "" );
1230   // Compute max outgoing register number per call site.
1231   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1232   // Calls to C may hammer extra stack slots above and beyond any arguments.
1233   // These are usually backing store for register arguments for varargs.
1234   if( call != NULL && call->is_CallRuntime() )
1235     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1236 
1237 
1238   // Do the normal argument list (parameters) register masks
1239   int argcnt = cnt - TypeFunc::Parms;
1240   if( argcnt > 0 ) {          // Skip it all if we have no args
1241     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1242     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1243     int i;
1244     for( i = 0; i < argcnt; i++ ) {
1245       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1246     }
1247     // V-call to pick proper calling convention
1248     call->calling_convention( sig_bt, parm_regs, argcnt );
1249 
1250 #ifdef ASSERT
1251     // Sanity check users' calling convention.  Really handy during
1252     // the initial porting effort.  Fairly expensive otherwise.
1253     { for (int i = 0; i<argcnt; i++) {
1254       if( !parm_regs[i].first()->is_valid() &&
1255           !parm_regs[i].second()->is_valid() ) continue;
1256       VMReg reg1 = parm_regs[i].first();
1257       VMReg reg2 = parm_regs[i].second();
1258       for (int j = 0; j < i; j++) {
1259         if( !parm_regs[j].first()->is_valid() &&
1260             !parm_regs[j].second()->is_valid() ) continue;
1261         VMReg reg3 = parm_regs[j].first();
1262         VMReg reg4 = parm_regs[j].second();
1263         if( !reg1->is_valid() ) {
1264           assert( !reg2->is_valid(), "valid halvsies" );
1265         } else if( !reg3->is_valid() ) {
1266           assert( !reg4->is_valid(), "valid halvsies" );
1267         } else {
1268           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1269           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1270           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1271           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1272           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1273           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1274         }
1275       }
1276     }
1277     }
1278 #endif
1279 
1280     // Visit each argument.  Compute its outgoing register mask.
1281     // Return results now can have 2 bits returned.
1282     // Compute max over all outgoing arguments both per call-site
1283     // and over the entire method.
1284     for( i = 0; i < argcnt; i++ ) {
1285       // Address of incoming argument mask to fill in
1286       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1287       if( !parm_regs[i].first()->is_valid() &&
1288           !parm_regs[i].second()->is_valid() ) {
1289         continue;               // Avoid Halves
1290       }
1291       // Grab first register, adjust stack slots and insert in mask.
1292       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1293       if (OptoReg::is_valid(reg1))
1294         rm->Insert( reg1 );
1295       // Grab second register (if any), adjust stack slots and insert in mask.
1296       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1297       if (OptoReg::is_valid(reg2))
1298         rm->Insert( reg2 );
1299     } // End of for all arguments
1300 
1301     // Compute number of stack slots needed to restore stack in case of
1302     // Pascal-style argument popping.
1303     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1304   }
1305 
1306   // Compute the max stack slot killed by any call.  These will not be
1307   // available for debug info, and will be used to adjust FIRST_STACK_mask
1308   // after all call sites have been visited.
1309   if( _out_arg_limit < out_arg_limit_per_call)
1310     _out_arg_limit = out_arg_limit_per_call;
1311 
1312   if (mcall) {
1313     // Kill the outgoing argument area, including any non-argument holes and
1314     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1315     // Since the max-per-method covers the max-per-call-site and debug info
1316     // is excluded on the max-per-method basis, debug info cannot land in
1317     // this killed area.
1318     uint r_cnt = mcall->tf()->range()->cnt();
1319     MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1320     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1321       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1322     } else {
1323       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1324         proj->_rout.Insert(OptoReg::Name(i));
1325     }
1326     if (proj->_rout.is_NotEmpty()) {
1327       push_projection(proj);
1328     }
1329   }
1330   // Transfer the safepoint information from the call to the mcall
1331   // Move the JVMState list
1332   msfpt->set_jvms(sfpt->jvms());
1333   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1334     jvms->set_map(sfpt);
1335   }
1336 
1337   // Debug inputs begin just after the last incoming parameter
1338   assert((mcall == NULL) || (mcall->jvms() == NULL) ||
1339          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
1340 
1341   // Move the OopMap
1342   msfpt->_oop_map = sfpt->_oop_map;
1343 
1344   // Add additional edges.
1345   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1346     // For these calls we can not add MachConstantBase in expand(), as the
1347     // ins are not complete then.
1348     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1349     if (msfpt->jvms() &&
1350         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1351       // We added an edge before jvms, so we must adapt the position of the ins.
1352       msfpt->jvms()->adapt_position(+1);
1353     }
1354   }
1355 
1356   // Registers killed by the call are set in the local scheduling pass
1357   // of Global Code Motion.
1358   return msfpt;
1359 }
1360 
1361 //---------------------------match_tree----------------------------------------
1362 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1363 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1364 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1365 // a Load's result RegMask for memoization in idealreg2regmask[]
1366 MachNode *Matcher::match_tree( const Node *n ) {
1367   assert( n->Opcode() != Op_Phi, "cannot match" );
1368   assert( !n->is_block_start(), "cannot match" );
1369   // Set the mark for all locally allocated State objects.
1370   // When this call returns, the _states_arena arena will be reset
1371   // freeing all State objects.
1372   ResourceMark rm( &_states_arena );
1373 
1374   LabelRootDepth = 0;
1375 
1376   // StoreNodes require their Memory input to match any LoadNodes
1377   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1378 #ifdef ASSERT
1379   Node* save_mem_node = _mem_node;
1380   _mem_node = n->is_Store() ? (Node*)n : NULL;
1381 #endif
1382   // State object for root node of match tree
1383   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1384   State *s = new (&_states_arena) State;
1385   s->_kids[0] = NULL;
1386   s->_kids[1] = NULL;
1387   s->_leaf = (Node*)n;
1388   // Label the input tree, allocating labels from top-level arena
1389   Label_Root( n, s, n->in(0), mem );
1390   if (C->failing())  return NULL;
1391 
1392   // The minimum cost match for the whole tree is found at the root State
1393   uint mincost = max_juint;
1394   uint cost = max_juint;
1395   uint i;
1396   for( i = 0; i < NUM_OPERANDS; i++ ) {
1397     if( s->valid(i) &&                // valid entry and
1398         s->_cost[i] < cost &&         // low cost and
1399         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1400       cost = s->_cost[mincost=i];
1401   }
1402   if (mincost == max_juint) {
1403 #ifndef PRODUCT
1404     tty->print("No matching rule for:");
1405     s->dump();
1406 #endif
1407     Matcher::soft_match_failure();
1408     return NULL;
1409   }
1410   // Reduce input tree based upon the state labels to machine Nodes
1411   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1412 #ifdef ASSERT
1413   _old2new_map.map(n->_idx, m);
1414   _new2old_map.map(m->_idx, (Node*)n);
1415 #endif
1416 
1417   // Add any Matcher-ignored edges
1418   uint cnt = n->req();
1419   uint start = 1;
1420   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1421   if( n->is_AddP() ) {
1422     assert( mem == (Node*)1, "" );
1423     start = AddPNode::Base+1;
1424   }
1425   for( i = start; i < cnt; i++ ) {
1426     if( !n->match_edge(i) ) {
1427       if( i < m->req() )
1428         m->ins_req( i, n->in(i) );
1429       else
1430         m->add_req( n->in(i) );
1431     }
1432   }
1433 
1434   debug_only( _mem_node = save_mem_node; )
1435   return m;
1436 }
1437 
1438 
1439 //------------------------------match_into_reg---------------------------------
1440 // Choose to either match this Node in a register or part of the current
1441 // match tree.  Return true for requiring a register and false for matching
1442 // as part of the current match tree.
1443 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1444 
1445   const Type *t = m->bottom_type();
1446 
1447   if (t->singleton()) {
1448     // Never force constants into registers.  Allow them to match as
1449     // constants or registers.  Copies of the same value will share
1450     // the same register.  See find_shared_node.
1451     return false;
1452   } else {                      // Not a constant
1453     // Stop recursion if they have different Controls.
1454     Node* m_control = m->in(0);
1455     // Control of load's memory can post-dominates load's control.
1456     // So use it since load can't float above its memory.
1457     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
1458     if (control && m_control && control != m_control && control != mem_control) {
1459 
1460       // Actually, we can live with the most conservative control we
1461       // find, if it post-dominates the others.  This allows us to
1462       // pick up load/op/store trees where the load can float a little
1463       // above the store.
1464       Node *x = control;
1465       const uint max_scan = 6;  // Arbitrary scan cutoff
1466       uint j;
1467       for (j=0; j<max_scan; j++) {
1468         if (x->is_Region())     // Bail out at merge points
1469           return true;
1470         x = x->in(0);
1471         if (x == m_control)     // Does 'control' post-dominate
1472           break;                // m->in(0)?  If so, we can use it
1473         if (x == mem_control)   // Does 'control' post-dominate
1474           break;                // mem_control?  If so, we can use it
1475       }
1476       if (j == max_scan)        // No post-domination before scan end?
1477         return true;            // Then break the match tree up
1478     }
1479     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1480         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1481       // These are commonly used in address expressions and can
1482       // efficiently fold into them on X64 in some cases.
1483       return false;
1484     }
1485   }
1486 
1487   // Not forceable cloning.  If shared, put it into a register.
1488   return shared;
1489 }
1490 
1491 
1492 //------------------------------Instruction Selection--------------------------
1493 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1494 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1495 // things the Matcher does not match (e.g., Memory), and things with different
1496 // Controls (hence forced into different blocks).  We pass in the Control
1497 // selected for this entire State tree.
1498 
1499 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1500 // Store and the Load must have identical Memories (as well as identical
1501 // pointers).  Since the Matcher does not have anything for Memory (and
1502 // does not handle DAGs), I have to match the Memory input myself.  If the
1503 // Tree root is a Store, I require all Loads to have the identical memory.
1504 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1505   // Since Label_Root is a recursive function, its possible that we might run
1506   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1507   LabelRootDepth++;
1508   if (LabelRootDepth > MaxLabelRootDepth) {
1509     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1510     return NULL;
1511   }
1512   uint care = 0;                // Edges matcher cares about
1513   uint cnt = n->req();
1514   uint i = 0;
1515 
1516   // Examine children for memory state
1517   // Can only subsume a child into your match-tree if that child's memory state
1518   // is not modified along the path to another input.
1519   // It is unsafe even if the other inputs are separate roots.
1520   Node *input_mem = NULL;
1521   for( i = 1; i < cnt; i++ ) {
1522     if( !n->match_edge(i) ) continue;
1523     Node *m = n->in(i);         // Get ith input
1524     assert( m, "expect non-null children" );
1525     if( m->is_Load() ) {
1526       if( input_mem == NULL ) {
1527         input_mem = m->in(MemNode::Memory);
1528       } else if( input_mem != m->in(MemNode::Memory) ) {
1529         input_mem = NodeSentinel;
1530       }
1531     }
1532   }
1533 
1534   for( i = 1; i < cnt; i++ ){// For my children
1535     if( !n->match_edge(i) ) continue;
1536     Node *m = n->in(i);         // Get ith input
1537     // Allocate states out of a private arena
1538     State *s = new (&_states_arena) State;
1539     svec->_kids[care++] = s;
1540     assert( care <= 2, "binary only for now" );
1541 
1542     // Recursively label the State tree.
1543     s->_kids[0] = NULL;
1544     s->_kids[1] = NULL;
1545     s->_leaf = m;
1546 
1547     // Check for leaves of the State Tree; things that cannot be a part of
1548     // the current tree.  If it finds any, that value is matched as a
1549     // register operand.  If not, then the normal matching is used.
1550     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1551         //
1552         // Stop recursion if this is LoadNode and the root of this tree is a
1553         // StoreNode and the load & store have different memories.
1554         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1555         // Can NOT include the match of a subtree when its memory state
1556         // is used by any of the other subtrees
1557         (input_mem == NodeSentinel) ) {
1558 #ifndef PRODUCT
1559       // Print when we exclude matching due to different memory states at input-loads
1560       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1561         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1562         tty->print_cr("invalid input_mem");
1563       }
1564 #endif
1565       // Switch to a register-only opcode; this value must be in a register
1566       // and cannot be subsumed as part of a larger instruction.
1567       s->DFA( m->ideal_reg(), m );
1568 
1569     } else {
1570       // If match tree has no control and we do, adopt it for entire tree
1571       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1572         control = m->in(0);         // Pick up control
1573       // Else match as a normal part of the match tree.
1574       control = Label_Root(m,s,control,mem);
1575       if (C->failing()) return NULL;
1576     }
1577   }
1578 
1579 
1580   // Call DFA to match this node, and return
1581   svec->DFA( n->Opcode(), n );
1582 
1583 #ifdef ASSERT
1584   uint x;
1585   for( x = 0; x < _LAST_MACH_OPER; x++ )
1586     if( svec->valid(x) )
1587       break;
1588 
1589   if (x >= _LAST_MACH_OPER) {
1590     n->dump();
1591     svec->dump();
1592     assert( false, "bad AD file" );
1593   }
1594 #endif
1595   return control;
1596 }
1597 
1598 
1599 // Con nodes reduced using the same rule can share their MachNode
1600 // which reduces the number of copies of a constant in the final
1601 // program.  The register allocator is free to split uses later to
1602 // split live ranges.
1603 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1604   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
1605 
1606   // See if this Con has already been reduced using this rule.
1607   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1608   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1609   if (last != NULL && rule == last->rule()) {
1610     // Don't expect control change for DecodeN
1611     if (leaf->is_DecodeNarrowPtr())
1612       return last;
1613     // Get the new space root.
1614     Node* xroot = new_node(C->root());
1615     if (xroot == NULL) {
1616       // This shouldn't happen give the order of matching.
1617       return NULL;
1618     }
1619 
1620     // Shared constants need to have their control be root so they
1621     // can be scheduled properly.
1622     Node* control = last->in(0);
1623     if (control != xroot) {
1624       if (control == NULL || control == C->root()) {
1625         last->set_req(0, xroot);
1626       } else {
1627         assert(false, "unexpected control");
1628         return NULL;
1629       }
1630     }
1631     return last;
1632   }
1633   return NULL;
1634 }
1635 
1636 
1637 //------------------------------ReduceInst-------------------------------------
1638 // Reduce a State tree (with given Control) into a tree of MachNodes.
1639 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1640 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1641 // Each MachNode has a number of complicated MachOper operands; each
1642 // MachOper also covers a further tree of Ideal Nodes.
1643 
1644 // The root of the Ideal match tree is always an instruction, so we enter
1645 // the recursion here.  After building the MachNode, we need to recurse
1646 // the tree checking for these cases:
1647 // (1) Child is an instruction -
1648 //     Build the instruction (recursively), add it as an edge.
1649 //     Build a simple operand (register) to hold the result of the instruction.
1650 // (2) Child is an interior part of an instruction -
1651 //     Skip over it (do nothing)
1652 // (3) Child is the start of a operand -
1653 //     Build the operand, place it inside the instruction
1654 //     Call ReduceOper.
1655 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1656   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1657 
1658   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1659   if (shared_node != NULL) {
1660     return shared_node;
1661   }
1662 
1663   // Build the object to represent this state & prepare for recursive calls
1664   MachNode *mach = s->MachNodeGenerator( rule, C );
1665   guarantee(mach != NULL, "Missing MachNode");
1666   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1667   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1668   Node *leaf = s->_leaf;
1669   // Check for instruction or instruction chain rule
1670   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1671     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1672            "duplicating node that's already been matched");
1673     // Instruction
1674     mach->add_req( leaf->in(0) ); // Set initial control
1675     // Reduce interior of complex instruction
1676     ReduceInst_Interior( s, rule, mem, mach, 1 );
1677   } else {
1678     // Instruction chain rules are data-dependent on their inputs
1679     mach->add_req(0);             // Set initial control to none
1680     ReduceInst_Chain_Rule( s, rule, mem, mach );
1681   }
1682 
1683   // If a Memory was used, insert a Memory edge
1684   if( mem != (Node*)1 ) {
1685     mach->ins_req(MemNode::Memory,mem);
1686 #ifdef ASSERT
1687     // Verify adr type after matching memory operation
1688     const MachOper* oper = mach->memory_operand();
1689     if (oper != NULL && oper != (MachOper*)-1) {
1690       // It has a unique memory operand.  Find corresponding ideal mem node.
1691       Node* m = NULL;
1692       if (leaf->is_Mem()) {
1693         m = leaf;
1694       } else {
1695         m = _mem_node;
1696         assert(m != NULL && m->is_Mem(), "expecting memory node");
1697       }
1698       const Type* mach_at = mach->adr_type();
1699       // DecodeN node consumed by an address may have different type
1700       // then its input. Don't compare types for such case.
1701       if (m->adr_type() != mach_at &&
1702           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1703            m->in(MemNode::Address)->is_AddP() &&
1704            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
1705            m->in(MemNode::Address)->is_AddP() &&
1706            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1707            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
1708         mach_at = m->adr_type();
1709       }
1710       if (m->adr_type() != mach_at) {
1711         m->dump();
1712         tty->print_cr("mach:");
1713         mach->dump(1);
1714       }
1715       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1716     }
1717 #endif
1718   }
1719 
1720   // If the _leaf is an AddP, insert the base edge
1721   if (leaf->is_AddP()) {
1722     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1723   }
1724 
1725   uint number_of_projections_prior = number_of_projections();
1726 
1727   // Perform any 1-to-many expansions required
1728   MachNode *ex = mach->Expand(s, _projection_list, mem);
1729   if (ex != mach) {
1730     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1731     if( ex->in(1)->is_Con() )
1732       ex->in(1)->set_req(0, C->root());
1733     // Remove old node from the graph
1734     for( uint i=0; i<mach->req(); i++ ) {
1735       mach->set_req(i,NULL);
1736     }
1737 #ifdef ASSERT
1738     _new2old_map.map(ex->_idx, s->_leaf);
1739 #endif
1740   }
1741 
1742   // PhaseChaitin::fixup_spills will sometimes generate spill code
1743   // via the matcher.  By the time, nodes have been wired into the CFG,
1744   // and any further nodes generated by expand rules will be left hanging
1745   // in space, and will not get emitted as output code.  Catch this.
1746   // Also, catch any new register allocation constraints ("projections")
1747   // generated belatedly during spill code generation.
1748   if (_allocation_started) {
1749     guarantee(ex == mach, "no expand rules during spill generation");
1750     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
1751   }
1752 
1753   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1754     // Record the con for sharing
1755     _shared_nodes.map(leaf->_idx, ex);
1756   }
1757 
1758   return ex;
1759 }
1760 
1761 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1762   // 'op' is what I am expecting to receive
1763   int op = _leftOp[rule];
1764   // Operand type to catch childs result
1765   // This is what my child will give me.
1766   int opnd_class_instance = s->_rule[op];
1767   // Choose between operand class or not.
1768   // This is what I will receive.
1769   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1770   // New rule for child.  Chase operand classes to get the actual rule.
1771   int newrule = s->_rule[catch_op];
1772 
1773   if( newrule < NUM_OPERANDS ) {
1774     // Chain from operand or operand class, may be output of shared node
1775     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1776             "Bad AD file: Instruction chain rule must chain from operand");
1777     // Insert operand into array of operands for this instruction
1778     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1779 
1780     ReduceOper( s, newrule, mem, mach );
1781   } else {
1782     // Chain from the result of an instruction
1783     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1784     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1785     Node *mem1 = (Node*)1;
1786     debug_only(Node *save_mem_node = _mem_node;)
1787     mach->add_req( ReduceInst(s, newrule, mem1) );
1788     debug_only(_mem_node = save_mem_node;)
1789   }
1790   return;
1791 }
1792 
1793 
1794 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1795   if( s->_leaf->is_Load() ) {
1796     Node *mem2 = s->_leaf->in(MemNode::Memory);
1797     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1798     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1799     mem = mem2;
1800   }
1801   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1802     if( mach->in(0) == NULL )
1803       mach->set_req(0, s->_leaf->in(0));
1804   }
1805 
1806   // Now recursively walk the state tree & add operand list.
1807   for( uint i=0; i<2; i++ ) {   // binary tree
1808     State *newstate = s->_kids[i];
1809     if( newstate == NULL ) break;      // Might only have 1 child
1810     // 'op' is what I am expecting to receive
1811     int op;
1812     if( i == 0 ) {
1813       op = _leftOp[rule];
1814     } else {
1815       op = _rightOp[rule];
1816     }
1817     // Operand type to catch childs result
1818     // This is what my child will give me.
1819     int opnd_class_instance = newstate->_rule[op];
1820     // Choose between operand class or not.
1821     // This is what I will receive.
1822     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1823     // New rule for child.  Chase operand classes to get the actual rule.
1824     int newrule = newstate->_rule[catch_op];
1825 
1826     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1827       // Operand/operandClass
1828       // Insert operand into array of operands for this instruction
1829       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1830       ReduceOper( newstate, newrule, mem, mach );
1831 
1832     } else {                    // Child is internal operand or new instruction
1833       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1834         // internal operand --> call ReduceInst_Interior
1835         // Interior of complex instruction.  Do nothing but recurse.
1836         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1837       } else {
1838         // instruction --> call build operand(  ) to catch result
1839         //             --> ReduceInst( newrule )
1840         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1841         Node *mem1 = (Node*)1;
1842         debug_only(Node *save_mem_node = _mem_node;)
1843         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1844         debug_only(_mem_node = save_mem_node;)
1845       }
1846     }
1847     assert( mach->_opnds[num_opnds-1], "" );
1848   }
1849   return num_opnds;
1850 }
1851 
1852 // This routine walks the interior of possible complex operands.
1853 // At each point we check our children in the match tree:
1854 // (1) No children -
1855 //     We are a leaf; add _leaf field as an input to the MachNode
1856 // (2) Child is an internal operand -
1857 //     Skip over it ( do nothing )
1858 // (3) Child is an instruction -
1859 //     Call ReduceInst recursively and
1860 //     and instruction as an input to the MachNode
1861 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1862   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1863   State *kid = s->_kids[0];
1864   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1865 
1866   // Leaf?  And not subsumed?
1867   if( kid == NULL && !_swallowed[rule] ) {
1868     mach->add_req( s->_leaf );  // Add leaf pointer
1869     return;                     // Bail out
1870   }
1871 
1872   if( s->_leaf->is_Load() ) {
1873     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1874     mem = s->_leaf->in(MemNode::Memory);
1875     debug_only(_mem_node = s->_leaf;)
1876   }
1877   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1878     if( !mach->in(0) )
1879       mach->set_req(0,s->_leaf->in(0));
1880     else {
1881       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1882     }
1883   }
1884 
1885   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1886     int newrule;
1887     if( i == 0)
1888       newrule = kid->_rule[_leftOp[rule]];
1889     else
1890       newrule = kid->_rule[_rightOp[rule]];
1891 
1892     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1893       // Internal operand; recurse but do nothing else
1894       ReduceOper( kid, newrule, mem, mach );
1895 
1896     } else {                    // Child is a new instruction
1897       // Reduce the instruction, and add a direct pointer from this
1898       // machine instruction to the newly reduced one.
1899       Node *mem1 = (Node*)1;
1900       debug_only(Node *save_mem_node = _mem_node;)
1901       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1902       debug_only(_mem_node = save_mem_node;)
1903     }
1904   }
1905 }
1906 
1907 
1908 // -------------------------------------------------------------------------
1909 // Java-Java calling convention
1910 // (what you use when Java calls Java)
1911 
1912 //------------------------------find_receiver----------------------------------
1913 // For a given signature, return the OptoReg for parameter 0.
1914 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1915   VMRegPair regs;
1916   BasicType sig_bt = T_OBJECT;
1917   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1918   // Return argument 0 register.  In the LP64 build pointers
1919   // take 2 registers, but the VM wants only the 'main' name.
1920   return OptoReg::as_OptoReg(regs.first());
1921 }
1922 
1923 // This function identifies sub-graphs in which a 'load' node is
1924 // input to two different nodes, and such that it can be matched
1925 // with BMI instructions like blsi, blsr, etc.
1926 // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32.
1927 // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL*
1928 // refers to the same node.
1929 #ifdef X86
1930 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop)
1931 // This is a temporary solution until we make DAGs expressible in ADL.
1932 template<typename ConType>
1933 class FusedPatternMatcher {
1934   Node* _op1_node;
1935   Node* _mop_node;
1936   int _con_op;
1937 
1938   static int match_next(Node* n, int next_op, int next_op_idx) {
1939     if (n->in(1) == NULL || n->in(2) == NULL) {
1940       return -1;
1941     }
1942 
1943     if (next_op_idx == -1) { // n is commutative, try rotations
1944       if (n->in(1)->Opcode() == next_op) {
1945         return 1;
1946       } else if (n->in(2)->Opcode() == next_op) {
1947         return 2;
1948       }
1949     } else {
1950       assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index");
1951       if (n->in(next_op_idx)->Opcode() == next_op) {
1952         return next_op_idx;
1953       }
1954     }
1955     return -1;
1956   }
1957 public:
1958   FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) :
1959     _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { }
1960 
1961   bool match(int op1, int op1_op2_idx,  // op1 and the index of the op1->op2 edge, -1 if op1 is commutative
1962              int op2, int op2_con_idx,  // op2 and the index of the op2->con edge, -1 if op2 is commutative
1963              typename ConType::NativeType con_value) {
1964     if (_op1_node->Opcode() != op1) {
1965       return false;
1966     }
1967     if (_mop_node->outcnt() > 2) {
1968       return false;
1969     }
1970     op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx);
1971     if (op1_op2_idx == -1) {
1972       return false;
1973     }
1974     // Memory operation must be the other edge
1975     int op1_mop_idx = (op1_op2_idx & 1) + 1;
1976 
1977     // Check that the mop node is really what we want
1978     if (_op1_node->in(op1_mop_idx) == _mop_node) {
1979       Node *op2_node = _op1_node->in(op1_op2_idx);
1980       if (op2_node->outcnt() > 1) {
1981         return false;
1982       }
1983       assert(op2_node->Opcode() == op2, "Should be");
1984       op2_con_idx = match_next(op2_node, _con_op, op2_con_idx);
1985       if (op2_con_idx == -1) {
1986         return false;
1987       }
1988       // Memory operation must be the other edge
1989       int op2_mop_idx = (op2_con_idx & 1) + 1;
1990       // Check that the memory operation is the same node
1991       if (op2_node->in(op2_mop_idx) == _mop_node) {
1992         // Now check the constant
1993         const Type* con_type = op2_node->in(op2_con_idx)->bottom_type();
1994         if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) {
1995           return true;
1996         }
1997       }
1998     }
1999     return false;
2000   }
2001 };
2002 
2003 
2004 bool Matcher::is_bmi_pattern(Node *n, Node *m) {
2005   if (n != NULL && m != NULL) {
2006     if (m->Opcode() == Op_LoadI) {
2007       FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI);
2008       return bmii.match(Op_AndI, -1, Op_SubI,  1,  0)  ||
2009              bmii.match(Op_AndI, -1, Op_AddI, -1, -1)  ||
2010              bmii.match(Op_XorI, -1, Op_AddI, -1, -1);
2011     } else if (m->Opcode() == Op_LoadL) {
2012       FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL);
2013       return bmil.match(Op_AndL, -1, Op_SubL,  1,  0) ||
2014              bmil.match(Op_AndL, -1, Op_AddL, -1, -1) ||
2015              bmil.match(Op_XorL, -1, Op_AddL, -1, -1);
2016     }
2017   }
2018   return false;
2019 }
2020 #endif // X86
2021 
2022 // A method-klass-holder may be passed in the inline_cache_reg
2023 // and then expanded into the inline_cache_reg and a method_oop register
2024 //   defined in ad_<arch>.cpp
2025 
2026 
2027 //------------------------------find_shared------------------------------------
2028 // Set bits if Node is shared or otherwise a root
2029 void Matcher::find_shared( Node *n ) {
2030   // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc
2031   MStack mstack(C->live_nodes() * 2);
2032   // Mark nodes as address_visited if they are inputs to an address expression
2033   VectorSet address_visited(Thread::current()->resource_area());
2034   mstack.push(n, Visit);     // Don't need to pre-visit root node
2035   while (mstack.is_nonempty()) {
2036     n = mstack.node();       // Leave node on stack
2037     Node_State nstate = mstack.state();
2038     uint nop = n->Opcode();
2039     if (nstate == Pre_Visit) {
2040       if (address_visited.test(n->_idx)) { // Visited in address already?
2041         // Flag as visited and shared now.
2042         set_visited(n);
2043       }
2044       if (is_visited(n)) {   // Visited already?
2045         // Node is shared and has no reason to clone.  Flag it as shared.
2046         // This causes it to match into a register for the sharing.
2047         set_shared(n);       // Flag as shared and
2048         if (n->is_DecodeNarrowPtr()) {
2049           // Oop field/array element loads must be shared but since
2050           // they are shared through a DecodeN they may appear to have
2051           // a single use so force sharing here.
2052           set_shared(n->in(1));
2053         }
2054         mstack.pop();        // remove node from stack
2055         continue;
2056       }
2057       nstate = Visit; // Not already visited; so visit now
2058     }
2059     if (nstate == Visit) {
2060       mstack.set_state(Post_Visit);
2061       set_visited(n);   // Flag as visited now
2062       bool mem_op = false;
2063 
2064       switch( nop ) {  // Handle some opcodes special
2065       case Op_Phi:             // Treat Phis as shared roots
2066       case Op_Parm:
2067       case Op_Proj:            // All handled specially during matching
2068       case Op_SafePointScalarObject:
2069         set_shared(n);
2070         set_dontcare(n);
2071         break;
2072       case Op_If:
2073       case Op_CountedLoopEnd:
2074         mstack.set_state(Alt_Post_Visit); // Alternative way
2075         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
2076         // with matching cmp/branch in 1 instruction.  The Matcher needs the
2077         // Bool and CmpX side-by-side, because it can only get at constants
2078         // that are at the leaves of Match trees, and the Bool's condition acts
2079         // as a constant here.
2080         mstack.push(n->in(1), Visit);         // Clone the Bool
2081         mstack.push(n->in(0), Pre_Visit);     // Visit control input
2082         continue; // while (mstack.is_nonempty())
2083       case Op_ConvI2D:         // These forms efficiently match with a prior
2084       case Op_ConvI2F:         //   Load but not a following Store
2085         if( n->in(1)->is_Load() &&        // Prior load
2086             n->outcnt() == 1 &&           // Not already shared
2087             n->unique_out()->is_Store() ) // Following store
2088           set_shared(n);       // Force it to be a root
2089         break;
2090       case Op_ReverseBytesI:
2091       case Op_ReverseBytesL:
2092         if( n->in(1)->is_Load() &&        // Prior load
2093             n->outcnt() == 1 )            // Not already shared
2094           set_shared(n);                  // Force it to be a root
2095         break;
2096       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
2097       case Op_IfFalse:
2098       case Op_IfTrue:
2099       case Op_MachProj:
2100       case Op_MergeMem:
2101       case Op_Catch:
2102       case Op_CatchProj:
2103       case Op_CProj:
2104       case Op_JumpProj:
2105       case Op_JProj:
2106       case Op_NeverBranch:
2107         set_dontcare(n);
2108         break;
2109       case Op_Jump:
2110         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
2111         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
2112         continue;                             // while (mstack.is_nonempty())
2113       case Op_StrComp:
2114       case Op_StrEquals:
2115       case Op_StrIndexOf:
2116       case Op_AryEq:
2117       case Op_EncodeISOArray:
2118         set_shared(n); // Force result into register (it will be anyways)
2119         break;
2120       case Op_ConP: {  // Convert pointers above the centerline to NUL
2121         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2122         const TypePtr* tp = tn->type()->is_ptr();
2123         if (tp->_ptr == TypePtr::AnyNull) {
2124           tn->set_type(TypePtr::NULL_PTR);
2125         }
2126         break;
2127       }
2128       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
2129         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2130         const TypePtr* tp = tn->type()->make_ptr();
2131         if (tp && tp->_ptr == TypePtr::AnyNull) {
2132           tn->set_type(TypeNarrowOop::NULL_PTR);
2133         }
2134         break;
2135       }
2136       case Op_Binary:         // These are introduced in the Post_Visit state.
2137         ShouldNotReachHere();
2138         break;
2139       case Op_ClearArray:
2140       case Op_SafePoint:
2141         mem_op = true;
2142         break;
2143       default:
2144         if( n->is_Store() ) {
2145           // Do match stores, despite no ideal reg
2146           mem_op = true;
2147           break;
2148         }
2149         if( n->is_Mem() ) { // Loads and LoadStores
2150           mem_op = true;
2151           // Loads must be root of match tree due to prior load conflict
2152           if( C->subsume_loads() == false )
2153             set_shared(n);
2154         }
2155         // Fall into default case
2156         if( !n->ideal_reg() )
2157           set_dontcare(n);  // Unmatchable Nodes
2158       } // end_switch
2159 
2160       for(int i = n->req() - 1; i >= 0; --i) { // For my children
2161         Node *m = n->in(i); // Get ith input
2162         if (m == NULL) continue;  // Ignore NULLs
2163         uint mop = m->Opcode();
2164 
2165         // Must clone all producers of flags, or we will not match correctly.
2166         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2167         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2168         // are also there, so we may match a float-branch to int-flags and
2169         // expect the allocator to haul the flags from the int-side to the
2170         // fp-side.  No can do.
2171         if( _must_clone[mop] ) {
2172           mstack.push(m, Visit);
2173           continue; // for(int i = ...)
2174         }
2175 
2176         // if 'n' and 'm' are part of a graph for BMI instruction, clone this node.
2177 #ifdef X86
2178         if (UseBMI1Instructions && is_bmi_pattern(n, m)) {
2179           mstack.push(m, Visit);
2180           continue;
2181         }
2182 #endif
2183 
2184         // Clone addressing expressions as they are "free" in memory access instructions
2185         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
2186           // Some inputs for address expression are not put on stack
2187           // to avoid marking them as shared and forcing them into register
2188           // if they are used only in address expressions.
2189           // But they should be marked as shared if there are other uses
2190           // besides address expressions.
2191 
2192           Node *off = m->in(AddPNode::Offset);
2193           if( off->is_Con() &&
2194               // When there are other uses besides address expressions
2195               // put it on stack and mark as shared.
2196               !is_visited(m) ) {
2197             address_visited.test_set(m->_idx); // Flag as address_visited
2198             Node *adr = m->in(AddPNode::Address);
2199 
2200             // Intel, ARM and friends can handle 2 adds in addressing mode
2201             if( clone_shift_expressions && adr->is_AddP() &&
2202                 // AtomicAdd is not an addressing expression.
2203                 // Cheap to find it by looking for screwy base.
2204                 !adr->in(AddPNode::Base)->is_top() &&
2205                 // Are there other uses besides address expressions?
2206                 !is_visited(adr) ) {
2207               address_visited.set(adr->_idx); // Flag as address_visited
2208               Node *shift = adr->in(AddPNode::Offset);
2209               // Check for shift by small constant as well
2210               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
2211                   shift->in(2)->get_int() <= 3 &&
2212                   // Are there other uses besides address expressions?
2213                   !is_visited(shift) ) {
2214                 address_visited.set(shift->_idx); // Flag as address_visited
2215                 mstack.push(shift->in(2), Visit);
2216                 Node *conv = shift->in(1);
2217 #ifdef _LP64
2218                 // Allow Matcher to match the rule which bypass
2219                 // ConvI2L operation for an array index on LP64
2220                 // if the index value is positive.
2221                 if( conv->Opcode() == Op_ConvI2L &&
2222                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
2223                     // Are there other uses besides address expressions?
2224                     !is_visited(conv) ) {
2225                   address_visited.set(conv->_idx); // Flag as address_visited
2226                   mstack.push(conv->in(1), Pre_Visit);
2227                 } else
2228 #endif
2229                 mstack.push(conv, Pre_Visit);
2230               } else {
2231                 mstack.push(shift, Pre_Visit);
2232               }
2233               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
2234               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
2235             } else {  // Sparc, Alpha, PPC and friends
2236               mstack.push(adr, Pre_Visit);
2237             }
2238 
2239             // Clone X+offset as it also folds into most addressing expressions
2240             mstack.push(off, Visit);
2241             mstack.push(m->in(AddPNode::Base), Pre_Visit);
2242             continue; // for(int i = ...)
2243           } // if( off->is_Con() )
2244         }   // if( mem_op &&
2245         mstack.push(m, Pre_Visit);
2246       }     // for(int i = ...)
2247     }
2248     else if (nstate == Alt_Post_Visit) {
2249       mstack.pop(); // Remove node from stack
2250       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2251       // shared and all users of the Bool need to move the Cmp in parallel.
2252       // This leaves both the Bool and the If pointing at the Cmp.  To
2253       // prevent the Matcher from trying to Match the Cmp along both paths
2254       // BoolNode::match_edge always returns a zero.
2255 
2256       // We reorder the Op_If in a pre-order manner, so we can visit without
2257       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2258       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2259     }
2260     else if (nstate == Post_Visit) {
2261       mstack.pop(); // Remove node from stack
2262 
2263       // Now hack a few special opcodes
2264       switch( n->Opcode() ) {       // Handle some opcodes special
2265       case Op_StorePConditional:
2266       case Op_StoreIConditional:
2267       case Op_StoreLConditional:
2268       case Op_CompareAndSwapI:
2269       case Op_CompareAndSwapL:
2270       case Op_CompareAndSwapP:
2271       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2272         Node *newval = n->in(MemNode::ValueIn );
2273         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
2274         Node *pair = new (C) BinaryNode( oldval, newval );
2275         n->set_req(MemNode::ValueIn,pair);
2276         n->del_req(LoadStoreConditionalNode::ExpectedIn);
2277         break;
2278       }
2279       case Op_CMoveD:              // Convert trinary to binary-tree
2280       case Op_CMoveF:
2281       case Op_CMoveI:
2282       case Op_CMoveL:
2283       case Op_CMoveN:
2284       case Op_CMoveP: {
2285         // Restructure into a binary tree for Matching.  It's possible that
2286         // we could move this code up next to the graph reshaping for IfNodes
2287         // or vice-versa, but I do not want to debug this for Ladybird.
2288         // 10/2/2000 CNC.
2289         Node *pair1 = new (C) BinaryNode(n->in(1),n->in(1)->in(1));
2290         n->set_req(1,pair1);
2291         Node *pair2 = new (C) BinaryNode(n->in(2),n->in(3));
2292         n->set_req(2,pair2);
2293         n->del_req(3);
2294         break;
2295       }
2296       case Op_LoopLimit: {
2297         Node *pair1 = new (C) BinaryNode(n->in(1),n->in(2));
2298         n->set_req(1,pair1);
2299         n->set_req(2,n->in(3));
2300         n->del_req(3);
2301         break;
2302       }
2303       case Op_StrEquals: {
2304         Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
2305         n->set_req(2,pair1);
2306         n->set_req(3,n->in(4));
2307         n->del_req(4);
2308         break;
2309       }
2310       case Op_StrComp:
2311       case Op_StrIndexOf: {
2312         Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
2313         n->set_req(2,pair1);
2314         Node *pair2 = new (C) BinaryNode(n->in(4),n->in(5));
2315         n->set_req(3,pair2);
2316         n->del_req(5);
2317         n->del_req(4);
2318         break;
2319       }
2320       case Op_EncodeISOArray: {
2321         // Restructure into a binary tree for Matching.
2322         Node* pair = new (C) BinaryNode(n->in(3), n->in(4));
2323         n->set_req(3, pair);
2324         n->del_req(4);
2325         break;
2326       }
2327       default:
2328         break;
2329       }
2330     }
2331     else {
2332       ShouldNotReachHere();
2333     }
2334   } // end of while (mstack.is_nonempty())
2335 }
2336 
2337 #ifdef ASSERT
2338 // machine-independent root to machine-dependent root
2339 void Matcher::dump_old2new_map() {
2340   _old2new_map.dump();
2341 }
2342 #endif
2343 
2344 //---------------------------collect_null_checks-------------------------------
2345 // Find null checks in the ideal graph; write a machine-specific node for
2346 // it.  Used by later implicit-null-check handling.  Actually collects
2347 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2348 // value being tested.
2349 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2350   Node *iff = proj->in(0);
2351   if( iff->Opcode() == Op_If ) {
2352     // During matching If's have Bool & Cmp side-by-side
2353     BoolNode *b = iff->in(1)->as_Bool();
2354     Node *cmp = iff->in(2);
2355     int opc = cmp->Opcode();
2356     if (opc != Op_CmpP && opc != Op_CmpN) return;
2357 
2358     const Type* ct = cmp->in(2)->bottom_type();
2359     if (ct == TypePtr::NULL_PTR ||
2360         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2361 
2362       bool push_it = false;
2363       if( proj->Opcode() == Op_IfTrue ) {
2364         extern int all_null_checks_found;
2365         all_null_checks_found++;
2366         if( b->_test._test == BoolTest::ne ) {
2367           push_it = true;
2368         }
2369       } else {
2370         assert( proj->Opcode() == Op_IfFalse, "" );
2371         if( b->_test._test == BoolTest::eq ) {
2372           push_it = true;
2373         }
2374       }
2375       if( push_it ) {
2376         _null_check_tests.push(proj);
2377         Node* val = cmp->in(1);
2378 #ifdef _LP64
2379         if (val->bottom_type()->isa_narrowoop() &&
2380             !Matcher::narrow_oop_use_complex_address()) {
2381           //
2382           // Look for DecodeN node which should be pinned to orig_proj.
2383           // On platforms (Sparc) which can not handle 2 adds
2384           // in addressing mode we have to keep a DecodeN node and
2385           // use it to do implicit NULL check in address.
2386           //
2387           // DecodeN node was pinned to non-null path (orig_proj) during
2388           // CastPP transformation in final_graph_reshaping_impl().
2389           //
2390           uint cnt = orig_proj->outcnt();
2391           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2392             Node* d = orig_proj->raw_out(i);
2393             if (d->is_DecodeN() && d->in(1) == val) {
2394               val = d;
2395               val->set_req(0, NULL); // Unpin now.
2396               // Mark this as special case to distinguish from
2397               // a regular case: CmpP(DecodeN, NULL).
2398               val = (Node*)(((intptr_t)val) | 1);
2399               break;
2400             }
2401           }
2402         }
2403 #endif
2404         _null_check_tests.push(val);
2405       }
2406     }
2407   }
2408 }
2409 
2410 //---------------------------validate_null_checks------------------------------
2411 // Its possible that the value being NULL checked is not the root of a match
2412 // tree.  If so, I cannot use the value in an implicit null check.
2413 void Matcher::validate_null_checks( ) {
2414   uint cnt = _null_check_tests.size();
2415   for( uint i=0; i < cnt; i+=2 ) {
2416     Node *test = _null_check_tests[i];
2417     Node *val = _null_check_tests[i+1];
2418     bool is_decoden = ((intptr_t)val) & 1;
2419     val = (Node*)(((intptr_t)val) & ~1);
2420     if (has_new_node(val)) {
2421       Node* new_val = new_node(val);
2422       if (is_decoden) {
2423         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
2424         // Note: new_val may have a control edge if
2425         // the original ideal node DecodeN was matched before
2426         // it was unpinned in Matcher::collect_null_checks().
2427         // Unpin the mach node and mark it.
2428         new_val->set_req(0, NULL);
2429         new_val = (Node*)(((intptr_t)new_val) | 1);
2430       }
2431       // Is a match-tree root, so replace with the matched value
2432       _null_check_tests.map(i+1, new_val);
2433     } else {
2434       // Yank from candidate list
2435       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2436       _null_check_tests.map(i,_null_check_tests[--cnt]);
2437       _null_check_tests.pop();
2438       _null_check_tests.pop();
2439       i-=2;
2440     }
2441   }
2442 }
2443 
2444 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2445 // atomic instruction acting as a store_load barrier without any
2446 // intervening volatile load, and thus we don't need a barrier here.
2447 // We retain the Node to act as a compiler ordering barrier.
2448 bool Matcher::post_store_load_barrier(const Node* vmb) {
2449   Compile* C = Compile::current();
2450   assert(vmb->is_MemBar(), "");
2451   assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
2452   const MemBarNode* membar = vmb->as_MemBar();
2453 
2454   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2455   Node* ctrl = NULL;
2456   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2457     Node* p = membar->fast_out(i);
2458     assert(p->is_Proj(), "only projections here");
2459     if ((p->as_Proj()->_con == TypeFunc::Control) &&
2460         !C->node_arena()->contains(p)) { // Unmatched old-space only
2461       ctrl = p;
2462       break;
2463     }
2464   }
2465   assert((ctrl != NULL), "missing control projection");
2466 
2467   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2468     Node *x = ctrl->fast_out(j);
2469     int xop = x->Opcode();
2470 
2471     // We don't need current barrier if we see another or a lock
2472     // before seeing volatile load.
2473     //
2474     // Op_Fastunlock previously appeared in the Op_* list below.
2475     // With the advent of 1-0 lock operations we're no longer guaranteed
2476     // that a monitor exit operation contains a serializing instruction.
2477 
2478     if (xop == Op_MemBarVolatile ||
2479         xop == Op_CompareAndSwapL ||
2480         xop == Op_CompareAndSwapP ||
2481         xop == Op_CompareAndSwapN ||
2482         xop == Op_CompareAndSwapI) {
2483       return true;
2484     }
2485 
2486     // Op_FastLock previously appeared in the Op_* list above.
2487     // With biased locking we're no longer guaranteed that a monitor
2488     // enter operation contains a serializing instruction.
2489     if ((xop == Op_FastLock) && !UseBiasedLocking) {
2490       return true;
2491     }
2492 
2493     if (x->is_MemBar()) {
2494       // We must retain this membar if there is an upcoming volatile
2495       // load, which will be followed by acquire membar.
2496       if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
2497         return false;
2498       } else {
2499         // For other kinds of barriers, check by pretending we
2500         // are them, and seeing if we can be removed.
2501         return post_store_load_barrier(x->as_MemBar());
2502       }
2503     }
2504 
2505     // probably not necessary to check for these
2506     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2507       return false;
2508     }
2509   }
2510   return false;
2511 }
2512 
2513 // Check whether node n is a branch to an uncommon trap that we could
2514 // optimize as test with very high branch costs in case of going to
2515 // the uncommon trap. The code must be able to be recompiled to use
2516 // a cheaper test.
2517 bool Matcher::branches_to_uncommon_trap(const Node *n) {
2518   // Don't do it for natives, adapters, or runtime stubs
2519   Compile *C = Compile::current();
2520   if (!C->is_method_compilation()) return false;
2521 
2522   assert(n->is_If(), "You should only call this on if nodes.");
2523   IfNode *ifn = n->as_If();
2524 
2525   Node *ifFalse = NULL;
2526   for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
2527     if (ifn->fast_out(i)->is_IfFalse()) {
2528       ifFalse = ifn->fast_out(i);
2529       break;
2530     }
2531   }
2532   assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
2533 
2534   Node *reg = ifFalse;
2535   int cnt = 4; // We must protect against cycles.  Limit to 4 iterations.
2536                // Alternatively use visited set?  Seems too expensive.
2537   while (reg != NULL && cnt > 0) {
2538     CallNode *call = NULL;
2539     RegionNode *nxt_reg = NULL;
2540     for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
2541       Node *o = reg->fast_out(i);
2542       if (o->is_Call()) {
2543         call = o->as_Call();
2544       }
2545       if (o->is_Region()) {
2546         nxt_reg = o->as_Region();
2547       }
2548     }
2549 
2550     if (call &&
2551         call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
2552       const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
2553       if (trtype->isa_int() && trtype->is_int()->is_con()) {
2554         jint tr_con = trtype->is_int()->get_con();
2555         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
2556         Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
2557         assert((int)reason < (int)BitsPerInt, "recode bit map");
2558 
2559         if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
2560             && action != Deoptimization::Action_none) {
2561           // This uncommon trap is sure to recompile, eventually.
2562           // When that happens, C->too_many_traps will prevent
2563           // this transformation from happening again.
2564           return true;
2565         }
2566       }
2567     }
2568 
2569     reg = nxt_reg;
2570     cnt--;
2571   }
2572 
2573   return false;
2574 }
2575 
2576 //=============================================================================
2577 //---------------------------State---------------------------------------------
2578 State::State(void) {
2579 #ifdef ASSERT
2580   _id = 0;
2581   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2582   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2583   //memset(_cost, -1, sizeof(_cost));
2584   //memset(_rule, -1, sizeof(_rule));
2585 #endif
2586   memset(_valid, 0, sizeof(_valid));
2587 }
2588 
2589 #ifdef ASSERT
2590 State::~State() {
2591   _id = 99;
2592   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2593   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2594   memset(_cost, -3, sizeof(_cost));
2595   memset(_rule, -3, sizeof(_rule));
2596 }
2597 #endif
2598 
2599 #ifndef PRODUCT
2600 //---------------------------dump----------------------------------------------
2601 void State::dump() {
2602   tty->print("\n");
2603   dump(0);
2604 }
2605 
2606 void State::dump(int depth) {
2607   for( int j = 0; j < depth; j++ )
2608     tty->print("   ");
2609   tty->print("--N: ");
2610   _leaf->dump();
2611   uint i;
2612   for( i = 0; i < _LAST_MACH_OPER; i++ )
2613     // Check for valid entry
2614     if( valid(i) ) {
2615       for( int j = 0; j < depth; j++ )
2616         tty->print("   ");
2617         assert(_cost[i] != max_juint, "cost must be a valid value");
2618         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2619         tty->print_cr("%s  %d  %s",
2620                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2621       }
2622   tty->cr();
2623 
2624   for( i=0; i<2; i++ )
2625     if( _kids[i] )
2626       _kids[i]->dump(depth+1);
2627 }
2628 #endif