1 /*
   2  * Copyright (c) 2010, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "runtime/advancedThresholdPolicy.hpp"
  27 #include "runtime/simpleThresholdPolicy.inline.hpp"
  28 
  29 #ifdef TIERED
  30 // Print an event.
  31 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
  32                                              int bci, CompLevel level) {
  33   tty->print(" rate=");
  34   if (mh->prev_time() == 0) tty->print("n/a");
  35   else tty->print("%f", mh->rate());
  36 
  37   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
  38                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
  39 
  40 }
  41 
  42 void AdvancedThresholdPolicy::initialize() {
  43   // Turn on ergonomic compiler count selection
  44   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
  45     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
  46   }
  47   int count = CICompilerCount;
  48   if (CICompilerCountPerCPU) {
  49     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
  50     int log_cpu = log2_int(os::active_processor_count());
  51     int loglog_cpu = log2_int(MAX2(log_cpu, 1));
  52     count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
  53   }
  54 
  55   set_c1_count(MAX2(count / 3, 1));
  56   set_c2_count(MAX2(count - c1_count(), 1));
  57   FLAG_SET_ERGO(intx, CICompilerCount, c1_count() + c2_count());
  58 
  59   // Some inlining tuning
  60 #if defined(X86) || defined(AARCH64)
  61   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  62     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
  63   }
  64 #endif
  65 
  66 #ifdef SPARC
  67   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  68     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
  69   }
  70 #endif
  71 
  72   set_increase_threshold_at_ratio();
  73   set_start_time(os::javaTimeMillis());
  74 }
  75 
  76 // update_rate() is called from select_task() while holding a compile queue lock.
  77 void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
  78   // Skip update if counters are absent.
  79   // Can't allocate them since we are holding compile queue lock.
  80   if (m->method_counters() == NULL)  return;
  81 
  82   if (is_old(m)) {
  83     // We don't remove old methods from the queue,
  84     // so we can just zero the rate.
  85     m->set_rate(0);
  86     return;
  87   }
  88 
  89   // We don't update the rate if we've just came out of a safepoint.
  90   // delta_s is the time since last safepoint in milliseconds.
  91   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
  92   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
  93   // How many events were there since the last time?
  94   int event_count = m->invocation_count() + m->backedge_count();
  95   int delta_e = event_count - m->prev_event_count();
  96 
  97   // We should be running for at least 1ms.
  98   if (delta_s >= TieredRateUpdateMinTime) {
  99     // And we must've taken the previous point at least 1ms before.
 100     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
 101       m->set_prev_time(t);
 102       m->set_prev_event_count(event_count);
 103       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
 104     } else {
 105       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
 106         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
 107         m->set_rate(0);
 108       }
 109     }
 110   }
 111 }
 112 
 113 // Check if this method has been stale from a given number of milliseconds.
 114 // See select_task().
 115 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
 116   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
 117   jlong delta_t = t - m->prev_time();
 118   if (delta_t > timeout && delta_s > timeout) {
 119     int event_count = m->invocation_count() + m->backedge_count();
 120     int delta_e = event_count - m->prev_event_count();
 121     // Return true if there were no events.
 122     return delta_e == 0;
 123   }
 124   return false;
 125 }
 126 
 127 // We don't remove old methods from the compile queue even if they have
 128 // very low activity. See select_task().
 129 bool AdvancedThresholdPolicy::is_old(Method* method) {
 130   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
 131 }
 132 
 133 double AdvancedThresholdPolicy::weight(Method* method) {
 134   return (double)(method->rate() + 1) *
 135     (method->invocation_count() + 1) * (method->backedge_count() + 1);
 136 }
 137 
 138 // Apply heuristics and return true if x should be compiled before y
 139 bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
 140   if (x->highest_comp_level() > y->highest_comp_level()) {
 141     // recompilation after deopt
 142     return true;
 143   } else
 144     if (x->highest_comp_level() == y->highest_comp_level()) {
 145       if (weight(x) > weight(y)) {
 146         return true;
 147       }
 148     }
 149   return false;
 150 }
 151 
 152 // Is method profiled enough?
 153 bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
 154   MethodData* mdo = method->method_data();
 155   if (mdo != NULL) {
 156     int i = mdo->invocation_count_delta();
 157     int b = mdo->backedge_count_delta();
 158     return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
 159   }
 160   return false;
 161 }
 162 
 163 // Called with the queue locked and with at least one element
 164 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
 165   CompileTask *max_task = NULL;
 166   Method* max_method = NULL;
 167   jlong t = os::javaTimeMillis();
 168   // Iterate through the queue and find a method with a maximum rate.
 169   for (CompileTask* task = compile_queue->first(); task != NULL;) {
 170     CompileTask* next_task = task->next();
 171     Method* method = task->method();
 172     update_rate(t, method);
 173     if (max_task == NULL) {
 174       max_task = task;
 175       max_method = method;
 176     } else {
 177       // If a method has been stale for some time, remove it from the queue.
 178       if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
 179         if (PrintTieredEvents) {
 180           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
 181         }
 182         compile_queue->remove_and_mark_stale(task);
 183         method->clear_queued_for_compilation();
 184         task = next_task;
 185         continue;
 186       }
 187 
 188       // Select a method with a higher rate
 189       if (compare_methods(method, max_method)) {
 190         max_task = task;
 191         max_method = method;
 192       }
 193     }
 194     task = next_task;
 195   }
 196 
 197   if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
 198       && is_method_profiled(max_method)) {
 199 
 200     if (CompileBroker::compilation_is_complete(max_method, max_task->osr_bci(), CompLevel_limited_profile)) {
 201       if (PrintTieredEvents) {
 202         print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 203       }
 204       compile_queue->remove_and_mark_stale(max_task);
 205       max_method->clear_queued_for_compilation();
 206       return NULL;
 207     }
 208 
 209     max_task->set_comp_level(CompLevel_limited_profile);
 210     if (PrintTieredEvents) {
 211       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 212     }
 213   }
 214 
 215   return max_task;
 216 }
 217 
 218 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
 219   double queue_size = CompileBroker::queue_size(level);
 220   int comp_count = compiler_count(level);
 221   double k = queue_size / (feedback_k * comp_count) + 1;
 222 
 223   // Increase C1 compile threshold when the code cache is filled more
 224   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 225   // The main intention is to keep enough free space for C2 compiled code
 226   // to achieve peak performance if the code cache is under stress.
 227   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
 228     double current_reverse_free_ratio = CodeCache::reverse_free_ratio();
 229     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 230       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 231     }
 232   }
 233   return k;
 234 }
 235 
 236 // Call and loop predicates determine whether a transition to a higher
 237 // compilation level should be performed (pointers to predicate functions
 238 // are passed to common()).
 239 // Tier?LoadFeedback is basically a coefficient that determines of
 240 // how many methods per compiler thread can be in the queue before
 241 // the threshold values double.
 242 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
 243   switch(cur_level) {
 244   case CompLevel_none:
 245   case CompLevel_limited_profile: {
 246     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 247     return loop_predicate_helper<CompLevel_none>(i, b, k);
 248   }
 249   case CompLevel_full_profile: {
 250     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 251     return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
 252   }
 253   default:
 254     return true;
 255   }
 256 }
 257 
 258 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
 259   switch(cur_level) {
 260   case CompLevel_none:
 261   case CompLevel_limited_profile: {
 262     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 263     return call_predicate_helper<CompLevel_none>(i, b, k);
 264   }
 265   case CompLevel_full_profile: {
 266     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 267     return call_predicate_helper<CompLevel_full_profile>(i, b, k);
 268   }
 269   default:
 270     return true;
 271   }
 272 }
 273 
 274 // If a method is old enough and is still in the interpreter we would want to
 275 // start profiling without waiting for the compiled method to arrive.
 276 // We also take the load on compilers into the account.
 277 bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
 278   if (cur_level == CompLevel_none &&
 279       CompileBroker::queue_size(CompLevel_full_optimization) <=
 280       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 281     int i = method->invocation_count();
 282     int b = method->backedge_count();
 283     double k = Tier0ProfilingStartPercentage / 100.0;
 284     return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
 285   }
 286   return false;
 287 }
 288 
 289 // Inlining control: if we're compiling a profiled method with C1 and the callee
 290 // is known to have OSRed in a C2 version, don't inline it.
 291 bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
 292   CompLevel comp_level = (CompLevel)env->comp_level();
 293   if (comp_level == CompLevel_full_profile ||
 294       comp_level == CompLevel_limited_profile) {
 295     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
 296   }
 297   return false;
 298 }
 299 
 300 // Create MDO if necessary.
 301 void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
 302   if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
 303   if (mh->method_data() == NULL) {
 304     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
 305   }
 306 }
 307 
 308 
 309 /*
 310  * Method states:
 311  *   0 - interpreter (CompLevel_none)
 312  *   1 - pure C1 (CompLevel_simple)
 313  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
 314  *   3 - C1 with full profiling (CompLevel_full_profile)
 315  *   4 - C2 (CompLevel_full_optimization)
 316  *
 317  * Common state transition patterns:
 318  * a. 0 -> 3 -> 4.
 319  *    The most common path. But note that even in this straightforward case
 320  *    profiling can start at level 0 and finish at level 3.
 321  *
 322  * b. 0 -> 2 -> 3 -> 4.
 323  *    This case occures when the load on C2 is deemed too high. So, instead of transitioning
 324  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
 325  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
 326  *
 327  * c. 0 -> (3->2) -> 4.
 328  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
 329  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
 330  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
 331  *    without full profiling while c2 is compiling.
 332  *
 333  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
 334  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
 335  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
 336  *
 337  * e. 0 -> 4.
 338  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 339  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 340  *    the compiled version already exists).
 341  *
 342  * Note that since state 0 can be reached from any other state via deoptimization different loops
 343  * are possible.
 344  *
 345  */
 346 
 347 // Common transition function. Given a predicate determines if a method should transition to another level.
 348 CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
 349   CompLevel next_level = cur_level;
 350   int i = method->invocation_count();
 351   int b = method->backedge_count();
 352 
 353   if (is_trivial(method)) {
 354     next_level = CompLevel_simple;
 355   } else {
 356     switch(cur_level) {
 357     case CompLevel_none:
 358       // If we were at full profile level, would we switch to full opt?
 359       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
 360         next_level = CompLevel_full_optimization;
 361       } else if ((this->*p)(i, b, cur_level)) {
 362         // C1-generated fully profiled code is about 30% slower than the limited profile
 363         // code that has only invocation and backedge counters. The observation is that
 364         // if C2 queue is large enough we can spend too much time in the fully profiled code
 365         // while waiting for C2 to pick the method from the queue. To alleviate this problem
 366         // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
 367         // we choose to compile a limited profiled version and then recompile with full profiling
 368         // when the load on C2 goes down.
 369         if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
 370                                  Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 371           next_level = CompLevel_limited_profile;
 372         } else {
 373           next_level = CompLevel_full_profile;
 374         }
 375       }
 376       break;
 377     case CompLevel_limited_profile:
 378       if (is_method_profiled(method)) {
 379         // Special case: we got here because this method was fully profiled in the interpreter.
 380         next_level = CompLevel_full_optimization;
 381       } else {
 382         MethodData* mdo = method->method_data();
 383         if (mdo != NULL) {
 384           if (mdo->would_profile()) {
 385             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 386                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 387                                      (this->*p)(i, b, cur_level))) {
 388               next_level = CompLevel_full_profile;
 389             }
 390           } else {
 391             next_level = CompLevel_full_optimization;
 392           }
 393         }
 394       }
 395       break;
 396     case CompLevel_full_profile:
 397       {
 398         MethodData* mdo = method->method_data();
 399         if (mdo != NULL) {
 400           if (mdo->would_profile()) {
 401             int mdo_i = mdo->invocation_count_delta();
 402             int mdo_b = mdo->backedge_count_delta();
 403             if ((this->*p)(mdo_i, mdo_b, cur_level)) {
 404               next_level = CompLevel_full_optimization;
 405             }
 406           } else {
 407             next_level = CompLevel_full_optimization;
 408           }
 409         }
 410       }
 411       break;
 412     }
 413   }
 414   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
 415 }
 416 
 417 // Determine if a method should be compiled with a normal entry point at a different level.
 418 CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level) {
 419   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
 420                              common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
 421   CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
 422 
 423   // If OSR method level is greater than the regular method level, the levels should be
 424   // equalized by raising the regular method level in order to avoid OSRs during each
 425   // invocation of the method.
 426   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
 427     MethodData* mdo = method->method_data();
 428     guarantee(mdo != NULL, "MDO should not be NULL");
 429     if (mdo->invocation_count() >= 1) {
 430       next_level = CompLevel_full_optimization;
 431     }
 432   } else {
 433     next_level = MAX2(osr_level, next_level);
 434   }
 435   return next_level;
 436 }
 437 
 438 // Determine if we should do an OSR compilation of a given method.
 439 CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level) {
 440   CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
 441   if (cur_level == CompLevel_none) {
 442     // If there is a live OSR method that means that we deopted to the interpreter
 443     // for the transition.
 444     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
 445     if (osr_level > CompLevel_none) {
 446       return osr_level;
 447     }
 448   }
 449   return next_level;
 450 }
 451 
 452 // Update the rate and submit compile
 453 void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, JavaThread* thread) {
 454   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
 455   update_rate(os::javaTimeMillis(), mh());
 456   CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
 457 }
 458 
 459 // Handle the invocation event.
 460 void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
 461                                                       CompLevel level, nmethod* nm, JavaThread* thread) {
 462   if (should_create_mdo(mh(), level)) {
 463     create_mdo(mh, thread);
 464   }
 465   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
 466     CompLevel next_level = call_event(mh(), level);
 467     if (next_level != level) {
 468       compile(mh, InvocationEntryBci, next_level, thread);
 469     }
 470   }
 471 }
 472 
 473 // Handle the back branch event. Notice that we can compile the method
 474 // with a regular entry from here.
 475 void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
 476                                                        int bci, CompLevel level, nmethod* nm, JavaThread* thread) {
 477   if (should_create_mdo(mh(), level)) {
 478     create_mdo(mh, thread);
 479   }
 480   // Check if MDO should be created for the inlined method
 481   if (should_create_mdo(imh(), level)) {
 482     create_mdo(imh, thread);
 483   }
 484 
 485   if (is_compilation_enabled()) {
 486     CompLevel next_osr_level = loop_event(imh(), level);
 487     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
 488     // At the very least compile the OSR version
 489     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
 490       compile(imh, bci, next_osr_level, thread);
 491     }
 492 
 493     // Use loop event as an opportunity to also check if there's been
 494     // enough calls.
 495     CompLevel cur_level, next_level;
 496     if (mh() != imh()) { // If there is an enclosing method
 497       guarantee(nm != NULL, "Should have nmethod here");
 498       cur_level = comp_level(mh());
 499       next_level = call_event(mh(), cur_level);
 500 
 501       if (max_osr_level == CompLevel_full_optimization) {
 502         // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
 503         bool make_not_entrant = false;
 504         if (nm->is_osr_method()) {
 505           // This is an osr method, just make it not entrant and recompile later if needed
 506           make_not_entrant = true;
 507         } else {
 508           if (next_level != CompLevel_full_optimization) {
 509             // next_level is not full opt, so we need to recompile the
 510             // enclosing method without the inlinee
 511             cur_level = CompLevel_none;
 512             make_not_entrant = true;
 513           }
 514         }
 515         if (make_not_entrant) {
 516           if (PrintTieredEvents) {
 517             int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
 518             print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
 519           }
 520           nm->make_not_entrant();
 521         }
 522       }
 523       if (!CompileBroker::compilation_is_in_queue(mh)) {
 524         // Fix up next_level if necessary to avoid deopts
 525         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
 526           next_level = CompLevel_full_profile;
 527         }
 528         if (cur_level != next_level) {
 529           compile(mh, InvocationEntryBci, next_level, thread);
 530         }
 531       }
 532     } else {
 533       cur_level = comp_level(imh());
 534       next_level = call_event(imh(), cur_level);
 535       if (!CompileBroker::compilation_is_in_queue(imh) && (next_level != cur_level)) {
 536         compile(imh, InvocationEntryBci, next_level, thread);
 537       }
 538     }
 539   }
 540 }
 541 
 542 #endif // TIERED