1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/interpreterRuntime.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/forte.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiRedefineClassesTrace.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "prims/nativeLookup.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/hashtable.inline.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/xmlstream.hpp"
  61 #ifdef TARGET_ARCH_x86
  62 # include "nativeInst_x86.hpp"
  63 # include "vmreg_x86.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_aarch64
  66 # include "nativeInst_aarch64.hpp"
  67 # include "vmreg_aarch64.inline.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_sparc
  70 # include "nativeInst_sparc.hpp"
  71 # include "vmreg_sparc.inline.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_zero
  74 # include "nativeInst_zero.hpp"
  75 # include "vmreg_zero.inline.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_arm
  78 # include "nativeInst_arm.hpp"
  79 # include "vmreg_arm.inline.hpp"
  80 #endif
  81 #ifdef TARGET_ARCH_ppc
  82 # include "nativeInst_ppc.hpp"
  83 # include "vmreg_ppc.inline.hpp"
  84 #endif
  85 #ifdef COMPILER1
  86 #include "c1/c1_Runtime1.hpp"
  87 #endif
  88 
  89 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  90 
  91 // Shared stub locations
  92 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  93 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  94 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  95 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  96 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  97 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  98 
  99 DeoptimizationBlob* SharedRuntime::_deopt_blob;
 100 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
 101 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
 102 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
 103 
 104 #ifdef COMPILER2
 105 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 106 #endif // COMPILER2
 107 
 108 
 109 //----------------------------generate_stubs-----------------------------------
 110 void SharedRuntime::generate_stubs() {
 111   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 112   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 113   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 114   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 115   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 116   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 117 
 118 #ifdef COMPILER2
 119   // Vectors are generated only by C2.
 120   if (is_wide_vector(MaxVectorSize)) {
 121     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 122   }
 123 #endif // COMPILER2
 124   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 125   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 126 
 127   generate_deopt_blob();
 128 
 129 #ifdef COMPILER2
 130   generate_uncommon_trap_blob();
 131 #endif // COMPILER2
 132 }
 133 
 134 #include <math.h>
 135 
 136 #ifndef USDT2
 137 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
 138 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
 139                       char*, int, char*, int, char*, int);
 140 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
 141                       char*, int, char*, int, char*, int);
 142 #endif /* !USDT2 */
 143 
 144 // Implementation of SharedRuntime
 145 
 146 #ifndef PRODUCT
 147 // For statistics
 148 int SharedRuntime::_ic_miss_ctr = 0;
 149 int SharedRuntime::_wrong_method_ctr = 0;
 150 int SharedRuntime::_resolve_static_ctr = 0;
 151 int SharedRuntime::_resolve_virtual_ctr = 0;
 152 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 153 int SharedRuntime::_implicit_null_throws = 0;
 154 int SharedRuntime::_implicit_div0_throws = 0;
 155 int SharedRuntime::_throw_null_ctr = 0;
 156 
 157 int SharedRuntime::_nof_normal_calls = 0;
 158 int SharedRuntime::_nof_optimized_calls = 0;
 159 int SharedRuntime::_nof_inlined_calls = 0;
 160 int SharedRuntime::_nof_megamorphic_calls = 0;
 161 int SharedRuntime::_nof_static_calls = 0;
 162 int SharedRuntime::_nof_inlined_static_calls = 0;
 163 int SharedRuntime::_nof_interface_calls = 0;
 164 int SharedRuntime::_nof_optimized_interface_calls = 0;
 165 int SharedRuntime::_nof_inlined_interface_calls = 0;
 166 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 167 int SharedRuntime::_nof_removable_exceptions = 0;
 168 
 169 int SharedRuntime::_new_instance_ctr=0;
 170 int SharedRuntime::_new_array_ctr=0;
 171 int SharedRuntime::_multi1_ctr=0;
 172 int SharedRuntime::_multi2_ctr=0;
 173 int SharedRuntime::_multi3_ctr=0;
 174 int SharedRuntime::_multi4_ctr=0;
 175 int SharedRuntime::_multi5_ctr=0;
 176 int SharedRuntime::_mon_enter_stub_ctr=0;
 177 int SharedRuntime::_mon_exit_stub_ctr=0;
 178 int SharedRuntime::_mon_enter_ctr=0;
 179 int SharedRuntime::_mon_exit_ctr=0;
 180 int SharedRuntime::_partial_subtype_ctr=0;
 181 int SharedRuntime::_jbyte_array_copy_ctr=0;
 182 int SharedRuntime::_jshort_array_copy_ctr=0;
 183 int SharedRuntime::_jint_array_copy_ctr=0;
 184 int SharedRuntime::_jlong_array_copy_ctr=0;
 185 int SharedRuntime::_oop_array_copy_ctr=0;
 186 int SharedRuntime::_checkcast_array_copy_ctr=0;
 187 int SharedRuntime::_unsafe_array_copy_ctr=0;
 188 int SharedRuntime::_generic_array_copy_ctr=0;
 189 int SharedRuntime::_slow_array_copy_ctr=0;
 190 int SharedRuntime::_find_handler_ctr=0;
 191 int SharedRuntime::_rethrow_ctr=0;
 192 
 193 int     SharedRuntime::_ICmiss_index                    = 0;
 194 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 195 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 196 
 197 
 198 void SharedRuntime::trace_ic_miss(address at) {
 199   for (int i = 0; i < _ICmiss_index; i++) {
 200     if (_ICmiss_at[i] == at) {
 201       _ICmiss_count[i]++;
 202       return;
 203     }
 204   }
 205   int index = _ICmiss_index++;
 206   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 207   _ICmiss_at[index] = at;
 208   _ICmiss_count[index] = 1;
 209 }
 210 
 211 void SharedRuntime::print_ic_miss_histogram() {
 212   if (ICMissHistogram) {
 213     tty->print_cr ("IC Miss Histogram:");
 214     int tot_misses = 0;
 215     for (int i = 0; i < _ICmiss_index; i++) {
 216       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 217       tot_misses += _ICmiss_count[i];
 218     }
 219     tty->print_cr ("Total IC misses: %7d", tot_misses);
 220   }
 221 }
 222 #endif // PRODUCT
 223 
 224 #if INCLUDE_ALL_GCS
 225 
 226 // G1 write-barrier pre: executed before a pointer store.
 227 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 228   if (orig == NULL) {
 229     assert(false, "should be optimized out");
 230     return;
 231   }
 232   assert(orig->is_oop(true /* ignore mark word */), "Error");
 233   // store the original value that was in the field reference
 234   thread->satb_mark_queue().enqueue(orig);
 235 JRT_END
 236 
 237 // G1 write-barrier post: executed after a pointer store.
 238 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 239   thread->dirty_card_queue().enqueue(card_addr);
 240 JRT_END
 241 
 242 #endif // INCLUDE_ALL_GCS
 243 
 244 
 245 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 246   return x * y;
 247 JRT_END
 248 
 249 
 250 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 251   if (x == min_jlong && y == CONST64(-1)) {
 252     return x;
 253   } else {
 254     return x / y;
 255   }
 256 JRT_END
 257 
 258 
 259 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 260   if (x == min_jlong && y == CONST64(-1)) {
 261     return 0;
 262   } else {
 263     return x % y;
 264   }
 265 JRT_END
 266 
 267 
 268 const juint  float_sign_mask  = 0x7FFFFFFF;
 269 const juint  float_infinity   = 0x7F800000;
 270 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 271 const julong double_infinity  = CONST64(0x7FF0000000000000);
 272 
 273 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 274 #ifdef _WIN64
 275   // 64-bit Windows on amd64 returns the wrong values for
 276   // infinity operands.
 277   union { jfloat f; juint i; } xbits, ybits;
 278   xbits.f = x;
 279   ybits.f = y;
 280   // x Mod Infinity == x unless x is infinity
 281   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 282        ((ybits.i & float_sign_mask) == float_infinity) ) {
 283     return x;
 284   }
 285 #endif
 286   return ((jfloat)fmod((double)x,(double)y));
 287 JRT_END
 288 
 289 
 290 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 291 #ifdef _WIN64
 292   union { jdouble d; julong l; } xbits, ybits;
 293   xbits.d = x;
 294   ybits.d = y;
 295   // x Mod Infinity == x unless x is infinity
 296   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 297        ((ybits.l & double_sign_mask) == double_infinity) ) {
 298     return x;
 299   }
 300 #endif
 301   return ((jdouble)fmod((double)x,(double)y));
 302 JRT_END
 303 
 304 #ifdef __SOFTFP__
 305 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 306   return x + y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 310   return x - y;
 311 JRT_END
 312 
 313 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 314   return x * y;
 315 JRT_END
 316 
 317 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 318   return x / y;
 319 JRT_END
 320 
 321 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 322   return x + y;
 323 JRT_END
 324 
 325 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 326   return x - y;
 327 JRT_END
 328 
 329 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 330   return x * y;
 331 JRT_END
 332 
 333 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 334   return x / y;
 335 JRT_END
 336 
 337 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 338   return (jfloat)x;
 339 JRT_END
 340 
 341 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 342   return (jdouble)x;
 343 JRT_END
 344 
 345 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 346   return (jdouble)x;
 347 JRT_END
 348 
 349 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 350   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 351 JRT_END
 352 
 353 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 354   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 355 JRT_END
 356 
 357 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 358   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 359 JRT_END
 360 
 361 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 362   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 363 JRT_END
 364 
 365 // Functions to return the opposite of the aeabi functions for nan.
 366 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 367   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 371   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 375   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 379   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 380 JRT_END
 381 
 382 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 383   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 384 JRT_END
 385 
 386 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 387   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 388 JRT_END
 389 
 390 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 391   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 392 JRT_END
 393 
 394 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 395   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 396 JRT_END
 397 
 398 // Intrinsics make gcc generate code for these.
 399 float  SharedRuntime::fneg(float f)   {
 400   return -f;
 401 }
 402 
 403 double SharedRuntime::dneg(double f)  {
 404   return -f;
 405 }
 406 
 407 #endif // __SOFTFP__
 408 
 409 #if defined(__SOFTFP__) || defined(E500V2)
 410 // Intrinsics make gcc generate code for these.
 411 double SharedRuntime::dabs(double f)  {
 412   return (f <= (double)0.0) ? (double)0.0 - f : f;
 413 }
 414 
 415 #endif
 416 
 417 #if defined(__SOFTFP__) || defined(PPC32)
 418 double SharedRuntime::dsqrt(double f) {
 419   return sqrt(f);
 420 }
 421 #endif
 422 
 423 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 424   if (g_isnan(x))
 425     return 0;
 426   if (x >= (jfloat) max_jint)
 427     return max_jint;
 428   if (x <= (jfloat) min_jint)
 429     return min_jint;
 430   return (jint) x;
 431 JRT_END
 432 
 433 
 434 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 435   if (g_isnan(x))
 436     return 0;
 437   if (x >= (jfloat) max_jlong)
 438     return max_jlong;
 439   if (x <= (jfloat) min_jlong)
 440     return min_jlong;
 441   return (jlong) x;
 442 JRT_END
 443 
 444 
 445 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 446   if (g_isnan(x))
 447     return 0;
 448   if (x >= (jdouble) max_jint)
 449     return max_jint;
 450   if (x <= (jdouble) min_jint)
 451     return min_jint;
 452   return (jint) x;
 453 JRT_END
 454 
 455 
 456 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 457   if (g_isnan(x))
 458     return 0;
 459   if (x >= (jdouble) max_jlong)
 460     return max_jlong;
 461   if (x <= (jdouble) min_jlong)
 462     return min_jlong;
 463   return (jlong) x;
 464 JRT_END
 465 
 466 
 467 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 468   return (jfloat)x;
 469 JRT_END
 470 
 471 
 472 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 473   return (jfloat)x;
 474 JRT_END
 475 
 476 
 477 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 478   return (jdouble)x;
 479 JRT_END
 480 
 481 // Exception handling accross interpreter/compiler boundaries
 482 //
 483 // exception_handler_for_return_address(...) returns the continuation address.
 484 // The continuation address is the entry point of the exception handler of the
 485 // previous frame depending on the return address.
 486 
 487 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 488   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 489   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 490 
 491   // Reset method handle flag.
 492   thread->set_is_method_handle_return(false);
 493 
 494   // The fastest case first
 495   CodeBlob* blob = CodeCache::find_blob(return_address);
 496   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 497   if (nm != NULL) {
 498     // Set flag if return address is a method handle call site.
 499     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 500     // native nmethods don't have exception handlers
 501     assert(!nm->is_native_method(), "no exception handler");
 502     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 503     if (nm->is_deopt_pc(return_address)) {
 504       // If we come here because of a stack overflow, the stack may be
 505       // unguarded. Reguard the stack otherwise if we return to the
 506       // deopt blob and the stack bang causes a stack overflow we
 507       // crash.
 508       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 509       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 510       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 511       return SharedRuntime::deopt_blob()->unpack_with_exception();
 512     } else {
 513       return nm->exception_begin();
 514     }
 515   }
 516 
 517   // Entry code
 518   if (StubRoutines::returns_to_call_stub(return_address)) {
 519     return StubRoutines::catch_exception_entry();
 520   }
 521   // Interpreted code
 522   if (Interpreter::contains(return_address)) {
 523     return Interpreter::rethrow_exception_entry();
 524   }
 525 
 526   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 527   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 528 
 529 #ifndef PRODUCT
 530   { ResourceMark rm;
 531     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 532     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 533     tty->print_cr("b) other problem");
 534   }
 535 #endif // PRODUCT
 536 
 537   ShouldNotReachHere();
 538   return NULL;
 539 }
 540 
 541 
 542 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 543   return raw_exception_handler_for_return_address(thread, return_address);
 544 JRT_END
 545 
 546 
 547 address SharedRuntime::get_poll_stub(address pc) {
 548   address stub;
 549   // Look up the code blob
 550   CodeBlob *cb = CodeCache::find_blob(pc);
 551 
 552   // Should be an nmethod
 553   guarantee(cb != NULL && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 554 
 555   // Look up the relocation information
 556   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 557     "safepoint polling: type must be poll" );
 558 
 559   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 560     "Only polling locations are used for safepoint");
 561 
 562   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 563   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 564   if (at_poll_return) {
 565     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 566            "polling page return stub not created yet");
 567     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 568   } else if (has_wide_vectors) {
 569     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 570            "polling page vectors safepoint stub not created yet");
 571     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 572   } else {
 573     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 574            "polling page safepoint stub not created yet");
 575     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 576   }
 577 #ifndef PRODUCT
 578   if( TraceSafepoint ) {
 579     char buf[256];
 580     jio_snprintf(buf, sizeof(buf),
 581                  "... found polling page %s exception at pc = "
 582                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 583                  at_poll_return ? "return" : "loop",
 584                  (intptr_t)pc, (intptr_t)stub);
 585     tty->print_raw_cr(buf);
 586   }
 587 #endif // PRODUCT
 588   return stub;
 589 }
 590 
 591 
 592 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 593   assert(caller.is_interpreted_frame(), "");
 594   int args_size = ArgumentSizeComputer(sig).size() + 1;
 595   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 596   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 597   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 598   return result;
 599 }
 600 
 601 
 602 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 603   if (JvmtiExport::can_post_on_exceptions()) {
 604     vframeStream vfst(thread, true);
 605     methodHandle method = methodHandle(thread, vfst.method());
 606     address bcp = method()->bcp_from(vfst.bci());
 607     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 608   }
 609   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 610 }
 611 
 612 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 613   Handle h_exception = Exceptions::new_exception(thread, name, message);
 614   throw_and_post_jvmti_exception(thread, h_exception);
 615 }
 616 
 617 // The interpreter code to call this tracing function is only
 618 // called/generated when TraceRedefineClasses has the right bits
 619 // set. Since obsolete methods are never compiled, we don't have
 620 // to modify the compilers to generate calls to this function.
 621 //
 622 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 623     JavaThread* thread, Method* method))
 624   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 625 
 626   if (method->is_obsolete()) {
 627     // We are calling an obsolete method, but this is not necessarily
 628     // an error. Our method could have been redefined just after we
 629     // fetched the Method* from the constant pool.
 630 
 631     // RC_TRACE macro has an embedded ResourceMark
 632     RC_TRACE_WITH_THREAD(0x00001000, thread,
 633                          ("calling obsolete method '%s'",
 634                           method->name_and_sig_as_C_string()));
 635     if (RC_TRACE_ENABLED(0x00002000)) {
 636       // this option is provided to debug calls to obsolete methods
 637       guarantee(false, "faulting at call to an obsolete method.");
 638     }
 639   }
 640   return 0;
 641 JRT_END
 642 
 643 // ret_pc points into caller; we are returning caller's exception handler
 644 // for given exception
 645 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 646                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 647   assert(nm != NULL, "must exist");
 648   ResourceMark rm;
 649 
 650   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 651   // determine handler bci, if any
 652   EXCEPTION_MARK;
 653 
 654   int handler_bci = -1;
 655   int scope_depth = 0;
 656   if (!force_unwind) {
 657     int bci = sd->bci();
 658     bool recursive_exception = false;
 659     do {
 660       bool skip_scope_increment = false;
 661       // exception handler lookup
 662       KlassHandle ek (THREAD, exception->klass());
 663       methodHandle mh(THREAD, sd->method());
 664       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 665       if (HAS_PENDING_EXCEPTION) {
 666         recursive_exception = true;
 667         // We threw an exception while trying to find the exception handler.
 668         // Transfer the new exception to the exception handle which will
 669         // be set into thread local storage, and do another lookup for an
 670         // exception handler for this exception, this time starting at the
 671         // BCI of the exception handler which caused the exception to be
 672         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 673         // argument to ensure that the correct exception is thrown (4870175).
 674         recursive_exception_occurred = true;
 675         exception = Handle(THREAD, PENDING_EXCEPTION);
 676         CLEAR_PENDING_EXCEPTION;
 677         if (handler_bci >= 0) {
 678           bci = handler_bci;
 679           handler_bci = -1;
 680           skip_scope_increment = true;
 681         }
 682       }
 683       else {
 684         recursive_exception = false;
 685       }
 686       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 687         sd = sd->sender();
 688         if (sd != NULL) {
 689           bci = sd->bci();
 690         }
 691         ++scope_depth;
 692       }
 693     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 694   }
 695 
 696   // found handling method => lookup exception handler
 697   int catch_pco = ret_pc - nm->code_begin();
 698 
 699   ExceptionHandlerTable table(nm);
 700   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 701   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 702     // Allow abbreviated catch tables.  The idea is to allow a method
 703     // to materialize its exceptions without committing to the exact
 704     // routing of exceptions.  In particular this is needed for adding
 705     // a synthethic handler to unlock monitors when inlining
 706     // synchonized methods since the unlock path isn't represented in
 707     // the bytecodes.
 708     t = table.entry_for(catch_pco, -1, 0);
 709   }
 710 
 711 #ifdef COMPILER1
 712   if (t == NULL && nm->is_compiled_by_c1()) {
 713     assert(nm->unwind_handler_begin() != NULL, "");
 714     return nm->unwind_handler_begin();
 715   }
 716 #endif
 717 
 718   if (t == NULL) {
 719     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 720     tty->print_cr("   Exception:");
 721     exception->print();
 722     tty->cr();
 723     tty->print_cr(" Compiled exception table :");
 724     table.print();
 725     nm->print_code();
 726     guarantee(false, "missing exception handler");
 727     return NULL;
 728   }
 729 
 730   return nm->code_begin() + t->pco();
 731 }
 732 
 733 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 734   // These errors occur only at call sites
 735   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 736 JRT_END
 737 
 738 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 739   // These errors occur only at call sites
 740   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 741 JRT_END
 742 
 743 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 744   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 745 JRT_END
 746 
 747 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 748   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 749 JRT_END
 750 
 751 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 752   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 753   // cache sites (when the callee activation is not yet set up) so we are at a call site
 754   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 755 JRT_END
 756 
 757 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 758   // We avoid using the normal exception construction in this case because
 759   // it performs an upcall to Java, and we're already out of stack space.
 760   Klass* k = SystemDictionary::StackOverflowError_klass();
 761   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 762   Handle exception (thread, exception_oop);
 763   if (StackTraceInThrowable) {
 764     java_lang_Throwable::fill_in_stack_trace(exception);
 765   }
 766   // Increment counter for hs_err file reporting
 767   Atomic::inc(&Exceptions::_stack_overflow_errors);
 768   throw_and_post_jvmti_exception(thread, exception);
 769 JRT_END
 770 
 771 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 772                                                            address pc,
 773                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 774 {
 775   address target_pc = NULL;
 776 
 777   if (Interpreter::contains(pc)) {
 778 #ifdef CC_INTERP
 779     // C++ interpreter doesn't throw implicit exceptions
 780     ShouldNotReachHere();
 781 #else
 782     switch (exception_kind) {
 783       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 784       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 785       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 786       default:                      ShouldNotReachHere();
 787     }
 788 #endif // !CC_INTERP
 789   } else {
 790     switch (exception_kind) {
 791       case STACK_OVERFLOW: {
 792         // Stack overflow only occurs upon frame setup; the callee is
 793         // going to be unwound. Dispatch to a shared runtime stub
 794         // which will cause the StackOverflowError to be fabricated
 795         // and processed.
 796         // Stack overflow should never occur during deoptimization:
 797         // the compiled method bangs the stack by as much as the
 798         // interpreter would need in case of a deoptimization. The
 799         // deoptimization blob and uncommon trap blob bang the stack
 800         // in a debug VM to verify the correctness of the compiled
 801         // method stack banging.
 802         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 803         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 804         return StubRoutines::throw_StackOverflowError_entry();
 805       }
 806 
 807       case IMPLICIT_NULL: {
 808         if (VtableStubs::contains(pc)) {
 809           // We haven't yet entered the callee frame. Fabricate an
 810           // exception and begin dispatching it in the caller. Since
 811           // the caller was at a call site, it's safe to destroy all
 812           // caller-saved registers, as these entry points do.
 813           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 814 
 815           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 816           if (vt_stub == NULL) return NULL;
 817 
 818           if (vt_stub->is_abstract_method_error(pc)) {
 819             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 820             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 821             return StubRoutines::throw_AbstractMethodError_entry();
 822           } else {
 823             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 824             return StubRoutines::throw_NullPointerException_at_call_entry();
 825           }
 826         } else {
 827           CodeBlob* cb = CodeCache::find_blob(pc);
 828 
 829           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 830           if (cb == NULL) return NULL;
 831 
 832           // Exception happened in CodeCache. Must be either:
 833           // 1. Inline-cache check in C2I handler blob,
 834           // 2. Inline-cache check in nmethod, or
 835           // 3. Implict null exception in nmethod
 836 
 837           if (!cb->is_nmethod()) {
 838             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 839             if (!is_in_blob) {
 840               cb->print();
 841               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
 842             }
 843             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 844             // There is no handler here, so we will simply unwind.
 845             return StubRoutines::throw_NullPointerException_at_call_entry();
 846           }
 847 
 848           // Otherwise, it's an nmethod.  Consult its exception handlers.
 849           nmethod* nm = (nmethod*)cb;
 850           if (nm->inlinecache_check_contains(pc)) {
 851             // exception happened inside inline-cache check code
 852             // => the nmethod is not yet active (i.e., the frame
 853             // is not set up yet) => use return address pushed by
 854             // caller => don't push another return address
 855             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 856             return StubRoutines::throw_NullPointerException_at_call_entry();
 857           }
 858 
 859           if (nm->method()->is_method_handle_intrinsic()) {
 860             // exception happened inside MH dispatch code, similar to a vtable stub
 861             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 862             return StubRoutines::throw_NullPointerException_at_call_entry();
 863           }
 864 
 865 #ifndef PRODUCT
 866           _implicit_null_throws++;
 867 #endif
 868           target_pc = nm->continuation_for_implicit_exception(pc);
 869           // If there's an unexpected fault, target_pc might be NULL,
 870           // in which case we want to fall through into the normal
 871           // error handling code.
 872         }
 873 
 874         break; // fall through
 875       }
 876 
 877 
 878       case IMPLICIT_DIVIDE_BY_ZERO: {
 879         nmethod* nm = CodeCache::find_nmethod(pc);
 880         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 881 #ifndef PRODUCT
 882         _implicit_div0_throws++;
 883 #endif
 884         target_pc = nm->continuation_for_implicit_exception(pc);
 885         // If there's an unexpected fault, target_pc might be NULL,
 886         // in which case we want to fall through into the normal
 887         // error handling code.
 888         break; // fall through
 889       }
 890 
 891       default: ShouldNotReachHere();
 892     }
 893 
 894     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 895 
 896     // for AbortVMOnException flag
 897     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 898     if (exception_kind == IMPLICIT_NULL) {
 899       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 900     } else {
 901       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 902     }
 903     return target_pc;
 904   }
 905 
 906   ShouldNotReachHere();
 907   return NULL;
 908 }
 909 
 910 
 911 /**
 912  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 913  * installed in the native function entry of all native Java methods before
 914  * they get linked to their actual native methods.
 915  *
 916  * \note
 917  * This method actually never gets called!  The reason is because
 918  * the interpreter's native entries call NativeLookup::lookup() which
 919  * throws the exception when the lookup fails.  The exception is then
 920  * caught and forwarded on the return from NativeLookup::lookup() call
 921  * before the call to the native function.  This might change in the future.
 922  */
 923 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 924 {
 925   // We return a bad value here to make sure that the exception is
 926   // forwarded before we look at the return value.
 927   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 928 }
 929 JNI_END
 930 
 931 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 932   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 933 }
 934 
 935 
 936 #ifndef PRODUCT
 937 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 938   const frame f = thread->last_frame();
 939   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 940 #ifndef PRODUCT
 941   methodHandle mh(THREAD, f.interpreter_frame_method());
 942   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 943 #endif // !PRODUCT
 944   return preserve_this_value;
 945 JRT_END
 946 #endif // !PRODUCT
 947 
 948 
 949 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 950   os::yield_all(attempts);
 951 JRT_END
 952 
 953 
 954 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 955   assert(obj->is_oop(), "must be a valid oop");
 956   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 957   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 958 JRT_END
 959 
 960 
 961 jlong SharedRuntime::get_java_tid(Thread* thread) {
 962   if (thread != NULL) {
 963     if (thread->is_Java_thread()) {
 964       oop obj = ((JavaThread*)thread)->threadObj();
 965       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 966     }
 967   }
 968   return 0;
 969 }
 970 
 971 /**
 972  * This function ought to be a void function, but cannot be because
 973  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 974  * 6254741.  Once that is fixed we can remove the dummy return value.
 975  */
 976 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 977   return dtrace_object_alloc_base(Thread::current(), o, size);
 978 }
 979 
 980 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 981   assert(DTraceAllocProbes, "wrong call");
 982   Klass* klass = o->klass();
 983   Symbol* name = klass->name();
 984 #ifndef USDT2
 985   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 986                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 987 #else /* USDT2 */
 988   HOTSPOT_OBJECT_ALLOC(
 989                    get_java_tid(thread),
 990                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 991 #endif /* USDT2 */
 992   return 0;
 993 }
 994 
 995 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 996     JavaThread* thread, Method* method))
 997   assert(DTraceMethodProbes, "wrong call");
 998   Symbol* kname = method->klass_name();
 999   Symbol* name = method->name();
1000   Symbol* sig = method->signature();
1001 #ifndef USDT2
1002   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
1003       kname->bytes(), kname->utf8_length(),
1004       name->bytes(), name->utf8_length(),
1005       sig->bytes(), sig->utf8_length());
1006 #else /* USDT2 */
1007   HOTSPOT_METHOD_ENTRY(
1008       get_java_tid(thread),
1009       (char *) kname->bytes(), kname->utf8_length(),
1010       (char *) name->bytes(), name->utf8_length(),
1011       (char *) sig->bytes(), sig->utf8_length());
1012 #endif /* USDT2 */
1013   return 0;
1014 JRT_END
1015 
1016 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1017     JavaThread* thread, Method* method))
1018   assert(DTraceMethodProbes, "wrong call");
1019   Symbol* kname = method->klass_name();
1020   Symbol* name = method->name();
1021   Symbol* sig = method->signature();
1022 #ifndef USDT2
1023   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
1024       kname->bytes(), kname->utf8_length(),
1025       name->bytes(), name->utf8_length(),
1026       sig->bytes(), sig->utf8_length());
1027 #else /* USDT2 */
1028   HOTSPOT_METHOD_RETURN(
1029       get_java_tid(thread),
1030       (char *) kname->bytes(), kname->utf8_length(),
1031       (char *) name->bytes(), name->utf8_length(),
1032       (char *) sig->bytes(), sig->utf8_length());
1033 #endif /* USDT2 */
1034   return 0;
1035 JRT_END
1036 
1037 
1038 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1039 // for a call current in progress, i.e., arguments has been pushed on stack
1040 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1041 // vtable updates, etc.  Caller frame must be compiled.
1042 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1043   ResourceMark rm(THREAD);
1044 
1045   // last java frame on stack (which includes native call frames)
1046   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1047 
1048   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1049 }
1050 
1051 
1052 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1053 // for a call current in progress, i.e., arguments has been pushed on stack
1054 // but callee has not been invoked yet.  Caller frame must be compiled.
1055 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1056                                               vframeStream& vfst,
1057                                               Bytecodes::Code& bc,
1058                                               CallInfo& callinfo, TRAPS) {
1059   Handle receiver;
1060   Handle nullHandle;  //create a handy null handle for exception returns
1061 
1062   assert(!vfst.at_end(), "Java frame must exist");
1063 
1064   // Find caller and bci from vframe
1065   methodHandle caller(THREAD, vfst.method());
1066   int          bci   = vfst.bci();
1067 
1068   // Find bytecode
1069   Bytecode_invoke bytecode(caller, bci);
1070   bc = bytecode.invoke_code();
1071   int bytecode_index = bytecode.index();
1072 
1073   // Find receiver for non-static call
1074   if (bc != Bytecodes::_invokestatic &&
1075       bc != Bytecodes::_invokedynamic &&
1076       bc != Bytecodes::_invokehandle) {
1077     // This register map must be update since we need to find the receiver for
1078     // compiled frames. The receiver might be in a register.
1079     RegisterMap reg_map2(thread);
1080     frame stubFrame   = thread->last_frame();
1081     // Caller-frame is a compiled frame
1082     frame callerFrame = stubFrame.sender(&reg_map2);
1083 
1084     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1085     if (callee.is_null()) {
1086       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1087     }
1088     // Retrieve from a compiled argument list
1089     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1090 
1091     if (receiver.is_null()) {
1092       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1093     }
1094   }
1095 
1096   // Resolve method. This is parameterized by bytecode.
1097   constantPoolHandle constants(THREAD, caller->constants());
1098   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1099   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1100 
1101 #ifdef ASSERT
1102   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1103   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1104     assert(receiver.not_null(), "should have thrown exception");
1105     KlassHandle receiver_klass(THREAD, receiver->klass());
1106     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1107                             // klass is already loaded
1108     KlassHandle static_receiver_klass(THREAD, rk);
1109     // Method handle invokes might have been optimized to a direct call
1110     // so don't check for the receiver class.
1111     // FIXME this weakens the assert too much
1112     methodHandle callee = callinfo.selected_method();
1113     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1114            callee->is_method_handle_intrinsic() ||
1115            callee->is_compiled_lambda_form(),
1116            "actual receiver must be subclass of static receiver klass");
1117     if (receiver_klass->oop_is_instance()) {
1118       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1119         tty->print_cr("ERROR: Klass not yet initialized!!");
1120         receiver_klass()->print();
1121       }
1122       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1123     }
1124   }
1125 #endif
1126 
1127   return receiver;
1128 }
1129 
1130 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1131   ResourceMark rm(THREAD);
1132   // We need first to check if any Java activations (compiled, interpreted)
1133   // exist on the stack since last JavaCall.  If not, we need
1134   // to get the target method from the JavaCall wrapper.
1135   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1136   methodHandle callee_method;
1137   if (vfst.at_end()) {
1138     // No Java frames were found on stack since we did the JavaCall.
1139     // Hence the stack can only contain an entry_frame.  We need to
1140     // find the target method from the stub frame.
1141     RegisterMap reg_map(thread, false);
1142     frame fr = thread->last_frame();
1143     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1144     fr = fr.sender(&reg_map);
1145     assert(fr.is_entry_frame(), "must be");
1146     // fr is now pointing to the entry frame.
1147     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1148     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1149   } else {
1150     Bytecodes::Code bc;
1151     CallInfo callinfo;
1152     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1153     callee_method = callinfo.selected_method();
1154   }
1155   assert(callee_method()->is_method(), "must be");
1156   return callee_method;
1157 }
1158 
1159 // Resolves a call.
1160 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1161                                            bool is_virtual,
1162                                            bool is_optimized, TRAPS) {
1163   methodHandle callee_method;
1164   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1165   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1166     int retry_count = 0;
1167     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1168            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1169       // If has a pending exception then there is no need to re-try to
1170       // resolve this method.
1171       // If the method has been redefined, we need to try again.
1172       // Hack: we have no way to update the vtables of arrays, so don't
1173       // require that java.lang.Object has been updated.
1174 
1175       // It is very unlikely that method is redefined more than 100 times
1176       // in the middle of resolve. If it is looping here more than 100 times
1177       // means then there could be a bug here.
1178       guarantee((retry_count++ < 100),
1179                 "Could not resolve to latest version of redefined method");
1180       // method is redefined in the middle of resolve so re-try.
1181       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1182     }
1183   }
1184   return callee_method;
1185 }
1186 
1187 // Resolves a call.  The compilers generate code for calls that go here
1188 // and are patched with the real destination of the call.
1189 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1190                                            bool is_virtual,
1191                                            bool is_optimized, TRAPS) {
1192 
1193   ResourceMark rm(thread);
1194   RegisterMap cbl_map(thread, false);
1195   frame caller_frame = thread->last_frame().sender(&cbl_map);
1196 
1197   CodeBlob* caller_cb = caller_frame.cb();
1198   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1199   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1200 
1201   // make sure caller is not getting deoptimized
1202   // and removed before we are done with it.
1203   // CLEANUP - with lazy deopt shouldn't need this lock
1204   nmethodLocker caller_lock(caller_nm);
1205 
1206   // determine call info & receiver
1207   // note: a) receiver is NULL for static calls
1208   //       b) an exception is thrown if receiver is NULL for non-static calls
1209   CallInfo call_info;
1210   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1211   Handle receiver = find_callee_info(thread, invoke_code,
1212                                      call_info, CHECK_(methodHandle()));
1213   methodHandle callee_method = call_info.selected_method();
1214 
1215   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1216          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1217          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1218          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1219 
1220   assert(caller_nm->is_alive(), "It should be alive");
1221 
1222 #ifndef PRODUCT
1223   // tracing/debugging/statistics
1224   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1225                 (is_virtual) ? (&_resolve_virtual_ctr) :
1226                                (&_resolve_static_ctr);
1227   Atomic::inc(addr);
1228 
1229   if (TraceCallFixup) {
1230     ResourceMark rm(thread);
1231     tty->print("resolving %s%s (%s) call to",
1232       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1233       Bytecodes::name(invoke_code));
1234     callee_method->print_short_name(tty);
1235     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1236   }
1237 #endif
1238 
1239   // Do not patch call site for static call when the class is not
1240   // fully initialized.
1241   if (invoke_code == Bytecodes::_invokestatic &&
1242       !callee_method->method_holder()->is_initialized()) {
1243     assert(callee_method->method_holder()->is_linked(), "must be");
1244     return callee_method;
1245   }
1246 
1247   // JSR 292 key invariant:
1248   // If the resolved method is a MethodHandle invoke target, the call
1249   // site must be a MethodHandle call site, because the lambda form might tail-call
1250   // leaving the stack in a state unknown to either caller or callee
1251   // TODO detune for now but we might need it again
1252 //  assert(!callee_method->is_compiled_lambda_form() ||
1253 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1254 
1255   // Compute entry points. This might require generation of C2I converter
1256   // frames, so we cannot be holding any locks here. Furthermore, the
1257   // computation of the entry points is independent of patching the call.  We
1258   // always return the entry-point, but we only patch the stub if the call has
1259   // not been deoptimized.  Return values: For a virtual call this is an
1260   // (cached_oop, destination address) pair. For a static call/optimized
1261   // virtual this is just a destination address.
1262 
1263   StaticCallInfo static_call_info;
1264   CompiledICInfo virtual_call_info;
1265 
1266   // Make sure the callee nmethod does not get deoptimized and removed before
1267   // we are done patching the code.
1268   nmethod* callee_nm = callee_method->code();
1269   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1270     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1271     callee_nm = NULL;
1272   }
1273   nmethodLocker nl_callee(callee_nm);
1274 #ifdef ASSERT
1275   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1276 #endif
1277 
1278   if (is_virtual) {
1279     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1280     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1281     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1282     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1283                      is_optimized, static_bound, virtual_call_info,
1284                      CHECK_(methodHandle()));
1285   } else {
1286     // static call
1287     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1288   }
1289 
1290   // grab lock, check for deoptimization and potentially patch caller
1291   {
1292     MutexLocker ml_patch(CompiledIC_lock);
1293 
1294     // Lock blocks for safepoint during which both nmethods can change state.
1295 
1296     // Now that we are ready to patch if the Method* was redefined then
1297     // don't update call site and let the caller retry.
1298     // Don't update call site if callee nmethod was unloaded or deoptimized.
1299     // Don't update call site if callee nmethod was replaced by an other nmethod
1300     // which may happen when multiply alive nmethod (tiered compilation)
1301     // will be supported.
1302     if (!callee_method->is_old() &&
1303         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1304 #ifdef ASSERT
1305       // We must not try to patch to jump to an already unloaded method.
1306       if (dest_entry_point != 0) {
1307         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1308         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1309                "should not call unloaded nmethod");
1310       }
1311 #endif
1312       if (is_virtual) {
1313         nmethod* nm = callee_nm;
1314         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
1315         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1316         if (inline_cache->is_clean()) {
1317           inline_cache->set_to_monomorphic(virtual_call_info);
1318         }
1319       } else {
1320         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1321         if (ssc->is_clean()) ssc->set(static_call_info);
1322       }
1323     }
1324 
1325   } // unlock CompiledIC_lock
1326 
1327   return callee_method;
1328 }
1329 
1330 
1331 // Inline caches exist only in compiled code
1332 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1333 #ifdef ASSERT
1334   RegisterMap reg_map(thread, false);
1335   frame stub_frame = thread->last_frame();
1336   assert(stub_frame.is_runtime_frame(), "sanity check");
1337   frame caller_frame = stub_frame.sender(&reg_map);
1338   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1339 #endif /* ASSERT */
1340 
1341   methodHandle callee_method;
1342   JRT_BLOCK
1343     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1344     // Return Method* through TLS
1345     thread->set_vm_result_2(callee_method());
1346   JRT_BLOCK_END
1347   // return compiled code entry point after potential safepoints
1348   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1349   return callee_method->verified_code_entry();
1350 JRT_END
1351 
1352 
1353 // Handle call site that has been made non-entrant
1354 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1355   // 6243940 We might end up in here if the callee is deoptimized
1356   // as we race to call it.  We don't want to take a safepoint if
1357   // the caller was interpreted because the caller frame will look
1358   // interpreted to the stack walkers and arguments are now
1359   // "compiled" so it is much better to make this transition
1360   // invisible to the stack walking code. The i2c path will
1361   // place the callee method in the callee_target. It is stashed
1362   // there because if we try and find the callee by normal means a
1363   // safepoint is possible and have trouble gc'ing the compiled args.
1364   RegisterMap reg_map(thread, false);
1365   frame stub_frame = thread->last_frame();
1366   assert(stub_frame.is_runtime_frame(), "sanity check");
1367   frame caller_frame = stub_frame.sender(&reg_map);
1368 
1369   if (caller_frame.is_interpreted_frame() ||
1370       caller_frame.is_entry_frame()) {
1371     Method* callee = thread->callee_target();
1372     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1373     thread->set_vm_result_2(callee);
1374     thread->set_callee_target(NULL);
1375     return callee->get_c2i_entry();
1376   }
1377 
1378   // Must be compiled to compiled path which is safe to stackwalk
1379   methodHandle callee_method;
1380   JRT_BLOCK
1381     // Force resolving of caller (if we called from compiled frame)
1382     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1383     thread->set_vm_result_2(callee_method());
1384   JRT_BLOCK_END
1385   // return compiled code entry point after potential safepoints
1386   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1387   return callee_method->verified_code_entry();
1388 JRT_END
1389 
1390 // Handle abstract method call
1391 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1392   return StubRoutines::throw_AbstractMethodError_entry();
1393 JRT_END
1394 
1395 
1396 // resolve a static call and patch code
1397 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1398   methodHandle callee_method;
1399   JRT_BLOCK
1400     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1401     thread->set_vm_result_2(callee_method());
1402   JRT_BLOCK_END
1403   // return compiled code entry point after potential safepoints
1404   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1405   return callee_method->verified_code_entry();
1406 JRT_END
1407 
1408 
1409 // resolve virtual call and update inline cache to monomorphic
1410 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1411   methodHandle callee_method;
1412   JRT_BLOCK
1413     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1414     thread->set_vm_result_2(callee_method());
1415   JRT_BLOCK_END
1416   // return compiled code entry point after potential safepoints
1417   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1418   return callee_method->verified_code_entry();
1419 JRT_END
1420 
1421 
1422 // Resolve a virtual call that can be statically bound (e.g., always
1423 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1424 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1425   methodHandle callee_method;
1426   JRT_BLOCK
1427     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1428     thread->set_vm_result_2(callee_method());
1429   JRT_BLOCK_END
1430   // return compiled code entry point after potential safepoints
1431   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1432   return callee_method->verified_code_entry();
1433 JRT_END
1434 
1435 
1436 
1437 
1438 
1439 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1440   ResourceMark rm(thread);
1441   CallInfo call_info;
1442   Bytecodes::Code bc;
1443 
1444   // receiver is NULL for static calls. An exception is thrown for NULL
1445   // receivers for non-static calls
1446   Handle receiver = find_callee_info(thread, bc, call_info,
1447                                      CHECK_(methodHandle()));
1448   // Compiler1 can produce virtual call sites that can actually be statically bound
1449   // If we fell thru to below we would think that the site was going megamorphic
1450   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1451   // we'd try and do a vtable dispatch however methods that can be statically bound
1452   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1453   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1454   // plain ic_miss) and the site will be converted to an optimized virtual call site
1455   // never to miss again. I don't believe C2 will produce code like this but if it
1456   // did this would still be the correct thing to do for it too, hence no ifdef.
1457   //
1458   if (call_info.resolved_method()->can_be_statically_bound()) {
1459     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1460     if (TraceCallFixup) {
1461       RegisterMap reg_map(thread, false);
1462       frame caller_frame = thread->last_frame().sender(&reg_map);
1463       ResourceMark rm(thread);
1464       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1465       callee_method->print_short_name(tty);
1466       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1467       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1468     }
1469     return callee_method;
1470   }
1471 
1472   methodHandle callee_method = call_info.selected_method();
1473 
1474   bool should_be_mono = false;
1475 
1476 #ifndef PRODUCT
1477   Atomic::inc(&_ic_miss_ctr);
1478 
1479   // Statistics & Tracing
1480   if (TraceCallFixup) {
1481     ResourceMark rm(thread);
1482     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1483     callee_method->print_short_name(tty);
1484     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1485   }
1486 
1487   if (ICMissHistogram) {
1488     MutexLocker m(VMStatistic_lock);
1489     RegisterMap reg_map(thread, false);
1490     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1491     // produce statistics under the lock
1492     trace_ic_miss(f.pc());
1493   }
1494 #endif
1495 
1496   // install an event collector so that when a vtable stub is created the
1497   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1498   // event can't be posted when the stub is created as locks are held
1499   // - instead the event will be deferred until the event collector goes
1500   // out of scope.
1501   JvmtiDynamicCodeEventCollector event_collector;
1502 
1503   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1504   { MutexLocker ml_patch (CompiledIC_lock);
1505     RegisterMap reg_map(thread, false);
1506     frame caller_frame = thread->last_frame().sender(&reg_map);
1507     CodeBlob* cb = caller_frame.cb();
1508     if (cb->is_nmethod()) {
1509       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1510       bool should_be_mono = false;
1511       if (inline_cache->is_optimized()) {
1512         if (TraceCallFixup) {
1513           ResourceMark rm(thread);
1514           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1515           callee_method->print_short_name(tty);
1516           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1517         }
1518         should_be_mono = true;
1519       } else if (inline_cache->is_icholder_call()) {
1520         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1521         if ( ic_oop != NULL) {
1522 
1523           if (receiver()->klass() == ic_oop->holder_klass()) {
1524             // This isn't a real miss. We must have seen that compiled code
1525             // is now available and we want the call site converted to a
1526             // monomorphic compiled call site.
1527             // We can't assert for callee_method->code() != NULL because it
1528             // could have been deoptimized in the meantime
1529             if (TraceCallFixup) {
1530               ResourceMark rm(thread);
1531               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1532               callee_method->print_short_name(tty);
1533               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1534             }
1535             should_be_mono = true;
1536           }
1537         }
1538       }
1539 
1540       if (should_be_mono) {
1541 
1542         // We have a path that was monomorphic but was going interpreted
1543         // and now we have (or had) a compiled entry. We correct the IC
1544         // by using a new icBuffer.
1545         CompiledICInfo info;
1546         KlassHandle receiver_klass(THREAD, receiver()->klass());
1547         inline_cache->compute_monomorphic_entry(callee_method,
1548                                                 receiver_klass,
1549                                                 inline_cache->is_optimized(),
1550                                                 false,
1551                                                 info, CHECK_(methodHandle()));
1552         inline_cache->set_to_monomorphic(info);
1553       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1554         // Potential change to megamorphic
1555         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1556         if (!successful) {
1557           inline_cache->set_to_clean();
1558         }
1559       } else {
1560         // Either clean or megamorphic
1561       }
1562     }
1563   } // Release CompiledIC_lock
1564 
1565   return callee_method;
1566 }
1567 
1568 //
1569 // Resets a call-site in compiled code so it will get resolved again.
1570 // This routines handles both virtual call sites, optimized virtual call
1571 // sites, and static call sites. Typically used to change a call sites
1572 // destination from compiled to interpreted.
1573 //
1574 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1575   ResourceMark rm(thread);
1576   RegisterMap reg_map(thread, false);
1577   frame stub_frame = thread->last_frame();
1578   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1579   frame caller = stub_frame.sender(&reg_map);
1580 
1581   // Do nothing if the frame isn't a live compiled frame.
1582   // nmethod could be deoptimized by the time we get here
1583   // so no update to the caller is needed.
1584 
1585   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1586 
1587     address pc = caller.pc();
1588 
1589     // Default call_addr is the location of the "basic" call.
1590     // Determine the address of the call we a reresolving. With
1591     // Inline Caches we will always find a recognizable call.
1592     // With Inline Caches disabled we may or may not find a
1593     // recognizable call. We will always find a call for static
1594     // calls and for optimized virtual calls. For vanilla virtual
1595     // calls it depends on the state of the UseInlineCaches switch.
1596     //
1597     // With Inline Caches disabled we can get here for a virtual call
1598     // for two reasons:
1599     //   1 - calling an abstract method. The vtable for abstract methods
1600     //       will run us thru handle_wrong_method and we will eventually
1601     //       end up in the interpreter to throw the ame.
1602     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1603     //       call and between the time we fetch the entry address and
1604     //       we jump to it the target gets deoptimized. Similar to 1
1605     //       we will wind up in the interprter (thru a c2i with c2).
1606     //
1607     address call_addr = NULL;
1608     {
1609       // Get call instruction under lock because another thread may be
1610       // busy patching it.
1611       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1612       // Location of call instruction
1613       if (NativeCall::is_call_before(pc)) {
1614         NativeCall *ncall = nativeCall_before(pc);
1615         call_addr = ncall->instruction_address();
1616       }
1617     }
1618 
1619     // Check for static or virtual call
1620     bool is_static_call = false;
1621     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1622     // Make sure nmethod doesn't get deoptimized and removed until
1623     // this is done with it.
1624     // CLEANUP - with lazy deopt shouldn't need this lock
1625     nmethodLocker nmlock(caller_nm);
1626 
1627     if (call_addr != NULL) {
1628       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1629       int ret = iter.next(); // Get item
1630       if (ret) {
1631         assert(iter.addr() == call_addr, "must find call");
1632         if (iter.type() == relocInfo::static_call_type) {
1633           is_static_call = true;
1634         } else {
1635           assert(iter.type() == relocInfo::virtual_call_type ||
1636                  iter.type() == relocInfo::opt_virtual_call_type
1637                 , "unexpected relocInfo. type");
1638         }
1639       } else {
1640         assert(!UseInlineCaches, "relocation info. must exist for this address");
1641       }
1642 
1643       // Cleaning the inline cache will force a new resolve. This is more robust
1644       // than directly setting it to the new destination, since resolving of calls
1645       // is always done through the same code path. (experience shows that it
1646       // leads to very hard to track down bugs, if an inline cache gets updated
1647       // to a wrong method). It should not be performance critical, since the
1648       // resolve is only done once.
1649 
1650       MutexLocker ml(CompiledIC_lock);
1651       if (is_static_call) {
1652         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1653         ssc->set_to_clean();
1654       } else {
1655         // compiled, dispatched call (which used to call an interpreted method)
1656         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1657         inline_cache->set_to_clean();
1658       }
1659     }
1660 
1661   }
1662 
1663   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1664 
1665 
1666 #ifndef PRODUCT
1667   Atomic::inc(&_wrong_method_ctr);
1668 
1669   if (TraceCallFixup) {
1670     ResourceMark rm(thread);
1671     tty->print("handle_wrong_method reresolving call to");
1672     callee_method->print_short_name(tty);
1673     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1674   }
1675 #endif
1676 
1677   return callee_method;
1678 }
1679 
1680 #ifdef ASSERT
1681 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1682                                                                 const BasicType* sig_bt,
1683                                                                 const VMRegPair* regs) {
1684   ResourceMark rm;
1685   const int total_args_passed = method->size_of_parameters();
1686   const VMRegPair*    regs_with_member_name = regs;
1687         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1688 
1689   const int member_arg_pos = total_args_passed - 1;
1690   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1691   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1692 
1693   const bool is_outgoing = method->is_method_handle_intrinsic();
1694   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1695 
1696   for (int i = 0; i < member_arg_pos; i++) {
1697     VMReg a =    regs_with_member_name[i].first();
1698     VMReg b = regs_without_member_name[i].first();
1699     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1700   }
1701   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1702 }
1703 #endif
1704 
1705 // ---------------------------------------------------------------------------
1706 // We are calling the interpreter via a c2i. Normally this would mean that
1707 // we were called by a compiled method. However we could have lost a race
1708 // where we went int -> i2c -> c2i and so the caller could in fact be
1709 // interpreted. If the caller is compiled we attempt to patch the caller
1710 // so he no longer calls into the interpreter.
1711 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1712   Method* moop(method);
1713 
1714   address entry_point = moop->from_compiled_entry();
1715 
1716   // It's possible that deoptimization can occur at a call site which hasn't
1717   // been resolved yet, in which case this function will be called from
1718   // an nmethod that has been patched for deopt and we can ignore the
1719   // request for a fixup.
1720   // Also it is possible that we lost a race in that from_compiled_entry
1721   // is now back to the i2c in that case we don't need to patch and if
1722   // we did we'd leap into space because the callsite needs to use
1723   // "to interpreter" stub in order to load up the Method*. Don't
1724   // ask me how I know this...
1725 
1726   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1727   if (cb == NULL || !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1728     return;
1729   }
1730 
1731   // The check above makes sure this is a nmethod.
1732   nmethod* nm = cb->as_nmethod_or_null();
1733   assert(nm, "must be");
1734 
1735   // Get the return PC for the passed caller PC.
1736   address return_pc = caller_pc + frame::pc_return_offset;
1737 
1738   // There is a benign race here. We could be attempting to patch to a compiled
1739   // entry point at the same time the callee is being deoptimized. If that is
1740   // the case then entry_point may in fact point to a c2i and we'd patch the
1741   // call site with the same old data. clear_code will set code() to NULL
1742   // at the end of it. If we happen to see that NULL then we can skip trying
1743   // to patch. If we hit the window where the callee has a c2i in the
1744   // from_compiled_entry and the NULL isn't present yet then we lose the race
1745   // and patch the code with the same old data. Asi es la vida.
1746 
1747   if (moop->code() == NULL) return;
1748 
1749   if (nm->is_in_use()) {
1750 
1751     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1752     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1753     if (NativeCall::is_call_before(return_pc)) {
1754       NativeCall *call = nativeCall_before(return_pc);
1755       //
1756       // bug 6281185. We might get here after resolving a call site to a vanilla
1757       // virtual call. Because the resolvee uses the verified entry it may then
1758       // see compiled code and attempt to patch the site by calling us. This would
1759       // then incorrectly convert the call site to optimized and its downhill from
1760       // there. If you're lucky you'll get the assert in the bugid, if not you've
1761       // just made a call site that could be megamorphic into a monomorphic site
1762       // for the rest of its life! Just another racing bug in the life of
1763       // fixup_callers_callsite ...
1764       //
1765       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1766       iter.next();
1767       assert(iter.has_current(), "must have a reloc at java call site");
1768       relocInfo::relocType typ = iter.reloc()->type();
1769       if ( typ != relocInfo::static_call_type &&
1770            typ != relocInfo::opt_virtual_call_type &&
1771            typ != relocInfo::static_stub_type) {
1772         return;
1773       }
1774       address destination = call->destination();
1775       if (destination != entry_point) {
1776         CodeBlob* callee = CodeCache::find_blob(destination);
1777         // callee == cb seems weird. It means calling interpreter thru stub.
1778         if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1779           // static call or optimized virtual
1780           if (TraceCallFixup) {
1781             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1782             moop->print_short_name(tty);
1783             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1784           }
1785           call->set_destination_mt_safe(entry_point);
1786         } else {
1787           if (TraceCallFixup) {
1788             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1789             moop->print_short_name(tty);
1790             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1791           }
1792           // assert is too strong could also be resolve destinations.
1793           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1794         }
1795       } else {
1796           if (TraceCallFixup) {
1797             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1798             moop->print_short_name(tty);
1799             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1800           }
1801       }
1802     }
1803   }
1804 IRT_END
1805 
1806 
1807 // same as JVM_Arraycopy, but called directly from compiled code
1808 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1809                                                 oopDesc* dest, jint dest_pos,
1810                                                 jint length,
1811                                                 JavaThread* thread)) {
1812 #ifndef PRODUCT
1813   _slow_array_copy_ctr++;
1814 #endif
1815   // Check if we have null pointers
1816   if (src == NULL || dest == NULL) {
1817     THROW(vmSymbols::java_lang_NullPointerException());
1818   }
1819   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1820   // even though the copy_array API also performs dynamic checks to ensure
1821   // that src and dest are truly arrays (and are conformable).
1822   // The copy_array mechanism is awkward and could be removed, but
1823   // the compilers don't call this function except as a last resort,
1824   // so it probably doesn't matter.
1825   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
1826                                         (arrayOopDesc*)dest, dest_pos,
1827                                         length, thread);
1828 }
1829 JRT_END
1830 
1831 char* SharedRuntime::generate_class_cast_message(
1832     JavaThread* thread, const char* objName) {
1833 
1834   // Get target class name from the checkcast instruction
1835   vframeStream vfst(thread, true);
1836   assert(!vfst.at_end(), "Java frame must exist");
1837   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1838   Klass* targetKlass = vfst.method()->constants()->klass_at(
1839     cc.index(), thread);
1840   return generate_class_cast_message(objName, targetKlass->external_name());
1841 }
1842 
1843 char* SharedRuntime::generate_class_cast_message(
1844     const char* objName, const char* targetKlassName, const char* desc) {
1845   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1846 
1847   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1848   if (NULL == message) {
1849     // Shouldn't happen, but don't cause even more problems if it does
1850     message = const_cast<char*>(objName);
1851   } else {
1852     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1853   }
1854   return message;
1855 }
1856 
1857 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1858   (void) JavaThread::current()->reguard_stack();
1859 JRT_END
1860 
1861 
1862 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1863 #ifndef PRODUCT
1864 int SharedRuntime::_monitor_enter_ctr=0;
1865 #endif
1866 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1867   oop obj(_obj);
1868 #ifndef PRODUCT
1869   _monitor_enter_ctr++;             // monitor enter slow
1870 #endif
1871   if (PrintBiasedLockingStatistics) {
1872     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1873   }
1874   Handle h_obj(THREAD, obj);
1875   if (UseBiasedLocking) {
1876     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1877     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1878   } else {
1879     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1880   }
1881   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1882 JRT_END
1883 
1884 #ifndef PRODUCT
1885 int SharedRuntime::_monitor_exit_ctr=0;
1886 #endif
1887 // Handles the uncommon cases of monitor unlocking in compiled code
1888 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1889    oop obj(_obj);
1890 #ifndef PRODUCT
1891   _monitor_exit_ctr++;              // monitor exit slow
1892 #endif
1893   Thread* THREAD = JavaThread::current();
1894   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1895   // testing was unable to ever fire the assert that guarded it so I have removed it.
1896   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1897 #undef MIGHT_HAVE_PENDING
1898 #ifdef MIGHT_HAVE_PENDING
1899   // Save and restore any pending_exception around the exception mark.
1900   // While the slow_exit must not throw an exception, we could come into
1901   // this routine with one set.
1902   oop pending_excep = NULL;
1903   const char* pending_file;
1904   int pending_line;
1905   if (HAS_PENDING_EXCEPTION) {
1906     pending_excep = PENDING_EXCEPTION;
1907     pending_file  = THREAD->exception_file();
1908     pending_line  = THREAD->exception_line();
1909     CLEAR_PENDING_EXCEPTION;
1910   }
1911 #endif /* MIGHT_HAVE_PENDING */
1912 
1913   {
1914     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1915     EXCEPTION_MARK;
1916     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1917   }
1918 
1919 #ifdef MIGHT_HAVE_PENDING
1920   if (pending_excep != NULL) {
1921     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1922   }
1923 #endif /* MIGHT_HAVE_PENDING */
1924 JRT_END
1925 
1926 #ifndef PRODUCT
1927 
1928 void SharedRuntime::print_statistics() {
1929   ttyLocker ttyl;
1930   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1931 
1932   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1933   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1934   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1935 
1936   SharedRuntime::print_ic_miss_histogram();
1937 
1938   if (CountRemovableExceptions) {
1939     if (_nof_removable_exceptions > 0) {
1940       Unimplemented(); // this counter is not yet incremented
1941       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1942     }
1943   }
1944 
1945   // Dump the JRT_ENTRY counters
1946   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1947   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1948   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1949   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1950   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1951   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1952   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1953 
1954   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1955   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1956   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1957   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1958   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1959 
1960   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1961   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1962   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1963   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1964   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1965   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1966   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1967   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1968   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1969   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1970   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1971   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1972   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1973   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1974   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1975   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1976 
1977   AdapterHandlerLibrary::print_statistics();
1978 
1979   if (xtty != NULL)  xtty->tail("statistics");
1980 }
1981 
1982 inline double percent(int x, int y) {
1983   return 100.0 * x / MAX2(y, 1);
1984 }
1985 
1986 class MethodArityHistogram {
1987  public:
1988   enum { MAX_ARITY = 256 };
1989  private:
1990   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1991   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1992   static int _max_arity;                      // max. arity seen
1993   static int _max_size;                       // max. arg size seen
1994 
1995   static void add_method_to_histogram(nmethod* nm) {
1996     Method* m = nm->method();
1997     ArgumentCount args(m->signature());
1998     int arity   = args.size() + (m->is_static() ? 0 : 1);
1999     int argsize = m->size_of_parameters();
2000     arity   = MIN2(arity, MAX_ARITY-1);
2001     argsize = MIN2(argsize, MAX_ARITY-1);
2002     int count = nm->method()->compiled_invocation_count();
2003     _arity_histogram[arity]  += count;
2004     _size_histogram[argsize] += count;
2005     _max_arity = MAX2(_max_arity, arity);
2006     _max_size  = MAX2(_max_size, argsize);
2007   }
2008 
2009   void print_histogram_helper(int n, int* histo, const char* name) {
2010     const int N = MIN2(5, n);
2011     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2012     double sum = 0;
2013     double weighted_sum = 0;
2014     int i;
2015     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2016     double rest = sum;
2017     double percent = sum / 100;
2018     for (i = 0; i <= N; i++) {
2019       rest -= histo[i];
2020       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2021     }
2022     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2023     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2024   }
2025 
2026   void print_histogram() {
2027     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2028     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2029     tty->print_cr("\nSame for parameter size (in words):");
2030     print_histogram_helper(_max_size, _size_histogram, "size");
2031     tty->cr();
2032   }
2033 
2034  public:
2035   MethodArityHistogram() {
2036     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2037     _max_arity = _max_size = 0;
2038     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2039     CodeCache::nmethods_do(add_method_to_histogram);
2040     print_histogram();
2041   }
2042 };
2043 
2044 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2045 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2046 int MethodArityHistogram::_max_arity;
2047 int MethodArityHistogram::_max_size;
2048 
2049 void SharedRuntime::print_call_statistics(int comp_total) {
2050   tty->print_cr("Calls from compiled code:");
2051   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2052   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2053   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2054   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2055   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2056   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2057   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2058   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2059   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2060   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2061   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2062   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2063   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2064   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2065   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2066   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2067   tty->cr();
2068   tty->print_cr("Note 1: counter updates are not MT-safe.");
2069   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2070   tty->print_cr("        %% in nested categories are relative to their category");
2071   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2072   tty->cr();
2073 
2074   MethodArityHistogram h;
2075 }
2076 #endif
2077 
2078 
2079 // A simple wrapper class around the calling convention information
2080 // that allows sharing of adapters for the same calling convention.
2081 class AdapterFingerPrint : public CHeapObj<mtCode> {
2082  private:
2083   enum {
2084     _basic_type_bits = 4,
2085     _basic_type_mask = right_n_bits(_basic_type_bits),
2086     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2087     _compact_int_count = 3
2088   };
2089   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2090   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2091 
2092   union {
2093     int  _compact[_compact_int_count];
2094     int* _fingerprint;
2095   } _value;
2096   int _length; // A negative length indicates the fingerprint is in the compact form,
2097                // Otherwise _value._fingerprint is the array.
2098 
2099   // Remap BasicTypes that are handled equivalently by the adapters.
2100   // These are correct for the current system but someday it might be
2101   // necessary to make this mapping platform dependent.
2102   static int adapter_encoding(BasicType in) {
2103     switch(in) {
2104       case T_BOOLEAN:
2105       case T_BYTE:
2106       case T_SHORT:
2107       case T_CHAR:
2108         // There are all promoted to T_INT in the calling convention
2109         return T_INT;
2110 
2111       case T_OBJECT:
2112       case T_ARRAY:
2113         // In other words, we assume that any register good enough for
2114         // an int or long is good enough for a managed pointer.
2115 #ifdef _LP64
2116         return T_LONG;
2117 #else
2118         return T_INT;
2119 #endif
2120 
2121       case T_INT:
2122       case T_LONG:
2123       case T_FLOAT:
2124       case T_DOUBLE:
2125       case T_VOID:
2126         return in;
2127 
2128       default:
2129         ShouldNotReachHere();
2130         return T_CONFLICT;
2131     }
2132   }
2133 
2134  public:
2135   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2136     // The fingerprint is based on the BasicType signature encoded
2137     // into an array of ints with eight entries per int.
2138     int* ptr;
2139     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2140     if (len <= _compact_int_count) {
2141       assert(_compact_int_count == 3, "else change next line");
2142       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2143       // Storing the signature encoded as signed chars hits about 98%
2144       // of the time.
2145       _length = -len;
2146       ptr = _value._compact;
2147     } else {
2148       _length = len;
2149       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2150       ptr = _value._fingerprint;
2151     }
2152 
2153     // Now pack the BasicTypes with 8 per int
2154     int sig_index = 0;
2155     for (int index = 0; index < len; index++) {
2156       int value = 0;
2157       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2158         int bt = ((sig_index < total_args_passed)
2159                   ? adapter_encoding(sig_bt[sig_index++])
2160                   : 0);
2161         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2162         value = (value << _basic_type_bits) | bt;
2163       }
2164       ptr[index] = value;
2165     }
2166   }
2167 
2168   ~AdapterFingerPrint() {
2169     if (_length > 0) {
2170       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2171     }
2172   }
2173 
2174   int value(int index) {
2175     if (_length < 0) {
2176       return _value._compact[index];
2177     }
2178     return _value._fingerprint[index];
2179   }
2180   int length() {
2181     if (_length < 0) return -_length;
2182     return _length;
2183   }
2184 
2185   bool is_compact() {
2186     return _length <= 0;
2187   }
2188 
2189   unsigned int compute_hash() {
2190     int hash = 0;
2191     for (int i = 0; i < length(); i++) {
2192       int v = value(i);
2193       hash = (hash << 8) ^ v ^ (hash >> 5);
2194     }
2195     return (unsigned int)hash;
2196   }
2197 
2198   const char* as_string() {
2199     stringStream st;
2200     st.print("0x");
2201     for (int i = 0; i < length(); i++) {
2202       st.print("%08x", value(i));
2203     }
2204     return st.as_string();
2205   }
2206 
2207   bool equals(AdapterFingerPrint* other) {
2208     if (other->_length != _length) {
2209       return false;
2210     }
2211     if (_length < 0) {
2212       assert(_compact_int_count == 3, "else change next line");
2213       return _value._compact[0] == other->_value._compact[0] &&
2214              _value._compact[1] == other->_value._compact[1] &&
2215              _value._compact[2] == other->_value._compact[2];
2216     } else {
2217       for (int i = 0; i < _length; i++) {
2218         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2219           return false;
2220         }
2221       }
2222     }
2223     return true;
2224   }
2225 };
2226 
2227 
2228 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2229 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2230   friend class AdapterHandlerTableIterator;
2231 
2232  private:
2233 
2234 #ifndef PRODUCT
2235   static int _lookups; // number of calls to lookup
2236   static int _buckets; // number of buckets checked
2237   static int _equals;  // number of buckets checked with matching hash
2238   static int _hits;    // number of successful lookups
2239   static int _compact; // number of equals calls with compact signature
2240 #endif
2241 
2242   AdapterHandlerEntry* bucket(int i) {
2243     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2244   }
2245 
2246  public:
2247   AdapterHandlerTable()
2248     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2249 
2250   // Create a new entry suitable for insertion in the table
2251   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2252     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2253     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2254     return entry;
2255   }
2256 
2257   // Insert an entry into the table
2258   void add(AdapterHandlerEntry* entry) {
2259     int index = hash_to_index(entry->hash());
2260     add_entry(index, entry);
2261   }
2262 
2263   void free_entry(AdapterHandlerEntry* entry) {
2264     entry->deallocate();
2265     BasicHashtable<mtCode>::free_entry(entry);
2266   }
2267 
2268   // Find a entry with the same fingerprint if it exists
2269   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2270     NOT_PRODUCT(_lookups++);
2271     AdapterFingerPrint fp(total_args_passed, sig_bt);
2272     unsigned int hash = fp.compute_hash();
2273     int index = hash_to_index(hash);
2274     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2275       NOT_PRODUCT(_buckets++);
2276       if (e->hash() == hash) {
2277         NOT_PRODUCT(_equals++);
2278         if (fp.equals(e->fingerprint())) {
2279 #ifndef PRODUCT
2280           if (fp.is_compact()) _compact++;
2281           _hits++;
2282 #endif
2283           return e;
2284         }
2285       }
2286     }
2287     return NULL;
2288   }
2289 
2290 #ifndef PRODUCT
2291   void print_statistics() {
2292     ResourceMark rm;
2293     int longest = 0;
2294     int empty = 0;
2295     int total = 0;
2296     int nonempty = 0;
2297     for (int index = 0; index < table_size(); index++) {
2298       int count = 0;
2299       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2300         count++;
2301       }
2302       if (count != 0) nonempty++;
2303       if (count == 0) empty++;
2304       if (count > longest) longest = count;
2305       total += count;
2306     }
2307     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2308                   empty, longest, total, total / (double)nonempty);
2309     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2310                   _lookups, _buckets, _equals, _hits, _compact);
2311   }
2312 #endif
2313 };
2314 
2315 
2316 #ifndef PRODUCT
2317 
2318 int AdapterHandlerTable::_lookups;
2319 int AdapterHandlerTable::_buckets;
2320 int AdapterHandlerTable::_equals;
2321 int AdapterHandlerTable::_hits;
2322 int AdapterHandlerTable::_compact;
2323 
2324 #endif
2325 
2326 class AdapterHandlerTableIterator : public StackObj {
2327  private:
2328   AdapterHandlerTable* _table;
2329   int _index;
2330   AdapterHandlerEntry* _current;
2331 
2332   void scan() {
2333     while (_index < _table->table_size()) {
2334       AdapterHandlerEntry* a = _table->bucket(_index);
2335       _index++;
2336       if (a != NULL) {
2337         _current = a;
2338         return;
2339       }
2340     }
2341   }
2342 
2343  public:
2344   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2345     scan();
2346   }
2347   bool has_next() {
2348     return _current != NULL;
2349   }
2350   AdapterHandlerEntry* next() {
2351     if (_current != NULL) {
2352       AdapterHandlerEntry* result = _current;
2353       _current = _current->next();
2354       if (_current == NULL) scan();
2355       return result;
2356     } else {
2357       return NULL;
2358     }
2359   }
2360 };
2361 
2362 
2363 // ---------------------------------------------------------------------------
2364 // Implementation of AdapterHandlerLibrary
2365 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2366 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2367 const int AdapterHandlerLibrary_size = 16*K;
2368 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2369 
2370 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2371   // Should be called only when AdapterHandlerLibrary_lock is active.
2372   if (_buffer == NULL) // Initialize lazily
2373       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2374   return _buffer;
2375 }
2376 
2377 void AdapterHandlerLibrary::initialize() {
2378   if (_adapters != NULL) return;
2379   _adapters = new AdapterHandlerTable();
2380 
2381   // Create a special handler for abstract methods.  Abstract methods
2382   // are never compiled so an i2c entry is somewhat meaningless, but
2383   // throw AbstractMethodError just in case.
2384   // Pass wrong_method_abstract for the c2i transitions to return
2385   // AbstractMethodError for invalid invocations.
2386   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2387   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2388                                                               StubRoutines::throw_AbstractMethodError_entry(),
2389                                                               wrong_method_abstract, wrong_method_abstract);
2390 }
2391 
2392 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2393                                                       address i2c_entry,
2394                                                       address c2i_entry,
2395                                                       address c2i_unverified_entry) {
2396   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2397 }
2398 
2399 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2400   // Use customized signature handler.  Need to lock around updates to
2401   // the AdapterHandlerTable (it is not safe for concurrent readers
2402   // and a single writer: this could be fixed if it becomes a
2403   // problem).
2404 
2405   // Get the address of the ic_miss handlers before we grab the
2406   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2407   // was caused by the initialization of the stubs happening
2408   // while we held the lock and then notifying jvmti while
2409   // holding it. This just forces the initialization to be a little
2410   // earlier.
2411   address ic_miss = SharedRuntime::get_ic_miss_stub();
2412   assert(ic_miss != NULL, "must have handler");
2413 
2414   ResourceMark rm;
2415 
2416   NOT_PRODUCT(int insts_size);
2417   AdapterBlob* new_adapter = NULL;
2418   AdapterHandlerEntry* entry = NULL;
2419   AdapterFingerPrint* fingerprint = NULL;
2420   {
2421     MutexLocker mu(AdapterHandlerLibrary_lock);
2422     // make sure data structure is initialized
2423     initialize();
2424 
2425     if (method->is_abstract()) {
2426       return _abstract_method_handler;
2427     }
2428 
2429     // Fill in the signature array, for the calling-convention call.
2430     int total_args_passed = method->size_of_parameters(); // All args on stack
2431 
2432     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2433     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2434     int i = 0;
2435     if (!method->is_static())  // Pass in receiver first
2436       sig_bt[i++] = T_OBJECT;
2437     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2438       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2439       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2440         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2441     }
2442     assert(i == total_args_passed, "");
2443 
2444     // Lookup method signature's fingerprint
2445     entry = _adapters->lookup(total_args_passed, sig_bt);
2446 
2447 #ifdef ASSERT
2448     AdapterHandlerEntry* shared_entry = NULL;
2449     // Start adapter sharing verification only after the VM is booted.
2450     if (VerifyAdapterSharing && (entry != NULL)) {
2451       shared_entry = entry;
2452       entry = NULL;
2453     }
2454 #endif
2455 
2456     if (entry != NULL) {
2457       return entry;
2458     }
2459 
2460     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2461     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2462 
2463     // Make a C heap allocated version of the fingerprint to store in the adapter
2464     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2465 
2466     // StubRoutines::code2() is initialized after this function can be called. As a result,
2467     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2468     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2469     // stub that ensure that an I2C stub is called from an interpreter frame.
2470     bool contains_all_checks = StubRoutines::code2() != NULL;
2471 
2472     // Create I2C & C2I handlers
2473     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2474     if (buf != NULL) {
2475       CodeBuffer buffer(buf);
2476       short buffer_locs[20];
2477       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2478                                              sizeof(buffer_locs)/sizeof(relocInfo));
2479 
2480       MacroAssembler _masm(&buffer);
2481       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2482                                                      total_args_passed,
2483                                                      comp_args_on_stack,
2484                                                      sig_bt,
2485                                                      regs,
2486                                                      fingerprint);
2487 #ifdef ASSERT
2488       if (VerifyAdapterSharing) {
2489         if (shared_entry != NULL) {
2490           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2491           // Release the one just created and return the original
2492           _adapters->free_entry(entry);
2493           return shared_entry;
2494         } else  {
2495           entry->save_code(buf->code_begin(), buffer.insts_size());
2496         }
2497       }
2498 #endif
2499 
2500       new_adapter = AdapterBlob::create(&buffer);
2501       NOT_PRODUCT(insts_size = buffer.insts_size());
2502     }
2503     if (new_adapter == NULL) {
2504       // CodeCache is full, disable compilation
2505       // Ought to log this but compile log is only per compile thread
2506       // and we're some non descript Java thread.
2507       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2508       CompileBroker::handle_full_code_cache();
2509       return NULL; // Out of CodeCache space
2510     }
2511     entry->relocate(new_adapter->content_begin());
2512 #ifndef PRODUCT
2513     // debugging suppport
2514     if (PrintAdapterHandlers || PrintStubCode) {
2515       ttyLocker ttyl;
2516       entry->print_adapter_on(tty);
2517       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2518                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2519                     method->signature()->as_C_string(), insts_size);
2520       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2521       if (Verbose || PrintStubCode) {
2522         address first_pc = entry->base_address();
2523         if (first_pc != NULL) {
2524           Disassembler::decode(first_pc, first_pc + insts_size);
2525           tty->cr();
2526         }
2527       }
2528     }
2529 #endif
2530     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2531     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2532     if (contains_all_checks || !VerifyAdapterCalls) {
2533       _adapters->add(entry);
2534     }
2535   }
2536   // Outside of the lock
2537   if (new_adapter != NULL) {
2538     char blob_id[256];
2539     jio_snprintf(blob_id,
2540                  sizeof(blob_id),
2541                  "%s(%s)@" PTR_FORMAT,
2542                  new_adapter->name(),
2543                  fingerprint->as_string(),
2544                  new_adapter->content_begin());
2545     Forte::register_stub(blob_id, new_adapter->content_begin(),new_adapter->content_end());
2546 
2547     if (JvmtiExport::should_post_dynamic_code_generated()) {
2548       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2549     }
2550   }
2551   return entry;
2552 }
2553 
2554 address AdapterHandlerEntry::base_address() {
2555   address base = _i2c_entry;
2556   if (base == NULL)  base = _c2i_entry;
2557   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2558   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2559   return base;
2560 }
2561 
2562 void AdapterHandlerEntry::relocate(address new_base) {
2563   address old_base = base_address();
2564   assert(old_base != NULL, "");
2565   ptrdiff_t delta = new_base - old_base;
2566   if (_i2c_entry != NULL)
2567     _i2c_entry += delta;
2568   if (_c2i_entry != NULL)
2569     _c2i_entry += delta;
2570   if (_c2i_unverified_entry != NULL)
2571     _c2i_unverified_entry += delta;
2572   assert(base_address() == new_base, "");
2573 }
2574 
2575 
2576 void AdapterHandlerEntry::deallocate() {
2577   delete _fingerprint;
2578 #ifdef ASSERT
2579   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2580 #endif
2581 }
2582 
2583 
2584 #ifdef ASSERT
2585 // Capture the code before relocation so that it can be compared
2586 // against other versions.  If the code is captured after relocation
2587 // then relative instructions won't be equivalent.
2588 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2589   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2590   _saved_code_length = length;
2591   memcpy(_saved_code, buffer, length);
2592 }
2593 
2594 
2595 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2596   if (length != _saved_code_length) {
2597     return false;
2598   }
2599 
2600   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2601 }
2602 #endif
2603 
2604 
2605 /**
2606  * Create a native wrapper for this native method.  The wrapper converts the
2607  * Java-compiled calling convention to the native convention, handles
2608  * arguments, and transitions to native.  On return from the native we transition
2609  * back to java blocking if a safepoint is in progress.
2610  */
2611 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2612   ResourceMark rm;
2613   nmethod* nm = NULL;
2614 
2615   assert(method->is_native(), "must be native");
2616   assert(method->is_method_handle_intrinsic() ||
2617          method->has_native_function(), "must have something valid to call!");
2618 
2619   {
2620     // Perform the work while holding the lock, but perform any printing outside the lock
2621     MutexLocker mu(AdapterHandlerLibrary_lock);
2622     // See if somebody beat us to it
2623     nm = method->code();
2624     if (nm != NULL) {
2625       return;
2626     }
2627 
2628     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2629     assert(compile_id > 0, "Must generate native wrapper");
2630 
2631 
2632     ResourceMark rm;
2633     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2634     if (buf != NULL) {
2635       CodeBuffer buffer(buf);
2636       double locs_buf[20];
2637       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2638       MacroAssembler _masm(&buffer);
2639 
2640       // Fill in the signature array, for the calling-convention call.
2641       const int total_args_passed = method->size_of_parameters();
2642 
2643       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2644       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2645       int i=0;
2646       if( !method->is_static() )  // Pass in receiver first
2647         sig_bt[i++] = T_OBJECT;
2648       SignatureStream ss(method->signature());
2649       for( ; !ss.at_return_type(); ss.next()) {
2650         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2651         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2652           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2653       }
2654       assert(i == total_args_passed, "");
2655       BasicType ret_type = ss.type();
2656 
2657       // Now get the compiled-Java layout as input (or output) arguments.
2658       // NOTE: Stubs for compiled entry points of method handle intrinsics
2659       // are just trampolines so the argument registers must be outgoing ones.
2660       const bool is_outgoing = method->is_method_handle_intrinsic();
2661       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2662 
2663       // Generate the compiled-to-native wrapper code
2664       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2665 
2666       if (nm != NULL) {
2667         method->set_code(method, nm);
2668       }
2669     }
2670   } // Unlock AdapterHandlerLibrary_lock
2671 
2672 
2673   // Install the generated code.
2674   if (nm != NULL) {
2675     if (PrintCompilation) {
2676       ttyLocker ttyl;
2677       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2678     }
2679     nm->post_compiled_method_load_event();
2680   } else {
2681     // CodeCache is full, disable compilation
2682     CompileBroker::handle_full_code_cache();
2683   }
2684 }
2685 
2686 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2687   assert(thread == JavaThread::current(), "must be");
2688   // The code is about to enter a JNI lazy critical native method and
2689   // _needs_gc is true, so if this thread is already in a critical
2690   // section then just return, otherwise this thread should block
2691   // until needs_gc has been cleared.
2692   if (thread->in_critical()) {
2693     return;
2694   }
2695   // Lock and unlock a critical section to give the system a chance to block
2696   GC_locker::lock_critical(thread);
2697   GC_locker::unlock_critical(thread);
2698 JRT_END
2699 
2700 #ifdef HAVE_DTRACE_H
2701 /**
2702  * Create a dtrace nmethod for this method.  The wrapper converts the
2703  * Java-compiled calling convention to the native convention, makes a dummy call
2704  * (actually nops for the size of the call instruction, which become a trap if
2705  * probe is enabled), and finally returns to the caller. Since this all looks like a
2706  * leaf, no thread transition is needed.
2707  */
2708 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2709   ResourceMark rm;
2710   nmethod* nm = NULL;
2711 
2712   if (PrintCompilation) {
2713     ttyLocker ttyl;
2714     tty->print("---   n  ");
2715     method->print_short_name(tty);
2716     if (method->is_static()) {
2717       tty->print(" (static)");
2718     }
2719     tty->cr();
2720   }
2721 
2722   {
2723     // perform the work while holding the lock, but perform any printing
2724     // outside the lock
2725     MutexLocker mu(AdapterHandlerLibrary_lock);
2726     // See if somebody beat us to it
2727     nm = method->code();
2728     if (nm) {
2729       return nm;
2730     }
2731 
2732     ResourceMark rm;
2733 
2734     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2735     if (buf != NULL) {
2736       CodeBuffer buffer(buf);
2737       // Need a few relocation entries
2738       double locs_buf[20];
2739       buffer.insts()->initialize_shared_locs(
2740         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2741       MacroAssembler _masm(&buffer);
2742 
2743       // Generate the compiled-to-native wrapper code
2744       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2745     }
2746   }
2747   return nm;
2748 }
2749 
2750 // the dtrace method needs to convert java lang string to utf8 string.
2751 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2752   typeArrayOop jlsValue  = java_lang_String::value(src);
2753   int          jlsOffset = java_lang_String::offset(src);
2754   int          jlsLen    = java_lang_String::length(src);
2755   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2756                                            jlsValue->char_at_addr(jlsOffset);
2757   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2758   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2759 }
2760 #endif // ndef HAVE_DTRACE_H
2761 
2762 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
2763   int argcnt = in_args_count;
2764   if (CCallingConventionRequiresIntsAsLongs) {
2765     for (int in = 0; in < in_args_count; in++) {
2766       BasicType bt = in_sig_bt[in];
2767       switch (bt) {
2768         case T_BOOLEAN:
2769         case T_CHAR:
2770         case T_BYTE:
2771         case T_SHORT:
2772         case T_INT:
2773           argcnt++;
2774           break;
2775         default:
2776           break;
2777       }
2778     }
2779   } else {
2780     assert(0, "This should not be needed on this platform");
2781   }
2782 
2783   return argcnt;
2784 }
2785 
2786 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
2787                                              BasicType*& in_sig_bt, VMRegPair*& in_regs) {
2788   if (CCallingConventionRequiresIntsAsLongs) {
2789     VMRegPair *new_in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
2790     BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
2791 
2792     int argcnt = 0;
2793     for (int in = 0; in < in_args_count; in++, argcnt++) {
2794       BasicType bt  = in_sig_bt[in];
2795       VMRegPair reg = in_regs[in];
2796       switch (bt) {
2797         case T_BOOLEAN:
2798         case T_CHAR:
2799         case T_BYTE:
2800         case T_SHORT:
2801         case T_INT:
2802           // Convert (bt) to (T_LONG,bt).
2803           new_in_sig_bt[argcnt  ] = T_LONG;
2804           new_in_sig_bt[argcnt+1] = bt;
2805           assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
2806           new_in_regs[argcnt  ].set2(reg.first());
2807           new_in_regs[argcnt+1].set_bad();
2808           argcnt++;
2809           break;
2810         default:
2811           // No conversion needed.
2812           new_in_sig_bt[argcnt] = bt;
2813           new_in_regs[argcnt]   = reg;
2814           break;
2815       }
2816     }
2817     assert(argcnt == i2l_argcnt, "must match");
2818 
2819     in_regs = new_in_regs;
2820     in_sig_bt = new_in_sig_bt;
2821     in_args_count = i2l_argcnt;
2822   } else {
2823     assert(0, "This should not be needed on this platform");
2824   }
2825 }
2826 
2827 // -------------------------------------------------------------------------
2828 // Java-Java calling convention
2829 // (what you use when Java calls Java)
2830 
2831 //------------------------------name_for_receiver----------------------------------
2832 // For a given signature, return the VMReg for parameter 0.
2833 VMReg SharedRuntime::name_for_receiver() {
2834   VMRegPair regs;
2835   BasicType sig_bt = T_OBJECT;
2836   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2837   // Return argument 0 register.  In the LP64 build pointers
2838   // take 2 registers, but the VM wants only the 'main' name.
2839   return regs.first();
2840 }
2841 
2842 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2843   // This method is returning a data structure allocating as a
2844   // ResourceObject, so do not put any ResourceMarks in here.
2845   char *s = sig->as_C_string();
2846   int len = (int)strlen(s);
2847   s++; len--;                   // Skip opening paren
2848 
2849   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2850   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2851   int cnt = 0;
2852   if (has_receiver) {
2853     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2854   }
2855 
2856   while( *s != ')' ) {          // Find closing right paren
2857     switch( *s++ ) {            // Switch on signature character
2858     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2859     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2860     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2861     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2862     case 'I': sig_bt[cnt++] = T_INT;     break;
2863     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2864     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2865     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2866     case 'V': sig_bt[cnt++] = T_VOID;    break;
2867     case 'L':                   // Oop
2868       while( *s++ != ';'  ) ;   // Skip signature
2869       sig_bt[cnt++] = T_OBJECT;
2870       break;
2871     case '[': {                 // Array
2872       do {                      // Skip optional size
2873         while( *s >= '0' && *s <= '9' ) s++;
2874       } while( *s++ == '[' );   // Nested arrays?
2875       // Skip element type
2876       if( s[-1] == 'L' )
2877         while( *s++ != ';'  ) ; // Skip signature
2878       sig_bt[cnt++] = T_ARRAY;
2879       break;
2880     }
2881     default : ShouldNotReachHere();
2882     }
2883   }
2884 
2885   if (has_appendix) {
2886     sig_bt[cnt++] = T_OBJECT;
2887   }
2888 
2889   assert( cnt < 256, "grow table size" );
2890 
2891   int comp_args_on_stack;
2892   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2893 
2894   // the calling convention doesn't count out_preserve_stack_slots so
2895   // we must add that in to get "true" stack offsets.
2896 
2897   if (comp_args_on_stack) {
2898     for (int i = 0; i < cnt; i++) {
2899       VMReg reg1 = regs[i].first();
2900       if( reg1->is_stack()) {
2901         // Yuck
2902         reg1 = reg1->bias(out_preserve_stack_slots());
2903       }
2904       VMReg reg2 = regs[i].second();
2905       if( reg2->is_stack()) {
2906         // Yuck
2907         reg2 = reg2->bias(out_preserve_stack_slots());
2908       }
2909       regs[i].set_pair(reg2, reg1);
2910     }
2911   }
2912 
2913   // results
2914   *arg_size = cnt;
2915   return regs;
2916 }
2917 
2918 // OSR Migration Code
2919 //
2920 // This code is used convert interpreter frames into compiled frames.  It is
2921 // called from very start of a compiled OSR nmethod.  A temp array is
2922 // allocated to hold the interesting bits of the interpreter frame.  All
2923 // active locks are inflated to allow them to move.  The displaced headers and
2924 // active interpeter locals are copied into the temp buffer.  Then we return
2925 // back to the compiled code.  The compiled code then pops the current
2926 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2927 // copies the interpreter locals and displaced headers where it wants.
2928 // Finally it calls back to free the temp buffer.
2929 //
2930 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2931 
2932 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2933 
2934   //
2935   // This code is dependent on the memory layout of the interpreter local
2936   // array and the monitors. On all of our platforms the layout is identical
2937   // so this code is shared. If some platform lays the their arrays out
2938   // differently then this code could move to platform specific code or
2939   // the code here could be modified to copy items one at a time using
2940   // frame accessor methods and be platform independent.
2941 
2942   frame fr = thread->last_frame();
2943   assert( fr.is_interpreted_frame(), "" );
2944   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2945 
2946   // Figure out how many monitors are active.
2947   int active_monitor_count = 0;
2948   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2949        kptr < fr.interpreter_frame_monitor_begin();
2950        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2951     if( kptr->obj() != NULL ) active_monitor_count++;
2952   }
2953 
2954   // QQQ we could place number of active monitors in the array so that compiled code
2955   // could double check it.
2956 
2957   Method* moop = fr.interpreter_frame_method();
2958   int max_locals = moop->max_locals();
2959   // Allocate temp buffer, 1 word per local & 2 per active monitor
2960   int buf_size_words = max_locals + active_monitor_count*2;
2961   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2962 
2963   // Copy the locals.  Order is preserved so that loading of longs works.
2964   // Since there's no GC I can copy the oops blindly.
2965   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2966   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2967                        (HeapWord*)&buf[0],
2968                        max_locals);
2969 
2970   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2971   int i = max_locals;
2972   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2973        kptr2 < fr.interpreter_frame_monitor_begin();
2974        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2975     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2976       BasicLock *lock = kptr2->lock();
2977       // Inflate so the displaced header becomes position-independent
2978       if (lock->displaced_header()->is_unlocked())
2979         ObjectSynchronizer::inflate_helper(kptr2->obj());
2980       // Now the displaced header is free to move
2981       buf[i++] = (intptr_t)lock->displaced_header();
2982       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2983     }
2984   }
2985   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2986 
2987   return buf;
2988 JRT_END
2989 
2990 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2991   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
2992 JRT_END
2993 
2994 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2995   AdapterHandlerTableIterator iter(_adapters);
2996   while (iter.has_next()) {
2997     AdapterHandlerEntry* a = iter.next();
2998     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2999   }
3000   return false;
3001 }
3002 
3003 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
3004   AdapterHandlerTableIterator iter(_adapters);
3005   while (iter.has_next()) {
3006     AdapterHandlerEntry* a = iter.next();
3007     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3008       st->print("Adapter for signature: ");
3009       a->print_adapter_on(tty);
3010       return;
3011     }
3012   }
3013   assert(false, "Should have found handler");
3014 }
3015 
3016 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3017   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3018                (intptr_t) this, fingerprint()->as_string(),
3019                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
3020 
3021 }
3022 
3023 #ifndef PRODUCT
3024 
3025 void AdapterHandlerLibrary::print_statistics() {
3026   _adapters->print_statistics();
3027 }
3028 
3029 #endif /* PRODUCT */