1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "interpreter/bytecode.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "memory/universe.inline.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/jvmtiThreadState.hpp"
  35 #include "runtime/handles.inline.hpp"
  36 #include "runtime/monitorChunk.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/vframe.hpp"
  39 #include "runtime/vframeArray.hpp"
  40 #include "runtime/vframe_hp.hpp"
  41 #include "utilities/events.hpp"
  42 #ifdef COMPILER2
  43 #include "opto/runtime.hpp"
  44 #endif
  45 
  46 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  47 
  48 int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
  49 
  50 void vframeArrayElement::free_monitors(JavaThread* jt) {
  51   if (_monitors != NULL) {
  52      MonitorChunk* chunk = _monitors;
  53      _monitors = NULL;
  54      jt->remove_monitor_chunk(chunk);
  55      delete chunk;
  56   }
  57 }
  58 
  59 void vframeArrayElement::fill_in(compiledVFrame* vf, bool realloc_failures) {
  60 
  61 // Copy the information from the compiled vframe to the
  62 // interpreter frame we will be creating to replace vf
  63 
  64   _method = vf->method();
  65   _bci    = vf->raw_bci();
  66   _reexecute = vf->should_reexecute();
  67 #ifdef ASSERT
  68   _removed_monitors = false;
  69 #endif
  70 
  71   int index;
  72 
  73   // Get the monitors off-stack
  74 
  75   GrowableArray<MonitorInfo*>* list = vf->monitors();
  76   if (list->is_empty()) {
  77     _monitors = NULL;
  78   } else {
  79 
  80     // Allocate monitor chunk
  81     _monitors = new MonitorChunk(list->length());
  82     vf->thread()->add_monitor_chunk(_monitors);
  83 
  84     // Migrate the BasicLocks from the stack to the monitor chunk
  85     for (index = 0; index < list->length(); index++) {
  86       MonitorInfo* monitor = list->at(index);
  87       assert(!monitor->owner_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
  88       BasicObjectLock* dest = _monitors->at(index);
  89       if (monitor->owner_is_scalar_replaced()) {
  90         dest->set_obj(NULL);
  91       } else {
  92         assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
  93         dest->set_obj(monitor->owner());
  94         monitor->lock()->move_to(monitor->owner(), dest->lock());
  95       }
  96     }
  97   }
  98 
  99   // Convert the vframe locals and expressions to off stack
 100   // values. Because we will not gc all oops can be converted to
 101   // intptr_t (i.e. a stack slot) and we are fine. This is
 102   // good since we are inside a HandleMark and the oops in our
 103   // collection would go away between packing them here and
 104   // unpacking them in unpack_on_stack.
 105 
 106   // First the locals go off-stack
 107 
 108   // FIXME this seems silly it creates a StackValueCollection
 109   // in order to get the size to then copy them and
 110   // convert the types to intptr_t size slots. Seems like it
 111   // could do it in place... Still uses less memory than the
 112   // old way though
 113 
 114   StackValueCollection *locs = vf->locals();
 115   _locals = new StackValueCollection(locs->size());
 116   for(index = 0; index < locs->size(); index++) {
 117     StackValue* value = locs->at(index);
 118     switch(value->type()) {
 119       case T_OBJECT:
 120         assert(!value->obj_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
 121         // preserve object type
 122         _locals->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
 123         break;
 124       case T_CONFLICT:
 125         // A dead local.  Will be initialized to null/zero.
 126         _locals->add( new StackValue());
 127         break;
 128       case T_INT:
 129         _locals->add( new StackValue(value->get_int()));
 130         break;
 131       default:
 132         ShouldNotReachHere();
 133     }
 134   }
 135 
 136   // Now the expressions off-stack
 137   // Same silliness as above
 138 
 139   StackValueCollection *exprs = vf->expressions();
 140   _expressions = new StackValueCollection(exprs->size());
 141   for(index = 0; index < exprs->size(); index++) {
 142     StackValue* value = exprs->at(index);
 143     switch(value->type()) {
 144       case T_OBJECT:
 145         assert(!value->obj_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
 146         // preserve object type
 147         _expressions->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
 148         break;
 149       case T_CONFLICT:
 150         // A dead stack element.  Will be initialized to null/zero.
 151         // This can occur when the compiler emits a state in which stack
 152         // elements are known to be dead (because of an imminent exception).
 153         _expressions->add( new StackValue());
 154         break;
 155       case T_INT:
 156         _expressions->add( new StackValue(value->get_int()));
 157         break;
 158       default:
 159         ShouldNotReachHere();
 160     }
 161   }
 162 }
 163 
 164 int unpack_counter = 0;
 165 
 166 void vframeArrayElement::unpack_on_stack(int caller_actual_parameters,
 167                                          int callee_parameters,
 168                                          int callee_locals,
 169                                          frame* caller,
 170                                          bool is_top_frame,
 171                                          bool is_bottom_frame,
 172                                          int exec_mode) {
 173   JavaThread* thread = (JavaThread*) Thread::current();
 174 
 175   // Look at bci and decide on bcp and continuation pc
 176   address bcp;
 177   // C++ interpreter doesn't need a pc since it will figure out what to do when it
 178   // begins execution
 179   address pc;
 180   bool use_next_mdp = false; // true if we should use the mdp associated with the next bci
 181                              // rather than the one associated with bcp
 182   if (raw_bci() == SynchronizationEntryBCI) {
 183     // We are deoptimizing while hanging in prologue code for synchronized method
 184     bcp = method()->bcp_from(0); // first byte code
 185     pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
 186   } else if (should_reexecute()) { //reexecute this bytecode
 187     assert(is_top_frame, "reexecute allowed only for the top frame");
 188     bcp = method()->bcp_from(bci());
 189     pc  = Interpreter::deopt_reexecute_entry(method(), bcp);
 190   } else {
 191     bcp = method()->bcp_from(bci());
 192     pc  = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame);
 193     use_next_mdp = true;
 194   }
 195   assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
 196 
 197   // Monitorenter and pending exceptions:
 198   //
 199   // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
 200   // because there is no safepoint at the null pointer check (it is either handled explicitly
 201   // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
 202   // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
 203   // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
 204   // the monitorenter to place it in the proper exception range.
 205   //
 206   // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
 207   // in which case bcp should point to the monitorenter since it is within the exception's range.
 208 
 209   assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
 210   assert(thread->deopt_nmethod() != NULL, "nmethod should be known");
 211   guarantee(!(thread->deopt_nmethod()->is_compiled_by_c2() &&
 212               *bcp == Bytecodes::_monitorenter             &&
 213               exec_mode == Deoptimization::Unpack_exception),
 214             "shouldn't get exception during monitorenter");
 215 
 216   int popframe_preserved_args_size_in_bytes = 0;
 217   int popframe_preserved_args_size_in_words = 0;
 218   if (is_top_frame) {
 219     JvmtiThreadState *state = thread->jvmti_thread_state();
 220     if (JvmtiExport::can_pop_frame() &&
 221         (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
 222       if (thread->has_pending_popframe()) {
 223         // Pop top frame after deoptimization
 224 #ifndef CC_INTERP
 225         pc = Interpreter::remove_activation_preserving_args_entry();
 226 #else
 227         // Do an uncommon trap type entry. c++ interpreter will know
 228         // to pop frame and preserve the args
 229         pc = Interpreter::deopt_entry(vtos, 0);
 230         use_next_mdp = false;
 231 #endif
 232       } else {
 233         // Reexecute invoke in top frame
 234         pc = Interpreter::deopt_entry(vtos, 0);
 235         use_next_mdp = false;
 236         popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
 237         // Note: the PopFrame-related extension of the expression stack size is done in
 238         // Deoptimization::fetch_unroll_info_helper
 239         popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
 240       }
 241     } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
 242       // Force early return from top frame after deoptimization
 243 #ifndef CC_INTERP
 244       pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
 245 #endif
 246     } else {
 247       // Possibly override the previous pc computation of the top (youngest) frame
 248       switch (exec_mode) {
 249       case Deoptimization::Unpack_deopt:
 250         // use what we've got
 251         break;
 252       case Deoptimization::Unpack_exception:
 253         // exception is pending
 254         pc = SharedRuntime::raw_exception_handler_for_return_address(thread, pc);
 255         // [phh] We're going to end up in some handler or other, so it doesn't
 256         // matter what mdp we point to.  See exception_handler_for_exception()
 257         // in interpreterRuntime.cpp.
 258         break;
 259       case Deoptimization::Unpack_uncommon_trap:
 260       case Deoptimization::Unpack_reexecute:
 261         // redo last byte code
 262         pc  = Interpreter::deopt_entry(vtos, 0);
 263         use_next_mdp = false;
 264         break;
 265       default:
 266         ShouldNotReachHere();
 267       }
 268     }
 269   }
 270 
 271   // Setup the interpreter frame
 272 
 273   assert(method() != NULL, "method must exist");
 274   int temps = expressions()->size();
 275 
 276   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
 277 
 278   Interpreter::layout_activation(method(),
 279                                  temps + callee_parameters,
 280                                  popframe_preserved_args_size_in_words,
 281                                  locks,
 282                                  caller_actual_parameters,
 283                                  callee_parameters,
 284                                  callee_locals,
 285                                  caller,
 286                                  iframe(),
 287                                  is_top_frame,
 288                                  is_bottom_frame);
 289 
 290   // Update the pc in the frame object and overwrite the temporary pc
 291   // we placed in the skeletal frame now that we finally know the
 292   // exact interpreter address we should use.
 293 
 294   _frame.patch_pc(thread, pc);
 295 
 296   assert (!method()->is_synchronized() || locks > 0 || _removed_monitors, "synchronized methods must have monitors");
 297 
 298   BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
 299   for (int index = 0; index < locks; index++) {
 300     top = iframe()->previous_monitor_in_interpreter_frame(top);
 301     BasicObjectLock* src = _monitors->at(index);
 302     top->set_obj(src->obj());
 303     src->lock()->move_to(src->obj(), top->lock());
 304   }
 305   if (ProfileInterpreter) {
 306     iframe()->interpreter_frame_set_mdx(0); // clear out the mdp.
 307   }
 308   iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet
 309   if (ProfileInterpreter) {
 310     MethodData* mdo = method()->method_data();
 311     if (mdo != NULL) {
 312       int bci = iframe()->interpreter_frame_bci();
 313       if (use_next_mdp) ++bci;
 314       address mdp = mdo->bci_to_dp(bci);
 315       iframe()->interpreter_frame_set_mdp(mdp);
 316     }
 317   }
 318 
 319   // Unpack expression stack
 320   // If this is an intermediate frame (i.e. not top frame) then this
 321   // only unpacks the part of the expression stack not used by callee
 322   // as parameters. The callee parameters are unpacked as part of the
 323   // callee locals.
 324   int i;
 325   for(i = 0; i < expressions()->size(); i++) {
 326     StackValue *value = expressions()->at(i);
 327     intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
 328     switch(value->type()) {
 329       case T_INT:
 330         *addr = value->get_int();
 331         break;
 332       case T_OBJECT:
 333         *addr = value->get_int(T_OBJECT);
 334         break;
 335       case T_CONFLICT:
 336         // A dead stack slot.  Initialize to null in case it is an oop.
 337         *addr = NULL_WORD;
 338         break;
 339       default:
 340         ShouldNotReachHere();
 341     }
 342   }
 343 
 344 
 345   // Unpack the locals
 346   for(i = 0; i < locals()->size(); i++) {
 347     StackValue *value = locals()->at(i);
 348     intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
 349     switch(value->type()) {
 350       case T_INT:
 351         *addr = value->get_int();
 352         break;
 353       case T_OBJECT:
 354         *addr = value->get_int(T_OBJECT);
 355         break;
 356       case T_CONFLICT:
 357         // A dead location. If it is an oop then we need a NULL to prevent GC from following it
 358         *addr = NULL_WORD;
 359         break;
 360       default:
 361         ShouldNotReachHere();
 362     }
 363   }
 364 
 365   if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 366     // An interpreted frame was popped but it returns to a deoptimized
 367     // frame. The incoming arguments to the interpreted activation
 368     // were preserved in thread-local storage by the
 369     // remove_activation_preserving_args_entry in the interpreter; now
 370     // we put them back into the just-unpacked interpreter frame.
 371     // Note that this assumes that the locals arena grows toward lower
 372     // addresses.
 373     if (popframe_preserved_args_size_in_words != 0) {
 374       void* saved_args = thread->popframe_preserved_args();
 375       assert(saved_args != NULL, "must have been saved by interpreter");
 376 #ifdef ASSERT
 377       assert(popframe_preserved_args_size_in_words <=
 378              iframe()->interpreter_frame_expression_stack_size()*Interpreter::stackElementWords,
 379              "expression stack size should have been extended");
 380 #endif // ASSERT
 381       int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
 382       intptr_t* base;
 383       if (frame::interpreter_frame_expression_stack_direction() < 0) {
 384         base = iframe()->interpreter_frame_expression_stack_at(top_element);
 385       } else {
 386         base = iframe()->interpreter_frame_expression_stack();
 387       }
 388       Copy::conjoint_jbytes(saved_args,
 389                             base,
 390                             popframe_preserved_args_size_in_bytes);
 391       thread->popframe_free_preserved_args();
 392     }
 393   }
 394 
 395 #ifndef PRODUCT
 396   if (TraceDeoptimization && Verbose) {
 397     ttyLocker ttyl;
 398     tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
 399     iframe()->print_on(tty);
 400     RegisterMap map(thread);
 401     vframe* f = vframe::new_vframe(iframe(), &map, thread);
 402     f->print();
 403 
 404     tty->print_cr("locals size     %d", locals()->size());
 405     tty->print_cr("expression size %d", expressions()->size());
 406 
 407     method()->print_value();
 408     tty->cr();
 409     // method()->print_codes();
 410   } else if (TraceDeoptimization) {
 411     tty->print("     ");
 412     method()->print_value();
 413     Bytecodes::Code code = Bytecodes::java_code_at(method(), bcp);
 414     int bci = method()->bci_from(bcp);
 415     tty->print(" - %s", Bytecodes::name(code));
 416     tty->print(" @ bci %d ", bci);
 417     tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
 418   }
 419 #endif // PRODUCT
 420 
 421   // The expression stack and locals are in the resource area don't leave
 422   // a dangling pointer in the vframeArray we leave around for debug
 423   // purposes
 424 
 425   _locals = _expressions = NULL;
 426 
 427 }
 428 
 429 int vframeArrayElement::on_stack_size(int callee_parameters,
 430                                       int callee_locals,
 431                                       bool is_top_frame,
 432                                       int popframe_extra_stack_expression_els) const {
 433   assert(method()->max_locals() == locals()->size(), "just checking");
 434   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
 435   int temps = expressions()->size();
 436   return Interpreter::size_activation(method()->max_stack(),
 437                                       temps + callee_parameters,
 438                                       popframe_extra_stack_expression_els,
 439                                       locks,
 440                                       callee_parameters,
 441                                       callee_locals,
 442                                       is_top_frame);
 443 }
 444 
 445 
 446 
 447 vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
 448                                    RegisterMap *reg_map, frame sender, frame caller, frame self,
 449                                    bool realloc_failures) {
 450 
 451   // Allocate the vframeArray
 452   vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
 453                                                      sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
 454                                                      mtCompiler);
 455   result->_frames = chunk->length();
 456   result->_owner_thread = thread;
 457   result->_sender = sender;
 458   result->_caller = caller;
 459   result->_original = self;
 460   result->set_unroll_block(NULL); // initialize it
 461   result->fill_in(thread, frame_size, chunk, reg_map, realloc_failures);
 462   return result;
 463 }
 464 
 465 void vframeArray::fill_in(JavaThread* thread,
 466                           int frame_size,
 467                           GrowableArray<compiledVFrame*>* chunk,
 468                           const RegisterMap *reg_map,
 469                           bool realloc_failures) {
 470   // Set owner first, it is used when adding monitor chunks
 471 
 472   _frame_size = frame_size;
 473   for(int i = 0; i < chunk->length(); i++) {
 474     element(i)->fill_in(chunk->at(i), realloc_failures);
 475   }
 476 
 477   // Copy registers for callee-saved registers
 478   if (reg_map != NULL) {
 479     for(int i = 0; i < RegisterMap::reg_count; i++) {
 480 #if defined(AMD64) || defined(AARCH64)
 481       // The register map has one entry for every int (32-bit value), so
 482       // 64-bit physical registers have two entries in the map, one for
 483       // each half.  Ignore the high halves of 64-bit registers, just like
 484       // frame::oopmapreg_to_location does.
 485       //
 486       // [phh] FIXME: this is a temporary hack!  This code *should* work
 487       // correctly w/o this hack, possibly by changing RegisterMap::pd_location
 488       // in frame_amd64.cpp and the values of the phantom high half registers
 489       // in amd64.ad.
 490       //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
 491         intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
 492         _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 493         //      } else {
 494         //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
 495         //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 496         //      }
 497 #else
 498       jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
 499       _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 500 #endif
 501       if (src == NULL) {
 502         set_location_valid(i, false);
 503       } else {
 504         set_location_valid(i, true);
 505         jint* dst = (jint*) register_location(i);
 506         *dst = *src;
 507       }
 508     }
 509   }
 510 }
 511 
 512 void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode, int caller_actual_parameters) {
 513   // stack picture
 514   //   unpack_frame
 515   //   [new interpreter frames ] (frames are skeletal but walkable)
 516   //   caller_frame
 517   //
 518   //  This routine fills in the missing data for the skeletal interpreter frames
 519   //  in the above picture.
 520 
 521   // Find the skeletal interpreter frames to unpack into
 522   JavaThread* THREAD = JavaThread::current();
 523   RegisterMap map(THREAD, false);
 524   // Get the youngest frame we will unpack (last to be unpacked)
 525   frame me = unpack_frame.sender(&map);
 526   int index;
 527   for (index = 0; index < frames(); index++ ) {
 528     *element(index)->iframe() = me;
 529     // Get the caller frame (possibly skeletal)
 530     me = me.sender(&map);
 531   }
 532 
 533   // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
 534   // Unpack the frames from the oldest (frames() -1) to the youngest (0)
 535   frame* caller_frame = &me;
 536   for (index = frames() - 1; index >= 0 ; index--) {
 537     vframeArrayElement* elem = element(index);  // caller
 538     int callee_parameters, callee_locals;
 539     if (index == 0) {
 540       callee_parameters = callee_locals = 0;
 541     } else {
 542       methodHandle caller = elem->method();
 543       methodHandle callee = element(index - 1)->method();
 544       Bytecode_invoke inv(caller, elem->bci());
 545       // invokedynamic instructions don't have a class but obviously don't have a MemberName appendix.
 546       // NOTE:  Use machinery here that avoids resolving of any kind.
 547       const bool has_member_arg =
 548           !inv.is_invokedynamic() && MethodHandles::has_member_arg(inv.klass(), inv.name());
 549       callee_parameters = callee->size_of_parameters() + (has_member_arg ? 1 : 0);
 550       callee_locals     = callee->max_locals();
 551     }
 552     elem->unpack_on_stack(caller_actual_parameters,
 553                           callee_parameters,
 554                           callee_locals,
 555                           caller_frame,
 556                           index == 0,
 557                           index == frames() - 1,
 558                           exec_mode);
 559     if (index == frames() - 1) {
 560       Deoptimization::unwind_callee_save_values(elem->iframe(), this);
 561     }
 562     caller_frame = elem->iframe();
 563     caller_actual_parameters = callee_parameters;
 564   }
 565   deallocate_monitor_chunks();
 566 }
 567 
 568 void vframeArray::deallocate_monitor_chunks() {
 569   JavaThread* jt = JavaThread::current();
 570   for (int index = 0; index < frames(); index++ ) {
 571      element(index)->free_monitors(jt);
 572   }
 573 }
 574 
 575 #ifndef PRODUCT
 576 
 577 bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
 578   if (owner_thread() != thread) return false;
 579   int index = 0;
 580 #if 0 // FIXME can't do this comparison
 581 
 582   // Compare only within vframe array.
 583   for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
 584     if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
 585     index++;
 586   }
 587   if (index != chunk->length()) return false;
 588 #endif
 589 
 590   return true;
 591 }
 592 
 593 #endif
 594 
 595 address vframeArray::register_location(int i) const {
 596   assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
 597   return (address) & _callee_registers[i];
 598 }
 599 
 600 
 601 #ifndef PRODUCT
 602 
 603 // Printing
 604 
 605 // Note: we cannot have print_on as const, as we allocate inside the method
 606 void vframeArray::print_on_2(outputStream* st)  {
 607   st->print_cr(" - sp: " INTPTR_FORMAT, sp());
 608   st->print(" - thread: ");
 609   Thread::current()->print();
 610   st->print_cr(" - frame size: %d", frame_size());
 611   for (int index = 0; index < frames() ; index++ ) {
 612     element(index)->print(st);
 613   }
 614 }
 615 
 616 void vframeArrayElement::print(outputStream* st) {
 617   st->print_cr(" - interpreter_frame -> sp: " INTPTR_FORMAT, iframe()->sp());
 618 }
 619 
 620 void vframeArray::print_value_on(outputStream* st) const {
 621   st->print_cr("vframeArray [%d] ", frames());
 622 }
 623 
 624 
 625 #endif