1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 #ifdef TARGET_COMPILER_gcc
  33 # include "utilities/globalDefinitions_gcc.hpp"
  34 #endif
  35 #ifdef TARGET_COMPILER_visCPP
  36 # include "utilities/globalDefinitions_visCPP.hpp"
  37 #endif
  38 #ifdef TARGET_COMPILER_sparcWorks
  39 # include "utilities/globalDefinitions_sparcWorks.hpp"
  40 #endif
  41 #ifdef TARGET_COMPILER_xlc
  42 # include "utilities/globalDefinitions_xlc.hpp"
  43 #endif
  44 
  45 // Defaults for macros that might be defined per compiler.
  46 #ifndef NOINLINE
  47 #define NOINLINE
  48 #endif
  49 #ifndef ALWAYSINLINE
  50 #define ALWAYSINLINE inline
  51 #endif
  52 
  53 #ifndef PRAGMA_DIAG_PUSH
  54 #define PRAGMA_DIAG_PUSH
  55 #endif
  56 #ifndef PRAGMA_DIAG_POP
  57 #define PRAGMA_DIAG_POP
  58 #endif
  59 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
  60 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
  61 #endif
  62 #ifndef PRAGMA_FORMAT_IGNORED
  63 #define PRAGMA_FORMAT_IGNORED
  64 #endif
  65 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  66 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  67 #endif
  68 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  69 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  70 #endif
  71 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  72 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  73 #endif
  74 #ifndef ATTRIBUTE_PRINTF
  75 #define ATTRIBUTE_PRINTF(fmt, vargs)
  76 #endif
  77 
  78 
  79 #include "utilities/macros.hpp"
  80 
  81 // This file holds all globally used constants & types, class (forward)
  82 // declarations and a few frequently used utility functions.
  83 
  84 //----------------------------------------------------------------------------------------------------
  85 // Constants
  86 
  87 const int LogBytesPerShort   = 1;
  88 const int LogBytesPerInt     = 2;
  89 #ifdef _LP64
  90 const int LogBytesPerWord    = 3;
  91 #else
  92 const int LogBytesPerWord    = 2;
  93 #endif
  94 const int LogBytesPerLong    = 3;
  95 
  96 const int BytesPerShort      = 1 << LogBytesPerShort;
  97 const int BytesPerInt        = 1 << LogBytesPerInt;
  98 const int BytesPerWord       = 1 << LogBytesPerWord;
  99 const int BytesPerLong       = 1 << LogBytesPerLong;
 100 
 101 const int LogBitsPerByte     = 3;
 102 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 103 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 104 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 105 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 106 
 107 const int BitsPerByte        = 1 << LogBitsPerByte;
 108 const int BitsPerShort       = 1 << LogBitsPerShort;
 109 const int BitsPerInt         = 1 << LogBitsPerInt;
 110 const int BitsPerWord        = 1 << LogBitsPerWord;
 111 const int BitsPerLong        = 1 << LogBitsPerLong;
 112 
 113 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 114 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 115 
 116 const int WordsPerLong       = 2;       // Number of stack entries for longs
 117 
 118 const int oopSize            = sizeof(char*); // Full-width oop
 119 extern int heapOopSize;                       // Oop within a java object
 120 const int wordSize           = sizeof(char*);
 121 const int longSize           = sizeof(jlong);
 122 const int jintSize           = sizeof(jint);
 123 const int size_tSize         = sizeof(size_t);
 124 
 125 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 126 
 127 extern int LogBytesPerHeapOop;                // Oop within a java object
 128 extern int LogBitsPerHeapOop;
 129 extern int BytesPerHeapOop;
 130 extern int BitsPerHeapOop;
 131 
 132 // Oop encoding heap max
 133 extern uint64_t OopEncodingHeapMax;
 134 
 135 const int BitsPerJavaInteger = 32;
 136 const int BitsPerJavaLong    = 64;
 137 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 138 
 139 // Size of a char[] needed to represent a jint as a string in decimal.
 140 const int jintAsStringSize = 12;
 141 
 142 // In fact this should be
 143 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 144 // see os::set_memory_serialize_page()
 145 #ifdef _LP64
 146 const int SerializePageShiftCount = 4;
 147 #else
 148 const int SerializePageShiftCount = 3;
 149 #endif
 150 
 151 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 152 // pointer into the heap.  We require that object sizes be measured in
 153 // units of heap words, so that that
 154 //   HeapWord* hw;
 155 //   hw += oop(hw)->foo();
 156 // works, where foo is a method (like size or scavenge) that returns the
 157 // object size.
 158 class HeapWord {
 159   friend class VMStructs;
 160  private:
 161   char* i;
 162 #ifndef PRODUCT
 163  public:
 164   char* value() { return i; }
 165 #endif
 166 };
 167 
 168 // Analogous opaque struct for metadata allocated from
 169 // metaspaces.
 170 class MetaWord {
 171   friend class VMStructs;
 172  private:
 173   char* i;
 174 };
 175 
 176 // HeapWordSize must be 2^LogHeapWordSize.
 177 const int HeapWordSize        = sizeof(HeapWord);
 178 #ifdef _LP64
 179 const int LogHeapWordSize     = 3;
 180 #else
 181 const int LogHeapWordSize     = 2;
 182 #endif
 183 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 184 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 185 
 186 // The larger HeapWordSize for 64bit requires larger heaps
 187 // for the same application running in 64bit.  See bug 4967770.
 188 // The minimum alignment to a heap word size is done.  Other
 189 // parts of the memory system may required additional alignment
 190 // and are responsible for those alignments.
 191 #ifdef _LP64
 192 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 193 #else
 194 #define ScaleForWordSize(x) (x)
 195 #endif
 196 
 197 // The minimum number of native machine words necessary to contain "byte_size"
 198 // bytes.
 199 inline size_t heap_word_size(size_t byte_size) {
 200   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 201 }
 202 
 203 
 204 const size_t K                  = 1024;
 205 const size_t M                  = K*K;
 206 const size_t G                  = M*K;
 207 const size_t HWperKB            = K / sizeof(HeapWord);
 208 
 209 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 210 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 211 
 212 // Constants for converting from a base unit to milli-base units.  For
 213 // example from seconds to milliseconds and microseconds
 214 
 215 const int MILLIUNITS    = 1000;         // milli units per base unit
 216 const int MICROUNITS    = 1000000;      // micro units per base unit
 217 const int NANOUNITS     = 1000000000;   // nano units per base unit
 218 
 219 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 220 const jint  NANOSECS_PER_MILLISEC = 1000000;
 221 
 222 // Proper units routines try to maintain at least three significant digits.
 223 // In worst case, it would print five significant digits with lower prefix.
 224 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 225 // and therefore we need to be careful.
 226 
 227 inline const char* proper_unit_for_byte_size(size_t s) {
 228 #ifdef _LP64
 229   if (s >= 100*G) {
 230     return "G";
 231   }
 232 #endif
 233   if (s >= 100*M) {
 234     return "M";
 235   } else if (s >= 100*K) {
 236     return "K";
 237   } else {
 238     return "B";
 239   }
 240 }
 241 
 242 template <class T>
 243 inline T byte_size_in_proper_unit(T s) {
 244 #ifdef _LP64
 245   if (s >= 100*G) {
 246     return (T)(s/G);
 247   }
 248 #endif
 249   if (s >= 100*M) {
 250     return (T)(s/M);
 251   } else if (s >= 100*K) {
 252     return (T)(s/K);
 253   } else {
 254     return s;
 255   }
 256 }
 257 
 258 //----------------------------------------------------------------------------------------------------
 259 // VM type definitions
 260 
 261 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 262 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 263 
 264 typedef intptr_t  intx;
 265 typedef uintptr_t uintx;
 266 
 267 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 268 const intx  max_intx  = (uintx)min_intx - 1;
 269 const uintx max_uintx = (uintx)-1;
 270 
 271 // Table of values:
 272 //      sizeof intx         4               8
 273 // min_intx             0x80000000      0x8000000000000000
 274 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 275 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 276 
 277 typedef unsigned int uint;   NEEDS_CLEANUP
 278 
 279 
 280 //----------------------------------------------------------------------------------------------------
 281 // Java type definitions
 282 
 283 // All kinds of 'plain' byte addresses
 284 typedef   signed char s_char;
 285 typedef unsigned char u_char;
 286 typedef u_char*       address;
 287 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 288                                     // except for some implementations of a C++
 289                                     // linkage pointer to function. Should never
 290                                     // need one of those to be placed in this
 291                                     // type anyway.
 292 
 293 //  Utility functions to "portably" (?) bit twiddle pointers
 294 //  Where portable means keep ANSI C++ compilers quiet
 295 
 296 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 297 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 298 
 299 //  Utility functions to "portably" make cast to/from function pointers.
 300 
 301 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 302 inline address_word  castable_address(address x)              { return address_word(x) ; }
 303 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 304 
 305 // Pointer subtraction.
 306 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 307 // the range we might need to find differences from one end of the heap
 308 // to the other.
 309 // A typical use might be:
 310 //     if (pointer_delta(end(), top()) >= size) {
 311 //       // enough room for an object of size
 312 //       ...
 313 // and then additions like
 314 //       ... top() + size ...
 315 // are safe because we know that top() is at least size below end().
 316 inline size_t pointer_delta(const void* left,
 317                             const void* right,
 318                             size_t element_size) {
 319   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 320 }
 321 // A version specialized for HeapWord*'s.
 322 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 323   return pointer_delta(left, right, sizeof(HeapWord));
 324 }
 325 // A version specialized for MetaWord*'s.
 326 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 327   return pointer_delta(left, right, sizeof(MetaWord));
 328 }
 329 
 330 //
 331 // ANSI C++ does not allow casting from one pointer type to a function pointer
 332 // directly without at best a warning. This macro accomplishes it silently
 333 // In every case that is present at this point the value be cast is a pointer
 334 // to a C linkage function. In somecase the type used for the cast reflects
 335 // that linkage and a picky compiler would not complain. In other cases because
 336 // there is no convenient place to place a typedef with extern C linkage (i.e
 337 // a platform dependent header file) it doesn't. At this point no compiler seems
 338 // picky enough to catch these instances (which are few). It is possible that
 339 // using templates could fix these for all cases. This use of templates is likely
 340 // so far from the middle of the road that it is likely to be problematic in
 341 // many C++ compilers.
 342 //
 343 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 344 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 345 
 346 // Unsigned byte types for os and stream.hpp
 347 
 348 // Unsigned one, two, four and eigth byte quantities used for describing
 349 // the .class file format. See JVM book chapter 4.
 350 
 351 typedef jubyte  u1;
 352 typedef jushort u2;
 353 typedef juint   u4;
 354 typedef julong  u8;
 355 
 356 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 357 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 358 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 359 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 360 
 361 typedef jbyte  s1;
 362 typedef jshort s2;
 363 typedef jint   s4;
 364 typedef jlong  s8;
 365 
 366 //----------------------------------------------------------------------------------------------------
 367 // JVM spec restrictions
 368 
 369 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 370 
 371 // Default ProtectionDomainCacheSize values
 372 
 373 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
 374 
 375 //----------------------------------------------------------------------------------------------------
 376 // Default and minimum StringTableSize values
 377 
 378 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 379 const int minimumStringTableSize = 1009;
 380 
 381 const int defaultSymbolTableSize = 20011;
 382 const int minimumSymbolTableSize = 1009;
 383 
 384 
 385 //----------------------------------------------------------------------------------------------------
 386 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 387 //
 388 // Determines whether on-the-fly class replacement and frame popping are enabled.
 389 
 390 #define HOTSWAP
 391 
 392 //----------------------------------------------------------------------------------------------------
 393 // Object alignment, in units of HeapWords.
 394 //
 395 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 396 // reference fields can be naturally aligned.
 397 
 398 extern int MinObjAlignment;
 399 extern int MinObjAlignmentInBytes;
 400 extern int MinObjAlignmentInBytesMask;
 401 
 402 extern int LogMinObjAlignment;
 403 extern int LogMinObjAlignmentInBytes;
 404 
 405 const int LogKlassAlignmentInBytes = 3;
 406 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 407 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 408 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 409 
 410 // Klass encoding metaspace max size
 411 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 412 
 413 // Machine dependent stuff
 414 
 415 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
 416 // Include Restricted Transactional Memory lock eliding optimization
 417 #define INCLUDE_RTM_OPT 1
 418 #define RTM_OPT_ONLY(code) code
 419 #else
 420 #define INCLUDE_RTM_OPT 0
 421 #define RTM_OPT_ONLY(code)
 422 #endif
 423 // States of Restricted Transactional Memory usage.
 424 enum RTMState {
 425   NoRTM      = 0x2, // Don't use RTM
 426   UseRTM     = 0x1, // Use RTM
 427   ProfileRTM = 0x0  // Use RTM with abort ratio calculation
 428 };
 429 
 430 #ifdef TARGET_ARCH_x86
 431 # include "globalDefinitions_x86.hpp"
 432 #endif
 433 #ifdef TARGET_ARCH_sparc
 434 # include "globalDefinitions_sparc.hpp"
 435 #endif
 436 #ifdef TARGET_ARCH_zero
 437 # include "globalDefinitions_zero.hpp"
 438 #endif
 439 #ifdef TARGET_ARCH_arm
 440 # include "globalDefinitions_arm.hpp"
 441 #endif
 442 #ifdef TARGET_ARCH_ppc
 443 # include "globalDefinitions_ppc.hpp"
 444 #endif
 445 
 446 /*
 447  * If a platform does not support native stack walking
 448  * the platform specific globalDefinitions (above)
 449  * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
 450  */
 451 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
 452 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
 453 #endif
 454 
 455 // To assure the IRIW property on processors that are not multiple copy
 456 // atomic, sync instructions must be issued between volatile reads to
 457 // assure their ordering, instead of after volatile stores.
 458 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 459 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 460 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 461 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 462 #else
 463 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 464 #endif
 465 
 466 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 467 // Note: this value must be a power of 2
 468 
 469 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 470 
 471 // Signed variants of alignment helpers.  There are two versions of each, a macro
 472 // for use in places like enum definitions that require compile-time constant
 473 // expressions and a function for all other places so as to get type checking.
 474 
 475 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 476 
 477 inline bool is_size_aligned(size_t size, size_t alignment) {
 478   return align_size_up_(size, alignment) == size;
 479 }
 480 
 481 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
 482   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
 483 }
 484 
 485 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 486   return align_size_up_(size, alignment);
 487 }
 488 
 489 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 490 
 491 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 492   return align_size_down_(size, alignment);
 493 }
 494 
 495 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
 496 
 497 inline void* align_ptr_up(void* ptr, size_t alignment) {
 498   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
 499 }
 500 
 501 inline void* align_ptr_down(void* ptr, size_t alignment) {
 502   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 503 }
 504 
 505 // Align objects by rounding up their size, in HeapWord units.
 506 
 507 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
 508 
 509 inline intptr_t align_object_size(intptr_t size) {
 510   return align_size_up(size, MinObjAlignment);
 511 }
 512 
 513 inline bool is_object_aligned(intptr_t addr) {
 514   return addr == align_object_size(addr);
 515 }
 516 
 517 // Pad out certain offsets to jlong alignment, in HeapWord units.
 518 
 519 inline intptr_t align_object_offset(intptr_t offset) {
 520   return align_size_up(offset, HeapWordsPerLong);
 521 }
 522 
 523 inline void* align_pointer_up(const void* addr, size_t size) {
 524   return (void*) align_size_up_((uintptr_t)addr, size);
 525 }
 526 
 527 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
 528 
 529 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
 530   size_t aligned_size = align_size_down_(size, alignment);
 531   return aligned_size > 0 ? aligned_size : alignment;
 532 }
 533 
 534 // Clamp an address to be within a specific page
 535 // 1. If addr is on the page it is returned as is
 536 // 2. If addr is above the page_address the start of the *next* page will be returned
 537 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 538 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 539   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 540     // address is in the specified page, just return it as is
 541     return addr;
 542   } else if (addr > page_address) {
 543     // address is above specified page, return start of next page
 544     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 545   } else {
 546     // address is below specified page, return start of page
 547     return (address)align_size_down(intptr_t(page_address), page_size);
 548   }
 549 }
 550 
 551 
 552 // The expected size in bytes of a cache line, used to pad data structures.
 553 #define DEFAULT_CACHE_LINE_SIZE 64
 554 
 555 
 556 //----------------------------------------------------------------------------------------------------
 557 // Utility macros for compilers
 558 // used to silence compiler warnings
 559 
 560 #define Unused_Variable(var) var
 561 
 562 
 563 //----------------------------------------------------------------------------------------------------
 564 // Miscellaneous
 565 
 566 // 6302670 Eliminate Hotspot __fabsf dependency
 567 // All fabs() callers should call this function instead, which will implicitly
 568 // convert the operand to double, avoiding a dependency on __fabsf which
 569 // doesn't exist in early versions of Solaris 8.
 570 inline double fabsd(double value) {
 571   return fabs(value);
 572 }
 573 
 574 //----------------------------------------------------------------------------------------------------
 575 // Special casts
 576 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 577 typedef union {
 578   jfloat f;
 579   jint i;
 580 } FloatIntConv;
 581 
 582 typedef union {
 583   jdouble d;
 584   jlong l;
 585   julong ul;
 586 } DoubleLongConv;
 587 
 588 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 589 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 590 
 591 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 592 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 593 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 594 
 595 inline jint low (jlong value)                    { return jint(value); }
 596 inline jint high(jlong value)                    { return jint(value >> 32); }
 597 
 598 // the fancy casts are a hopefully portable way
 599 // to do unsigned 32 to 64 bit type conversion
 600 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 601                                                    *value |= (jlong)(julong)(juint)low; }
 602 
 603 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 604                                                    *value |= (jlong)high       << 32; }
 605 
 606 inline jlong jlong_from(jint h, jint l) {
 607   jlong result = 0; // initialization to avoid warning
 608   set_high(&result, h);
 609   set_low(&result,  l);
 610   return result;
 611 }
 612 
 613 union jlong_accessor {
 614   jint  words[2];
 615   jlong long_value;
 616 };
 617 
 618 void basic_types_init(); // cannot define here; uses assert
 619 
 620 
 621 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 622 enum BasicType {
 623   T_BOOLEAN     =  4,
 624   T_CHAR        =  5,
 625   T_FLOAT       =  6,
 626   T_DOUBLE      =  7,
 627   T_BYTE        =  8,
 628   T_SHORT       =  9,
 629   T_INT         = 10,
 630   T_LONG        = 11,
 631   T_OBJECT      = 12,
 632   T_ARRAY       = 13,
 633   T_VOID        = 14,
 634   T_ADDRESS     = 15,
 635   T_NARROWOOP   = 16,
 636   T_METADATA    = 17,
 637   T_NARROWKLASS = 18,
 638   T_CONFLICT    = 19, // for stack value type with conflicting contents
 639   T_ILLEGAL     = 99
 640 };
 641 
 642 inline bool is_java_primitive(BasicType t) {
 643   return T_BOOLEAN <= t && t <= T_LONG;
 644 }
 645 
 646 inline bool is_subword_type(BasicType t) {
 647   // these guys are processed exactly like T_INT in calling sequences:
 648   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 649 }
 650 
 651 inline bool is_signed_subword_type(BasicType t) {
 652   return (t == T_BYTE || t == T_SHORT);
 653 }
 654 
 655 inline bool is_reference_type(BasicType t) {
 656   return (t == T_OBJECT || t == T_ARRAY);
 657 }
 658 
 659 // Convert a char from a classfile signature to a BasicType
 660 inline BasicType char2type(char c) {
 661   switch( c ) {
 662   case 'B': return T_BYTE;
 663   case 'C': return T_CHAR;
 664   case 'D': return T_DOUBLE;
 665   case 'F': return T_FLOAT;
 666   case 'I': return T_INT;
 667   case 'J': return T_LONG;
 668   case 'S': return T_SHORT;
 669   case 'Z': return T_BOOLEAN;
 670   case 'V': return T_VOID;
 671   case 'L': return T_OBJECT;
 672   case '[': return T_ARRAY;
 673   }
 674   return T_ILLEGAL;
 675 }
 676 
 677 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 678 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 679 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 680 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 681 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 682 extern BasicType name2type(const char* name);
 683 
 684 // Auxilary math routines
 685 // least common multiple
 686 extern size_t lcm(size_t a, size_t b);
 687 
 688 
 689 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 690 enum BasicTypeSize {
 691   T_BOOLEAN_size     = 1,
 692   T_CHAR_size        = 1,
 693   T_FLOAT_size       = 1,
 694   T_DOUBLE_size      = 2,
 695   T_BYTE_size        = 1,
 696   T_SHORT_size       = 1,
 697   T_INT_size         = 1,
 698   T_LONG_size        = 2,
 699   T_OBJECT_size      = 1,
 700   T_ARRAY_size       = 1,
 701   T_NARROWOOP_size   = 1,
 702   T_NARROWKLASS_size = 1,
 703   T_VOID_size        = 0
 704 };
 705 
 706 
 707 // maps a BasicType to its instance field storage type:
 708 // all sub-word integral types are widened to T_INT
 709 extern BasicType type2field[T_CONFLICT+1];
 710 extern BasicType type2wfield[T_CONFLICT+1];
 711 
 712 
 713 // size in bytes
 714 enum ArrayElementSize {
 715   T_BOOLEAN_aelem_bytes     = 1,
 716   T_CHAR_aelem_bytes        = 2,
 717   T_FLOAT_aelem_bytes       = 4,
 718   T_DOUBLE_aelem_bytes      = 8,
 719   T_BYTE_aelem_bytes        = 1,
 720   T_SHORT_aelem_bytes       = 2,
 721   T_INT_aelem_bytes         = 4,
 722   T_LONG_aelem_bytes        = 8,
 723 #ifdef _LP64
 724   T_OBJECT_aelem_bytes      = 8,
 725   T_ARRAY_aelem_bytes       = 8,
 726 #else
 727   T_OBJECT_aelem_bytes      = 4,
 728   T_ARRAY_aelem_bytes       = 4,
 729 #endif
 730   T_NARROWOOP_aelem_bytes   = 4,
 731   T_NARROWKLASS_aelem_bytes = 4,
 732   T_VOID_aelem_bytes        = 0
 733 };
 734 
 735 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 736 #ifdef ASSERT
 737 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 738 #else
 739 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 740 #endif
 741 
 742 
 743 // JavaValue serves as a container for arbitrary Java values.
 744 
 745 class JavaValue {
 746 
 747  public:
 748   typedef union JavaCallValue {
 749     jfloat   f;
 750     jdouble  d;
 751     jint     i;
 752     jlong    l;
 753     jobject  h;
 754   } JavaCallValue;
 755 
 756  private:
 757   BasicType _type;
 758   JavaCallValue _value;
 759 
 760  public:
 761   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 762 
 763   JavaValue(jfloat value) {
 764     _type    = T_FLOAT;
 765     _value.f = value;
 766   }
 767 
 768   JavaValue(jdouble value) {
 769     _type    = T_DOUBLE;
 770     _value.d = value;
 771   }
 772 
 773  jfloat get_jfloat() const { return _value.f; }
 774  jdouble get_jdouble() const { return _value.d; }
 775  jint get_jint() const { return _value.i; }
 776  jlong get_jlong() const { return _value.l; }
 777  jobject get_jobject() const { return _value.h; }
 778  JavaCallValue* get_value_addr() { return &_value; }
 779  BasicType get_type() const { return _type; }
 780 
 781  void set_jfloat(jfloat f) { _value.f = f;}
 782  void set_jdouble(jdouble d) { _value.d = d;}
 783  void set_jint(jint i) { _value.i = i;}
 784  void set_jlong(jlong l) { _value.l = l;}
 785  void set_jobject(jobject h) { _value.h = h;}
 786  void set_type(BasicType t) { _type = t; }
 787 
 788  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 789  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 790  jchar get_jchar() const { return (jchar) (_value.i);}
 791  jshort get_jshort() const { return (jshort) (_value.i);}
 792 
 793 };
 794 
 795 
 796 #define STACK_BIAS      0
 797 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 798 // in order to extend the reach of the stack pointer.
 799 #if defined(SPARC) && defined(_LP64)
 800 #undef STACK_BIAS
 801 #define STACK_BIAS      0x7ff
 802 #endif
 803 
 804 
 805 // TosState describes the top-of-stack state before and after the execution of
 806 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 807 // registers. The TosState corresponds to the 'machine represention' of this cached
 808 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 809 // as well as a 5th state in case the top-of-stack value is actually on the top
 810 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 811 // state when it comes to machine representation but is used separately for (oop)
 812 // type specific operations (e.g. verification code).
 813 
 814 enum TosState {         // describes the tos cache contents
 815   btos = 0,             // byte, bool tos cached
 816   ztos = 1,             // byte, bool tos cached
 817   ctos = 2,             // char tos cached
 818   stos = 3,             // short tos cached
 819   itos = 4,             // int tos cached
 820   ltos = 5,             // long tos cached
 821   ftos = 6,             // float tos cached
 822   dtos = 7,             // double tos cached
 823   atos = 8,             // object cached
 824   vtos = 9,             // tos not cached
 825   number_of_states,
 826   ilgl                  // illegal state: should not occur
 827 };
 828 
 829 
 830 inline TosState as_TosState(BasicType type) {
 831   switch (type) {
 832     case T_BYTE   : return btos;
 833     case T_BOOLEAN: return ztos;
 834     case T_CHAR   : return ctos;
 835     case T_SHORT  : return stos;
 836     case T_INT    : return itos;
 837     case T_LONG   : return ltos;
 838     case T_FLOAT  : return ftos;
 839     case T_DOUBLE : return dtos;
 840     case T_VOID   : return vtos;
 841     case T_ARRAY  : // fall through
 842     case T_OBJECT : return atos;
 843   }
 844   return ilgl;
 845 }
 846 
 847 inline BasicType as_BasicType(TosState state) {
 848   switch (state) {
 849     case btos : return T_BYTE;
 850     case ztos : return T_BOOLEAN;
 851     case ctos : return T_CHAR;
 852     case stos : return T_SHORT;
 853     case itos : return T_INT;
 854     case ltos : return T_LONG;
 855     case ftos : return T_FLOAT;
 856     case dtos : return T_DOUBLE;
 857     case atos : return T_OBJECT;
 858     case vtos : return T_VOID;
 859   }
 860   return T_ILLEGAL;
 861 }
 862 
 863 
 864 // Helper function to convert BasicType info into TosState
 865 // Note: Cannot define here as it uses global constant at the time being.
 866 TosState as_TosState(BasicType type);
 867 
 868 
 869 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 870 // information is needed by the safepoint code.
 871 //
 872 // There are 4 essential states:
 873 //
 874 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 875 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 876 //  _thread_in_vm       : Executing in the vm
 877 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 878 //
 879 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 880 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 881 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 882 //
 883 // Given a state, the xxx_trans state can always be found by adding 1.
 884 //
 885 enum JavaThreadState {
 886   _thread_uninitialized     =  0, // should never happen (missing initialization)
 887   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 888   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 889   _thread_in_native         =  4, // running in native code
 890   _thread_in_native_trans   =  5, // corresponding transition state
 891   _thread_in_vm             =  6, // running in VM
 892   _thread_in_vm_trans       =  7, // corresponding transition state
 893   _thread_in_Java           =  8, // running in Java or in stub code
 894   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 895   _thread_blocked           = 10, // blocked in vm
 896   _thread_blocked_trans     = 11, // corresponding transition state
 897   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 898 };
 899 
 900 
 901 // Handy constants for deciding which compiler mode to use.
 902 enum MethodCompilation {
 903   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
 904   InvalidOSREntryBci = -2
 905 };
 906 
 907 // Enumeration to distinguish tiers of compilation
 908 enum CompLevel {
 909   CompLevel_any               = -1,
 910   CompLevel_all               = -1,
 911   CompLevel_none              = 0,         // Interpreter
 912   CompLevel_simple            = 1,         // C1
 913   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 914   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 915   CompLevel_full_optimization = 4,         // C2 or Shark
 916 
 917 #if defined(COMPILER2) || defined(SHARK)
 918   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
 919 #elif defined(COMPILER1)
 920   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
 921 #else
 922   CompLevel_highest_tier      = CompLevel_none,
 923 #endif
 924 
 925 #if defined(TIERED)
 926   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 927 #elif defined(COMPILER1)
 928   CompLevel_initial_compile   = CompLevel_simple              // pure C1
 929 #elif defined(COMPILER2) || defined(SHARK)
 930   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 931 #else
 932   CompLevel_initial_compile   = CompLevel_none
 933 #endif
 934 };
 935 
 936 inline bool is_c1_compile(int comp_level) {
 937   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 938 }
 939 
 940 inline bool is_c2_compile(int comp_level) {
 941   return comp_level == CompLevel_full_optimization;
 942 }
 943 
 944 inline bool is_highest_tier_compile(int comp_level) {
 945   return comp_level == CompLevel_highest_tier;
 946 }
 947 
 948 inline bool is_compile(int comp_level) {
 949   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
 950 }
 951 
 952 //----------------------------------------------------------------------------------------------------
 953 // 'Forward' declarations of frequently used classes
 954 // (in order to reduce interface dependencies & reduce
 955 // number of unnecessary compilations after changes)
 956 
 957 class symbolTable;
 958 class ClassFileStream;
 959 
 960 class Event;
 961 
 962 class Thread;
 963 class  VMThread;
 964 class  JavaThread;
 965 class Threads;
 966 
 967 class VM_Operation;
 968 class VMOperationQueue;
 969 
 970 class CodeBlob;
 971 class  nmethod;
 972 class  OSRAdapter;
 973 class  I2CAdapter;
 974 class  C2IAdapter;
 975 class CompiledIC;
 976 class relocInfo;
 977 class ScopeDesc;
 978 class PcDesc;
 979 
 980 class Recompiler;
 981 class Recompilee;
 982 class RecompilationPolicy;
 983 class RFrame;
 984 class  CompiledRFrame;
 985 class  InterpretedRFrame;
 986 
 987 class frame;
 988 
 989 class vframe;
 990 class   javaVFrame;
 991 class     interpretedVFrame;
 992 class     compiledVFrame;
 993 class     deoptimizedVFrame;
 994 class   externalVFrame;
 995 class     entryVFrame;
 996 
 997 class RegisterMap;
 998 
 999 class Mutex;
1000 class Monitor;
1001 class BasicLock;
1002 class BasicObjectLock;
1003 
1004 class PeriodicTask;
1005 
1006 class JavaCallWrapper;
1007 
1008 class   oopDesc;
1009 class   metaDataOopDesc;
1010 
1011 class NativeCall;
1012 
1013 class zone;
1014 
1015 class StubQueue;
1016 
1017 class outputStream;
1018 
1019 class ResourceArea;
1020 
1021 class DebugInformationRecorder;
1022 class ScopeValue;
1023 class CompressedStream;
1024 class   DebugInfoReadStream;
1025 class   DebugInfoWriteStream;
1026 class LocationValue;
1027 class ConstantValue;
1028 class IllegalValue;
1029 
1030 class PrivilegedElement;
1031 class MonitorArray;
1032 
1033 class MonitorInfo;
1034 
1035 class OffsetClosure;
1036 class OopMapCache;
1037 class InterpreterOopMap;
1038 class OopMapCacheEntry;
1039 class OSThread;
1040 
1041 typedef int (*OSThreadStartFunc)(void*);
1042 
1043 class Space;
1044 
1045 class JavaValue;
1046 class methodHandle;
1047 class JavaCallArguments;
1048 
1049 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
1050 
1051 extern void basic_fatal(const char* msg);
1052 
1053 
1054 //----------------------------------------------------------------------------------------------------
1055 // Special constants for debugging
1056 
1057 const jint     badInt           = -3;                       // generic "bad int" value
1058 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
1059 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
1060 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1061 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
1062 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1063 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1064 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1065 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1066 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1067 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1068 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1069 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1070 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1071 
1072 
1073 // (These must be implemented as #defines because C++ compilers are
1074 // not obligated to inline non-integral constants!)
1075 #define       badAddress        ((address)::badAddressVal)
1076 #define       badOop            (cast_to_oop(::badOopVal))
1077 #define       badHeapWord       (::badHeapWordVal)
1078 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1079 
1080 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1081 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1082 
1083 //----------------------------------------------------------------------------------------------------
1084 // Utility functions for bitfield manipulations
1085 
1086 const intptr_t AllBits    = ~0; // all bits set in a word
1087 const intptr_t NoBits     =  0; // no bits set in a word
1088 const jlong    NoLongBits =  0; // no bits set in a long
1089 const intptr_t OneBit     =  1; // only right_most bit set in a word
1090 
1091 // get a word with the n.th or the right-most or left-most n bits set
1092 // (note: #define used only so that they can be used in enum constant definitions)
1093 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
1094 #define right_n_bits(n)   (nth_bit(n) - 1)
1095 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
1096 
1097 // bit-operations using a mask m
1098 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1099 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1100 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1101 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1102 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1103 
1104 // bit-operations using the n.th bit
1105 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1106 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1107 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1108 
1109 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1110 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1111   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1112 }
1113 
1114 
1115 //----------------------------------------------------------------------------------------------------
1116 // Utility functions for integers
1117 
1118 // Avoid use of global min/max macros which may cause unwanted double
1119 // evaluation of arguments.
1120 #ifdef max
1121 #undef max
1122 #endif
1123 
1124 #ifdef min
1125 #undef min
1126 #endif
1127 
1128 #define max(a,b) Do_not_use_max_use_MAX2_instead
1129 #define min(a,b) Do_not_use_min_use_MIN2_instead
1130 
1131 // It is necessary to use templates here. Having normal overloaded
1132 // functions does not work because it is necessary to provide both 32-
1133 // and 64-bit overloaded functions, which does not work, and having
1134 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1135 // will be even more error-prone than macros.
1136 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1137 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1138 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1139 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1140 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1141 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1142 
1143 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1144 
1145 // true if x is a power of 2, false otherwise
1146 inline bool is_power_of_2(intptr_t x) {
1147   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1148 }
1149 
1150 // long version of is_power_of_2
1151 inline bool is_power_of_2_long(jlong x) {
1152   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1153 }
1154 
1155 //* largest i such that 2^i <= x
1156 //  A negative value of 'x' will return '31'
1157 inline int log2_intptr(uintptr_t x) {
1158   int i = -1;
1159   uintptr_t p =  1;
1160   while (p != 0 && p <= x) {
1161     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1162     i++; p *= 2;
1163   }
1164   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1165   // (if p = 0 then overflow occurred and i = 31)
1166   return i;
1167 }
1168 
1169 //* largest i such that 2^i <= x
1170 inline int log2_long(julong x) {
1171   int i = -1;
1172   julong p =  1;
1173   while (p != 0 && p <= x) {
1174     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1175     i++; p *= 2;
1176   }
1177   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1178   // (if p = 0 then overflow occurred and i = 63)
1179   return i;
1180 }
1181 
1182 inline int log2_intptr(intptr_t x) {
1183   return log2_intptr((uintptr_t)x);
1184 }
1185 
1186 inline int log2_int(int x) {
1187   return log2_intptr((uintptr_t)x);
1188 }
1189 
1190 inline int log2_jint(jint x) {
1191   return log2_intptr((uintptr_t)x);
1192 }
1193 
1194 inline int log2_uint(uint x) {
1195   return log2_intptr((uintptr_t)x);
1196 }
1197 
1198 //  A negative value of 'x' will return '63'
1199 inline int log2_jlong(jlong x) {
1200   return log2_long((julong)x);
1201 }
1202 
1203 //* the argument must be exactly a power of 2
1204 inline int exact_log2(intptr_t x) {
1205   #ifdef ASSERT
1206     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1207   #endif
1208   return log2_intptr(x);
1209 }
1210 
1211 //* the argument must be exactly a power of 2
1212 inline int exact_log2_long(jlong x) {
1213   #ifdef ASSERT
1214     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1215   #endif
1216   return log2_long(x);
1217 }
1218 
1219 
1220 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1221 inline intptr_t round_to(intptr_t x, uintx s) {
1222   #ifdef ASSERT
1223     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1224   #endif
1225   const uintx m = s - 1;
1226   return mask_bits(x + m, ~m);
1227 }
1228 
1229 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1230 inline intptr_t round_down(intptr_t x, uintx s) {
1231   #ifdef ASSERT
1232     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1233   #endif
1234   const uintx m = s - 1;
1235   return mask_bits(x, ~m);
1236 }
1237 
1238 
1239 inline bool is_odd (intx x) { return x & 1;      }
1240 inline bool is_even(intx x) { return !is_odd(x); }
1241 
1242 // abs methods which cannot overflow and so are well-defined across
1243 // the entire domain of integer types.
1244 static inline unsigned int uabs(unsigned int n) {
1245   union {
1246     unsigned int result;
1247     int value;
1248   };
1249   result = n;
1250   if (value < 0) result = 0-result;
1251   return result;
1252 }
1253 static inline julong uabs(julong n) {
1254   union {
1255     julong result;
1256     jlong value;
1257   };
1258   result = n;
1259   if (value < 0) result = 0-result;
1260   return result;
1261 }
1262 static inline julong uabs(jlong n) { return uabs((julong)n); }
1263 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1264 
1265 // "to" should be greater than "from."
1266 inline intx byte_size(void* from, void* to) {
1267   return (address)to - (address)from;
1268 }
1269 
1270 //----------------------------------------------------------------------------------------------------
1271 // Avoid non-portable casts with these routines (DEPRECATED)
1272 
1273 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1274 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1275 
1276 // Given sequence of four bytes, build into a 32-bit word
1277 // following the conventions used in class files.
1278 // On the 386, this could be realized with a simple address cast.
1279 //
1280 
1281 // This routine takes eight bytes:
1282 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1283   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1284        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1285        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1286        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1287        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1288        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1289        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1290        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1291 }
1292 
1293 // This routine takes four bytes:
1294 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1295   return  (( u4(c1) << 24 )  &  0xff000000)
1296        |  (( u4(c2) << 16 )  &  0x00ff0000)
1297        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1298        |  (( u4(c4) <<  0 )  &  0x000000ff);
1299 }
1300 
1301 // And this one works if the four bytes are contiguous in memory:
1302 inline u4 build_u4_from( u1* p ) {
1303   return  build_u4_from( p[0], p[1], p[2], p[3] );
1304 }
1305 
1306 // Ditto for two-byte ints:
1307 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1308   return  u2((( u2(c1) <<  8 )  &  0xff00)
1309           |  (( u2(c2) <<  0 )  &  0x00ff));
1310 }
1311 
1312 // And this one works if the two bytes are contiguous in memory:
1313 inline u2 build_u2_from( u1* p ) {
1314   return  build_u2_from( p[0], p[1] );
1315 }
1316 
1317 // Ditto for floats:
1318 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1319   u4 u = build_u4_from( c1, c2, c3, c4 );
1320   return  *(jfloat*)&u;
1321 }
1322 
1323 inline jfloat build_float_from( u1* p ) {
1324   u4 u = build_u4_from( p );
1325   return  *(jfloat*)&u;
1326 }
1327 
1328 
1329 // now (64-bit) longs
1330 
1331 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1332   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1333        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1334        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1335        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1336        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1337        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1338        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1339        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1340 }
1341 
1342 inline jlong build_long_from( u1* p ) {
1343   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1344 }
1345 
1346 
1347 // Doubles, too!
1348 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1349   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1350   return  *(jdouble*)&u;
1351 }
1352 
1353 inline jdouble build_double_from( u1* p ) {
1354   jlong u = build_long_from( p );
1355   return  *(jdouble*)&u;
1356 }
1357 
1358 
1359 // Portable routines to go the other way:
1360 
1361 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1362   c1 = u1(x >> 8);
1363   c2 = u1(x);
1364 }
1365 
1366 inline void explode_short_to( u2 x, u1* p ) {
1367   explode_short_to( x, p[0], p[1]);
1368 }
1369 
1370 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1371   c1 = u1(x >> 24);
1372   c2 = u1(x >> 16);
1373   c3 = u1(x >>  8);
1374   c4 = u1(x);
1375 }
1376 
1377 inline void explode_int_to( u4 x, u1* p ) {
1378   explode_int_to( x, p[0], p[1], p[2], p[3]);
1379 }
1380 
1381 
1382 // Pack and extract shorts to/from ints:
1383 
1384 inline int extract_low_short_from_int(jint x) {
1385   return x & 0xffff;
1386 }
1387 
1388 inline int extract_high_short_from_int(jint x) {
1389   return (x >> 16) & 0xffff;
1390 }
1391 
1392 inline int build_int_from_shorts( jushort low, jushort high ) {
1393   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1394 }
1395 
1396 // Convert pointer to intptr_t, for use in printing pointers.
1397 inline intptr_t p2i(const void * p) {
1398   return (intptr_t) p;
1399 }
1400 
1401 // Printf-style formatters for fixed- and variable-width types as pointers and
1402 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1403 // doesn't provide appropriate definitions, they should be provided in
1404 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1405 
1406 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1407 
1408 // Format 32-bit quantities.
1409 #define INT32_FORMAT           "%" PRId32
1410 #define UINT32_FORMAT          "%" PRIu32
1411 #define INT32_FORMAT_W(width)  "%" #width PRId32
1412 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1413 
1414 #define PTR32_FORMAT           "0x%08" PRIx32
1415 
1416 // Format 64-bit quantities.
1417 #define INT64_FORMAT           "%" PRId64
1418 #define UINT64_FORMAT          "%" PRIu64
1419 #define UINT64_FORMAT_X        "%" PRIx64
1420 #define INT64_FORMAT_W(width)  "%" #width PRId64
1421 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1422 
1423 #define PTR64_FORMAT           "0x%016" PRIx64
1424 
1425 // Format jlong, if necessary
1426 #ifndef JLONG_FORMAT
1427 #define JLONG_FORMAT           INT64_FORMAT
1428 #endif
1429 #ifndef JULONG_FORMAT
1430 #define JULONG_FORMAT          UINT64_FORMAT
1431 #endif
1432 
1433 // Format pointers which change size between 32- and 64-bit.
1434 #ifdef  _LP64
1435 #define INTPTR_FORMAT "0x%016" PRIxPTR
1436 #define PTR_FORMAT    "0x%016" PRIxPTR
1437 #else   // !_LP64
1438 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1439 #define PTR_FORMAT    "0x%08"  PRIxPTR
1440 #endif  // _LP64
1441 
1442 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1443 
1444 #define SSIZE_FORMAT          "%"   PRIdPTR
1445 #define SIZE_FORMAT           "%"   PRIuPTR
1446 #define SIZE_FORMAT_HEX       "0x%" PRIxPTR
1447 #define SSIZE_FORMAT_W(width) "%"   #width PRIdPTR
1448 #define SIZE_FORMAT_W(width)  "%"   #width PRIuPTR
1449 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1450 
1451 #define INTX_FORMAT           "%" PRIdPTR
1452 #define UINTX_FORMAT          "%" PRIuPTR
1453 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1454 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1455 
1456 
1457 // Enable zap-a-lot if in debug version.
1458 
1459 # ifdef ASSERT
1460 # ifdef COMPILER2
1461 #   define ENABLE_ZAP_DEAD_LOCALS
1462 #endif /* COMPILER2 */
1463 # endif /* ASSERT */
1464 
1465 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1466 
1467 //----------------------------------------------------------------------------------------------------
1468 // Sum and product which can never overflow: they wrap, just like the
1469 // Java operations.  Note that we don't intend these to be used for
1470 // general-purpose arithmetic: their purpose is to emulate Java
1471 // operations.
1472 
1473 // The goal of this code to avoid undefined or implementation-defined
1474 // behaviour.  The use of an lvalue to reference cast is explicitly
1475 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1476 // 15 in C++03]
1477 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1478 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1479   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1480   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1481   return reinterpret_cast<TYPE&>(ures);                 \
1482 }
1483 
1484 JAVA_INTEGER_OP(+, java_add, jint, juint)
1485 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1486 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1487 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1488 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1489 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1490 
1491 #undef JAVA_INTEGER_OP
1492 
1493 // Dereference vptr
1494 // All C++ compilers that we know of have the vtbl pointer in the first
1495 // word.  If there are exceptions, this function needs to be made compiler
1496 // specific.
1497 static inline void* dereference_vptr(const void* addr) {
1498   return *(void**)addr;
1499 }
1500 
1501 #ifndef PRODUCT
1502 
1503 // For unit testing only
1504 class GlobalDefinitions {
1505 public:
1506   static void test_globals();
1507   static void test_proper_unit();
1508 };
1509 
1510 #endif // PRODUCT
1511 
1512 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP