1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 #ifdef TARGET_COMPILER_gcc
  33 # include "utilities/globalDefinitions_gcc.hpp"
  34 #endif
  35 #ifdef TARGET_COMPILER_visCPP
  36 # include "utilities/globalDefinitions_visCPP.hpp"
  37 #endif
  38 #ifdef TARGET_COMPILER_sparcWorks
  39 # include "utilities/globalDefinitions_sparcWorks.hpp"
  40 #endif
  41 #ifdef TARGET_COMPILER_xlc
  42 # include "utilities/globalDefinitions_xlc.hpp"
  43 #endif
  44 
  45 // Defaults for macros that might be defined per compiler.
  46 #ifndef NOINLINE
  47 #define NOINLINE
  48 #endif
  49 #ifndef ALWAYSINLINE
  50 #define ALWAYSINLINE inline
  51 #endif
  52 
  53 #ifndef PRAGMA_DIAG_PUSH
  54 #define PRAGMA_DIAG_PUSH
  55 #endif
  56 #ifndef PRAGMA_DIAG_POP
  57 #define PRAGMA_DIAG_POP
  58 #endif
  59 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
  60 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
  61 #endif
  62 #ifndef PRAGMA_FORMAT_IGNORED
  63 #define PRAGMA_FORMAT_IGNORED
  64 #endif
  65 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  66 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  67 #endif
  68 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  69 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  70 #endif
  71 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  72 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  73 #endif
  74 #ifndef ATTRIBUTE_PRINTF
  75 #define ATTRIBUTE_PRINTF(fmt, vargs)
  76 #endif
  77 
  78 
  79 #include "utilities/macros.hpp"
  80 
  81 // This file holds all globally used constants & types, class (forward)
  82 // declarations and a few frequently used utility functions.
  83 
  84 //----------------------------------------------------------------------------------------------------
  85 // Constants
  86 
  87 const int LogBytesPerShort   = 1;
  88 const int LogBytesPerInt     = 2;
  89 #ifdef _LP64
  90 const int LogBytesPerWord    = 3;
  91 #else
  92 const int LogBytesPerWord    = 2;
  93 #endif
  94 const int LogBytesPerLong    = 3;
  95 
  96 const int BytesPerShort      = 1 << LogBytesPerShort;
  97 const int BytesPerInt        = 1 << LogBytesPerInt;
  98 const int BytesPerWord       = 1 << LogBytesPerWord;
  99 const int BytesPerLong       = 1 << LogBytesPerLong;
 100 
 101 const int LogBitsPerByte     = 3;
 102 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 103 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 104 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 105 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 106 
 107 const int BitsPerByte        = 1 << LogBitsPerByte;
 108 const int BitsPerShort       = 1 << LogBitsPerShort;
 109 const int BitsPerInt         = 1 << LogBitsPerInt;
 110 const int BitsPerWord        = 1 << LogBitsPerWord;
 111 const int BitsPerLong        = 1 << LogBitsPerLong;
 112 
 113 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 114 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 115 
 116 const int WordsPerLong       = 2;       // Number of stack entries for longs
 117 
 118 const int oopSize            = sizeof(char*); // Full-width oop
 119 extern int heapOopSize;                       // Oop within a java object
 120 const int wordSize           = sizeof(char*);
 121 const int longSize           = sizeof(jlong);
 122 const int jintSize           = sizeof(jint);
 123 const int size_tSize         = sizeof(size_t);
 124 
 125 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 126 
 127 extern int LogBytesPerHeapOop;                // Oop within a java object
 128 extern int LogBitsPerHeapOop;
 129 extern int BytesPerHeapOop;
 130 extern int BitsPerHeapOop;
 131 
 132 // Oop encoding heap max
 133 extern uint64_t OopEncodingHeapMax;
 134 
 135 const int BitsPerJavaInteger = 32;
 136 const int BitsPerJavaLong    = 64;
 137 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 138 
 139 // Size of a char[] needed to represent a jint as a string in decimal.
 140 const int jintAsStringSize = 12;
 141 
 142 // In fact this should be
 143 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 144 // see os::set_memory_serialize_page()
 145 #ifdef _LP64
 146 const int SerializePageShiftCount = 4;
 147 #else
 148 const int SerializePageShiftCount = 3;
 149 #endif
 150 
 151 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 152 // pointer into the heap.  We require that object sizes be measured in
 153 // units of heap words, so that that
 154 //   HeapWord* hw;
 155 //   hw += oop(hw)->foo();
 156 // works, where foo is a method (like size or scavenge) that returns the
 157 // object size.
 158 class HeapWord {
 159   friend class VMStructs;
 160  private:
 161   char* i;
 162 #ifndef PRODUCT
 163  public:
 164   char* value() { return i; }
 165 #endif
 166 };
 167 
 168 // Analogous opaque struct for metadata allocated from
 169 // metaspaces.
 170 class MetaWord {
 171   friend class VMStructs;
 172  private:
 173   char* i;
 174 };
 175 
 176 // HeapWordSize must be 2^LogHeapWordSize.
 177 const int HeapWordSize        = sizeof(HeapWord);
 178 #ifdef _LP64
 179 const int LogHeapWordSize     = 3;
 180 #else
 181 const int LogHeapWordSize     = 2;
 182 #endif
 183 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 184 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 185 
 186 // The larger HeapWordSize for 64bit requires larger heaps
 187 // for the same application running in 64bit.  See bug 4967770.
 188 // The minimum alignment to a heap word size is done.  Other
 189 // parts of the memory system may required additional alignment
 190 // and are responsible for those alignments.
 191 #ifdef _LP64
 192 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 193 #else
 194 #define ScaleForWordSize(x) (x)
 195 #endif
 196 
 197 // The minimum number of native machine words necessary to contain "byte_size"
 198 // bytes.
 199 inline size_t heap_word_size(size_t byte_size) {
 200   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 201 }
 202 
 203 
 204 const size_t K                  = 1024;
 205 const size_t M                  = K*K;
 206 const size_t G                  = M*K;
 207 const size_t HWperKB            = K / sizeof(HeapWord);
 208 
 209 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 210 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 211 
 212 // Constants for converting from a base unit to milli-base units.  For
 213 // example from seconds to milliseconds and microseconds
 214 
 215 const int MILLIUNITS    = 1000;         // milli units per base unit
 216 const int MICROUNITS    = 1000000;      // micro units per base unit
 217 const int NANOUNITS     = 1000000000;   // nano units per base unit
 218 
 219 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 220 const jint  NANOSECS_PER_MILLISEC = 1000000;
 221 
 222 // Proper units routines try to maintain at least three significant digits.
 223 // In worst case, it would print five significant digits with lower prefix.
 224 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 225 // and therefore we need to be careful.
 226 
 227 inline const char* proper_unit_for_byte_size(size_t s) {
 228 #ifdef _LP64
 229   if (s >= 100*G) {
 230     return "G";
 231   }
 232 #endif
 233   if (s >= 100*M) {
 234     return "M";
 235   } else if (s >= 100*K) {
 236     return "K";
 237   } else {
 238     return "B";
 239   }
 240 }
 241 
 242 template <class T>
 243 inline T byte_size_in_proper_unit(T s) {
 244 #ifdef _LP64
 245   if (s >= 100*G) {
 246     return (T)(s/G);
 247   }
 248 #endif
 249   if (s >= 100*M) {
 250     return (T)(s/M);
 251   } else if (s >= 100*K) {
 252     return (T)(s/K);
 253   } else {
 254     return s;
 255   }
 256 }
 257 
 258 //----------------------------------------------------------------------------------------------------
 259 // VM type definitions
 260 
 261 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 262 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 263 
 264 typedef intptr_t  intx;
 265 typedef uintptr_t uintx;
 266 
 267 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 268 const intx  max_intx  = (uintx)min_intx - 1;
 269 const uintx max_uintx = (uintx)-1;
 270 
 271 // Table of values:
 272 //      sizeof intx         4               8
 273 // min_intx             0x80000000      0x8000000000000000
 274 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 275 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 276 
 277 typedef unsigned int uint;   NEEDS_CLEANUP
 278 
 279 
 280 //----------------------------------------------------------------------------------------------------
 281 // Java type definitions
 282 
 283 // All kinds of 'plain' byte addresses
 284 typedef   signed char s_char;
 285 typedef unsigned char u_char;
 286 typedef u_char*       address;
 287 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 288                                     // except for some implementations of a C++
 289                                     // linkage pointer to function. Should never
 290                                     // need one of those to be placed in this
 291                                     // type anyway.
 292 
 293 //  Utility functions to "portably" (?) bit twiddle pointers
 294 //  Where portable means keep ANSI C++ compilers quiet
 295 
 296 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 297 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 298 
 299 //  Utility functions to "portably" make cast to/from function pointers.
 300 
 301 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 302 inline address_word  castable_address(address x)              { return address_word(x) ; }
 303 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 304 
 305 // Pointer subtraction.
 306 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 307 // the range we might need to find differences from one end of the heap
 308 // to the other.
 309 // A typical use might be:
 310 //     if (pointer_delta(end(), top()) >= size) {
 311 //       // enough room for an object of size
 312 //       ...
 313 // and then additions like
 314 //       ... top() + size ...
 315 // are safe because we know that top() is at least size below end().
 316 inline size_t pointer_delta(const void* left,
 317                             const void* right,
 318                             size_t element_size) {
 319   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 320 }
 321 // A version specialized for HeapWord*'s.
 322 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 323   return pointer_delta(left, right, sizeof(HeapWord));
 324 }
 325 // A version specialized for MetaWord*'s.
 326 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 327   return pointer_delta(left, right, sizeof(MetaWord));
 328 }
 329 
 330 //
 331 // ANSI C++ does not allow casting from one pointer type to a function pointer
 332 // directly without at best a warning. This macro accomplishes it silently
 333 // In every case that is present at this point the value be cast is a pointer
 334 // to a C linkage function. In somecase the type used for the cast reflects
 335 // that linkage and a picky compiler would not complain. In other cases because
 336 // there is no convenient place to place a typedef with extern C linkage (i.e
 337 // a platform dependent header file) it doesn't. At this point no compiler seems
 338 // picky enough to catch these instances (which are few). It is possible that
 339 // using templates could fix these for all cases. This use of templates is likely
 340 // so far from the middle of the road that it is likely to be problematic in
 341 // many C++ compilers.
 342 //
 343 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 344 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 345 
 346 // Unsigned byte types for os and stream.hpp
 347 
 348 // Unsigned one, two, four and eigth byte quantities used for describing
 349 // the .class file format. See JVM book chapter 4.
 350 
 351 typedef jubyte  u1;
 352 typedef jushort u2;
 353 typedef juint   u4;
 354 typedef julong  u8;
 355 
 356 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 357 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 358 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 359 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 360 
 361 typedef jbyte  s1;
 362 typedef jshort s2;
 363 typedef jint   s4;
 364 typedef jlong  s8;
 365 
 366 //----------------------------------------------------------------------------------------------------
 367 // JVM spec restrictions
 368 
 369 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 370 
 371 // Default ProtectionDomainCacheSize values
 372 
 373 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
 374 
 375 //----------------------------------------------------------------------------------------------------
 376 // Default and minimum StringTableSize values
 377 
 378 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 379 const int minimumStringTableSize = 1009;
 380 
 381 const int defaultSymbolTableSize = 20011;
 382 const int minimumSymbolTableSize = 1009;
 383 
 384 
 385 //----------------------------------------------------------------------------------------------------
 386 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 387 //
 388 // Determines whether on-the-fly class replacement and frame popping are enabled.
 389 
 390 #define HOTSWAP
 391 
 392 //----------------------------------------------------------------------------------------------------
 393 // Object alignment, in units of HeapWords.
 394 //
 395 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 396 // reference fields can be naturally aligned.
 397 
 398 extern int MinObjAlignment;
 399 extern int MinObjAlignmentInBytes;
 400 extern int MinObjAlignmentInBytesMask;
 401 
 402 extern int LogMinObjAlignment;
 403 extern int LogMinObjAlignmentInBytes;
 404 
 405 const int LogKlassAlignmentInBytes = 3;
 406 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 407 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 408 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 409 
 410 // Klass encoding metaspace max size
 411 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 412 
 413 // Machine dependent stuff
 414 
 415 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
 416 // Include Restricted Transactional Memory lock eliding optimization
 417 #define INCLUDE_RTM_OPT 1
 418 #define RTM_OPT_ONLY(code) code
 419 #else
 420 #define INCLUDE_RTM_OPT 0
 421 #define RTM_OPT_ONLY(code)
 422 #endif
 423 // States of Restricted Transactional Memory usage.
 424 enum RTMState {
 425   NoRTM      = 0x2, // Don't use RTM
 426   UseRTM     = 0x1, // Use RTM
 427   ProfileRTM = 0x0  // Use RTM with abort ratio calculation
 428 };
 429 
 430 // The maximum size of the code cache.  Can be overridden by targets.
 431 #define CODE_CACHE_SIZE_LIMIT (2*G)
 432 // Allow targets to reduce the default size of the code cache.
 433 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 434 
 435 #ifdef TARGET_ARCH_x86
 436 # include "globalDefinitions_x86.hpp"
 437 #endif
 438 #ifdef TARGET_ARCH_aarch64
 439 # include "globalDefinitions_aarch64.hpp"
 440 #endif
 441 #ifdef TARGET_ARCH_sparc
 442 # include "globalDefinitions_sparc.hpp"
 443 #endif
 444 #ifdef TARGET_ARCH_zero
 445 # include "globalDefinitions_zero.hpp"
 446 #endif
 447 #ifdef TARGET_ARCH_arm
 448 # include "globalDefinitions_arm.hpp"
 449 #endif
 450 #ifdef TARGET_ARCH_ppc
 451 # include "globalDefinitions_ppc.hpp"
 452 #endif
 453 
 454 /*
 455  * If a platform does not support native stack walking
 456  * the platform specific globalDefinitions (above)
 457  * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
 458  */
 459 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
 460 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
 461 #endif
 462 
 463 // To assure the IRIW property on processors that are not multiple copy
 464 // atomic, sync instructions must be issued between volatile reads to
 465 // assure their ordering, instead of after volatile stores.
 466 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 467 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 468 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 469 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 470 #else
 471 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 472 #endif
 473 
 474 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 475 // Note: this value must be a power of 2
 476 
 477 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 478 
 479 // Signed variants of alignment helpers.  There are two versions of each, a macro
 480 // for use in places like enum definitions that require compile-time constant
 481 // expressions and a function for all other places so as to get type checking.
 482 
 483 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 484 
 485 inline bool is_size_aligned(size_t size, size_t alignment) {
 486   return align_size_up_(size, alignment) == size;
 487 }
 488 
 489 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
 490   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
 491 }
 492 
 493 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 494   return align_size_up_(size, alignment);
 495 }
 496 
 497 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 498 
 499 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 500   return align_size_down_(size, alignment);
 501 }
 502 
 503 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
 504 
 505 inline void* align_ptr_up(void* ptr, size_t alignment) {
 506   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
 507 }
 508 
 509 inline void* align_ptr_down(void* ptr, size_t alignment) {
 510   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 511 }
 512 
 513 // Align objects by rounding up their size, in HeapWord units.
 514 
 515 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
 516 
 517 inline intptr_t align_object_size(intptr_t size) {
 518   return align_size_up(size, MinObjAlignment);
 519 }
 520 
 521 inline bool is_object_aligned(intptr_t addr) {
 522   return addr == align_object_size(addr);
 523 }
 524 
 525 // Pad out certain offsets to jlong alignment, in HeapWord units.
 526 
 527 inline intptr_t align_object_offset(intptr_t offset) {
 528   return align_size_up(offset, HeapWordsPerLong);
 529 }
 530 
 531 inline void* align_pointer_up(const void* addr, size_t size) {
 532   return (void*) align_size_up_((uintptr_t)addr, size);
 533 }
 534 
 535 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
 536 
 537 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
 538   size_t aligned_size = align_size_down_(size, alignment);
 539   return aligned_size > 0 ? aligned_size : alignment;
 540 }
 541 
 542 // Clamp an address to be within a specific page
 543 // 1. If addr is on the page it is returned as is
 544 // 2. If addr is above the page_address the start of the *next* page will be returned
 545 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 546 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 547   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 548     // address is in the specified page, just return it as is
 549     return addr;
 550   } else if (addr > page_address) {
 551     // address is above specified page, return start of next page
 552     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 553   } else {
 554     // address is below specified page, return start of page
 555     return (address)align_size_down(intptr_t(page_address), page_size);
 556   }
 557 }
 558 
 559 
 560 // The expected size in bytes of a cache line, used to pad data structures.
 561 #define DEFAULT_CACHE_LINE_SIZE 64
 562 
 563 
 564 //----------------------------------------------------------------------------------------------------
 565 // Utility macros for compilers
 566 // used to silence compiler warnings
 567 
 568 #define Unused_Variable(var) var
 569 
 570 
 571 //----------------------------------------------------------------------------------------------------
 572 // Miscellaneous
 573 
 574 // 6302670 Eliminate Hotspot __fabsf dependency
 575 // All fabs() callers should call this function instead, which will implicitly
 576 // convert the operand to double, avoiding a dependency on __fabsf which
 577 // doesn't exist in early versions of Solaris 8.
 578 inline double fabsd(double value) {
 579   return fabs(value);
 580 }
 581 
 582 //----------------------------------------------------------------------------------------------------
 583 // Special casts
 584 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 585 typedef union {
 586   jfloat f;
 587   jint i;
 588 } FloatIntConv;
 589 
 590 typedef union {
 591   jdouble d;
 592   jlong l;
 593   julong ul;
 594 } DoubleLongConv;
 595 
 596 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 597 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 598 
 599 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 600 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 601 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 602 
 603 inline jint low (jlong value)                    { return jint(value); }
 604 inline jint high(jlong value)                    { return jint(value >> 32); }
 605 
 606 // the fancy casts are a hopefully portable way
 607 // to do unsigned 32 to 64 bit type conversion
 608 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 609                                                    *value |= (jlong)(julong)(juint)low; }
 610 
 611 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 612                                                    *value |= (jlong)high       << 32; }
 613 
 614 inline jlong jlong_from(jint h, jint l) {
 615   jlong result = 0; // initialization to avoid warning
 616   set_high(&result, h);
 617   set_low(&result,  l);
 618   return result;
 619 }
 620 
 621 union jlong_accessor {
 622   jint  words[2];
 623   jlong long_value;
 624 };
 625 
 626 void basic_types_init(); // cannot define here; uses assert
 627 
 628 
 629 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 630 enum BasicType {
 631   T_BOOLEAN     =  4,
 632   T_CHAR        =  5,
 633   T_FLOAT       =  6,
 634   T_DOUBLE      =  7,
 635   T_BYTE        =  8,
 636   T_SHORT       =  9,
 637   T_INT         = 10,
 638   T_LONG        = 11,
 639   T_OBJECT      = 12,
 640   T_ARRAY       = 13,
 641   T_VOID        = 14,
 642   T_ADDRESS     = 15,
 643   T_NARROWOOP   = 16,
 644   T_METADATA    = 17,
 645   T_NARROWKLASS = 18,
 646   T_CONFLICT    = 19, // for stack value type with conflicting contents
 647   T_ILLEGAL     = 99
 648 };
 649 
 650 inline bool is_java_primitive(BasicType t) {
 651   return T_BOOLEAN <= t && t <= T_LONG;
 652 }
 653 
 654 inline bool is_subword_type(BasicType t) {
 655   // these guys are processed exactly like T_INT in calling sequences:
 656   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 657 }
 658 
 659 inline bool is_signed_subword_type(BasicType t) {
 660   return (t == T_BYTE || t == T_SHORT);
 661 }
 662 
 663 inline bool is_reference_type(BasicType t) {
 664   return (t == T_OBJECT || t == T_ARRAY);
 665 }
 666 
 667 // Convert a char from a classfile signature to a BasicType
 668 inline BasicType char2type(char c) {
 669   switch( c ) {
 670   case 'B': return T_BYTE;
 671   case 'C': return T_CHAR;
 672   case 'D': return T_DOUBLE;
 673   case 'F': return T_FLOAT;
 674   case 'I': return T_INT;
 675   case 'J': return T_LONG;
 676   case 'S': return T_SHORT;
 677   case 'Z': return T_BOOLEAN;
 678   case 'V': return T_VOID;
 679   case 'L': return T_OBJECT;
 680   case '[': return T_ARRAY;
 681   }
 682   return T_ILLEGAL;
 683 }
 684 
 685 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 686 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 687 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 688 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 689 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 690 extern BasicType name2type(const char* name);
 691 
 692 // Auxilary math routines
 693 // least common multiple
 694 extern size_t lcm(size_t a, size_t b);
 695 
 696 
 697 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 698 enum BasicTypeSize {
 699   T_BOOLEAN_size     = 1,
 700   T_CHAR_size        = 1,
 701   T_FLOAT_size       = 1,
 702   T_DOUBLE_size      = 2,
 703   T_BYTE_size        = 1,
 704   T_SHORT_size       = 1,
 705   T_INT_size         = 1,
 706   T_LONG_size        = 2,
 707   T_OBJECT_size      = 1,
 708   T_ARRAY_size       = 1,
 709   T_NARROWOOP_size   = 1,
 710   T_NARROWKLASS_size = 1,
 711   T_VOID_size        = 0
 712 };
 713 
 714 
 715 // maps a BasicType to its instance field storage type:
 716 // all sub-word integral types are widened to T_INT
 717 extern BasicType type2field[T_CONFLICT+1];
 718 extern BasicType type2wfield[T_CONFLICT+1];
 719 
 720 
 721 // size in bytes
 722 enum ArrayElementSize {
 723   T_BOOLEAN_aelem_bytes     = 1,
 724   T_CHAR_aelem_bytes        = 2,
 725   T_FLOAT_aelem_bytes       = 4,
 726   T_DOUBLE_aelem_bytes      = 8,
 727   T_BYTE_aelem_bytes        = 1,
 728   T_SHORT_aelem_bytes       = 2,
 729   T_INT_aelem_bytes         = 4,
 730   T_LONG_aelem_bytes        = 8,
 731 #ifdef _LP64
 732   T_OBJECT_aelem_bytes      = 8,
 733   T_ARRAY_aelem_bytes       = 8,
 734 #else
 735   T_OBJECT_aelem_bytes      = 4,
 736   T_ARRAY_aelem_bytes       = 4,
 737 #endif
 738   T_NARROWOOP_aelem_bytes   = 4,
 739   T_NARROWKLASS_aelem_bytes = 4,
 740   T_VOID_aelem_bytes        = 0
 741 };
 742 
 743 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 744 #ifdef ASSERT
 745 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 746 #else
 747 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 748 #endif
 749 
 750 
 751 // JavaValue serves as a container for arbitrary Java values.
 752 
 753 class JavaValue {
 754 
 755  public:
 756   typedef union JavaCallValue {
 757     jfloat   f;
 758     jdouble  d;
 759     jint     i;
 760     jlong    l;
 761     jobject  h;
 762   } JavaCallValue;
 763 
 764  private:
 765   BasicType _type;
 766   JavaCallValue _value;
 767 
 768  public:
 769   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 770 
 771   JavaValue(jfloat value) {
 772     _type    = T_FLOAT;
 773     _value.f = value;
 774   }
 775 
 776   JavaValue(jdouble value) {
 777     _type    = T_DOUBLE;
 778     _value.d = value;
 779   }
 780 
 781  jfloat get_jfloat() const { return _value.f; }
 782  jdouble get_jdouble() const { return _value.d; }
 783  jint get_jint() const { return _value.i; }
 784  jlong get_jlong() const { return _value.l; }
 785  jobject get_jobject() const { return _value.h; }
 786  JavaCallValue* get_value_addr() { return &_value; }
 787  BasicType get_type() const { return _type; }
 788 
 789  void set_jfloat(jfloat f) { _value.f = f;}
 790  void set_jdouble(jdouble d) { _value.d = d;}
 791  void set_jint(jint i) { _value.i = i;}
 792  void set_jlong(jlong l) { _value.l = l;}
 793  void set_jobject(jobject h) { _value.h = h;}
 794  void set_type(BasicType t) { _type = t; }
 795 
 796  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 797  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 798  jchar get_jchar() const { return (jchar) (_value.i);}
 799  jshort get_jshort() const { return (jshort) (_value.i);}
 800 
 801 };
 802 
 803 
 804 #define STACK_BIAS      0
 805 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 806 // in order to extend the reach of the stack pointer.
 807 #if defined(SPARC) && defined(_LP64)
 808 #undef STACK_BIAS
 809 #define STACK_BIAS      0x7ff
 810 #endif
 811 
 812 
 813 // TosState describes the top-of-stack state before and after the execution of
 814 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 815 // registers. The TosState corresponds to the 'machine represention' of this cached
 816 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 817 // as well as a 5th state in case the top-of-stack value is actually on the top
 818 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 819 // state when it comes to machine representation but is used separately for (oop)
 820 // type specific operations (e.g. verification code).
 821 
 822 enum TosState {         // describes the tos cache contents
 823   btos = 0,             // byte, bool tos cached
 824   ztos = 1,             // byte, bool tos cached
 825   ctos = 2,             // char tos cached
 826   stos = 3,             // short tos cached
 827   itos = 4,             // int tos cached
 828   ltos = 5,             // long tos cached
 829   ftos = 6,             // float tos cached
 830   dtos = 7,             // double tos cached
 831   atos = 8,             // object cached
 832   vtos = 9,             // tos not cached
 833   number_of_states,
 834   ilgl                  // illegal state: should not occur
 835 };
 836 
 837 
 838 inline TosState as_TosState(BasicType type) {
 839   switch (type) {
 840     case T_BYTE   : return btos;
 841     case T_BOOLEAN: return ztos;
 842     case T_CHAR   : return ctos;
 843     case T_SHORT  : return stos;
 844     case T_INT    : return itos;
 845     case T_LONG   : return ltos;
 846     case T_FLOAT  : return ftos;
 847     case T_DOUBLE : return dtos;
 848     case T_VOID   : return vtos;
 849     case T_ARRAY  : // fall through
 850     case T_OBJECT : return atos;
 851   }
 852   return ilgl;
 853 }
 854 
 855 inline BasicType as_BasicType(TosState state) {
 856   switch (state) {
 857     case btos : return T_BYTE;
 858     case ztos : return T_BOOLEAN;
 859     case ctos : return T_CHAR;
 860     case stos : return T_SHORT;
 861     case itos : return T_INT;
 862     case ltos : return T_LONG;
 863     case ftos : return T_FLOAT;
 864     case dtos : return T_DOUBLE;
 865     case atos : return T_OBJECT;
 866     case vtos : return T_VOID;
 867   }
 868   return T_ILLEGAL;
 869 }
 870 
 871 
 872 // Helper function to convert BasicType info into TosState
 873 // Note: Cannot define here as it uses global constant at the time being.
 874 TosState as_TosState(BasicType type);
 875 
 876 
 877 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 878 // information is needed by the safepoint code.
 879 //
 880 // There are 4 essential states:
 881 //
 882 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 883 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 884 //  _thread_in_vm       : Executing in the vm
 885 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 886 //
 887 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 888 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 889 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 890 //
 891 // Given a state, the xxx_trans state can always be found by adding 1.
 892 //
 893 enum JavaThreadState {
 894   _thread_uninitialized     =  0, // should never happen (missing initialization)
 895   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 896   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 897   _thread_in_native         =  4, // running in native code
 898   _thread_in_native_trans   =  5, // corresponding transition state
 899   _thread_in_vm             =  6, // running in VM
 900   _thread_in_vm_trans       =  7, // corresponding transition state
 901   _thread_in_Java           =  8, // running in Java or in stub code
 902   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 903   _thread_blocked           = 10, // blocked in vm
 904   _thread_blocked_trans     = 11, // corresponding transition state
 905   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 906 };
 907 
 908 
 909 // Handy constants for deciding which compiler mode to use.
 910 enum MethodCompilation {
 911   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
 912   InvalidOSREntryBci = -2
 913 };
 914 
 915 // Enumeration to distinguish tiers of compilation
 916 enum CompLevel {
 917   CompLevel_any               = -1,
 918   CompLevel_all               = -1,
 919   CompLevel_none              = 0,         // Interpreter
 920   CompLevel_simple            = 1,         // C1
 921   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 922   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 923   CompLevel_full_optimization = 4,         // C2 or Shark
 924 
 925 #if defined(COMPILER2) || defined(SHARK)
 926   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
 927 #elif defined(COMPILER1)
 928   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
 929 #else
 930   CompLevel_highest_tier      = CompLevel_none,
 931 #endif
 932 
 933 #if defined(TIERED)
 934   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 935 #elif defined(COMPILER1)
 936   CompLevel_initial_compile   = CompLevel_simple              // pure C1
 937 #elif defined(COMPILER2) || defined(SHARK)
 938   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 939 #else
 940   CompLevel_initial_compile   = CompLevel_none
 941 #endif
 942 };
 943 
 944 inline bool is_c1_compile(int comp_level) {
 945   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 946 }
 947 
 948 inline bool is_c2_compile(int comp_level) {
 949   return comp_level == CompLevel_full_optimization;
 950 }
 951 
 952 inline bool is_highest_tier_compile(int comp_level) {
 953   return comp_level == CompLevel_highest_tier;
 954 }
 955 
 956 inline bool is_compile(int comp_level) {
 957   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
 958 }
 959 
 960 //----------------------------------------------------------------------------------------------------
 961 // 'Forward' declarations of frequently used classes
 962 // (in order to reduce interface dependencies & reduce
 963 // number of unnecessary compilations after changes)
 964 
 965 class symbolTable;
 966 class ClassFileStream;
 967 
 968 class Event;
 969 
 970 class Thread;
 971 class  VMThread;
 972 class  JavaThread;
 973 class Threads;
 974 
 975 class VM_Operation;
 976 class VMOperationQueue;
 977 
 978 class CodeBlob;
 979 class  nmethod;
 980 class  OSRAdapter;
 981 class  I2CAdapter;
 982 class  C2IAdapter;
 983 class CompiledIC;
 984 class relocInfo;
 985 class ScopeDesc;
 986 class PcDesc;
 987 
 988 class Recompiler;
 989 class Recompilee;
 990 class RecompilationPolicy;
 991 class RFrame;
 992 class  CompiledRFrame;
 993 class  InterpretedRFrame;
 994 
 995 class frame;
 996 
 997 class vframe;
 998 class   javaVFrame;
 999 class     interpretedVFrame;
1000 class     compiledVFrame;
1001 class     deoptimizedVFrame;
1002 class   externalVFrame;
1003 class     entryVFrame;
1004 
1005 class RegisterMap;
1006 
1007 class Mutex;
1008 class Monitor;
1009 class BasicLock;
1010 class BasicObjectLock;
1011 
1012 class PeriodicTask;
1013 
1014 class JavaCallWrapper;
1015 
1016 class   oopDesc;
1017 class   metaDataOopDesc;
1018 
1019 class NativeCall;
1020 
1021 class zone;
1022 
1023 class StubQueue;
1024 
1025 class outputStream;
1026 
1027 class ResourceArea;
1028 
1029 class DebugInformationRecorder;
1030 class ScopeValue;
1031 class CompressedStream;
1032 class   DebugInfoReadStream;
1033 class   DebugInfoWriteStream;
1034 class LocationValue;
1035 class ConstantValue;
1036 class IllegalValue;
1037 
1038 class PrivilegedElement;
1039 class MonitorArray;
1040 
1041 class MonitorInfo;
1042 
1043 class OffsetClosure;
1044 class OopMapCache;
1045 class InterpreterOopMap;
1046 class OopMapCacheEntry;
1047 class OSThread;
1048 
1049 typedef int (*OSThreadStartFunc)(void*);
1050 
1051 class Space;
1052 
1053 class JavaValue;
1054 class methodHandle;
1055 class JavaCallArguments;
1056 
1057 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
1058 
1059 extern void basic_fatal(const char* msg);
1060 
1061 
1062 //----------------------------------------------------------------------------------------------------
1063 // Special constants for debugging
1064 
1065 const jint     badInt           = -3;                       // generic "bad int" value
1066 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
1067 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
1068 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1069 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
1070 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1071 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1072 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1073 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1074 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1075 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1076 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1077 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1078 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1079 
1080 
1081 // (These must be implemented as #defines because C++ compilers are
1082 // not obligated to inline non-integral constants!)
1083 #define       badAddress        ((address)::badAddressVal)
1084 #define       badOop            (cast_to_oop(::badOopVal))
1085 #define       badHeapWord       (::badHeapWordVal)
1086 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1087 
1088 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1089 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1090 
1091 //----------------------------------------------------------------------------------------------------
1092 // Utility functions for bitfield manipulations
1093 
1094 const intptr_t AllBits    = ~0; // all bits set in a word
1095 const intptr_t NoBits     =  0; // no bits set in a word
1096 const jlong    NoLongBits =  0; // no bits set in a long
1097 const intptr_t OneBit     =  1; // only right_most bit set in a word
1098 
1099 // get a word with the n.th or the right-most or left-most n bits set
1100 // (note: #define used only so that they can be used in enum constant definitions)
1101 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
1102 #define right_n_bits(n)   (nth_bit(n) - 1)
1103 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
1104 
1105 // bit-operations using a mask m
1106 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1107 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1108 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1109 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1110 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1111 
1112 // bit-operations using the n.th bit
1113 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1114 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1115 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1116 
1117 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1118 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1119   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1120 }
1121 
1122 
1123 //----------------------------------------------------------------------------------------------------
1124 // Utility functions for integers
1125 
1126 // Avoid use of global min/max macros which may cause unwanted double
1127 // evaluation of arguments.
1128 #ifdef max
1129 #undef max
1130 #endif
1131 
1132 #ifdef min
1133 #undef min
1134 #endif
1135 
1136 #define max(a,b) Do_not_use_max_use_MAX2_instead
1137 #define min(a,b) Do_not_use_min_use_MIN2_instead
1138 
1139 // It is necessary to use templates here. Having normal overloaded
1140 // functions does not work because it is necessary to provide both 32-
1141 // and 64-bit overloaded functions, which does not work, and having
1142 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1143 // will be even more error-prone than macros.
1144 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1145 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1146 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1147 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1148 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1149 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1150 
1151 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1152 
1153 // true if x is a power of 2, false otherwise
1154 inline bool is_power_of_2(intptr_t x) {
1155   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1156 }
1157 
1158 // long version of is_power_of_2
1159 inline bool is_power_of_2_long(jlong x) {
1160   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1161 }
1162 
1163 //* largest i such that 2^i <= x
1164 //  A negative value of 'x' will return '31'
1165 inline int log2_intptr(uintptr_t x) {
1166   int i = -1;
1167   uintptr_t p =  1;
1168   while (p != 0 && p <= x) {
1169     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1170     i++; p *= 2;
1171   }
1172   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1173   // (if p = 0 then overflow occurred and i = 31)
1174   return i;
1175 }
1176 
1177 //* largest i such that 2^i <= x
1178 inline int log2_long(julong x) {
1179   int i = -1;
1180   julong p =  1;
1181   while (p != 0 && p <= x) {
1182     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1183     i++; p *= 2;
1184   }
1185   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1186   // (if p = 0 then overflow occurred and i = 63)
1187   return i;
1188 }
1189 
1190 inline int log2_intptr(intptr_t x) {
1191   return log2_intptr((uintptr_t)x);
1192 }
1193 
1194 inline int log2_int(int x) {
1195   return log2_intptr((uintptr_t)x);
1196 }
1197 
1198 inline int log2_jint(jint x) {
1199   return log2_intptr((uintptr_t)x);
1200 }
1201 
1202 inline int log2_uint(uint x) {
1203   return log2_intptr((uintptr_t)x);
1204 }
1205 
1206 //  A negative value of 'x' will return '63'
1207 inline int log2_jlong(jlong x) {
1208   return log2_long((julong)x);
1209 }
1210 
1211 //* the argument must be exactly a power of 2
1212 inline int exact_log2(intptr_t x) {
1213   #ifdef ASSERT
1214     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1215   #endif
1216   return log2_intptr(x);
1217 }
1218 
1219 //* the argument must be exactly a power of 2
1220 inline int exact_log2_long(jlong x) {
1221   #ifdef ASSERT
1222     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1223   #endif
1224   return log2_long(x);
1225 }
1226 
1227 
1228 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1229 inline intptr_t round_to(intptr_t x, uintx s) {
1230   #ifdef ASSERT
1231     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1232   #endif
1233   const uintx m = s - 1;
1234   return mask_bits(x + m, ~m);
1235 }
1236 
1237 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1238 inline intptr_t round_down(intptr_t x, uintx s) {
1239   #ifdef ASSERT
1240     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1241   #endif
1242   const uintx m = s - 1;
1243   return mask_bits(x, ~m);
1244 }
1245 
1246 
1247 inline bool is_odd (intx x) { return x & 1;      }
1248 inline bool is_even(intx x) { return !is_odd(x); }
1249 
1250 // abs methods which cannot overflow and so are well-defined across
1251 // the entire domain of integer types.
1252 static inline unsigned int uabs(unsigned int n) {
1253   union {
1254     unsigned int result;
1255     int value;
1256   };
1257   result = n;
1258   if (value < 0) result = 0-result;
1259   return result;
1260 }
1261 static inline julong uabs(julong n) {
1262   union {
1263     julong result;
1264     jlong value;
1265   };
1266   result = n;
1267   if (value < 0) result = 0-result;
1268   return result;
1269 }
1270 static inline julong uabs(jlong n) { return uabs((julong)n); }
1271 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1272 
1273 // "to" should be greater than "from."
1274 inline intx byte_size(void* from, void* to) {
1275   return (address)to - (address)from;
1276 }
1277 
1278 //----------------------------------------------------------------------------------------------------
1279 // Avoid non-portable casts with these routines (DEPRECATED)
1280 
1281 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1282 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1283 
1284 // Given sequence of four bytes, build into a 32-bit word
1285 // following the conventions used in class files.
1286 // On the 386, this could be realized with a simple address cast.
1287 //
1288 
1289 // This routine takes eight bytes:
1290 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1291   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1292        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1293        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1294        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1295        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1296        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1297        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1298        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1299 }
1300 
1301 // This routine takes four bytes:
1302 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1303   return  (( u4(c1) << 24 )  &  0xff000000)
1304        |  (( u4(c2) << 16 )  &  0x00ff0000)
1305        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1306        |  (( u4(c4) <<  0 )  &  0x000000ff);
1307 }
1308 
1309 // And this one works if the four bytes are contiguous in memory:
1310 inline u4 build_u4_from( u1* p ) {
1311   return  build_u4_from( p[0], p[1], p[2], p[3] );
1312 }
1313 
1314 // Ditto for two-byte ints:
1315 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1316   return  u2((( u2(c1) <<  8 )  &  0xff00)
1317           |  (( u2(c2) <<  0 )  &  0x00ff));
1318 }
1319 
1320 // And this one works if the two bytes are contiguous in memory:
1321 inline u2 build_u2_from( u1* p ) {
1322   return  build_u2_from( p[0], p[1] );
1323 }
1324 
1325 // Ditto for floats:
1326 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1327   u4 u = build_u4_from( c1, c2, c3, c4 );
1328   return  *(jfloat*)&u;
1329 }
1330 
1331 inline jfloat build_float_from( u1* p ) {
1332   u4 u = build_u4_from( p );
1333   return  *(jfloat*)&u;
1334 }
1335 
1336 
1337 // now (64-bit) longs
1338 
1339 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1340   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1341        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1342        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1343        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1344        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1345        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1346        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1347        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1348 }
1349 
1350 inline jlong build_long_from( u1* p ) {
1351   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1352 }
1353 
1354 
1355 // Doubles, too!
1356 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1357   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1358   return  *(jdouble*)&u;
1359 }
1360 
1361 inline jdouble build_double_from( u1* p ) {
1362   jlong u = build_long_from( p );
1363   return  *(jdouble*)&u;
1364 }
1365 
1366 
1367 // Portable routines to go the other way:
1368 
1369 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1370   c1 = u1(x >> 8);
1371   c2 = u1(x);
1372 }
1373 
1374 inline void explode_short_to( u2 x, u1* p ) {
1375   explode_short_to( x, p[0], p[1]);
1376 }
1377 
1378 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1379   c1 = u1(x >> 24);
1380   c2 = u1(x >> 16);
1381   c3 = u1(x >>  8);
1382   c4 = u1(x);
1383 }
1384 
1385 inline void explode_int_to( u4 x, u1* p ) {
1386   explode_int_to( x, p[0], p[1], p[2], p[3]);
1387 }
1388 
1389 
1390 // Pack and extract shorts to/from ints:
1391 
1392 inline int extract_low_short_from_int(jint x) {
1393   return x & 0xffff;
1394 }
1395 
1396 inline int extract_high_short_from_int(jint x) {
1397   return (x >> 16) & 0xffff;
1398 }
1399 
1400 inline int build_int_from_shorts( jushort low, jushort high ) {
1401   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1402 }
1403 
1404 // Convert pointer to intptr_t, for use in printing pointers.
1405 inline intptr_t p2i(const void * p) {
1406   return (intptr_t) p;
1407 }
1408 
1409 // Printf-style formatters for fixed- and variable-width types as pointers and
1410 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1411 // doesn't provide appropriate definitions, they should be provided in
1412 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1413 
1414 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1415 
1416 // Format 32-bit quantities.
1417 #define INT32_FORMAT           "%" PRId32
1418 #define UINT32_FORMAT          "%" PRIu32
1419 #define INT32_FORMAT_W(width)  "%" #width PRId32
1420 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1421 
1422 #define PTR32_FORMAT           "0x%08" PRIx32
1423 
1424 // Format 64-bit quantities.
1425 #define INT64_FORMAT           "%" PRId64
1426 #define UINT64_FORMAT          "%" PRIu64
1427 #define UINT64_FORMAT_X        "%" PRIx64
1428 #define INT64_FORMAT_W(width)  "%" #width PRId64
1429 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1430 
1431 #define PTR64_FORMAT           "0x%016" PRIx64
1432 
1433 // Format jlong, if necessary
1434 #ifndef JLONG_FORMAT
1435 #define JLONG_FORMAT           INT64_FORMAT
1436 #endif
1437 #ifndef JULONG_FORMAT
1438 #define JULONG_FORMAT          UINT64_FORMAT
1439 #endif
1440 
1441 // Format pointers which change size between 32- and 64-bit.
1442 #ifdef  _LP64
1443 #define INTPTR_FORMAT "0x%016" PRIxPTR
1444 #define PTR_FORMAT    "0x%016" PRIxPTR
1445 #else   // !_LP64
1446 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1447 #define PTR_FORMAT    "0x%08"  PRIxPTR
1448 #endif  // _LP64
1449 
1450 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1451 
1452 #define SSIZE_FORMAT          "%"   PRIdPTR
1453 #define SIZE_FORMAT           "%"   PRIuPTR
1454 #define SIZE_FORMAT_HEX       "0x%" PRIxPTR
1455 #define SSIZE_FORMAT_W(width) "%"   #width PRIdPTR
1456 #define SIZE_FORMAT_W(width)  "%"   #width PRIuPTR
1457 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1458 
1459 #define INTX_FORMAT           "%" PRIdPTR
1460 #define UINTX_FORMAT          "%" PRIuPTR
1461 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1462 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1463 
1464 
1465 // Enable zap-a-lot if in debug version.
1466 
1467 # ifdef ASSERT
1468 # ifdef COMPILER2
1469 #   define ENABLE_ZAP_DEAD_LOCALS
1470 #endif /* COMPILER2 */
1471 # endif /* ASSERT */
1472 
1473 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1474 
1475 //----------------------------------------------------------------------------------------------------
1476 // Sum and product which can never overflow: they wrap, just like the
1477 // Java operations.  Note that we don't intend these to be used for
1478 // general-purpose arithmetic: their purpose is to emulate Java
1479 // operations.
1480 
1481 // The goal of this code to avoid undefined or implementation-defined
1482 // behaviour.  The use of an lvalue to reference cast is explicitly
1483 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1484 // 15 in C++03]
1485 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1486 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1487   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1488   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1489   return reinterpret_cast<TYPE&>(ures);                 \
1490 }
1491 
1492 JAVA_INTEGER_OP(+, java_add, jint, juint)
1493 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1494 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1495 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1496 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1497 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1498 
1499 #undef JAVA_INTEGER_OP
1500 
1501 // Dereference vptr
1502 // All C++ compilers that we know of have the vtbl pointer in the first
1503 // word.  If there are exceptions, this function needs to be made compiler
1504 // specific.
1505 static inline void* dereference_vptr(const void* addr) {
1506   return *(void**)addr;
1507 }
1508 
1509 #ifndef PRODUCT
1510 
1511 // For unit testing only
1512 class GlobalDefinitions {
1513 public:
1514   static void test_globals();
1515   static void test_proper_unit();
1516 };
1517 
1518 #endif // PRODUCT
1519 
1520 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP