1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_solaris.hpp"
  40 #include "os_solaris.inline.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/atomic.hpp"
  45 #include "runtime/extendedPC.hpp"
  46 #include "runtime/globals.hpp"
  47 #include "runtime/interfaceSupport.inline.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/orderAccess.hpp"
  53 #include "runtime/osThread.hpp"
  54 #include "runtime/perfMemory.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/statSampler.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "runtime/thread.inline.hpp"
  59 #include "runtime/threadCritical.hpp"
  60 #include "runtime/timer.hpp"
  61 #include "runtime/vm_version.hpp"
  62 #include "semaphore_posix.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/align.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/growableArray.hpp"
  71 #include "utilities/macros.hpp"
  72 #include "utilities/vmError.hpp"
  73 
  74 // put OS-includes here
  75 # include <dlfcn.h>
  76 # include <errno.h>
  77 # include <exception>
  78 # include <link.h>
  79 # include <poll.h>
  80 # include <pthread.h>
  81 # include <setjmp.h>
  82 # include <signal.h>
  83 # include <stdio.h>
  84 # include <alloca.h>
  85 # include <sys/filio.h>
  86 # include <sys/ipc.h>
  87 # include <sys/lwp.h>
  88 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
  89 # include <sys/mman.h>
  90 # include <sys/processor.h>
  91 # include <sys/procset.h>
  92 # include <sys/pset.h>
  93 # include <sys/resource.h>
  94 # include <sys/shm.h>
  95 # include <sys/socket.h>
  96 # include <sys/stat.h>
  97 # include <sys/systeminfo.h>
  98 # include <sys/time.h>
  99 # include <sys/times.h>
 100 # include <sys/types.h>
 101 # include <sys/wait.h>
 102 # include <sys/utsname.h>
 103 # include <thread.h>
 104 # include <unistd.h>
 105 # include <sys/priocntl.h>
 106 # include <sys/rtpriocntl.h>
 107 # include <sys/tspriocntl.h>
 108 # include <sys/iapriocntl.h>
 109 # include <sys/fxpriocntl.h>
 110 # include <sys/loadavg.h>
 111 # include <string.h>
 112 # include <stdio.h>
 113 
 114 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
 115 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
 116 
 117 #define MAX_PATH (2 * K)
 118 
 119 // for timer info max values which include all bits
 120 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 121 
 122 
 123 // Here are some liblgrp types from sys/lgrp_user.h to be able to
 124 // compile on older systems without this header file.
 125 
 126 #ifndef MADV_ACCESS_LWP
 127   #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
 128 #endif
 129 #ifndef MADV_ACCESS_MANY
 130   #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
 131 #endif
 132 
 133 #ifndef LGRP_RSRC_CPU
 134   #define LGRP_RSRC_CPU      0       /* CPU resources */
 135 #endif
 136 #ifndef LGRP_RSRC_MEM
 137   #define LGRP_RSRC_MEM      1       /* memory resources */
 138 #endif
 139 
 140 // Values for ThreadPriorityPolicy == 1
 141 int prio_policy1[CriticalPriority+1] = {
 142   -99999,  0, 16,  32,  48,  64,
 143           80, 96, 112, 124, 127, 127 };
 144 
 145 // System parameters used internally
 146 static clock_t clock_tics_per_sec = 100;
 147 
 148 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
 149 static bool enabled_extended_FILE_stdio = false;
 150 
 151 // For diagnostics to print a message once. see run_periodic_checks
 152 static bool check_addr0_done = false;
 153 static sigset_t check_signal_done;
 154 static bool check_signals = true;
 155 
 156 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
 157 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
 158 
 159 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
 160 
 161 os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
 162 
 163 // "default" initializers for missing libc APIs
 164 extern "C" {
 165   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 166   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
 167 
 168   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 169   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
 170 }
 171 
 172 // "default" initializers for pthread-based synchronization
 173 extern "C" {
 174   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 175   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 176 }
 177 
 178 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 179 
 180 static inline size_t adjust_stack_size(address base, size_t size) {
 181   if ((ssize_t)size < 0) {
 182     // 4759953: Compensate for ridiculous stack size.
 183     size = max_intx;
 184   }
 185   if (size > (size_t)base) {
 186     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
 187     size = (size_t)base;
 188   }
 189   return size;
 190 }
 191 
 192 static inline stack_t get_stack_info() {
 193   stack_t st;
 194   int retval = thr_stksegment(&st);
 195   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
 196   assert(retval == 0, "incorrect return value from thr_stksegment");
 197   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
 198   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
 199   return st;
 200 }
 201 
 202 static void _handle_uncaught_cxx_exception() {
 203   VMError::report_and_die("An uncaught C++ exception");
 204 }
 205 
 206 bool os::is_primordial_thread(void) {
 207   int r = thr_main();
 208   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 209   return r == 1;
 210 }
 211 
 212 address os::current_stack_base() {
 213   bool _is_primordial_thread = is_primordial_thread();
 214 
 215   // Workaround 4352906, avoid calls to thr_stksegment by
 216   // thr_main after the first one (it looks like we trash
 217   // some data, causing the value for ss_sp to be incorrect).
 218   if (!_is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
 219     stack_t st = get_stack_info();
 220     if (_is_primordial_thread) {
 221       // cache initial value of stack base
 222       os::Solaris::_main_stack_base = (address)st.ss_sp;
 223     }
 224     return (address)st.ss_sp;
 225   } else {
 226     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
 227     return os::Solaris::_main_stack_base;
 228   }
 229 }
 230 
 231 size_t os::current_stack_size() {
 232   size_t size;
 233 
 234   if (!is_primordial_thread()) {
 235     size = get_stack_info().ss_size;
 236   } else {
 237     struct rlimit limits;
 238     getrlimit(RLIMIT_STACK, &limits);
 239     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
 240   }
 241   // base may not be page aligned
 242   address base = current_stack_base();
 243   address bottom = align_up(base - size, os::vm_page_size());;
 244   return (size_t)(base - bottom);
 245 }
 246 
 247 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
 248   return localtime_r(clock, res);
 249 }
 250 
 251 void os::Solaris::try_enable_extended_io() {
 252   typedef int (*enable_extended_FILE_stdio_t)(int, int);
 253 
 254   if (!UseExtendedFileIO) {
 255     return;
 256   }
 257 
 258   enable_extended_FILE_stdio_t enabler =
 259     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
 260                                          "enable_extended_FILE_stdio");
 261   if (enabler) {
 262     enabler(-1, -1);
 263   }
 264 }
 265 
 266 static int _processors_online = 0;
 267 
 268 jint os::Solaris::_os_thread_limit = 0;
 269 volatile jint os::Solaris::_os_thread_count = 0;
 270 
 271 julong os::available_memory() {
 272   return Solaris::available_memory();
 273 }
 274 
 275 julong os::Solaris::available_memory() {
 276   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
 277 }
 278 
 279 julong os::Solaris::_physical_memory = 0;
 280 
 281 julong os::physical_memory() {
 282   return Solaris::physical_memory();
 283 }
 284 
 285 static hrtime_t first_hrtime = 0;
 286 static const hrtime_t hrtime_hz = 1000*1000*1000;
 287 static volatile hrtime_t max_hrtime = 0;
 288 
 289 
 290 void os::Solaris::initialize_system_info() {
 291   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 292   _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
 293   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
 294                                      (julong)sysconf(_SC_PAGESIZE);
 295 }
 296 
 297 uint os::processor_id() {
 298   const processorid_t id = ::getcpuid();
 299   assert(id >= 0 && id < _processor_count, "Invalid processor id");
 300   return (uint)id;
 301 }
 302 
 303 int os::active_processor_count() {
 304   // User has overridden the number of active processors
 305   if (ActiveProcessorCount > 0) {
 306     log_trace(os)("active_processor_count: "
 307                   "active processor count set by user : %d",
 308                   ActiveProcessorCount);
 309     return ActiveProcessorCount;
 310   }
 311 
 312   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
 313   pid_t pid = getpid();
 314   psetid_t pset = PS_NONE;
 315   // Are we running in a processor set or is there any processor set around?
 316   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
 317     uint_t pset_cpus;
 318     // Query the number of cpus available to us.
 319     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
 320       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
 321       _processors_online = pset_cpus;
 322       return pset_cpus;
 323     }
 324   }
 325   // Otherwise return number of online cpus
 326   return online_cpus;
 327 }
 328 
 329 static bool find_processors_in_pset(psetid_t        pset,
 330                                     processorid_t** id_array,
 331                                     uint_t*         id_length) {
 332   bool result = false;
 333   // Find the number of processors in the processor set.
 334   if (pset_info(pset, NULL, id_length, NULL) == 0) {
 335     // Make up an array to hold their ids.
 336     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 337     // Fill in the array with their processor ids.
 338     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
 339       result = true;
 340     }
 341   }
 342   return result;
 343 }
 344 
 345 // Callers of find_processors_online() must tolerate imprecise results --
 346 // the system configuration can change asynchronously because of DR
 347 // or explicit psradm operations.
 348 //
 349 // We also need to take care that the loop (below) terminates as the
 350 // number of processors online can change between the _SC_NPROCESSORS_ONLN
 351 // request and the loop that builds the list of processor ids.   Unfortunately
 352 // there's no reliable way to determine the maximum valid processor id,
 353 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
 354 // man pages, which claim the processor id set is "sparse, but
 355 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
 356 // exit the loop.
 357 //
 358 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
 359 // not available on S8.0.
 360 
 361 static bool find_processors_online(processorid_t** id_array,
 362                                    uint*           id_length) {
 363   const processorid_t MAX_PROCESSOR_ID = 100000;
 364   // Find the number of processors online.
 365   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
 366   // Make up an array to hold their ids.
 367   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 368   // Processors need not be numbered consecutively.
 369   long found = 0;
 370   processorid_t next = 0;
 371   while (found < *id_length && next < MAX_PROCESSOR_ID) {
 372     processor_info_t info;
 373     if (processor_info(next, &info) == 0) {
 374       // NB, PI_NOINTR processors are effectively online ...
 375       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
 376         (*id_array)[found] = next;
 377         found += 1;
 378       }
 379     }
 380     next += 1;
 381   }
 382   if (found < *id_length) {
 383     // The loop above didn't identify the expected number of processors.
 384     // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
 385     // and re-running the loop, above, but there's no guarantee of progress
 386     // if the system configuration is in flux.  Instead, we just return what
 387     // we've got.  Note that in the worst case find_processors_online() could
 388     // return an empty set.  (As a fall-back in the case of the empty set we
 389     // could just return the ID of the current processor).
 390     *id_length = found;
 391   }
 392 
 393   return true;
 394 }
 395 
 396 static bool assign_distribution(processorid_t* id_array,
 397                                 uint           id_length,
 398                                 uint*          distribution,
 399                                 uint           distribution_length) {
 400   // We assume we can assign processorid_t's to uint's.
 401   assert(sizeof(processorid_t) == sizeof(uint),
 402          "can't convert processorid_t to uint");
 403   // Quick check to see if we won't succeed.
 404   if (id_length < distribution_length) {
 405     return false;
 406   }
 407   // Assign processor ids to the distribution.
 408   // Try to shuffle processors to distribute work across boards,
 409   // assuming 4 processors per board.
 410   const uint processors_per_board = ProcessDistributionStride;
 411   // Find the maximum processor id.
 412   processorid_t max_id = 0;
 413   for (uint m = 0; m < id_length; m += 1) {
 414     max_id = MAX2(max_id, id_array[m]);
 415   }
 416   // The next id, to limit loops.
 417   const processorid_t limit_id = max_id + 1;
 418   // Make up markers for available processors.
 419   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
 420   for (uint c = 0; c < limit_id; c += 1) {
 421     available_id[c] = false;
 422   }
 423   for (uint a = 0; a < id_length; a += 1) {
 424     available_id[id_array[a]] = true;
 425   }
 426   // Step by "boards", then by "slot", copying to "assigned".
 427   // NEEDS_CLEANUP: The assignment of processors should be stateful,
 428   //                remembering which processors have been assigned by
 429   //                previous calls, etc., so as to distribute several
 430   //                independent calls of this method.  What we'd like is
 431   //                It would be nice to have an API that let us ask
 432   //                how many processes are bound to a processor,
 433   //                but we don't have that, either.
 434   //                In the short term, "board" is static so that
 435   //                subsequent distributions don't all start at board 0.
 436   static uint board = 0;
 437   uint assigned = 0;
 438   // Until we've found enough processors ....
 439   while (assigned < distribution_length) {
 440     // ... find the next available processor in the board.
 441     for (uint slot = 0; slot < processors_per_board; slot += 1) {
 442       uint try_id = board * processors_per_board + slot;
 443       if ((try_id < limit_id) && (available_id[try_id] == true)) {
 444         distribution[assigned] = try_id;
 445         available_id[try_id] = false;
 446         assigned += 1;
 447         break;
 448       }
 449     }
 450     board += 1;
 451     if (board * processors_per_board + 0 >= limit_id) {
 452       board = 0;
 453     }
 454   }
 455   if (available_id != NULL) {
 456     FREE_C_HEAP_ARRAY(bool, available_id);
 457   }
 458   return true;
 459 }
 460 
 461 void os::set_native_thread_name(const char *name) {
 462   if (Solaris::_pthread_setname_np != NULL) {
 463     // Only the first 31 bytes of 'name' are processed by pthread_setname_np
 464     // but we explicitly copy into a size-limited buffer to avoid any
 465     // possible overflow.
 466     char buf[32];
 467     snprintf(buf, sizeof(buf), "%s", name);
 468     buf[sizeof(buf) - 1] = '\0';
 469     Solaris::_pthread_setname_np(pthread_self(), buf);
 470   }
 471 }
 472 
 473 bool os::distribute_processes(uint length, uint* distribution) {
 474   bool result = false;
 475   // Find the processor id's of all the available CPUs.
 476   processorid_t* id_array  = NULL;
 477   uint           id_length = 0;
 478   // There are some races between querying information and using it,
 479   // since processor sets can change dynamically.
 480   psetid_t pset = PS_NONE;
 481   // Are we running in a processor set?
 482   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
 483     result = find_processors_in_pset(pset, &id_array, &id_length);
 484   } else {
 485     result = find_processors_online(&id_array, &id_length);
 486   }
 487   if (result == true) {
 488     if (id_length >= length) {
 489       result = assign_distribution(id_array, id_length, distribution, length);
 490     } else {
 491       result = false;
 492     }
 493   }
 494   if (id_array != NULL) {
 495     FREE_C_HEAP_ARRAY(processorid_t, id_array);
 496   }
 497   return result;
 498 }
 499 
 500 bool os::bind_to_processor(uint processor_id) {
 501   // We assume that a processorid_t can be stored in a uint.
 502   assert(sizeof(uint) == sizeof(processorid_t),
 503          "can't convert uint to processorid_t");
 504   int bind_result =
 505     processor_bind(P_LWPID,                       // bind LWP.
 506                    P_MYID,                        // bind current LWP.
 507                    (processorid_t) processor_id,  // id.
 508                    NULL);                         // don't return old binding.
 509   return (bind_result == 0);
 510 }
 511 
 512 // Return true if user is running as root.
 513 
 514 bool os::have_special_privileges() {
 515   static bool init = false;
 516   static bool privileges = false;
 517   if (!init) {
 518     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 519     init = true;
 520   }
 521   return privileges;
 522 }
 523 
 524 
 525 void os::init_system_properties_values() {
 526   // The next steps are taken in the product version:
 527   //
 528   // Obtain the JAVA_HOME value from the location of libjvm.so.
 529   // This library should be located at:
 530   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 531   //
 532   // If "/jre/lib/" appears at the right place in the path, then we
 533   // assume libjvm.so is installed in a JDK and we use this path.
 534   //
 535   // Otherwise exit with message: "Could not create the Java virtual machine."
 536   //
 537   // The following extra steps are taken in the debugging version:
 538   //
 539   // If "/jre/lib/" does NOT appear at the right place in the path
 540   // instead of exit check for $JAVA_HOME environment variable.
 541   //
 542   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 543   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 544   // it looks like libjvm.so is installed there
 545   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 546   //
 547   // Otherwise exit.
 548   //
 549   // Important note: if the location of libjvm.so changes this
 550   // code needs to be changed accordingly.
 551 
 552 // Base path of extensions installed on the system.
 553 #define SYS_EXT_DIR     "/usr/jdk/packages"
 554 #define EXTENSIONS_DIR  "/lib/ext"
 555 
 556   // Buffer that fits several sprintfs.
 557   // Note that the space for the colon and the trailing null are provided
 558   // by the nulls included by the sizeof operator.
 559   const size_t bufsize =
 560     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 561          sizeof(SYS_EXT_DIR) + sizeof("/lib/"), // invariant ld_library_path
 562          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 563   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 564 
 565   // sysclasspath, java_home, dll_dir
 566   {
 567     char *pslash;
 568     os::jvm_path(buf, bufsize);
 569 
 570     // Found the full path to libjvm.so.
 571     // Now cut the path to <java_home>/jre if we can.
 572     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 573     pslash = strrchr(buf, '/');
 574     if (pslash != NULL) {
 575       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 576     }
 577     Arguments::set_dll_dir(buf);
 578 
 579     if (pslash != NULL) {
 580       pslash = strrchr(buf, '/');
 581       if (pslash != NULL) {
 582         *pslash = '\0';        // Get rid of /lib.
 583       }
 584     }
 585     Arguments::set_java_home(buf);
 586     if (!set_boot_path('/', ':')) {
 587       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 588     }
 589   }
 590 
 591   // Where to look for native libraries.
 592   {
 593     // Use dlinfo() to determine the correct java.library.path.
 594     //
 595     // If we're launched by the Java launcher, and the user
 596     // does not set java.library.path explicitly on the commandline,
 597     // the Java launcher sets LD_LIBRARY_PATH for us and unsets
 598     // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
 599     // dlinfo returns LD_LIBRARY_PATH + crle settings (including
 600     // /usr/lib), which is exactly what we want.
 601     //
 602     // If the user does set java.library.path, it completely
 603     // overwrites this setting, and always has.
 604     //
 605     // If we're not launched by the Java launcher, we may
 606     // get here with any/all of the LD_LIBRARY_PATH[_32|64]
 607     // settings.  Again, dlinfo does exactly what we want.
 608 
 609     Dl_serinfo     info_sz, *info = &info_sz;
 610     Dl_serpath     *path;
 611     char           *library_path;
 612     char           *common_path = buf;
 613 
 614     // Determine search path count and required buffer size.
 615     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
 616       FREE_C_HEAP_ARRAY(char, buf);
 617       vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
 618     }
 619 
 620     // Allocate new buffer and initialize.
 621     info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
 622     info->dls_size = info_sz.dls_size;
 623     info->dls_cnt = info_sz.dls_cnt;
 624 
 625     // Obtain search path information.
 626     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
 627       FREE_C_HEAP_ARRAY(char, buf);
 628       FREE_C_HEAP_ARRAY(char, info);
 629       vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
 630     }
 631 
 632     path = &info->dls_serpath[0];
 633 
 634     // Note: Due to a legacy implementation, most of the library path
 635     // is set in the launcher. This was to accomodate linking restrictions
 636     // on legacy Solaris implementations (which are no longer supported).
 637     // Eventually, all the library path setting will be done here.
 638     //
 639     // However, to prevent the proliferation of improperly built native
 640     // libraries, the new path component /usr/jdk/packages is added here.
 641 
 642     // Construct the invariant part of ld_library_path.
 643     sprintf(common_path, SYS_EXT_DIR "/lib");
 644 
 645     // Struct size is more than sufficient for the path components obtained
 646     // through the dlinfo() call, so only add additional space for the path
 647     // components explicitly added here.
 648     size_t library_path_size = info->dls_size + strlen(common_path);
 649     library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
 650     library_path[0] = '\0';
 651 
 652     // Construct the desired Java library path from the linker's library
 653     // search path.
 654     //
 655     // For compatibility, it is optimal that we insert the additional path
 656     // components specific to the Java VM after those components specified
 657     // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
 658     // infrastructure.
 659     if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
 660       strcpy(library_path, common_path);
 661     } else {
 662       int inserted = 0;
 663       int i;
 664       for (i = 0; i < info->dls_cnt; i++, path++) {
 665         uint_t flags = path->dls_flags & LA_SER_MASK;
 666         if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
 667           strcat(library_path, common_path);
 668           strcat(library_path, os::path_separator());
 669           inserted = 1;
 670         }
 671         strcat(library_path, path->dls_name);
 672         strcat(library_path, os::path_separator());
 673       }
 674       // Eliminate trailing path separator.
 675       library_path[strlen(library_path)-1] = '\0';
 676     }
 677 
 678     // happens before argument parsing - can't use a trace flag
 679     // tty->print_raw("init_system_properties_values: native lib path: ");
 680     // tty->print_raw_cr(library_path);
 681 
 682     // Callee copies into its own buffer.
 683     Arguments::set_library_path(library_path);
 684 
 685     FREE_C_HEAP_ARRAY(char, library_path);
 686     FREE_C_HEAP_ARRAY(char, info);
 687   }
 688 
 689   // Extensions directories.
 690   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 691   Arguments::set_ext_dirs(buf);
 692 
 693   FREE_C_HEAP_ARRAY(char, buf);
 694 
 695 #undef SYS_EXT_DIR
 696 #undef EXTENSIONS_DIR
 697 }
 698 
 699 void os::breakpoint() {
 700   BREAKPOINT;
 701 }
 702 
 703 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
 704   address  stackStart  = (address)thread->stack_base();
 705   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
 706   if (sp < stackStart && sp >= stackEnd) return true;
 707   return false;
 708 }
 709 
 710 extern "C" void breakpoint() {
 711   // use debugger to set breakpoint here
 712 }
 713 
 714 static thread_t main_thread;
 715 
 716 // Thread start routine for all newly created threads
 717 extern "C" void* thread_native_entry(void* thread_addr) {
 718 
 719   Thread* thread = (Thread*)thread_addr;
 720 
 721   thread->record_stack_base_and_size();
 722 
 723   // Try to randomize the cache line index of hot stack frames.
 724   // This helps when threads of the same stack traces evict each other's
 725   // cache lines. The threads can be either from the same JVM instance, or
 726   // from different JVM instances. The benefit is especially true for
 727   // processors with hyperthreading technology.
 728   static int counter = 0;
 729   int pid = os::current_process_id();
 730   alloca(((pid ^ counter++) & 7) * 128);
 731 
 732   int prio;
 733 
 734   thread->initialize_thread_current();
 735 
 736   OSThread* osthr = thread->osthread();
 737 
 738   osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
 739 
 740   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
 741     os::current_thread_id());
 742 
 743   if (UseNUMA) {
 744     int lgrp_id = os::numa_get_group_id();
 745     if (lgrp_id != -1) {
 746       thread->set_lgrp_id(lgrp_id);
 747     }
 748   }
 749 
 750   // Our priority was set when we were created, and stored in the
 751   // osthread, but couldn't be passed through to our LWP until now.
 752   // So read back the priority and set it again.
 753 
 754   if (osthr->thread_id() != -1) {
 755     if (UseThreadPriorities) {
 756       int prio = osthr->native_priority();
 757       if (ThreadPriorityVerbose) {
 758         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
 759                       INTPTR_FORMAT ", setting priority: %d\n",
 760                       osthr->thread_id(), osthr->lwp_id(), prio);
 761       }
 762       os::set_native_priority(thread, prio);
 763     }
 764   } else if (ThreadPriorityVerbose) {
 765     warning("Can't set priority in _start routine, thread id hasn't been set\n");
 766   }
 767 
 768   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 769 
 770   // initialize signal mask for this thread
 771   os::Solaris::hotspot_sigmask(thread);
 772 
 773   os::Solaris::init_thread_fpu_state();
 774   std::set_terminate(_handle_uncaught_cxx_exception);
 775 
 776   thread->call_run();
 777 
 778   // Note: at this point the thread object may already have deleted itself.
 779   // Do not dereference it from here on out.
 780 
 781   // One less thread is executing
 782   // When the VMThread gets here, the main thread may have already exited
 783   // which frees the CodeHeap containing the Atomic::dec code
 784   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 785     Atomic::dec(&os::Solaris::_os_thread_count);
 786   }
 787 
 788   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 789 
 790   if (UseDetachedThreads) {
 791     thr_exit(NULL);
 792     ShouldNotReachHere();
 793   }
 794   return NULL;
 795 }
 796 
 797 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
 798   // Allocate the OSThread object
 799   OSThread* osthread = new OSThread(NULL, NULL);
 800   if (osthread == NULL) return NULL;
 801 
 802   // Store info on the Solaris thread into the OSThread
 803   osthread->set_thread_id(thread_id);
 804   osthread->set_lwp_id(_lwp_self());
 805 
 806   if (UseNUMA) {
 807     int lgrp_id = os::numa_get_group_id();
 808     if (lgrp_id != -1) {
 809       thread->set_lgrp_id(lgrp_id);
 810     }
 811   }
 812 
 813   if (ThreadPriorityVerbose) {
 814     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
 815                   osthread->thread_id(), osthread->lwp_id());
 816   }
 817 
 818   // Initial thread state is INITIALIZED, not SUSPENDED
 819   osthread->set_state(INITIALIZED);
 820 
 821   return osthread;
 822 }
 823 
 824 void os::Solaris::hotspot_sigmask(Thread* thread) {
 825   //Save caller's signal mask
 826   sigset_t sigmask;
 827   pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
 828   OSThread *osthread = thread->osthread();
 829   osthread->set_caller_sigmask(sigmask);
 830 
 831   pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
 832   if (!ReduceSignalUsage) {
 833     if (thread->is_VM_thread()) {
 834       // Only the VM thread handles BREAK_SIGNAL ...
 835       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 836     } else {
 837       // ... all other threads block BREAK_SIGNAL
 838       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
 839       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 840     }
 841   }
 842 }
 843 
 844 bool os::create_attached_thread(JavaThread* thread) {
 845 #ifdef ASSERT
 846   thread->verify_not_published();
 847 #endif
 848   OSThread* osthread = create_os_thread(thread, thr_self());
 849   if (osthread == NULL) {
 850     return false;
 851   }
 852 
 853   // Initial thread state is RUNNABLE
 854   osthread->set_state(RUNNABLE);
 855   thread->set_osthread(osthread);
 856 
 857   // initialize signal mask for this thread
 858   // and save the caller's signal mask
 859   os::Solaris::hotspot_sigmask(thread);
 860 
 861   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 862     os::current_thread_id());
 863 
 864   return true;
 865 }
 866 
 867 bool os::create_main_thread(JavaThread* thread) {
 868 #ifdef ASSERT
 869   thread->verify_not_published();
 870 #endif
 871   if (_starting_thread == NULL) {
 872     _starting_thread = create_os_thread(thread, main_thread);
 873     if (_starting_thread == NULL) {
 874       return false;
 875     }
 876   }
 877 
 878   // The primodial thread is runnable from the start
 879   _starting_thread->set_state(RUNNABLE);
 880 
 881   thread->set_osthread(_starting_thread);
 882 
 883   // initialize signal mask for this thread
 884   // and save the caller's signal mask
 885   os::Solaris::hotspot_sigmask(thread);
 886 
 887   return true;
 888 }
 889 
 890 // Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
 891 static char* describe_thr_create_attributes(char* buf, size_t buflen,
 892                                             size_t stacksize, long flags) {
 893   stringStream ss(buf, buflen);
 894   ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 895   ss.print("flags: ");
 896   #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
 897   #define ALL(X) \
 898     X(THR_SUSPENDED) \
 899     X(THR_DETACHED) \
 900     X(THR_BOUND) \
 901     X(THR_NEW_LWP) \
 902     X(THR_DAEMON)
 903   ALL(PRINT_FLAG)
 904   #undef ALL
 905   #undef PRINT_FLAG
 906   return buf;
 907 }
 908 
 909 // return default stack size for thr_type
 910 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
 911   // default stack size when not specified by caller is 1M (2M for LP64)
 912   size_t s = (BytesPerWord >> 2) * K * K;
 913   return s;
 914 }
 915 
 916 bool os::create_thread(Thread* thread, ThreadType thr_type,
 917                        size_t req_stack_size) {
 918   // Allocate the OSThread object
 919   OSThread* osthread = new OSThread(NULL, NULL);
 920   if (osthread == NULL) {
 921     return false;
 922   }
 923 
 924   if (ThreadPriorityVerbose) {
 925     char *thrtyp;
 926     switch (thr_type) {
 927     case vm_thread:
 928       thrtyp = (char *)"vm";
 929       break;
 930     case cgc_thread:
 931       thrtyp = (char *)"cgc";
 932       break;
 933     case pgc_thread:
 934       thrtyp = (char *)"pgc";
 935       break;
 936     case java_thread:
 937       thrtyp = (char *)"java";
 938       break;
 939     case compiler_thread:
 940       thrtyp = (char *)"compiler";
 941       break;
 942     case watcher_thread:
 943       thrtyp = (char *)"watcher";
 944       break;
 945     default:
 946       thrtyp = (char *)"unknown";
 947       break;
 948     }
 949     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
 950   }
 951 
 952   // calculate stack size if it's not specified by caller
 953   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 954 
 955   // Initial state is ALLOCATED but not INITIALIZED
 956   osthread->set_state(ALLOCATED);
 957 
 958   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
 959     // We got lots of threads. Check if we still have some address space left.
 960     // Need to be at least 5Mb of unreserved address space. We do check by
 961     // trying to reserve some.
 962     const size_t VirtualMemoryBangSize = 20*K*K;
 963     char* mem = os::reserve_memory(VirtualMemoryBangSize);
 964     if (mem == NULL) {
 965       delete osthread;
 966       return false;
 967     } else {
 968       // Release the memory again
 969       os::release_memory(mem, VirtualMemoryBangSize);
 970     }
 971   }
 972 
 973   // Setup osthread because the child thread may need it.
 974   thread->set_osthread(osthread);
 975 
 976   // Create the Solaris thread
 977   thread_t tid = 0;
 978   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
 979   int      status;
 980 
 981   // Mark that we don't have an lwp or thread id yet.
 982   // In case we attempt to set the priority before the thread starts.
 983   osthread->set_lwp_id(-1);
 984   osthread->set_thread_id(-1);
 985 
 986   status = thr_create(NULL, stack_size, thread_native_entry, thread, flags, &tid);
 987 
 988   char buf[64];
 989   if (status == 0) {
 990     log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
 991       (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
 992   } else {
 993     log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
 994       os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
 995   }
 996 
 997   if (status != 0) {
 998     thread->set_osthread(NULL);
 999     // Need to clean up stuff we've allocated so far
1000     delete osthread;
1001     return false;
1002   }
1003 
1004   Atomic::inc(&os::Solaris::_os_thread_count);
1005 
1006   // Store info on the Solaris thread into the OSThread
1007   osthread->set_thread_id(tid);
1008 
1009   // Remember that we created this thread so we can set priority on it
1010   osthread->set_vm_created();
1011 
1012   // Most thread types will set an explicit priority before starting the thread,
1013   // but for those that don't we need a valid value to read back in thread_native_entry.
1014   osthread->set_native_priority(NormPriority);
1015 
1016   // Initial thread state is INITIALIZED, not SUSPENDED
1017   osthread->set_state(INITIALIZED);
1018 
1019   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1020   return true;
1021 }
1022 
1023 debug_only(static bool signal_sets_initialized = false);
1024 static sigset_t unblocked_sigs, vm_sigs;
1025 
1026 void os::Solaris::signal_sets_init() {
1027   // Should also have an assertion stating we are still single-threaded.
1028   assert(!signal_sets_initialized, "Already initialized");
1029   // Fill in signals that are necessarily unblocked for all threads in
1030   // the VM. Currently, we unblock the following signals:
1031   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1032   //                         by -Xrs (=ReduceSignalUsage));
1033   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1034   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1035   // the dispositions or masks wrt these signals.
1036   // Programs embedding the VM that want to use the above signals for their
1037   // own purposes must, at this time, use the "-Xrs" option to prevent
1038   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1039   // (See bug 4345157, and other related bugs).
1040   // In reality, though, unblocking these signals is really a nop, since
1041   // these signals are not blocked by default.
1042   sigemptyset(&unblocked_sigs);
1043   sigaddset(&unblocked_sigs, SIGILL);
1044   sigaddset(&unblocked_sigs, SIGSEGV);
1045   sigaddset(&unblocked_sigs, SIGBUS);
1046   sigaddset(&unblocked_sigs, SIGFPE);
1047   sigaddset(&unblocked_sigs, ASYNC_SIGNAL);
1048 
1049   if (!ReduceSignalUsage) {
1050     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1051       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1052     }
1053     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1054       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1055     }
1056     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1057       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1058     }
1059   }
1060   // Fill in signals that are blocked by all but the VM thread.
1061   sigemptyset(&vm_sigs);
1062   if (!ReduceSignalUsage) {
1063     sigaddset(&vm_sigs, BREAK_SIGNAL);
1064   }
1065   debug_only(signal_sets_initialized = true);
1066 
1067   // For diagnostics only used in run_periodic_checks
1068   sigemptyset(&check_signal_done);
1069 }
1070 
1071 // These are signals that are unblocked while a thread is running Java.
1072 // (For some reason, they get blocked by default.)
1073 sigset_t* os::Solaris::unblocked_signals() {
1074   assert(signal_sets_initialized, "Not initialized");
1075   return &unblocked_sigs;
1076 }
1077 
1078 // These are the signals that are blocked while a (non-VM) thread is
1079 // running Java. Only the VM thread handles these signals.
1080 sigset_t* os::Solaris::vm_signals() {
1081   assert(signal_sets_initialized, "Not initialized");
1082   return &vm_sigs;
1083 }
1084 
1085 // CR 7190089: on Solaris, primordial thread's stack needs adjusting.
1086 // Without the adjustment, stack size is incorrect if stack is set to unlimited (ulimit -s unlimited).
1087 void os::Solaris::correct_stack_boundaries_for_primordial_thread(Thread* thr) {
1088   assert(is_primordial_thread(), "Call only for primordial thread");
1089 
1090   JavaThread* jt = (JavaThread *)thr;
1091   assert(jt != NULL, "Sanity check");
1092   size_t stack_size;
1093   address base = jt->stack_base();
1094   if (Arguments::created_by_java_launcher()) {
1095     // Use 2MB to allow for Solaris 7 64 bit mode.
1096     stack_size = JavaThread::stack_size_at_create() == 0
1097       ? 2048*K : JavaThread::stack_size_at_create();
1098 
1099     // There are rare cases when we may have already used more than
1100     // the basic stack size allotment before this method is invoked.
1101     // Attempt to allow for a normally sized java_stack.
1102     size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1103     stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1104   } else {
1105     // 6269555: If we were not created by a Java launcher, i.e. if we are
1106     // running embedded in a native application, treat the primordial thread
1107     // as much like a native attached thread as possible.  This means using
1108     // the current stack size from thr_stksegment(), unless it is too large
1109     // to reliably setup guard pages.  A reasonable max size is 8MB.
1110     size_t current_size = os::current_stack_size();
1111     // This should never happen, but just in case....
1112     if (current_size == 0) current_size = 2 * K * K;
1113     stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1114   }
1115   address bottom = align_up(base - stack_size, os::vm_page_size());;
1116   stack_size = (size_t)(base - bottom);
1117 
1118   assert(stack_size > 0, "Stack size calculation problem");
1119 
1120   if (stack_size > jt->stack_size()) {
1121 #ifndef PRODUCT
1122     struct rlimit limits;
1123     getrlimit(RLIMIT_STACK, &limits);
1124     size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1125     assert(size >= jt->stack_size(), "Stack size problem in main thread");
1126 #endif
1127     tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1128                   "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1129                   "See limit(1) to increase the stack size limit.",
1130                   stack_size / K, jt->stack_size() / K);
1131     vm_exit(1);
1132   }
1133   assert(jt->stack_size() >= stack_size,
1134          "Attempt to map more stack than was allocated");
1135   jt->set_stack_size(stack_size);
1136 
1137 }
1138 
1139 
1140 
1141 // Free Solaris resources related to the OSThread
1142 void os::free_thread(OSThread* osthread) {
1143   assert(osthread != NULL, "os::free_thread but osthread not set");
1144 
1145   // We are told to free resources of the argument thread,
1146   // but we can only really operate on the current thread.
1147   assert(Thread::current()->osthread() == osthread,
1148          "os::free_thread but not current thread");
1149 
1150   // Restore caller's signal mask
1151   sigset_t sigmask = osthread->caller_sigmask();
1152   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1153 
1154   delete osthread;
1155 }
1156 
1157 void os::pd_start_thread(Thread* thread) {
1158   int status = thr_continue(thread->osthread()->thread_id());
1159   assert_status(status == 0, status, "thr_continue failed");
1160 }
1161 
1162 
1163 intx os::current_thread_id() {
1164   return (intx)thr_self();
1165 }
1166 
1167 static pid_t _initial_pid = 0;
1168 
1169 int os::current_process_id() {
1170   return (int)(_initial_pid ? _initial_pid : getpid());
1171 }
1172 
1173 // gethrtime() should be monotonic according to the documentation,
1174 // but some virtualized platforms are known to break this guarantee.
1175 // getTimeNanos() must be guaranteed not to move backwards, so we
1176 // are forced to add a check here.
1177 inline hrtime_t getTimeNanos() {
1178   const hrtime_t now = gethrtime();
1179   const hrtime_t prev = max_hrtime;
1180   if (now <= prev) {
1181     return prev;   // same or retrograde time;
1182   }
1183   const hrtime_t obsv = Atomic::cmpxchg(now, &max_hrtime, prev);
1184   assert(obsv >= prev, "invariant");   // Monotonicity
1185   // If the CAS succeeded then we're done and return "now".
1186   // If the CAS failed and the observed value "obsv" is >= now then
1187   // we should return "obsv".  If the CAS failed and now > obsv > prv then
1188   // some other thread raced this thread and installed a new value, in which case
1189   // we could either (a) retry the entire operation, (b) retry trying to install now
1190   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1191   // we might discard a higher "now" value in deference to a slightly lower but freshly
1192   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1193   // to (a) or (b) -- and greatly reduces coherence traffic.
1194   // We might also condition (c) on the magnitude of the delta between obsv and now.
1195   // Avoiding excessive CAS operations to hot RW locations is critical.
1196   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1197   return (prev == obsv) ? now : obsv;
1198 }
1199 
1200 // Time since start-up in seconds to a fine granularity.
1201 // Used by VMSelfDestructTimer and the MemProfiler.
1202 double os::elapsedTime() {
1203   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1204 }
1205 
1206 jlong os::elapsed_counter() {
1207   return (jlong)(getTimeNanos() - first_hrtime);
1208 }
1209 
1210 jlong os::elapsed_frequency() {
1211   return hrtime_hz;
1212 }
1213 
1214 // Return the real, user, and system times in seconds from an
1215 // arbitrary fixed point in the past.
1216 bool os::getTimesSecs(double* process_real_time,
1217                       double* process_user_time,
1218                       double* process_system_time) {
1219   struct tms ticks;
1220   clock_t real_ticks = times(&ticks);
1221 
1222   if (real_ticks == (clock_t) (-1)) {
1223     return false;
1224   } else {
1225     double ticks_per_second = (double) clock_tics_per_sec;
1226     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1227     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1228     // For consistency return the real time from getTimeNanos()
1229     // converted to seconds.
1230     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1231 
1232     return true;
1233   }
1234 }
1235 
1236 bool os::supports_vtime() { return true; }
1237 bool os::enable_vtime() { return false; }
1238 bool os::vtime_enabled() { return false; }
1239 
1240 double os::elapsedVTime() {
1241   return (double)gethrvtime() / (double)hrtime_hz;
1242 }
1243 
1244 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1245 jlong os::javaTimeMillis() {
1246   timeval t;
1247   if (gettimeofday(&t, NULL) == -1) {
1248     fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1249   }
1250   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1251 }
1252 
1253 // Must return seconds+nanos since Jan 1 1970. This must use the same
1254 // time source as javaTimeMillis and can't use get_nsec_fromepoch as
1255 // we need better than 1ms accuracy
1256 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1257   timeval t;
1258   if (gettimeofday(&t, NULL) == -1) {
1259     fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1260   }
1261   seconds = jlong(t.tv_sec);
1262   nanos = jlong(t.tv_usec) * 1000;
1263 }
1264 
1265 
1266 jlong os::javaTimeNanos() {
1267   return (jlong)getTimeNanos();
1268 }
1269 
1270 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1271   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1272   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1273   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1274   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1275 }
1276 
1277 char * os::local_time_string(char *buf, size_t buflen) {
1278   struct tm t;
1279   time_t long_time;
1280   time(&long_time);
1281   localtime_r(&long_time, &t);
1282   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1283                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1284                t.tm_hour, t.tm_min, t.tm_sec);
1285   return buf;
1286 }
1287 
1288 // Note: os::shutdown() might be called very early during initialization, or
1289 // called from signal handler. Before adding something to os::shutdown(), make
1290 // sure it is async-safe and can handle partially initialized VM.
1291 void os::shutdown() {
1292 
1293   // allow PerfMemory to attempt cleanup of any persistent resources
1294   perfMemory_exit();
1295 
1296   // needs to remove object in file system
1297   AttachListener::abort();
1298 
1299   // flush buffered output, finish log files
1300   ostream_abort();
1301 
1302   // Check for abort hook
1303   abort_hook_t abort_hook = Arguments::abort_hook();
1304   if (abort_hook != NULL) {
1305     abort_hook();
1306   }
1307 }
1308 
1309 // Note: os::abort() might be called very early during initialization, or
1310 // called from signal handler. Before adding something to os::abort(), make
1311 // sure it is async-safe and can handle partially initialized VM.
1312 void os::abort(bool dump_core, void* siginfo, const void* context) {
1313   os::shutdown();
1314   if (dump_core) {
1315 #ifndef PRODUCT
1316     fdStream out(defaultStream::output_fd());
1317     out.print_raw("Current thread is ");
1318     char buf[16];
1319     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1320     out.print_raw_cr(buf);
1321     out.print_raw_cr("Dumping core ...");
1322 #endif
1323     ::abort(); // dump core (for debugging)
1324   }
1325 
1326   ::exit(1);
1327 }
1328 
1329 // Die immediately, no exit hook, no abort hook, no cleanup.
1330 void os::die() {
1331   ::abort(); // dump core (for debugging)
1332 }
1333 
1334 // DLL functions
1335 
1336 const char* os::dll_file_extension() { return ".so"; }
1337 
1338 // This must be hard coded because it's the system's temporary
1339 // directory not the java application's temp directory, ala java.io.tmpdir.
1340 const char* os::get_temp_directory() { return "/tmp"; }
1341 
1342 // check if addr is inside libjvm.so
1343 bool os::address_is_in_vm(address addr) {
1344   static address libjvm_base_addr;
1345   Dl_info dlinfo;
1346 
1347   if (libjvm_base_addr == NULL) {
1348     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1349       libjvm_base_addr = (address)dlinfo.dli_fbase;
1350     }
1351     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1352   }
1353 
1354   if (dladdr((void *)addr, &dlinfo) != 0) {
1355     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1356   }
1357 
1358   return false;
1359 }
1360 
1361 typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1362 static dladdr1_func_type dladdr1_func = NULL;
1363 
1364 bool os::dll_address_to_function_name(address addr, char *buf,
1365                                       int buflen, int * offset,
1366                                       bool demangle) {
1367   // buf is not optional, but offset is optional
1368   assert(buf != NULL, "sanity check");
1369 
1370   Dl_info dlinfo;
1371 
1372   // dladdr1_func was initialized in os::init()
1373   if (dladdr1_func != NULL) {
1374     // yes, we have dladdr1
1375 
1376     // Support for dladdr1 is checked at runtime; it may be
1377     // available even if the vm is built on a machine that does
1378     // not have dladdr1 support.  Make sure there is a value for
1379     // RTLD_DL_SYMENT.
1380 #ifndef RTLD_DL_SYMENT
1381   #define RTLD_DL_SYMENT 1
1382 #endif
1383 #ifdef _LP64
1384     Elf64_Sym * info;
1385 #else
1386     Elf32_Sym * info;
1387 #endif
1388     if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1389                      RTLD_DL_SYMENT) != 0) {
1390       // see if we have a matching symbol that covers our address
1391       if (dlinfo.dli_saddr != NULL &&
1392           (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1393         if (dlinfo.dli_sname != NULL) {
1394           if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1395             jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1396           }
1397           if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1398           return true;
1399         }
1400       }
1401       // no matching symbol so try for just file info
1402       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1403         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1404                             buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1405           return true;
1406         }
1407       }
1408     }
1409     buf[0] = '\0';
1410     if (offset != NULL) *offset  = -1;
1411     return false;
1412   }
1413 
1414   // no, only dladdr is available
1415   if (dladdr((void *)addr, &dlinfo) != 0) {
1416     // see if we have a matching symbol
1417     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1418       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1419         jio_snprintf(buf, buflen, dlinfo.dli_sname);
1420       }
1421       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1422       return true;
1423     }
1424     // no matching symbol so try for just file info
1425     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1426       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1427                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1428         return true;
1429       }
1430     }
1431   }
1432   buf[0] = '\0';
1433   if (offset != NULL) *offset  = -1;
1434   return false;
1435 }
1436 
1437 bool os::dll_address_to_library_name(address addr, char* buf,
1438                                      int buflen, int* offset) {
1439   // buf is not optional, but offset is optional
1440   assert(buf != NULL, "sanity check");
1441 
1442   Dl_info dlinfo;
1443 
1444   if (dladdr((void*)addr, &dlinfo) != 0) {
1445     if (dlinfo.dli_fname != NULL) {
1446       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1447     }
1448     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1449       *offset = addr - (address)dlinfo.dli_fbase;
1450     }
1451     return true;
1452   }
1453 
1454   buf[0] = '\0';
1455   if (offset) *offset = -1;
1456   return false;
1457 }
1458 
1459 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1460   Dl_info dli;
1461   // Sanity check?
1462   if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1463       dli.dli_fname == NULL) {
1464     return 1;
1465   }
1466 
1467   void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1468   if (handle == NULL) {
1469     return 1;
1470   }
1471 
1472   Link_map *map;
1473   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1474   if (map == NULL) {
1475     dlclose(handle);
1476     return 1;
1477   }
1478 
1479   while (map->l_prev != NULL) {
1480     map = map->l_prev;
1481   }
1482 
1483   while (map != NULL) {
1484     // Iterate through all map entries and call callback with fields of interest
1485     if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1486       dlclose(handle);
1487       return 1;
1488     }
1489     map = map->l_next;
1490   }
1491 
1492   dlclose(handle);
1493   return 0;
1494 }
1495 
1496 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1497   outputStream * out = (outputStream *) param;
1498   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1499   return 0;
1500 }
1501 
1502 void os::print_dll_info(outputStream * st) {
1503   st->print_cr("Dynamic libraries:"); st->flush();
1504   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1505     st->print_cr("Error: Cannot print dynamic libraries.");
1506   }
1507 }
1508 
1509 // Loads .dll/.so and
1510 // in case of error it checks if .dll/.so was built for the
1511 // same architecture as Hotspot is running on
1512 
1513 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1514   void * result= ::dlopen(filename, RTLD_LAZY);
1515   if (result != NULL) {
1516     // Successful loading
1517     return result;
1518   }
1519 
1520   Elf32_Ehdr elf_head;
1521 
1522   // Read system error message into ebuf
1523   // It may or may not be overwritten below
1524   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1525   ebuf[ebuflen-1]='\0';
1526   int diag_msg_max_length=ebuflen-strlen(ebuf);
1527   char* diag_msg_buf=ebuf+strlen(ebuf);
1528 
1529   if (diag_msg_max_length==0) {
1530     // No more space in ebuf for additional diagnostics message
1531     return NULL;
1532   }
1533 
1534 
1535   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1536 
1537   if (file_descriptor < 0) {
1538     // Can't open library, report dlerror() message
1539     return NULL;
1540   }
1541 
1542   bool failed_to_read_elf_head=
1543     (sizeof(elf_head)!=
1544      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1545 
1546   ::close(file_descriptor);
1547   if (failed_to_read_elf_head) {
1548     // file i/o error - report dlerror() msg
1549     return NULL;
1550   }
1551 
1552   typedef struct {
1553     Elf32_Half    code;         // Actual value as defined in elf.h
1554     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1555     unsigned char elf_class;    // 32 or 64 bit
1556     unsigned char endianess;    // MSB or LSB
1557     char*         name;         // String representation
1558   } arch_t;
1559 
1560   static const arch_t arch_array[]={
1561     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1562     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1563     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1564     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1565     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1566     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1567     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1568     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1569     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1570     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1571   };
1572 
1573 #if  (defined IA32)
1574   static  Elf32_Half running_arch_code=EM_386;
1575 #elif   (defined AMD64)
1576   static  Elf32_Half running_arch_code=EM_X86_64;
1577 #elif  (defined IA64)
1578   static  Elf32_Half running_arch_code=EM_IA_64;
1579 #elif  (defined __sparc) && (defined _LP64)
1580   static  Elf32_Half running_arch_code=EM_SPARCV9;
1581 #elif  (defined __sparc) && (!defined _LP64)
1582   static  Elf32_Half running_arch_code=EM_SPARC;
1583 #elif  (defined __powerpc64__)
1584   static  Elf32_Half running_arch_code=EM_PPC64;
1585 #elif  (defined __powerpc__)
1586   static  Elf32_Half running_arch_code=EM_PPC;
1587 #elif (defined ARM)
1588   static  Elf32_Half running_arch_code=EM_ARM;
1589 #else
1590   #error Method os::dll_load requires that one of following is defined:\
1591        IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1592 #endif
1593 
1594   // Identify compatability class for VM's architecture and library's architecture
1595   // Obtain string descriptions for architectures
1596 
1597   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1598   int running_arch_index=-1;
1599 
1600   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1601     if (running_arch_code == arch_array[i].code) {
1602       running_arch_index    = i;
1603     }
1604     if (lib_arch.code == arch_array[i].code) {
1605       lib_arch.compat_class = arch_array[i].compat_class;
1606       lib_arch.name         = arch_array[i].name;
1607     }
1608   }
1609 
1610   assert(running_arch_index != -1,
1611          "Didn't find running architecture code (running_arch_code) in arch_array");
1612   if (running_arch_index == -1) {
1613     // Even though running architecture detection failed
1614     // we may still continue with reporting dlerror() message
1615     return NULL;
1616   }
1617 
1618   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1619     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1620     return NULL;
1621   }
1622 
1623   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1624     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1625     return NULL;
1626   }
1627 
1628   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1629     if (lib_arch.name!=NULL) {
1630       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1631                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1632                  lib_arch.name, arch_array[running_arch_index].name);
1633     } else {
1634       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1635                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1636                  lib_arch.code,
1637                  arch_array[running_arch_index].name);
1638     }
1639   }
1640 
1641   return NULL;
1642 }
1643 
1644 void* os::dll_lookup(void* handle, const char* name) {
1645   return dlsym(handle, name);
1646 }
1647 
1648 void* os::get_default_process_handle() {
1649   return (void*)::dlopen(NULL, RTLD_LAZY);
1650 }
1651 
1652 static inline time_t get_mtime(const char* filename) {
1653   struct stat st;
1654   int ret = os::stat(filename, &st);
1655   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
1656   return st.st_mtime;
1657 }
1658 
1659 int os::compare_file_modified_times(const char* file1, const char* file2) {
1660   time_t t1 = get_mtime(file1);
1661   time_t t2 = get_mtime(file2);
1662   return t1 - t2;
1663 }
1664 
1665 static bool _print_ascii_file(const char* filename, outputStream* st) {
1666   int fd = ::open(filename, O_RDONLY);
1667   if (fd == -1) {
1668     return false;
1669   }
1670 
1671   char buf[32];
1672   int bytes;
1673   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1674     st->print_raw(buf, bytes);
1675   }
1676 
1677   ::close(fd);
1678 
1679   return true;
1680 }
1681 
1682 void os::print_os_info_brief(outputStream* st) {
1683   os::Solaris::print_distro_info(st);
1684 
1685   os::Posix::print_uname_info(st);
1686 
1687   os::Solaris::print_libversion_info(st);
1688 }
1689 
1690 void os::print_os_info(outputStream* st) {
1691   st->print("OS:");
1692 
1693   os::Solaris::print_distro_info(st);
1694 
1695   os::Posix::print_uname_info(st);
1696 
1697   os::Solaris::print_libversion_info(st);
1698 
1699   os::Posix::print_rlimit_info(st);
1700 
1701   os::Posix::print_load_average(st);
1702 }
1703 
1704 void os::Solaris::print_distro_info(outputStream* st) {
1705   if (!_print_ascii_file("/etc/release", st)) {
1706     st->print("Solaris");
1707   }
1708   st->cr();
1709 }
1710 
1711 void os::get_summary_os_info(char* buf, size_t buflen) {
1712   strncpy(buf, "Solaris", buflen);  // default to plain solaris
1713   FILE* fp = fopen("/etc/release", "r");
1714   if (fp != NULL) {
1715     char tmp[256];
1716     // Only get the first line and chop out everything but the os name.
1717     if (fgets(tmp, sizeof(tmp), fp)) {
1718       char* ptr = tmp;
1719       // skip past whitespace characters
1720       while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1721       if (*ptr != '\0') {
1722         char* nl = strchr(ptr, '\n');
1723         if (nl != NULL) *nl = '\0';
1724         strncpy(buf, ptr, buflen);
1725       }
1726     }
1727     fclose(fp);
1728   }
1729 }
1730 
1731 void os::Solaris::print_libversion_info(outputStream* st) {
1732   st->print("  (T2 libthread)");
1733   st->cr();
1734 }
1735 
1736 static bool check_addr0(outputStream* st) {
1737   jboolean status = false;
1738   const int read_chunk = 200;
1739   int ret = 0;
1740   int nmap = 0;
1741   int fd = ::open("/proc/self/map",O_RDONLY);
1742   if (fd >= 0) {
1743     prmap_t *p = NULL;
1744     char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1745     if (NULL == mbuff) {
1746       ::close(fd);
1747       return status;
1748     }
1749     while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1750       //check if read() has not read partial data
1751       if( 0 != ret % sizeof(prmap_t)){
1752         break;
1753       }
1754       nmap = ret / sizeof(prmap_t);
1755       p = (prmap_t *)mbuff;
1756       for(int i = 0; i < nmap; i++){
1757         if (p->pr_vaddr == 0x0) {
1758           st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1759           st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1760           st->print("Access: ");
1761           st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
1762           st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1763           st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
1764           st->cr();
1765           status = true;
1766         }
1767         p++;
1768       }
1769     }
1770     free(mbuff);
1771     ::close(fd);
1772   }
1773   return status;
1774 }
1775 
1776 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1777   // Get MHz with system call. We don't seem to already have this.
1778   processor_info_t stats;
1779   processorid_t id = getcpuid();
1780   int clock = 0;
1781   if (processor_info(id, &stats) != -1) {
1782     clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1783   }
1784 #ifdef AMD64
1785   snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1786 #else
1787   // must be sparc
1788   snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1789 #endif
1790 }
1791 
1792 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1793   // Nothing to do for now.
1794 }
1795 
1796 void os::print_memory_info(outputStream* st) {
1797   st->print("Memory:");
1798   st->print(" %dk page", os::vm_page_size()>>10);
1799   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1800   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1801   st->cr();
1802   (void) check_addr0(st);
1803 }
1804 
1805 // Moved from whole group, because we need them here for diagnostic
1806 // prints.
1807 static int Maxsignum = 0;
1808 static int *ourSigFlags = NULL;
1809 
1810 int os::Solaris::get_our_sigflags(int sig) {
1811   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1812   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1813   return ourSigFlags[sig];
1814 }
1815 
1816 void os::Solaris::set_our_sigflags(int sig, int flags) {
1817   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1818   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1819   ourSigFlags[sig] = flags;
1820 }
1821 
1822 
1823 static const char* get_signal_handler_name(address handler,
1824                                            char* buf, int buflen) {
1825   int offset;
1826   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1827   if (found) {
1828     // skip directory names
1829     const char *p1, *p2;
1830     p1 = buf;
1831     size_t len = strlen(os::file_separator());
1832     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1833     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1834   } else {
1835     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1836   }
1837   return buf;
1838 }
1839 
1840 static void print_signal_handler(outputStream* st, int sig,
1841                                  char* buf, size_t buflen) {
1842   struct sigaction sa;
1843 
1844   sigaction(sig, NULL, &sa);
1845 
1846   st->print("%s: ", os::exception_name(sig, buf, buflen));
1847 
1848   address handler = (sa.sa_flags & SA_SIGINFO)
1849                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
1850                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
1851 
1852   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
1853     st->print("SIG_DFL");
1854   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
1855     st->print("SIG_IGN");
1856   } else {
1857     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
1858   }
1859 
1860   st->print(", sa_mask[0]=");
1861   os::Posix::print_signal_set_short(st, &sa.sa_mask);
1862 
1863   address rh = VMError::get_resetted_sighandler(sig);
1864   // May be, handler was resetted by VMError?
1865   if (rh != NULL) {
1866     handler = rh;
1867     sa.sa_flags = VMError::get_resetted_sigflags(sig);
1868   }
1869 
1870   st->print(", sa_flags=");
1871   os::Posix::print_sa_flags(st, sa.sa_flags);
1872 
1873   // Check: is it our handler?
1874   if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
1875     // It is our signal handler
1876     // check for flags
1877     if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
1878       st->print(
1879                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
1880                 os::Solaris::get_our_sigflags(sig));
1881     }
1882   }
1883   st->cr();
1884 }
1885 
1886 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1887   st->print_cr("Signal Handlers:");
1888   print_signal_handler(st, SIGSEGV, buf, buflen);
1889   print_signal_handler(st, SIGBUS , buf, buflen);
1890   print_signal_handler(st, SIGFPE , buf, buflen);
1891   print_signal_handler(st, SIGPIPE, buf, buflen);
1892   print_signal_handler(st, SIGXFSZ, buf, buflen);
1893   print_signal_handler(st, SIGILL , buf, buflen);
1894   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
1895   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1896   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
1897   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1898   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
1899 }
1900 
1901 static char saved_jvm_path[MAXPATHLEN] = { 0 };
1902 
1903 // Find the full path to the current module, libjvm.so
1904 void os::jvm_path(char *buf, jint buflen) {
1905   // Error checking.
1906   if (buflen < MAXPATHLEN) {
1907     assert(false, "must use a large-enough buffer");
1908     buf[0] = '\0';
1909     return;
1910   }
1911   // Lazy resolve the path to current module.
1912   if (saved_jvm_path[0] != 0) {
1913     strcpy(buf, saved_jvm_path);
1914     return;
1915   }
1916 
1917   Dl_info dlinfo;
1918   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1919   assert(ret != 0, "cannot locate libjvm");
1920   if (ret != 0 && dlinfo.dli_fname != NULL) {
1921     if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
1922       return;
1923     }
1924   } else {
1925     buf[0] = '\0';
1926     return;
1927   }
1928 
1929   if (Arguments::sun_java_launcher_is_altjvm()) {
1930     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1931     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
1932     // If "/jre/lib/" appears at the right place in the string, then
1933     // assume we are installed in a JDK and we're done.  Otherwise, check
1934     // for a JAVA_HOME environment variable and fix up the path so it
1935     // looks like libjvm.so is installed there (append a fake suffix
1936     // hotspot/libjvm.so).
1937     const char *p = buf + strlen(buf) - 1;
1938     for (int count = 0; p > buf && count < 5; ++count) {
1939       for (--p; p > buf && *p != '/'; --p)
1940         /* empty */ ;
1941     }
1942 
1943     if (strncmp(p, "/jre/lib/", 9) != 0) {
1944       // Look for JAVA_HOME in the environment.
1945       char* java_home_var = ::getenv("JAVA_HOME");
1946       if (java_home_var != NULL && java_home_var[0] != 0) {
1947         char* jrelib_p;
1948         int   len;
1949 
1950         // Check the current module name "libjvm.so".
1951         p = strrchr(buf, '/');
1952         assert(strstr(p, "/libjvm") == p, "invalid library name");
1953 
1954         if (os::Posix::realpath(java_home_var, buf, buflen) == NULL) {
1955           return;
1956         }
1957         // determine if this is a legacy image or modules image
1958         // modules image doesn't have "jre" subdirectory
1959         len = strlen(buf);
1960         assert(len < buflen, "Ran out of buffer space");
1961         jrelib_p = buf + len;
1962         snprintf(jrelib_p, buflen-len, "/jre/lib");
1963         if (0 != access(buf, F_OK)) {
1964           snprintf(jrelib_p, buflen-len, "/lib");
1965         }
1966 
1967         if (0 == access(buf, F_OK)) {
1968           // Use current module name "libjvm.so"
1969           len = strlen(buf);
1970           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
1971         } else {
1972           // Go back to path of .so
1973           if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
1974             return;
1975           }
1976         }
1977       }
1978     }
1979   }
1980 
1981   strncpy(saved_jvm_path, buf, MAXPATHLEN);
1982   saved_jvm_path[MAXPATHLEN - 1] = '\0';
1983 }
1984 
1985 
1986 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1987   // no prefix required, not even "_"
1988 }
1989 
1990 
1991 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1992   // no suffix required
1993 }
1994 
1995 // sun.misc.Signal
1996 
1997 extern "C" {
1998   static void UserHandler(int sig, void *siginfo, void *context) {
1999     // Ctrl-C is pressed during error reporting, likely because the error
2000     // handler fails to abort. Let VM die immediately.
2001     if (sig == SIGINT && VMError::is_error_reported()) {
2002       os::die();
2003     }
2004 
2005     os::signal_notify(sig);
2006     // We do not need to reinstate the signal handler each time...
2007   }
2008 }
2009 
2010 void* os::user_handler() {
2011   return CAST_FROM_FN_PTR(void*, UserHandler);
2012 }
2013 
2014 extern "C" {
2015   typedef void (*sa_handler_t)(int);
2016   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2017 }
2018 
2019 void* os::signal(int signal_number, void* handler) {
2020   struct sigaction sigAct, oldSigAct;
2021   sigfillset(&(sigAct.sa_mask));
2022   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2023   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2024 
2025   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2026     // -1 means registration failed
2027     return (void *)-1;
2028   }
2029 
2030   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2031 }
2032 
2033 void os::signal_raise(int signal_number) {
2034   raise(signal_number);
2035 }
2036 
2037 // The following code is moved from os.cpp for making this
2038 // code platform specific, which it is by its very nature.
2039 
2040 // a counter for each possible signal value
2041 static int Sigexit = 0;
2042 static jint *pending_signals = NULL;
2043 static Semaphore* sig_sem = NULL;
2044 
2045 int os::sigexitnum_pd() {
2046   assert(Sigexit > 0, "signal memory not yet initialized");
2047   return Sigexit;
2048 }
2049 
2050 void os::Solaris::init_signal_mem() {
2051   // Initialize signal structures
2052   Maxsignum = SIGRTMAX;
2053   Sigexit = Maxsignum+1;
2054   assert(Maxsignum >0, "Unable to obtain max signal number");
2055 
2056   // Initialize signal structures
2057   // pending_signals has one int per signal
2058   // The additional signal is for SIGEXIT - exit signal to signal_thread
2059   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2060   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2061 
2062   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2063   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2064 }
2065 
2066 static void jdk_misc_signal_init() {
2067   // Initialize signal semaphore
2068   sig_sem = new Semaphore();
2069 }
2070 
2071 void os::signal_notify(int sig) {
2072   if (sig_sem != NULL) {
2073     Atomic::inc(&pending_signals[sig]);
2074     sig_sem->signal();
2075   } else {
2076     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2077     // initialization isn't called.
2078     assert(ReduceSignalUsage, "signal semaphore should be created");
2079   }
2080 }
2081 
2082 static int check_pending_signals() {
2083   int ret;
2084   while (true) {
2085     for (int i = 0; i < Sigexit + 1; i++) {
2086       jint n = pending_signals[i];
2087       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2088         return i;
2089       }
2090     }
2091     JavaThread *thread = JavaThread::current();
2092     ThreadBlockInVM tbivm(thread);
2093 
2094     bool threadIsSuspended;
2095     do {
2096       thread->set_suspend_equivalent();
2097       sig_sem->wait();
2098 
2099       // were we externally suspended while we were waiting?
2100       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2101       if (threadIsSuspended) {
2102         // The semaphore has been incremented, but while we were waiting
2103         // another thread suspended us. We don't want to continue running
2104         // while suspended because that would surprise the thread that
2105         // suspended us.
2106         sig_sem->signal();
2107 
2108         thread->java_suspend_self();
2109       }
2110     } while (threadIsSuspended);
2111   }
2112 }
2113 
2114 int os::signal_wait() {
2115   return check_pending_signals();
2116 }
2117 
2118 ////////////////////////////////////////////////////////////////////////////////
2119 // Virtual Memory
2120 
2121 static int page_size = -1;
2122 
2123 int os::vm_page_size() {
2124   assert(page_size != -1, "must call os::init");
2125   return page_size;
2126 }
2127 
2128 // Solaris allocates memory by pages.
2129 int os::vm_allocation_granularity() {
2130   assert(page_size != -1, "must call os::init");
2131   return page_size;
2132 }
2133 
2134 static bool recoverable_mmap_error(int err) {
2135   // See if the error is one we can let the caller handle. This
2136   // list of errno values comes from the Solaris mmap(2) man page.
2137   switch (err) {
2138   case EBADF:
2139   case EINVAL:
2140   case ENOTSUP:
2141     // let the caller deal with these errors
2142     return true;
2143 
2144   default:
2145     // Any remaining errors on this OS can cause our reserved mapping
2146     // to be lost. That can cause confusion where different data
2147     // structures think they have the same memory mapped. The worst
2148     // scenario is if both the VM and a library think they have the
2149     // same memory mapped.
2150     return false;
2151   }
2152 }
2153 
2154 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2155                                     int err) {
2156   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2157           ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2158           os::strerror(err), err);
2159 }
2160 
2161 static void warn_fail_commit_memory(char* addr, size_t bytes,
2162                                     size_t alignment_hint, bool exec,
2163                                     int err) {
2164   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2165           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2166           alignment_hint, exec, os::strerror(err), err);
2167 }
2168 
2169 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2170   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2171   size_t size = bytes;
2172   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2173   if (res != NULL) {
2174     if (UseNUMAInterleaving) {
2175       numa_make_global(addr, bytes);
2176     }
2177     return 0;
2178   }
2179 
2180   int err = errno;  // save errno from mmap() call in mmap_chunk()
2181 
2182   if (!recoverable_mmap_error(err)) {
2183     warn_fail_commit_memory(addr, bytes, exec, err);
2184     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2185   }
2186 
2187   return err;
2188 }
2189 
2190 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2191   return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2192 }
2193 
2194 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2195                                   const char* mesg) {
2196   assert(mesg != NULL, "mesg must be specified");
2197   int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2198   if (err != 0) {
2199     // the caller wants all commit errors to exit with the specified mesg:
2200     warn_fail_commit_memory(addr, bytes, exec, err);
2201     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2202   }
2203 }
2204 
2205 size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2206   assert(is_aligned(alignment, (size_t) vm_page_size()),
2207          SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2208          alignment, (size_t) vm_page_size());
2209 
2210   for (int i = 0; _page_sizes[i] != 0; i++) {
2211     if (is_aligned(alignment, _page_sizes[i])) {
2212       return _page_sizes[i];
2213     }
2214   }
2215 
2216   return (size_t) vm_page_size();
2217 }
2218 
2219 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2220                                     size_t alignment_hint, bool exec) {
2221   int err = Solaris::commit_memory_impl(addr, bytes, exec);
2222   if (err == 0 && UseLargePages && alignment_hint > 0) {
2223     assert(is_aligned(bytes, alignment_hint),
2224            SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2225 
2226     // The syscall memcntl requires an exact page size (see man memcntl for details).
2227     size_t page_size = page_size_for_alignment(alignment_hint);
2228     if (page_size > (size_t) vm_page_size()) {
2229       (void)Solaris::setup_large_pages(addr, bytes, page_size);
2230     }
2231   }
2232   return err;
2233 }
2234 
2235 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2236                           bool exec) {
2237   return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2238 }
2239 
2240 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2241                                   size_t alignment_hint, bool exec,
2242                                   const char* mesg) {
2243   assert(mesg != NULL, "mesg must be specified");
2244   int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2245   if (err != 0) {
2246     // the caller wants all commit errors to exit with the specified mesg:
2247     warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2248     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2249   }
2250 }
2251 
2252 // Uncommit the pages in a specified region.
2253 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2254   if (madvise(addr, bytes, MADV_FREE) < 0) {
2255     debug_only(warning("MADV_FREE failed."));
2256     return;
2257   }
2258 }
2259 
2260 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2261   return os::commit_memory(addr, size, !ExecMem);
2262 }
2263 
2264 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2265   return os::uncommit_memory(addr, size);
2266 }
2267 
2268 // Change the page size in a given range.
2269 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2270   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2271   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2272   if (UseLargePages) {
2273     size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2274     if (page_size > (size_t) vm_page_size()) {
2275       Solaris::setup_large_pages(addr, bytes, page_size);
2276     }
2277   }
2278 }
2279 
2280 // Tell the OS to make the range local to the first-touching LWP
2281 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2282   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2283   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2284     debug_only(warning("MADV_ACCESS_LWP failed."));
2285   }
2286 }
2287 
2288 // Tell the OS that this range would be accessed from different LWPs.
2289 void os::numa_make_global(char *addr, size_t bytes) {
2290   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2291   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2292     debug_only(warning("MADV_ACCESS_MANY failed."));
2293   }
2294 }
2295 
2296 // Get the number of the locality groups.
2297 size_t os::numa_get_groups_num() {
2298   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2299   return n != -1 ? n : 1;
2300 }
2301 
2302 // Get a list of leaf locality groups. A leaf lgroup is group that
2303 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2304 // board. An LWP is assigned to one of these groups upon creation.
2305 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2306   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2307     ids[0] = 0;
2308     return 1;
2309   }
2310   int result_size = 0, top = 1, bottom = 0, cur = 0;
2311   for (int k = 0; k < size; k++) {
2312     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2313                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2314     if (r == -1) {
2315       ids[0] = 0;
2316       return 1;
2317     }
2318     if (!r) {
2319       // That's a leaf node.
2320       assert(bottom <= cur, "Sanity check");
2321       // Check if the node has memory
2322       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2323                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2324         ids[bottom++] = ids[cur];
2325       }
2326     }
2327     top += r;
2328     cur++;
2329   }
2330   if (bottom == 0) {
2331     // Handle a situation, when the OS reports no memory available.
2332     // Assume UMA architecture.
2333     ids[0] = 0;
2334     return 1;
2335   }
2336   return bottom;
2337 }
2338 
2339 // Detect the topology change. Typically happens during CPU plugging-unplugging.
2340 bool os::numa_topology_changed() {
2341   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2342   if (is_stale != -1 && is_stale) {
2343     Solaris::lgrp_fini(Solaris::lgrp_cookie());
2344     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2345     assert(c != 0, "Failure to initialize LGRP API");
2346     Solaris::set_lgrp_cookie(c);
2347     return true;
2348   }
2349   return false;
2350 }
2351 
2352 // Get the group id of the current LWP.
2353 int os::numa_get_group_id() {
2354   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2355   if (lgrp_id == -1) {
2356     return 0;
2357   }
2358   const int size = os::numa_get_groups_num();
2359   int *ids = (int*)alloca(size * sizeof(int));
2360 
2361   // Get the ids of all lgroups with memory; r is the count.
2362   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2363                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2364   if (r <= 0) {
2365     return 0;
2366   }
2367   return ids[os::random() % r];
2368 }
2369 
2370 // Request information about the page.
2371 bool os::get_page_info(char *start, page_info* info) {
2372   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2373   uint64_t addr = (uintptr_t)start;
2374   uint64_t outdata[2];
2375   uint_t validity = 0;
2376 
2377   if (meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2378     return false;
2379   }
2380 
2381   info->size = 0;
2382   info->lgrp_id = -1;
2383 
2384   if ((validity & 1) != 0) {
2385     if ((validity & 2) != 0) {
2386       info->lgrp_id = outdata[0];
2387     }
2388     if ((validity & 4) != 0) {
2389       info->size = outdata[1];
2390     }
2391     return true;
2392   }
2393   return false;
2394 }
2395 
2396 // Scan the pages from start to end until a page different than
2397 // the one described in the info parameter is encountered.
2398 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2399                      page_info* page_found) {
2400   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2401   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2402   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2403   uint_t validity[MAX_MEMINFO_CNT];
2404 
2405   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2406   uint64_t p = (uint64_t)start;
2407   while (p < (uint64_t)end) {
2408     addrs[0] = p;
2409     size_t addrs_count = 1;
2410     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2411       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2412       addrs_count++;
2413     }
2414 
2415     if (meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2416       return NULL;
2417     }
2418 
2419     size_t i = 0;
2420     for (; i < addrs_count; i++) {
2421       if ((validity[i] & 1) != 0) {
2422         if ((validity[i] & 4) != 0) {
2423           if (outdata[types * i + 1] != page_expected->size) {
2424             break;
2425           }
2426         } else if (page_expected->size != 0) {
2427           break;
2428         }
2429 
2430         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2431           if (outdata[types * i] != page_expected->lgrp_id) {
2432             break;
2433           }
2434         }
2435       } else {
2436         return NULL;
2437       }
2438     }
2439 
2440     if (i < addrs_count) {
2441       if ((validity[i] & 2) != 0) {
2442         page_found->lgrp_id = outdata[types * i];
2443       } else {
2444         page_found->lgrp_id = -1;
2445       }
2446       if ((validity[i] & 4) != 0) {
2447         page_found->size = outdata[types * i + 1];
2448       } else {
2449         page_found->size = 0;
2450       }
2451       return (char*)addrs[i];
2452     }
2453 
2454     p = addrs[addrs_count - 1] + page_size;
2455   }
2456   return end;
2457 }
2458 
2459 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2460   size_t size = bytes;
2461   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2462   // uncommitted page. Otherwise, the read/write might succeed if we
2463   // have enough swap space to back the physical page.
2464   return
2465     NULL != Solaris::mmap_chunk(addr, size,
2466                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2467                                 PROT_NONE);
2468 }
2469 
2470 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2471   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2472 
2473   if (b == MAP_FAILED) {
2474     return NULL;
2475   }
2476   return b;
2477 }
2478 
2479 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2480                              size_t alignment_hint, bool fixed) {
2481   char* addr = requested_addr;
2482   int flags = MAP_PRIVATE | MAP_NORESERVE;
2483 
2484   assert(!(fixed && (alignment_hint > 0)),
2485          "alignment hint meaningless with fixed mmap");
2486 
2487   if (fixed) {
2488     flags |= MAP_FIXED;
2489   } else if (alignment_hint > (size_t) vm_page_size()) {
2490     flags |= MAP_ALIGN;
2491     addr = (char*) alignment_hint;
2492   }
2493 
2494   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2495   // uncommitted page. Otherwise, the read/write might succeed if we
2496   // have enough swap space to back the physical page.
2497   return mmap_chunk(addr, bytes, flags, PROT_NONE);
2498 }
2499 
2500 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2501                             size_t alignment_hint) {
2502   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2503                                   (requested_addr != NULL));
2504 
2505   guarantee(requested_addr == NULL || requested_addr == addr,
2506             "OS failed to return requested mmap address.");
2507   return addr;
2508 }
2509 
2510 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
2511   assert(file_desc >= 0, "file_desc is not valid");
2512   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
2513   if (result != NULL) {
2514     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
2515       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
2516     }
2517   }
2518   return result;
2519 }
2520 
2521 // Reserve memory at an arbitrary address, only if that area is
2522 // available (and not reserved for something else).
2523 
2524 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2525   const int max_tries = 10;
2526   char* base[max_tries];
2527   size_t size[max_tries];
2528 
2529   // Solaris adds a gap between mmap'ed regions.  The size of the gap
2530   // is dependent on the requested size and the MMU.  Our initial gap
2531   // value here is just a guess and will be corrected later.
2532   bool had_top_overlap = false;
2533   bool have_adjusted_gap = false;
2534   size_t gap = 0x400000;
2535 
2536   // Assert only that the size is a multiple of the page size, since
2537   // that's all that mmap requires, and since that's all we really know
2538   // about at this low abstraction level.  If we need higher alignment,
2539   // we can either pass an alignment to this method or verify alignment
2540   // in one of the methods further up the call chain.  See bug 5044738.
2541   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2542 
2543   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2544   // Give it a try, if the kernel honors the hint we can return immediately.
2545   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2546 
2547   volatile int err = errno;
2548   if (addr == requested_addr) {
2549     return addr;
2550   } else if (addr != NULL) {
2551     pd_unmap_memory(addr, bytes);
2552   }
2553 
2554   if (log_is_enabled(Warning, os)) {
2555     char buf[256];
2556     buf[0] = '\0';
2557     if (addr == NULL) {
2558       jio_snprintf(buf, sizeof(buf), ": %s", os::strerror(err));
2559     }
2560     log_info(os)("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2561             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2562             "%s", bytes, requested_addr, addr, buf);
2563   }
2564 
2565   // Address hint method didn't work.  Fall back to the old method.
2566   // In theory, once SNV becomes our oldest supported platform, this
2567   // code will no longer be needed.
2568   //
2569   // Repeatedly allocate blocks until the block is allocated at the
2570   // right spot. Give up after max_tries.
2571   int i;
2572   for (i = 0; i < max_tries; ++i) {
2573     base[i] = reserve_memory(bytes);
2574 
2575     if (base[i] != NULL) {
2576       // Is this the block we wanted?
2577       if (base[i] == requested_addr) {
2578         size[i] = bytes;
2579         break;
2580       }
2581 
2582       // check that the gap value is right
2583       if (had_top_overlap && !have_adjusted_gap) {
2584         size_t actual_gap = base[i-1] - base[i] - bytes;
2585         if (gap != actual_gap) {
2586           // adjust the gap value and retry the last 2 allocations
2587           assert(i > 0, "gap adjustment code problem");
2588           have_adjusted_gap = true;  // adjust the gap only once, just in case
2589           gap = actual_gap;
2590           log_info(os)("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2591           unmap_memory(base[i], bytes);
2592           unmap_memory(base[i-1], size[i-1]);
2593           i-=2;
2594           continue;
2595         }
2596       }
2597 
2598       // Does this overlap the block we wanted? Give back the overlapped
2599       // parts and try again.
2600       //
2601       // There is still a bug in this code: if top_overlap == bytes,
2602       // the overlap is offset from requested region by the value of gap.
2603       // In this case giving back the overlapped part will not work,
2604       // because we'll give back the entire block at base[i] and
2605       // therefore the subsequent allocation will not generate a new gap.
2606       // This could be fixed with a new algorithm that used larger
2607       // or variable size chunks to find the requested region -
2608       // but such a change would introduce additional complications.
2609       // It's rare enough that the planets align for this bug,
2610       // so we'll just wait for a fix for 6204603/5003415 which
2611       // will provide a mmap flag to allow us to avoid this business.
2612 
2613       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2614       if (top_overlap >= 0 && top_overlap < bytes) {
2615         had_top_overlap = true;
2616         unmap_memory(base[i], top_overlap);
2617         base[i] += top_overlap;
2618         size[i] = bytes - top_overlap;
2619       } else {
2620         size_t bottom_overlap = base[i] + bytes - requested_addr;
2621         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2622           if (bottom_overlap == 0) {
2623             log_info(os)("attempt_reserve_memory_at: possible alignment bug");
2624           }
2625           unmap_memory(requested_addr, bottom_overlap);
2626           size[i] = bytes - bottom_overlap;
2627         } else {
2628           size[i] = bytes;
2629         }
2630       }
2631     }
2632   }
2633 
2634   // Give back the unused reserved pieces.
2635 
2636   for (int j = 0; j < i; ++j) {
2637     if (base[j] != NULL) {
2638       unmap_memory(base[j], size[j]);
2639     }
2640   }
2641 
2642   return (i < max_tries) ? requested_addr : NULL;
2643 }
2644 
2645 bool os::pd_release_memory(char* addr, size_t bytes) {
2646   size_t size = bytes;
2647   return munmap(addr, size) == 0;
2648 }
2649 
2650 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2651   assert(addr == (char*)align_down((uintptr_t)addr, os::vm_page_size()),
2652          "addr must be page aligned");
2653   int retVal = mprotect(addr, bytes, prot);
2654   return retVal == 0;
2655 }
2656 
2657 // Protect memory (Used to pass readonly pages through
2658 // JNI GetArray<type>Elements with empty arrays.)
2659 // Also, used for serialization page and for compressed oops null pointer
2660 // checking.
2661 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2662                         bool is_committed) {
2663   unsigned int p = 0;
2664   switch (prot) {
2665   case MEM_PROT_NONE: p = PROT_NONE; break;
2666   case MEM_PROT_READ: p = PROT_READ; break;
2667   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2668   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2669   default:
2670     ShouldNotReachHere();
2671   }
2672   // is_committed is unused.
2673   return solaris_mprotect(addr, bytes, p);
2674 }
2675 
2676 // guard_memory and unguard_memory only happens within stack guard pages.
2677 // Since ISM pertains only to the heap, guard and unguard memory should not
2678 /// happen with an ISM region.
2679 bool os::guard_memory(char* addr, size_t bytes) {
2680   return solaris_mprotect(addr, bytes, PROT_NONE);
2681 }
2682 
2683 bool os::unguard_memory(char* addr, size_t bytes) {
2684   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2685 }
2686 
2687 // Large page support
2688 static size_t _large_page_size = 0;
2689 
2690 // Insertion sort for small arrays (descending order).
2691 static void insertion_sort_descending(size_t* array, int len) {
2692   for (int i = 0; i < len; i++) {
2693     size_t val = array[i];
2694     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2695       size_t tmp = array[key];
2696       array[key] = array[key - 1];
2697       array[key - 1] = tmp;
2698     }
2699   }
2700 }
2701 
2702 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2703   const unsigned int usable_count = VM_Version::page_size_count();
2704   if (usable_count == 1) {
2705     return false;
2706   }
2707 
2708   // Find the right getpagesizes interface.  When solaris 11 is the minimum
2709   // build platform, getpagesizes() (without the '2') can be called directly.
2710   typedef int (*gps_t)(size_t[], int);
2711   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2712   if (gps_func == NULL) {
2713     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2714     if (gps_func == NULL) {
2715       if (warn) {
2716         warning("MPSS is not supported by the operating system.");
2717       }
2718       return false;
2719     }
2720   }
2721 
2722   // Fill the array of page sizes.
2723   int n = (*gps_func)(_page_sizes, page_sizes_max);
2724   assert(n > 0, "Solaris bug?");
2725 
2726   if (n == page_sizes_max) {
2727     // Add a sentinel value (necessary only if the array was completely filled
2728     // since it is static (zeroed at initialization)).
2729     _page_sizes[--n] = 0;
2730     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2731   }
2732   assert(_page_sizes[n] == 0, "missing sentinel");
2733   trace_page_sizes("available page sizes", _page_sizes, n);
2734 
2735   if (n == 1) return false;     // Only one page size available.
2736 
2737   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2738   // select up to usable_count elements.  First sort the array, find the first
2739   // acceptable value, then copy the usable sizes to the top of the array and
2740   // trim the rest.  Make sure to include the default page size :-).
2741   //
2742   // A better policy could get rid of the 4M limit by taking the sizes of the
2743   // important VM memory regions (java heap and possibly the code cache) into
2744   // account.
2745   insertion_sort_descending(_page_sizes, n);
2746   const size_t size_limit =
2747     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2748   int beg;
2749   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2750   const int end = MIN2((int)usable_count, n) - 1;
2751   for (int cur = 0; cur < end; ++cur, ++beg) {
2752     _page_sizes[cur] = _page_sizes[beg];
2753   }
2754   _page_sizes[end] = vm_page_size();
2755   _page_sizes[end + 1] = 0;
2756 
2757   if (_page_sizes[end] > _page_sizes[end - 1]) {
2758     // Default page size is not the smallest; sort again.
2759     insertion_sort_descending(_page_sizes, end + 1);
2760   }
2761   *page_size = _page_sizes[0];
2762 
2763   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2764   return true;
2765 }
2766 
2767 void os::large_page_init() {
2768   if (UseLargePages) {
2769     // print a warning if any large page related flag is specified on command line
2770     bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2771                            !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2772 
2773     UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2774   }
2775 }
2776 
2777 bool os::Solaris::is_valid_page_size(size_t bytes) {
2778   for (int i = 0; _page_sizes[i] != 0; i++) {
2779     if (_page_sizes[i] == bytes) {
2780       return true;
2781     }
2782   }
2783   return false;
2784 }
2785 
2786 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2787   assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2788   assert(is_aligned((void*) start, align),
2789          PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2790   assert(is_aligned(bytes, align),
2791          SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2792 
2793   // Signal to OS that we want large pages for addresses
2794   // from addr, addr + bytes
2795   struct memcntl_mha mpss_struct;
2796   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2797   mpss_struct.mha_pagesize = align;
2798   mpss_struct.mha_flags = 0;
2799   // Upon successful completion, memcntl() returns 0
2800   if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2801     debug_only(warning("Attempt to use MPSS failed."));
2802     return false;
2803   }
2804   return true;
2805 }
2806 
2807 char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
2808   fatal("os::reserve_memory_special should not be called on Solaris.");
2809   return NULL;
2810 }
2811 
2812 bool os::release_memory_special(char* base, size_t bytes) {
2813   fatal("os::release_memory_special should not be called on Solaris.");
2814   return false;
2815 }
2816 
2817 size_t os::large_page_size() {
2818   return _large_page_size;
2819 }
2820 
2821 // MPSS allows application to commit large page memory on demand; with ISM
2822 // the entire memory region must be allocated as shared memory.
2823 bool os::can_commit_large_page_memory() {
2824   return true;
2825 }
2826 
2827 bool os::can_execute_large_page_memory() {
2828   return true;
2829 }
2830 
2831 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2832 void os::infinite_sleep() {
2833   while (true) {    // sleep forever ...
2834     ::sleep(100);   // ... 100 seconds at a time
2835   }
2836 }
2837 
2838 // Used to convert frequent JVM_Yield() to nops
2839 bool os::dont_yield() {
2840   if (DontYieldALot) {
2841     static hrtime_t last_time = 0;
2842     hrtime_t diff = getTimeNanos() - last_time;
2843 
2844     if (diff < DontYieldALotInterval * 1000000) {
2845       return true;
2846     }
2847 
2848     last_time += diff;
2849 
2850     return false;
2851   } else {
2852     return false;
2853   }
2854 }
2855 
2856 // Note that yield semantics are defined by the scheduling class to which
2857 // the thread currently belongs.  Typically, yield will _not yield to
2858 // other equal or higher priority threads that reside on the dispatch queues
2859 // of other CPUs.
2860 
2861 void os::naked_yield() {
2862   thr_yield();
2863 }
2864 
2865 // Interface for setting lwp priorities.  We are using T2 libthread,
2866 // which forces the use of bound threads, so all of our threads will
2867 // be assigned to real lwp's.  Using the thr_setprio function is
2868 // meaningless in this mode so we must adjust the real lwp's priority.
2869 // The routines below implement the getting and setting of lwp priorities.
2870 //
2871 // Note: There are three priority scales used on Solaris.  Java priotities
2872 //       which range from 1 to 10, libthread "thr_setprio" scale which range
2873 //       from 0 to 127, and the current scheduling class of the process we
2874 //       are running in.  This is typically from -60 to +60.
2875 //       The setting of the lwp priorities in done after a call to thr_setprio
2876 //       so Java priorities are mapped to libthread priorities and we map from
2877 //       the latter to lwp priorities.  We don't keep priorities stored in
2878 //       Java priorities since some of our worker threads want to set priorities
2879 //       higher than all Java threads.
2880 //
2881 // For related information:
2882 // (1)  man -s 2 priocntl
2883 // (2)  man -s 4 priocntl
2884 // (3)  man dispadmin
2885 // =    librt.so
2886 // =    libthread/common/rtsched.c - thrp_setlwpprio().
2887 // =    ps -cL <pid> ... to validate priority.
2888 // =    sched_get_priority_min and _max
2889 //              pthread_create
2890 //              sched_setparam
2891 //              pthread_setschedparam
2892 //
2893 // Assumptions:
2894 // +    We assume that all threads in the process belong to the same
2895 //              scheduling class.   IE. an homogenous process.
2896 // +    Must be root or in IA group to change change "interactive" attribute.
2897 //              Priocntl() will fail silently.  The only indication of failure is when
2898 //              we read-back the value and notice that it hasn't changed.
2899 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
2900 // +    For RT, change timeslice as well.  Invariant:
2901 //              constant "priority integral"
2902 //              Konst == TimeSlice * (60-Priority)
2903 //              Given a priority, compute appropriate timeslice.
2904 // +    Higher numerical values have higher priority.
2905 
2906 // sched class attributes
2907 typedef struct {
2908   int   schedPolicy;              // classID
2909   int   maxPrio;
2910   int   minPrio;
2911 } SchedInfo;
2912 
2913 
2914 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
2915 
2916 #ifdef ASSERT
2917 static int  ReadBackValidate = 1;
2918 #endif
2919 static int  myClass     = 0;
2920 static int  myMin       = 0;
2921 static int  myMax       = 0;
2922 static int  myCur       = 0;
2923 static bool priocntl_enable = false;
2924 
2925 static const int criticalPrio = FXCriticalPriority;
2926 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
2927 
2928 
2929 // lwp_priocntl_init
2930 //
2931 // Try to determine the priority scale for our process.
2932 //
2933 // Return errno or 0 if OK.
2934 //
2935 static int lwp_priocntl_init() {
2936   int rslt;
2937   pcinfo_t ClassInfo;
2938   pcparms_t ParmInfo;
2939   int i;
2940 
2941   if (!UseThreadPriorities) return 0;
2942 
2943   // If ThreadPriorityPolicy is 1, switch tables
2944   if (ThreadPriorityPolicy == 1) {
2945     for (i = 0; i < CriticalPriority+1; i++)
2946       os::java_to_os_priority[i] = prio_policy1[i];
2947   }
2948   if (UseCriticalJavaThreadPriority) {
2949     // MaxPriority always maps to the FX scheduling class and criticalPrio.
2950     // See set_native_priority() and set_lwp_class_and_priority().
2951     // Save original MaxPriority mapping in case attempt to
2952     // use critical priority fails.
2953     java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
2954     // Set negative to distinguish from other priorities
2955     os::java_to_os_priority[MaxPriority] = -criticalPrio;
2956   }
2957 
2958   // Get IDs for a set of well-known scheduling classes.
2959   // TODO-FIXME: GETCLINFO returns the current # of classes in the
2960   // the system.  We should have a loop that iterates over the
2961   // classID values, which are known to be "small" integers.
2962 
2963   strcpy(ClassInfo.pc_clname, "TS");
2964   ClassInfo.pc_cid = -1;
2965   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2966   if (rslt < 0) return errno;
2967   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
2968   tsLimits.schedPolicy = ClassInfo.pc_cid;
2969   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
2970   tsLimits.minPrio = -tsLimits.maxPrio;
2971 
2972   strcpy(ClassInfo.pc_clname, "IA");
2973   ClassInfo.pc_cid = -1;
2974   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2975   if (rslt < 0) return errno;
2976   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
2977   iaLimits.schedPolicy = ClassInfo.pc_cid;
2978   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
2979   iaLimits.minPrio = -iaLimits.maxPrio;
2980 
2981   strcpy(ClassInfo.pc_clname, "RT");
2982   ClassInfo.pc_cid = -1;
2983   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2984   if (rslt < 0) return errno;
2985   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
2986   rtLimits.schedPolicy = ClassInfo.pc_cid;
2987   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
2988   rtLimits.minPrio = 0;
2989 
2990   strcpy(ClassInfo.pc_clname, "FX");
2991   ClassInfo.pc_cid = -1;
2992   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2993   if (rslt < 0) return errno;
2994   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
2995   fxLimits.schedPolicy = ClassInfo.pc_cid;
2996   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
2997   fxLimits.minPrio = 0;
2998 
2999   // Query our "current" scheduling class.
3000   // This will normally be IA, TS or, rarely, FX or RT.
3001   memset(&ParmInfo, 0, sizeof(ParmInfo));
3002   ParmInfo.pc_cid = PC_CLNULL;
3003   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3004   if (rslt < 0) return errno;
3005   myClass = ParmInfo.pc_cid;
3006 
3007   // We now know our scheduling classId, get specific information
3008   // about the class.
3009   ClassInfo.pc_cid = myClass;
3010   ClassInfo.pc_clname[0] = 0;
3011   rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3012   if (rslt < 0) return errno;
3013 
3014   if (ThreadPriorityVerbose) {
3015     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3016   }
3017 
3018   memset(&ParmInfo, 0, sizeof(pcparms_t));
3019   ParmInfo.pc_cid = PC_CLNULL;
3020   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3021   if (rslt < 0) return errno;
3022 
3023   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3024     myMin = rtLimits.minPrio;
3025     myMax = rtLimits.maxPrio;
3026   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3027     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3028     myMin = iaLimits.minPrio;
3029     myMax = iaLimits.maxPrio;
3030     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3031   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3032     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3033     myMin = tsLimits.minPrio;
3034     myMax = tsLimits.maxPrio;
3035     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3036   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3037     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3038     myMin = fxLimits.minPrio;
3039     myMax = fxLimits.maxPrio;
3040     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3041   } else {
3042     // No clue - punt
3043     if (ThreadPriorityVerbose) {
3044       tty->print_cr("Unknown scheduling class: %s ... \n",
3045                     ClassInfo.pc_clname);
3046     }
3047     return EINVAL;      // no clue, punt
3048   }
3049 
3050   if (ThreadPriorityVerbose) {
3051     tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3052   }
3053 
3054   priocntl_enable = true;  // Enable changing priorities
3055   return 0;
3056 }
3057 
3058 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3059 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3060 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3061 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3062 
3063 
3064 // scale_to_lwp_priority
3065 //
3066 // Convert from the libthread "thr_setprio" scale to our current
3067 // lwp scheduling class scale.
3068 //
3069 static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3070   int v;
3071 
3072   if (x == 127) return rMax;            // avoid round-down
3073   v = (((x*(rMax-rMin)))/128)+rMin;
3074   return v;
3075 }
3076 
3077 
3078 // set_lwp_class_and_priority
3079 int set_lwp_class_and_priority(int ThreadID, int lwpid,
3080                                int newPrio, int new_class, bool scale) {
3081   int rslt;
3082   int Actual, Expected, prv;
3083   pcparms_t ParmInfo;                   // for GET-SET
3084 #ifdef ASSERT
3085   pcparms_t ReadBack;                   // for readback
3086 #endif
3087 
3088   // Set priority via PC_GETPARMS, update, PC_SETPARMS
3089   // Query current values.
3090   // TODO: accelerate this by eliminating the PC_GETPARMS call.
3091   // Cache "pcparms_t" in global ParmCache.
3092   // TODO: elide set-to-same-value
3093 
3094   // If something went wrong on init, don't change priorities.
3095   if (!priocntl_enable) {
3096     if (ThreadPriorityVerbose) {
3097       tty->print_cr("Trying to set priority but init failed, ignoring");
3098     }
3099     return EINVAL;
3100   }
3101 
3102   // If lwp hasn't started yet, just return
3103   // the _start routine will call us again.
3104   if (lwpid <= 0) {
3105     if (ThreadPriorityVerbose) {
3106       tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3107                     INTPTR_FORMAT " to %d, lwpid not set",
3108                     ThreadID, newPrio);
3109     }
3110     return 0;
3111   }
3112 
3113   if (ThreadPriorityVerbose) {
3114     tty->print_cr ("set_lwp_class_and_priority("
3115                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3116                    ThreadID, lwpid, newPrio);
3117   }
3118 
3119   memset(&ParmInfo, 0, sizeof(pcparms_t));
3120   ParmInfo.pc_cid = PC_CLNULL;
3121   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3122   if (rslt < 0) return errno;
3123 
3124   int cur_class = ParmInfo.pc_cid;
3125   ParmInfo.pc_cid = (id_t)new_class;
3126 
3127   if (new_class == rtLimits.schedPolicy) {
3128     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3129     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3130                                                        rtLimits.maxPrio, newPrio)
3131                                : newPrio;
3132     rtInfo->rt_tqsecs  = RT_NOCHANGE;
3133     rtInfo->rt_tqnsecs = RT_NOCHANGE;
3134     if (ThreadPriorityVerbose) {
3135       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3136     }
3137   } else if (new_class == iaLimits.schedPolicy) {
3138     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3139     int maxClamped     = MIN2(iaLimits.maxPrio,
3140                               cur_class == new_class
3141                               ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3142     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3143                                                        maxClamped, newPrio)
3144                                : newPrio;
3145     iaInfo->ia_uprilim = cur_class == new_class
3146                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3147     iaInfo->ia_mode    = IA_NOCHANGE;
3148     if (ThreadPriorityVerbose) {
3149       tty->print_cr("IA: [%d...%d] %d->%d\n",
3150                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3151     }
3152   } else if (new_class == tsLimits.schedPolicy) {
3153     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3154     int maxClamped     = MIN2(tsLimits.maxPrio,
3155                               cur_class == new_class
3156                               ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3157     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3158                                                        maxClamped, newPrio)
3159                                : newPrio;
3160     tsInfo->ts_uprilim = cur_class == new_class
3161                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3162     if (ThreadPriorityVerbose) {
3163       tty->print_cr("TS: [%d...%d] %d->%d\n",
3164                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3165     }
3166   } else if (new_class == fxLimits.schedPolicy) {
3167     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3168     int maxClamped     = MIN2(fxLimits.maxPrio,
3169                               cur_class == new_class
3170                               ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3171     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3172                                                        maxClamped, newPrio)
3173                                : newPrio;
3174     fxInfo->fx_uprilim = cur_class == new_class
3175                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3176     fxInfo->fx_tqsecs  = FX_NOCHANGE;
3177     fxInfo->fx_tqnsecs = FX_NOCHANGE;
3178     if (ThreadPriorityVerbose) {
3179       tty->print_cr("FX: [%d...%d] %d->%d\n",
3180                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3181     }
3182   } else {
3183     if (ThreadPriorityVerbose) {
3184       tty->print_cr("Unknown new scheduling class %d\n", new_class);
3185     }
3186     return EINVAL;    // no clue, punt
3187   }
3188 
3189   rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3190   if (ThreadPriorityVerbose && rslt) {
3191     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3192   }
3193   if (rslt < 0) return errno;
3194 
3195 #ifdef ASSERT
3196   // Sanity check: read back what we just attempted to set.
3197   // In theory it could have changed in the interim ...
3198   //
3199   // The priocntl system call is tricky.
3200   // Sometimes it'll validate the priority value argument and
3201   // return EINVAL if unhappy.  At other times it fails silently.
3202   // Readbacks are prudent.
3203 
3204   if (!ReadBackValidate) return 0;
3205 
3206   memset(&ReadBack, 0, sizeof(pcparms_t));
3207   ReadBack.pc_cid = PC_CLNULL;
3208   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3209   assert(rslt >= 0, "priocntl failed");
3210   Actual = Expected = 0xBAD;
3211   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3212   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3213     Actual   = RTPRI(ReadBack)->rt_pri;
3214     Expected = RTPRI(ParmInfo)->rt_pri;
3215   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3216     Actual   = IAPRI(ReadBack)->ia_upri;
3217     Expected = IAPRI(ParmInfo)->ia_upri;
3218   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3219     Actual   = TSPRI(ReadBack)->ts_upri;
3220     Expected = TSPRI(ParmInfo)->ts_upri;
3221   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3222     Actual   = FXPRI(ReadBack)->fx_upri;
3223     Expected = FXPRI(ParmInfo)->fx_upri;
3224   } else {
3225     if (ThreadPriorityVerbose) {
3226       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3227                     ParmInfo.pc_cid);
3228     }
3229   }
3230 
3231   if (Actual != Expected) {
3232     if (ThreadPriorityVerbose) {
3233       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3234                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3235     }
3236   }
3237 #endif
3238 
3239   return 0;
3240 }
3241 
3242 // Solaris only gives access to 128 real priorities at a time,
3243 // so we expand Java's ten to fill this range.  This would be better
3244 // if we dynamically adjusted relative priorities.
3245 //
3246 // The ThreadPriorityPolicy option allows us to select 2 different
3247 // priority scales.
3248 //
3249 // ThreadPriorityPolicy=0
3250 // Since the Solaris' default priority is MaximumPriority, we do not
3251 // set a priority lower than Max unless a priority lower than
3252 // NormPriority is requested.
3253 //
3254 // ThreadPriorityPolicy=1
3255 // This mode causes the priority table to get filled with
3256 // linear values.  NormPriority get's mapped to 50% of the
3257 // Maximum priority an so on.  This will cause VM threads
3258 // to get unfair treatment against other Solaris processes
3259 // which do not explicitly alter their thread priorities.
3260 
3261 int os::java_to_os_priority[CriticalPriority + 1] = {
3262   -99999,         // 0 Entry should never be used
3263 
3264   0,              // 1 MinPriority
3265   32,             // 2
3266   64,             // 3
3267 
3268   96,             // 4
3269   127,            // 5 NormPriority
3270   127,            // 6
3271 
3272   127,            // 7
3273   127,            // 8
3274   127,            // 9 NearMaxPriority
3275 
3276   127,            // 10 MaxPriority
3277 
3278   -criticalPrio   // 11 CriticalPriority
3279 };
3280 
3281 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3282   OSThread* osthread = thread->osthread();
3283 
3284   // Save requested priority in case the thread hasn't been started
3285   osthread->set_native_priority(newpri);
3286 
3287   // Check for critical priority request
3288   bool fxcritical = false;
3289   if (newpri == -criticalPrio) {
3290     fxcritical = true;
3291     newpri = criticalPrio;
3292   }
3293 
3294   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3295   if (!UseThreadPriorities) return OS_OK;
3296 
3297   int status = 0;
3298 
3299   if (!fxcritical) {
3300     // Use thr_setprio only if we have a priority that thr_setprio understands
3301     status = thr_setprio(thread->osthread()->thread_id(), newpri);
3302   }
3303 
3304   int lwp_status =
3305           set_lwp_class_and_priority(osthread->thread_id(),
3306                                      osthread->lwp_id(),
3307                                      newpri,
3308                                      fxcritical ? fxLimits.schedPolicy : myClass,
3309                                      !fxcritical);
3310   if (lwp_status != 0 && fxcritical) {
3311     // Try again, this time without changing the scheduling class
3312     newpri = java_MaxPriority_to_os_priority;
3313     lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3314                                             osthread->lwp_id(),
3315                                             newpri, myClass, false);
3316   }
3317   status |= lwp_status;
3318   return (status == 0) ? OS_OK : OS_ERR;
3319 }
3320 
3321 
3322 OSReturn os::get_native_priority(const Thread* const thread,
3323                                  int *priority_ptr) {
3324   int p;
3325   if (!UseThreadPriorities) {
3326     *priority_ptr = NormalPriority;
3327     return OS_OK;
3328   }
3329   int status = thr_getprio(thread->osthread()->thread_id(), &p);
3330   if (status != 0) {
3331     return OS_ERR;
3332   }
3333   *priority_ptr = p;
3334   return OS_OK;
3335 }
3336 
3337 ////////////////////////////////////////////////////////////////////////////////
3338 // suspend/resume support
3339 
3340 //  The low-level signal-based suspend/resume support is a remnant from the
3341 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3342 //  within hotspot. Currently used by JFR's OSThreadSampler
3343 //
3344 //  The remaining code is greatly simplified from the more general suspension
3345 //  code that used to be used.
3346 //
3347 //  The protocol is quite simple:
3348 //  - suspend:
3349 //      - sends a signal to the target thread
3350 //      - polls the suspend state of the osthread using a yield loop
3351 //      - target thread signal handler (SR_handler) sets suspend state
3352 //        and blocks in sigsuspend until continued
3353 //  - resume:
3354 //      - sets target osthread state to continue
3355 //      - sends signal to end the sigsuspend loop in the SR_handler
3356 //
3357 //  Note that the SR_lock plays no role in this suspend/resume protocol,
3358 //  but is checked for NULL in SR_handler as a thread termination indicator.
3359 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
3360 //
3361 //  Note that resume_clear_context() and suspend_save_context() are needed
3362 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
3363 //  which in part is used by:
3364 //    - Forte Analyzer: AsyncGetCallTrace()
3365 //    - StackBanging: get_frame_at_stack_banging_point()
3366 //    - JFR: get_topframe()-->....-->get_valid_uc_in_signal_handler()
3367 
3368 static void resume_clear_context(OSThread *osthread) {
3369   osthread->set_ucontext(NULL);
3370 }
3371 
3372 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3373   osthread->set_ucontext(context);
3374 }
3375 
3376 static PosixSemaphore sr_semaphore;
3377 
3378 void os::Solaris::SR_handler(Thread* thread, ucontext_t* context) {
3379   // Save and restore errno to avoid confusing native code with EINTR
3380   // after sigsuspend.
3381   int old_errno = errno;
3382 
3383   OSThread* osthread = thread->osthread();
3384   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3385 
3386   os::SuspendResume::State current = osthread->sr.state();
3387   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3388     suspend_save_context(osthread, context);
3389 
3390     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3391     os::SuspendResume::State state = osthread->sr.suspended();
3392     if (state == os::SuspendResume::SR_SUSPENDED) {
3393       sigset_t suspend_set;  // signals for sigsuspend()
3394 
3395       // get current set of blocked signals and unblock resume signal
3396       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3397       sigdelset(&suspend_set, ASYNC_SIGNAL);
3398 
3399       sr_semaphore.signal();
3400       // wait here until we are resumed
3401       while (1) {
3402         sigsuspend(&suspend_set);
3403 
3404         os::SuspendResume::State result = osthread->sr.running();
3405         if (result == os::SuspendResume::SR_RUNNING) {
3406           sr_semaphore.signal();
3407           break;
3408         }
3409       }
3410 
3411     } else if (state == os::SuspendResume::SR_RUNNING) {
3412       // request was cancelled, continue
3413     } else {
3414       ShouldNotReachHere();
3415     }
3416 
3417     resume_clear_context(osthread);
3418   } else if (current == os::SuspendResume::SR_RUNNING) {
3419     // request was cancelled, continue
3420   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3421     // ignore
3422   } else {
3423     // ignore
3424   }
3425 
3426   errno = old_errno;
3427 }
3428 
3429 void os::print_statistics() {
3430 }
3431 
3432 bool os::message_box(const char* title, const char* message) {
3433   int i;
3434   fdStream err(defaultStream::error_fd());
3435   for (i = 0; i < 78; i++) err.print_raw("=");
3436   err.cr();
3437   err.print_raw_cr(title);
3438   for (i = 0; i < 78; i++) err.print_raw("-");
3439   err.cr();
3440   err.print_raw_cr(message);
3441   for (i = 0; i < 78; i++) err.print_raw("=");
3442   err.cr();
3443 
3444   char buf[16];
3445   // Prevent process from exiting upon "read error" without consuming all CPU
3446   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3447 
3448   return buf[0] == 'y' || buf[0] == 'Y';
3449 }
3450 
3451 static int sr_notify(OSThread* osthread) {
3452   int status = thr_kill(osthread->thread_id(), ASYNC_SIGNAL);
3453   assert_status(status == 0, status, "thr_kill");
3454   return status;
3455 }
3456 
3457 // "Randomly" selected value for how long we want to spin
3458 // before bailing out on suspending a thread, also how often
3459 // we send a signal to a thread we want to resume
3460 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3461 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3462 
3463 static bool do_suspend(OSThread* osthread) {
3464   assert(osthread->sr.is_running(), "thread should be running");
3465   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3466 
3467   // mark as suspended and send signal
3468   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3469     // failed to switch, state wasn't running?
3470     ShouldNotReachHere();
3471     return false;
3472   }
3473 
3474   if (sr_notify(osthread) != 0) {
3475     ShouldNotReachHere();
3476   }
3477 
3478   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3479   while (true) {
3480     if (sr_semaphore.timedwait(2000)) {
3481       break;
3482     } else {
3483       // timeout
3484       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3485       if (cancelled == os::SuspendResume::SR_RUNNING) {
3486         return false;
3487       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3488         // make sure that we consume the signal on the semaphore as well
3489         sr_semaphore.wait();
3490         break;
3491       } else {
3492         ShouldNotReachHere();
3493         return false;
3494       }
3495     }
3496   }
3497 
3498   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3499   return true;
3500 }
3501 
3502 static void do_resume(OSThread* osthread) {
3503   assert(osthread->sr.is_suspended(), "thread should be suspended");
3504   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3505 
3506   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3507     // failed to switch to WAKEUP_REQUEST
3508     ShouldNotReachHere();
3509     return;
3510   }
3511 
3512   while (true) {
3513     if (sr_notify(osthread) == 0) {
3514       if (sr_semaphore.timedwait(2)) {
3515         if (osthread->sr.is_running()) {
3516           return;
3517         }
3518       }
3519     } else {
3520       ShouldNotReachHere();
3521     }
3522   }
3523 
3524   guarantee(osthread->sr.is_running(), "Must be running!");
3525 }
3526 
3527 void os::SuspendedThreadTask::internal_do_task() {
3528   if (do_suspend(_thread->osthread())) {
3529     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3530     do_task(context);
3531     do_resume(_thread->osthread());
3532   }
3533 }
3534 
3535 // This does not do anything on Solaris. This is basically a hook for being
3536 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3537 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3538                               const methodHandle& method, JavaCallArguments* args,
3539                               Thread* thread) {
3540   f(value, method, args, thread);
3541 }
3542 
3543 // This routine may be used by user applications as a "hook" to catch signals.
3544 // The user-defined signal handler must pass unrecognized signals to this
3545 // routine, and if it returns true (non-zero), then the signal handler must
3546 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3547 // routine will never retun false (zero), but instead will execute a VM panic
3548 // routine kill the process.
3549 //
3550 // If this routine returns false, it is OK to call it again.  This allows
3551 // the user-defined signal handler to perform checks either before or after
3552 // the VM performs its own checks.  Naturally, the user code would be making
3553 // a serious error if it tried to handle an exception (such as a null check
3554 // or breakpoint) that the VM was generating for its own correct operation.
3555 //
3556 // This routine may recognize any of the following kinds of signals:
3557 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3558 // ASYNC_SIGNAL.
3559 // It should be consulted by handlers for any of those signals.
3560 //
3561 // The caller of this routine must pass in the three arguments supplied
3562 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3563 // field of the structure passed to sigaction().  This routine assumes that
3564 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3565 //
3566 // Note that the VM will print warnings if it detects conflicting signal
3567 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3568 //
3569 extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3570                                                    siginfo_t* siginfo,
3571                                                    void* ucontext,
3572                                                    int abort_if_unrecognized);
3573 
3574 
3575 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3576   int orig_errno = errno;  // Preserve errno value over signal handler.
3577   JVM_handle_solaris_signal(sig, info, ucVoid, true);
3578   errno = orig_errno;
3579 }
3580 
3581 // This boolean allows users to forward their own non-matching signals
3582 // to JVM_handle_solaris_signal, harmlessly.
3583 bool os::Solaris::signal_handlers_are_installed = false;
3584 
3585 // For signal-chaining
3586 bool os::Solaris::libjsig_is_loaded = false;
3587 typedef struct sigaction *(*get_signal_t)(int);
3588 get_signal_t os::Solaris::get_signal_action = NULL;
3589 
3590 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3591   struct sigaction *actp = NULL;
3592 
3593   if ((libjsig_is_loaded)  && (sig <= Maxsignum)) {
3594     // Retrieve the old signal handler from libjsig
3595     actp = (*get_signal_action)(sig);
3596   }
3597   if (actp == NULL) {
3598     // Retrieve the preinstalled signal handler from jvm
3599     actp = os::Posix::get_preinstalled_handler(sig);
3600   }
3601 
3602   return actp;
3603 }
3604 
3605 static bool call_chained_handler(struct sigaction *actp, int sig,
3606                                  siginfo_t *siginfo, void *context) {
3607   // Call the old signal handler
3608   if (actp->sa_handler == SIG_DFL) {
3609     // It's more reasonable to let jvm treat it as an unexpected exception
3610     // instead of taking the default action.
3611     return false;
3612   } else if (actp->sa_handler != SIG_IGN) {
3613     if ((actp->sa_flags & SA_NODEFER) == 0) {
3614       // automaticlly block the signal
3615       sigaddset(&(actp->sa_mask), sig);
3616     }
3617 
3618     sa_handler_t hand;
3619     sa_sigaction_t sa;
3620     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3621     // retrieve the chained handler
3622     if (siginfo_flag_set) {
3623       sa = actp->sa_sigaction;
3624     } else {
3625       hand = actp->sa_handler;
3626     }
3627 
3628     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3629       actp->sa_handler = SIG_DFL;
3630     }
3631 
3632     // try to honor the signal mask
3633     sigset_t oset;
3634     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3635 
3636     // call into the chained handler
3637     if (siginfo_flag_set) {
3638       (*sa)(sig, siginfo, context);
3639     } else {
3640       (*hand)(sig);
3641     }
3642 
3643     // restore the signal mask
3644     pthread_sigmask(SIG_SETMASK, &oset, 0);
3645   }
3646   // Tell jvm's signal handler the signal is taken care of.
3647   return true;
3648 }
3649 
3650 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3651   bool chained = false;
3652   // signal-chaining
3653   if (UseSignalChaining) {
3654     struct sigaction *actp = get_chained_signal_action(sig);
3655     if (actp != NULL) {
3656       chained = call_chained_handler(actp, sig, siginfo, context);
3657     }
3658   }
3659   return chained;
3660 }
3661 
3662 void os::Solaris::set_signal_handler(int sig, bool set_installed,
3663                                      bool oktochain) {
3664   // Check for overwrite.
3665   struct sigaction oldAct;
3666   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3667   void* oldhand =
3668       oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3669                           : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3670   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3671       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3672       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3673     if (AllowUserSignalHandlers || !set_installed) {
3674       // Do not overwrite; user takes responsibility to forward to us.
3675       return;
3676     } else if (UseSignalChaining) {
3677       if (oktochain) {
3678         // save the old handler in jvm
3679         os::Posix::save_preinstalled_handler(sig, oldAct);
3680       } else {
3681         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3682       }
3683       // libjsig also interposes the sigaction() call below and saves the
3684       // old sigaction on it own.
3685     } else {
3686       fatal("Encountered unexpected pre-existing sigaction handler "
3687             "%#lx for signal %d.", (long)oldhand, sig);
3688     }
3689   }
3690 
3691   struct sigaction sigAct;
3692   sigfillset(&(sigAct.sa_mask));
3693   sigAct.sa_handler = SIG_DFL;
3694 
3695   sigAct.sa_sigaction = signalHandler;
3696   // Handle SIGSEGV on alternate signal stack if
3697   // not using stack banging
3698   if (!UseStackBanging && sig == SIGSEGV) {
3699     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3700   } else {
3701     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3702   }
3703   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3704 
3705   sigaction(sig, &sigAct, &oldAct);
3706 
3707   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3708                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3709   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3710 }
3711 
3712 
3713 #define DO_SIGNAL_CHECK(sig)                      \
3714   do {                                            \
3715     if (!sigismember(&check_signal_done, sig)) {  \
3716       os::Solaris::check_signal_handler(sig);     \
3717     }                                             \
3718   } while (0)
3719 
3720 // This method is a periodic task to check for misbehaving JNI applications
3721 // under CheckJNI, we can add any periodic checks here
3722 
3723 void os::run_periodic_checks() {
3724   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3725   // thereby preventing a NULL checks.
3726   if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3727 
3728   if (check_signals == false) return;
3729 
3730   // SEGV and BUS if overridden could potentially prevent
3731   // generation of hs*.log in the event of a crash, debugging
3732   // such a case can be very challenging, so we absolutely
3733   // check for the following for a good measure:
3734   DO_SIGNAL_CHECK(SIGSEGV);
3735   DO_SIGNAL_CHECK(SIGILL);
3736   DO_SIGNAL_CHECK(SIGFPE);
3737   DO_SIGNAL_CHECK(SIGBUS);
3738   DO_SIGNAL_CHECK(SIGPIPE);
3739   DO_SIGNAL_CHECK(SIGXFSZ);
3740   DO_SIGNAL_CHECK(ASYNC_SIGNAL);
3741 
3742   // ReduceSignalUsage allows the user to override these handlers
3743   // see comments at the very top and jvm_solaris.h
3744   if (!ReduceSignalUsage) {
3745     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3746     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3747     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3748     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3749   }
3750 }
3751 
3752 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3753 
3754 static os_sigaction_t os_sigaction = NULL;
3755 
3756 void os::Solaris::check_signal_handler(int sig) {
3757   char buf[O_BUFLEN];
3758   address jvmHandler = NULL;
3759 
3760   struct sigaction act;
3761   if (os_sigaction == NULL) {
3762     // only trust the default sigaction, in case it has been interposed
3763     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3764     if (os_sigaction == NULL) return;
3765   }
3766 
3767   os_sigaction(sig, (struct sigaction*)NULL, &act);
3768 
3769   address thisHandler = (act.sa_flags & SA_SIGINFO)
3770     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3771     : CAST_FROM_FN_PTR(address, act.sa_handler);
3772 
3773 
3774   switch (sig) {
3775   case SIGSEGV:
3776   case SIGBUS:
3777   case SIGFPE:
3778   case SIGPIPE:
3779   case SIGXFSZ:
3780   case SIGILL:
3781   case ASYNC_SIGNAL:
3782     jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
3783     break;
3784 
3785   case SHUTDOWN1_SIGNAL:
3786   case SHUTDOWN2_SIGNAL:
3787   case SHUTDOWN3_SIGNAL:
3788   case BREAK_SIGNAL:
3789     jvmHandler = (address)user_handler();
3790     break;
3791 
3792   default:
3793       return;
3794   }
3795 
3796   if (thisHandler != jvmHandler) {
3797     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3798     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3799     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3800     // No need to check this sig any longer
3801     sigaddset(&check_signal_done, sig);
3802     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3803     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3804       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3805                     exception_name(sig, buf, O_BUFLEN));
3806     }
3807   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
3808     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3809     tty->print("expected:");
3810     os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
3811     tty->cr();
3812     tty->print("  found:");
3813     os::Posix::print_sa_flags(tty, act.sa_flags);
3814     tty->cr();
3815     // No need to check this sig any longer
3816     sigaddset(&check_signal_done, sig);
3817   }
3818 
3819   // Print all the signal handler state
3820   if (sigismember(&check_signal_done, sig)) {
3821     print_signal_handlers(tty, buf, O_BUFLEN);
3822   }
3823 
3824 }
3825 
3826 void os::Solaris::install_signal_handlers() {
3827   signal_handlers_are_installed = true;
3828 
3829   // signal-chaining
3830   typedef void (*signal_setting_t)();
3831   signal_setting_t begin_signal_setting = NULL;
3832   signal_setting_t end_signal_setting = NULL;
3833   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3834                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3835   if (begin_signal_setting != NULL) {
3836     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3837                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3838     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3839                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3840     libjsig_is_loaded = true;
3841     assert(UseSignalChaining, "should enable signal-chaining");
3842   }
3843   if (libjsig_is_loaded) {
3844     // Tell libjsig jvm is setting signal handlers
3845     (*begin_signal_setting)();
3846   }
3847 
3848   set_signal_handler(SIGSEGV, true, true);
3849   set_signal_handler(SIGPIPE, true, true);
3850   set_signal_handler(SIGXFSZ, true, true);
3851   set_signal_handler(SIGBUS, true, true);
3852   set_signal_handler(SIGILL, true, true);
3853   set_signal_handler(SIGFPE, true, true);
3854   set_signal_handler(ASYNC_SIGNAL, true, true);
3855 
3856   if (libjsig_is_loaded) {
3857     // Tell libjsig jvm finishes setting signal handlers
3858     (*end_signal_setting)();
3859   }
3860 
3861   // We don't activate signal checker if libjsig is in place, we trust ourselves
3862   // and if UserSignalHandler is installed all bets are off.
3863   // Log that signal checking is off only if -verbose:jni is specified.
3864   if (CheckJNICalls) {
3865     if (libjsig_is_loaded) {
3866       if (PrintJNIResolving) {
3867         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3868       }
3869       check_signals = false;
3870     }
3871     if (AllowUserSignalHandlers) {
3872       if (PrintJNIResolving) {
3873         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3874       }
3875       check_signals = false;
3876     }
3877   }
3878 }
3879 
3880 
3881 void report_error(const char* file_name, int line_no, const char* title,
3882                   const char* format, ...);
3883 
3884 // (Static) wrappers for the liblgrp API
3885 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
3886 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
3887 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
3888 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
3889 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
3890 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
3891 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
3892 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
3893 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
3894 
3895 static address resolve_symbol_lazy(const char* name) {
3896   address addr = (address) dlsym(RTLD_DEFAULT, name);
3897   if (addr == NULL) {
3898     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
3899     addr = (address) dlsym(RTLD_NEXT, name);
3900   }
3901   return addr;
3902 }
3903 
3904 static address resolve_symbol(const char* name) {
3905   address addr = resolve_symbol_lazy(name);
3906   if (addr == NULL) {
3907     fatal(dlerror());
3908   }
3909   return addr;
3910 }
3911 
3912 void os::Solaris::libthread_init() {
3913   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
3914 
3915   lwp_priocntl_init();
3916 
3917   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
3918   if (func == NULL) {
3919     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
3920     // Guarantee that this VM is running on an new enough OS (5.6 or
3921     // later) that it will have a new enough libthread.so.
3922     guarantee(func != NULL, "libthread.so is too old.");
3923   }
3924 
3925   int size;
3926   void (*handler_info_func)(address *, int *);
3927   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
3928   handler_info_func(&handler_start, &size);
3929   handler_end = handler_start + size;
3930 }
3931 
3932 
3933 int_fnP_mutex_tP os::Solaris::_mutex_lock;
3934 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
3935 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
3936 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
3937 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
3938 int os::Solaris::_mutex_scope = USYNC_THREAD;
3939 
3940 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
3941 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
3942 int_fnP_cond_tP os::Solaris::_cond_signal;
3943 int_fnP_cond_tP os::Solaris::_cond_broadcast;
3944 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
3945 int_fnP_cond_tP os::Solaris::_cond_destroy;
3946 int os::Solaris::_cond_scope = USYNC_THREAD;
3947 bool os::Solaris::_synchronization_initialized;
3948 
3949 void os::Solaris::synchronization_init() {
3950   if (UseLWPSynchronization) {
3951     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
3952     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
3953     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
3954     os::Solaris::set_mutex_init(lwp_mutex_init);
3955     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
3956     os::Solaris::set_mutex_scope(USYNC_THREAD);
3957 
3958     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
3959     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
3960     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
3961     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
3962     os::Solaris::set_cond_init(lwp_cond_init);
3963     os::Solaris::set_cond_destroy(lwp_cond_destroy);
3964     os::Solaris::set_cond_scope(USYNC_THREAD);
3965   } else {
3966     os::Solaris::set_mutex_scope(USYNC_THREAD);
3967     os::Solaris::set_cond_scope(USYNC_THREAD);
3968 
3969     if (UsePthreads) {
3970       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
3971       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
3972       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
3973       os::Solaris::set_mutex_init(pthread_mutex_default_init);
3974       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
3975 
3976       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
3977       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
3978       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
3979       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
3980       os::Solaris::set_cond_init(pthread_cond_default_init);
3981       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
3982     } else {
3983       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
3984       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
3985       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
3986       os::Solaris::set_mutex_init(::mutex_init);
3987       os::Solaris::set_mutex_destroy(::mutex_destroy);
3988 
3989       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
3990       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
3991       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
3992       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
3993       os::Solaris::set_cond_init(::cond_init);
3994       os::Solaris::set_cond_destroy(::cond_destroy);
3995     }
3996   }
3997   _synchronization_initialized = true;
3998 }
3999 
4000 bool os::Solaris::liblgrp_init() {
4001   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4002   if (handle != NULL) {
4003     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4004     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4005     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4006     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4007     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4008     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4009     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4010     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4011                                                       dlsym(handle, "lgrp_cookie_stale")));
4012 
4013     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4014     set_lgrp_cookie(c);
4015     return true;
4016   }
4017   return false;
4018 }
4019 
4020 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4021 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4022 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4023 
4024 void init_pset_getloadavg_ptr(void) {
4025   pset_getloadavg_ptr =
4026     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4027   if (pset_getloadavg_ptr == NULL) {
4028     log_warning(os)("pset_getloadavg function not found");
4029   }
4030 }
4031 
4032 int os::Solaris::_dev_zero_fd = -1;
4033 
4034 // this is called _before_ the global arguments have been parsed
4035 void os::init(void) {
4036   _initial_pid = getpid();
4037 
4038   max_hrtime = first_hrtime = gethrtime();
4039 
4040   init_random(1234567);
4041 
4042   page_size = sysconf(_SC_PAGESIZE);
4043   if (page_size == -1) {
4044     fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
4045   }
4046   init_page_sizes((size_t) page_size);
4047 
4048   Solaris::initialize_system_info();
4049 
4050   int fd = ::open("/dev/zero", O_RDWR);
4051   if (fd < 0) {
4052     fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
4053   } else {
4054     Solaris::set_dev_zero_fd(fd);
4055 
4056     // Close on exec, child won't inherit.
4057     fcntl(fd, F_SETFD, FD_CLOEXEC);
4058   }
4059 
4060   clock_tics_per_sec = CLK_TCK;
4061 
4062   // check if dladdr1() exists; dladdr1 can provide more information than
4063   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4064   // and is available on linker patches for 5.7 and 5.8.
4065   // libdl.so must have been loaded, this call is just an entry lookup
4066   void * hdl = dlopen("libdl.so", RTLD_NOW);
4067   if (hdl) {
4068     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4069   }
4070 
4071   // main_thread points to the thread that created/loaded the JVM.
4072   main_thread = thr_self();
4073 
4074   // dynamic lookup of functions that may not be available in our lowest
4075   // supported Solaris release
4076   void * handle = dlopen("libc.so.1", RTLD_LAZY);
4077   if (handle != NULL) {
4078     Solaris::_pthread_setname_np =  // from 11.3
4079         (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
4080   }
4081 
4082   // Shared Posix initialization
4083   os::Posix::init();
4084 }
4085 
4086 // To install functions for atexit system call
4087 extern "C" {
4088   static void perfMemory_exit_helper() {
4089     perfMemory_exit();
4090   }
4091 }
4092 
4093 // this is called _after_ the global arguments have been parsed
4094 jint os::init_2(void) {
4095   // try to enable extended file IO ASAP, see 6431278
4096   os::Solaris::try_enable_extended_io();
4097 
4098   // Check and sets minimum stack sizes against command line options
4099   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4100     return JNI_ERR;
4101   }
4102 
4103   Solaris::libthread_init();
4104 
4105   if (UseNUMA) {
4106     if (!Solaris::liblgrp_init()) {
4107       UseNUMA = false;
4108     } else {
4109       size_t lgrp_limit = os::numa_get_groups_num();
4110       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4111       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4112       FREE_C_HEAP_ARRAY(int, lgrp_ids);
4113       if (lgrp_num < 2) {
4114         // There's only one locality group, disable NUMA.
4115         UseNUMA = false;
4116       }
4117     }
4118     if (!UseNUMA && ForceNUMA) {
4119       UseNUMA = true;
4120     }
4121   }
4122 
4123   Solaris::signal_sets_init();
4124   Solaris::init_signal_mem();
4125   Solaris::install_signal_handlers();
4126   // Initialize data for jdk.internal.misc.Signal
4127   if (!ReduceSignalUsage) {
4128     jdk_misc_signal_init();
4129   }
4130 
4131   // initialize synchronization primitives to use either thread or
4132   // lwp synchronization (controlled by UseLWPSynchronization)
4133   Solaris::synchronization_init();
4134   DEBUG_ONLY(os::set_mutex_init_done();)
4135 
4136   if (MaxFDLimit) {
4137     // set the number of file descriptors to max. print out error
4138     // if getrlimit/setrlimit fails but continue regardless.
4139     struct rlimit nbr_files;
4140     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4141     if (status != 0) {
4142       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4143     } else {
4144       nbr_files.rlim_cur = nbr_files.rlim_max;
4145       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4146       if (status != 0) {
4147         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4148       }
4149     }
4150   }
4151 
4152   // Calculate theoretical max. size of Threads to guard gainst
4153   // artifical out-of-memory situations, where all available address-
4154   // space has been reserved by thread stacks. Default stack size is 1Mb.
4155   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4156     JavaThread::stack_size_at_create() : (1*K*K);
4157   assert(pre_thread_stack_size != 0, "Must have a stack");
4158   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4159   // we should start doing Virtual Memory banging. Currently when the threads will
4160   // have used all but 200Mb of space.
4161   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4162   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4163 
4164   // at-exit methods are called in the reverse order of their registration.
4165   // In Solaris 7 and earlier, atexit functions are called on return from
4166   // main or as a result of a call to exit(3C). There can be only 32 of
4167   // these functions registered and atexit() does not set errno. In Solaris
4168   // 8 and later, there is no limit to the number of functions registered
4169   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4170   // functions are called upon dlclose(3DL) in addition to return from main
4171   // and exit(3C).
4172 
4173   if (PerfAllowAtExitRegistration) {
4174     // only register atexit functions if PerfAllowAtExitRegistration is set.
4175     // atexit functions can be delayed until process exit time, which
4176     // can be problematic for embedded VM situations. Embedded VMs should
4177     // call DestroyJavaVM() to assure that VM resources are released.
4178 
4179     // note: perfMemory_exit_helper atexit function may be removed in
4180     // the future if the appropriate cleanup code can be added to the
4181     // VM_Exit VMOperation's doit method.
4182     if (atexit(perfMemory_exit_helper) != 0) {
4183       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4184     }
4185   }
4186 
4187   // Init pset_loadavg function pointer
4188   init_pset_getloadavg_ptr();
4189 
4190   // Shared Posix initialization
4191   os::Posix::init_2();
4192 
4193   return JNI_OK;
4194 }
4195 
4196 // Mark the polling page as unreadable
4197 void os::make_polling_page_unreadable(void) {
4198   if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4199     fatal("Could not disable polling page");
4200   }
4201 }
4202 
4203 // Mark the polling page as readable
4204 void os::make_polling_page_readable(void) {
4205   if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4206     fatal("Could not enable polling page");
4207   }
4208 }
4209 
4210 // Is a (classpath) directory empty?
4211 bool os::dir_is_empty(const char* path) {
4212   DIR *dir = NULL;
4213   struct dirent *ptr;
4214 
4215   dir = opendir(path);
4216   if (dir == NULL) return true;
4217 
4218   // Scan the directory
4219   bool result = true;
4220   while (result && (ptr = readdir(dir)) != NULL) {
4221     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4222       result = false;
4223     }
4224   }
4225   closedir(dir);
4226   return result;
4227 }
4228 
4229 // This code originates from JDK's sysOpen and open64_w
4230 // from src/solaris/hpi/src/system_md.c
4231 
4232 int os::open(const char *path, int oflag, int mode) {
4233   if (strlen(path) > MAX_PATH - 1) {
4234     errno = ENAMETOOLONG;
4235     return -1;
4236   }
4237   int fd;
4238 
4239   fd = ::open64(path, oflag, mode);
4240   if (fd == -1) return -1;
4241 
4242   // If the open succeeded, the file might still be a directory
4243   {
4244     struct stat64 buf64;
4245     int ret = ::fstat64(fd, &buf64);
4246     int st_mode = buf64.st_mode;
4247 
4248     if (ret != -1) {
4249       if ((st_mode & S_IFMT) == S_IFDIR) {
4250         errno = EISDIR;
4251         ::close(fd);
4252         return -1;
4253       }
4254     } else {
4255       ::close(fd);
4256       return -1;
4257     }
4258   }
4259 
4260   // 32-bit Solaris systems suffer from:
4261   //
4262   // - an historical default soft limit of 256 per-process file
4263   //   descriptors that is too low for many Java programs.
4264   //
4265   // - a design flaw where file descriptors created using stdio
4266   //   fopen must be less than 256, _even_ when the first limit above
4267   //   has been raised.  This can cause calls to fopen (but not calls to
4268   //   open, for example) to fail mysteriously, perhaps in 3rd party
4269   //   native code (although the JDK itself uses fopen).  One can hardly
4270   //   criticize them for using this most standard of all functions.
4271   //
4272   // We attempt to make everything work anyways by:
4273   //
4274   // - raising the soft limit on per-process file descriptors beyond
4275   //   256
4276   //
4277   // - As of Solaris 10u4, we can request that Solaris raise the 256
4278   //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4279   //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4280   //
4281   // - If we are stuck on an old (pre 10u4) Solaris system, we can
4282   //   workaround the bug by remapping non-stdio file descriptors below
4283   //   256 to ones beyond 256, which is done below.
4284   //
4285   // See:
4286   // 1085341: 32-bit stdio routines should support file descriptors >255
4287   // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4288   // 6431278: Netbeans crash on 32 bit Solaris: need to call
4289   //          enable_extended_FILE_stdio() in VM initialisation
4290   // Giri Mandalika's blog
4291   // http://technopark02.blogspot.com/2005_05_01_archive.html
4292   //
4293 #ifndef  _LP64
4294   if ((!enabled_extended_FILE_stdio) && fd < 256) {
4295     int newfd = ::fcntl(fd, F_DUPFD, 256);
4296     if (newfd != -1) {
4297       ::close(fd);
4298       fd = newfd;
4299     }
4300   }
4301 #endif // 32-bit Solaris
4302 
4303   // All file descriptors that are opened in the JVM and not
4304   // specifically destined for a subprocess should have the
4305   // close-on-exec flag set.  If we don't set it, then careless 3rd
4306   // party native code might fork and exec without closing all
4307   // appropriate file descriptors (e.g. as we do in closeDescriptors in
4308   // UNIXProcess.c), and this in turn might:
4309   //
4310   // - cause end-of-file to fail to be detected on some file
4311   //   descriptors, resulting in mysterious hangs, or
4312   //
4313   // - might cause an fopen in the subprocess to fail on a system
4314   //   suffering from bug 1085341.
4315   //
4316   // (Yes, the default setting of the close-on-exec flag is a Unix
4317   // design flaw)
4318   //
4319   // See:
4320   // 1085341: 32-bit stdio routines should support file descriptors >255
4321   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4322   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4323   //
4324 #ifdef FD_CLOEXEC
4325   {
4326     int flags = ::fcntl(fd, F_GETFD);
4327     if (flags != -1) {
4328       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4329     }
4330   }
4331 #endif
4332 
4333   return fd;
4334 }
4335 
4336 // create binary file, rewriting existing file if required
4337 int os::create_binary_file(const char* path, bool rewrite_existing) {
4338   int oflags = O_WRONLY | O_CREAT;
4339   if (!rewrite_existing) {
4340     oflags |= O_EXCL;
4341   }
4342   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4343 }
4344 
4345 // return current position of file pointer
4346 jlong os::current_file_offset(int fd) {
4347   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4348 }
4349 
4350 // move file pointer to the specified offset
4351 jlong os::seek_to_file_offset(int fd, jlong offset) {
4352   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4353 }
4354 
4355 jlong os::lseek(int fd, jlong offset, int whence) {
4356   return (jlong) ::lseek64(fd, offset, whence);
4357 }
4358 
4359 int os::ftruncate(int fd, jlong length) {
4360   return ::ftruncate64(fd, length);
4361 }
4362 
4363 int os::fsync(int fd)  {
4364   RESTARTABLE_RETURN_INT(::fsync(fd));
4365 }
4366 
4367 int os::available(int fd, jlong *bytes) {
4368   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4369          "Assumed _thread_in_native");
4370   jlong cur, end;
4371   int mode;
4372   struct stat64 buf64;
4373 
4374   if (::fstat64(fd, &buf64) >= 0) {
4375     mode = buf64.st_mode;
4376     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4377       int n,ioctl_return;
4378 
4379       RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4380       if (ioctl_return>= 0) {
4381         *bytes = n;
4382         return 1;
4383       }
4384     }
4385   }
4386   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4387     return 0;
4388   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4389     return 0;
4390   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4391     return 0;
4392   }
4393   *bytes = end - cur;
4394   return 1;
4395 }
4396 
4397 // Map a block of memory.
4398 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4399                         char *addr, size_t bytes, bool read_only,
4400                         bool allow_exec) {
4401   int prot;
4402   int flags;
4403 
4404   if (read_only) {
4405     prot = PROT_READ;
4406     flags = MAP_SHARED;
4407   } else {
4408     prot = PROT_READ | PROT_WRITE;
4409     flags = MAP_PRIVATE;
4410   }
4411 
4412   if (allow_exec) {
4413     prot |= PROT_EXEC;
4414   }
4415 
4416   if (addr != NULL) {
4417     flags |= MAP_FIXED;
4418   }
4419 
4420   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4421                                      fd, file_offset);
4422   if (mapped_address == MAP_FAILED) {
4423     return NULL;
4424   }
4425   return mapped_address;
4426 }
4427 
4428 
4429 // Remap a block of memory.
4430 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4431                           char *addr, size_t bytes, bool read_only,
4432                           bool allow_exec) {
4433   // same as map_memory() on this OS
4434   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4435                         allow_exec);
4436 }
4437 
4438 
4439 // Unmap a block of memory.
4440 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4441   return munmap(addr, bytes) == 0;
4442 }
4443 
4444 void os::pause() {
4445   char filename[MAX_PATH];
4446   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4447     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4448   } else {
4449     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4450   }
4451 
4452   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4453   if (fd != -1) {
4454     struct stat buf;
4455     ::close(fd);
4456     while (::stat(filename, &buf) == 0) {
4457       (void)::poll(NULL, 0, 100);
4458     }
4459   } else {
4460     jio_fprintf(stderr,
4461                 "Could not open pause file '%s', continuing immediately.\n", filename);
4462   }
4463 }
4464 
4465 #ifndef PRODUCT
4466 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4467 // Turn this on if you need to trace synch operations.
4468 // Set RECORD_SYNCH_LIMIT to a large-enough value,
4469 // and call record_synch_enable and record_synch_disable
4470 // around the computation of interest.
4471 
4472 void record_synch(char* name, bool returning);  // defined below
4473 
4474 class RecordSynch {
4475   char* _name;
4476  public:
4477   RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4478   ~RecordSynch()                       { record_synch(_name, true); }
4479 };
4480 
4481 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4482 extern "C" ret name params {                                    \
4483   typedef ret name##_t params;                                  \
4484   static name##_t* implem = NULL;                               \
4485   static int callcount = 0;                                     \
4486   if (implem == NULL) {                                         \
4487     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4488     if (implem == NULL)  fatal(dlerror());                      \
4489   }                                                             \
4490   ++callcount;                                                  \
4491   RecordSynch _rs(#name);                                       \
4492   inner;                                                        \
4493   return implem args;                                           \
4494 }
4495 // in dbx, examine callcounts this way:
4496 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4497 
4498 #define CHECK_POINTER_OK(p) \
4499   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4500 #define CHECK_MU \
4501   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4502 #define CHECK_CV \
4503   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4504 #define CHECK_P(p) \
4505   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4506 
4507 #define CHECK_MUTEX(mutex_op) \
4508   CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4509 
4510 CHECK_MUTEX(   mutex_lock)
4511 CHECK_MUTEX(  _mutex_lock)
4512 CHECK_MUTEX( mutex_unlock)
4513 CHECK_MUTEX(_mutex_unlock)
4514 CHECK_MUTEX( mutex_trylock)
4515 CHECK_MUTEX(_mutex_trylock)
4516 
4517 #define CHECK_COND(cond_op) \
4518   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4519 
4520 CHECK_COND( cond_wait);
4521 CHECK_COND(_cond_wait);
4522 CHECK_COND(_cond_wait_cancel);
4523 
4524 #define CHECK_COND2(cond_op) \
4525   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4526 
4527 CHECK_COND2( cond_timedwait);
4528 CHECK_COND2(_cond_timedwait);
4529 CHECK_COND2(_cond_timedwait_cancel);
4530 
4531 // do the _lwp_* versions too
4532 #define mutex_t lwp_mutex_t
4533 #define cond_t  lwp_cond_t
4534 CHECK_MUTEX(  _lwp_mutex_lock)
4535 CHECK_MUTEX(  _lwp_mutex_unlock)
4536 CHECK_MUTEX(  _lwp_mutex_trylock)
4537 CHECK_MUTEX( __lwp_mutex_lock)
4538 CHECK_MUTEX( __lwp_mutex_unlock)
4539 CHECK_MUTEX( __lwp_mutex_trylock)
4540 CHECK_MUTEX(___lwp_mutex_lock)
4541 CHECK_MUTEX(___lwp_mutex_unlock)
4542 
4543 CHECK_COND(  _lwp_cond_wait);
4544 CHECK_COND( __lwp_cond_wait);
4545 CHECK_COND(___lwp_cond_wait);
4546 
4547 CHECK_COND2(  _lwp_cond_timedwait);
4548 CHECK_COND2( __lwp_cond_timedwait);
4549 #undef mutex_t
4550 #undef cond_t
4551 
4552 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4553 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4554 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4555 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4556 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4557 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4558 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4559 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4560 
4561 
4562 // recording machinery:
4563 
4564 enum { RECORD_SYNCH_LIMIT = 200 };
4565 char* record_synch_name[RECORD_SYNCH_LIMIT];
4566 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4567 bool record_synch_returning[RECORD_SYNCH_LIMIT];
4568 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4569 int record_synch_count = 0;
4570 bool record_synch_enabled = false;
4571 
4572 // in dbx, examine recorded data this way:
4573 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4574 
4575 void record_synch(char* name, bool returning) {
4576   if (record_synch_enabled) {
4577     if (record_synch_count < RECORD_SYNCH_LIMIT) {
4578       record_synch_name[record_synch_count] = name;
4579       record_synch_returning[record_synch_count] = returning;
4580       record_synch_thread[record_synch_count] = thr_self();
4581       record_synch_arg0ptr[record_synch_count] = &name;
4582       record_synch_count++;
4583     }
4584     // put more checking code here:
4585     // ...
4586   }
4587 }
4588 
4589 void record_synch_enable() {
4590   // start collecting trace data, if not already doing so
4591   if (!record_synch_enabled)  record_synch_count = 0;
4592   record_synch_enabled = true;
4593 }
4594 
4595 void record_synch_disable() {
4596   // stop collecting trace data
4597   record_synch_enabled = false;
4598 }
4599 
4600 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4601 #endif // PRODUCT
4602 
4603 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4604 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4605                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4606 
4607 
4608 // JVMTI & JVM monitoring and management support
4609 // The thread_cpu_time() and current_thread_cpu_time() are only
4610 // supported if is_thread_cpu_time_supported() returns true.
4611 // They are not supported on Solaris T1.
4612 
4613 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4614 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4615 // of a thread.
4616 //
4617 // current_thread_cpu_time() and thread_cpu_time(Thread *)
4618 // returns the fast estimate available on the platform.
4619 
4620 // hrtime_t gethrvtime() return value includes
4621 // user time but does not include system time
4622 jlong os::current_thread_cpu_time() {
4623   return (jlong) gethrvtime();
4624 }
4625 
4626 jlong os::thread_cpu_time(Thread *thread) {
4627   // return user level CPU time only to be consistent with
4628   // what current_thread_cpu_time returns.
4629   // thread_cpu_time_info() must be changed if this changes
4630   return os::thread_cpu_time(thread, false /* user time only */);
4631 }
4632 
4633 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4634   if (user_sys_cpu_time) {
4635     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4636   } else {
4637     return os::current_thread_cpu_time();
4638   }
4639 }
4640 
4641 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4642   char proc_name[64];
4643   int count;
4644   prusage_t prusage;
4645   jlong lwp_time;
4646   int fd;
4647 
4648   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
4649           getpid(),
4650           thread->osthread()->lwp_id());
4651   fd = ::open(proc_name, O_RDONLY);
4652   if (fd == -1) return -1;
4653 
4654   do {
4655     count = ::pread(fd,
4656                     (void *)&prusage.pr_utime,
4657                     thr_time_size,
4658                     thr_time_off);
4659   } while (count < 0 && errno == EINTR);
4660   ::close(fd);
4661   if (count < 0) return -1;
4662 
4663   if (user_sys_cpu_time) {
4664     // user + system CPU time
4665     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
4666                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
4667                  (jlong)prusage.pr_stime.tv_nsec +
4668                  (jlong)prusage.pr_utime.tv_nsec;
4669   } else {
4670     // user level CPU time only
4671     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
4672                 (jlong)prusage.pr_utime.tv_nsec;
4673   }
4674 
4675   return (lwp_time);
4676 }
4677 
4678 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4679   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4680   info_ptr->may_skip_backward = false;    // elapsed time not wall time
4681   info_ptr->may_skip_forward = false;     // elapsed time not wall time
4682   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4683 }
4684 
4685 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4686   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4687   info_ptr->may_skip_backward = false;    // elapsed time not wall time
4688   info_ptr->may_skip_forward = false;     // elapsed time not wall time
4689   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4690 }
4691 
4692 bool os::is_thread_cpu_time_supported() {
4693   return true;
4694 }
4695 
4696 // System loadavg support.  Returns -1 if load average cannot be obtained.
4697 // Return the load average for our processor set if the primitive exists
4698 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
4699 int os::loadavg(double loadavg[], int nelem) {
4700   if (pset_getloadavg_ptr != NULL) {
4701     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
4702   } else {
4703     return ::getloadavg(loadavg, nelem);
4704   }
4705 }
4706 
4707 //---------------------------------------------------------------------------------
4708 
4709 bool os::find(address addr, outputStream* st) {
4710   Dl_info dlinfo;
4711   memset(&dlinfo, 0, sizeof(dlinfo));
4712   if (dladdr(addr, &dlinfo) != 0) {
4713     st->print(PTR_FORMAT ": ", addr);
4714     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4715       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
4716     } else if (dlinfo.dli_fbase != NULL) {
4717       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
4718     } else {
4719       st->print("<absolute address>");
4720     }
4721     if (dlinfo.dli_fname != NULL) {
4722       st->print(" in %s", dlinfo.dli_fname);
4723     }
4724     if (dlinfo.dli_fbase != NULL) {
4725       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4726     }
4727     st->cr();
4728 
4729     if (Verbose) {
4730       // decode some bytes around the PC
4731       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4732       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4733       address       lowest = (address) dlinfo.dli_sname;
4734       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4735       if (begin < lowest)  begin = lowest;
4736       Dl_info dlinfo2;
4737       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4738           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4739         end = (address) dlinfo2.dli_saddr;
4740       }
4741       Disassembler::decode(begin, end, st);
4742     }
4743     return true;
4744   }
4745   return false;
4746 }
4747 
4748 // Following function has been added to support HotSparc's libjvm.so running
4749 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
4750 // src/solaris/hpi/native_threads in the EVM codebase.
4751 //
4752 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
4753 // libraries and should thus be removed. We will leave it behind for a while
4754 // until we no longer want to able to run on top of 1.3.0 Solaris production
4755 // JDK. See 4341971.
4756 
4757 #define STACK_SLACK 0x800
4758 
4759 extern "C" {
4760   intptr_t sysThreadAvailableStackWithSlack() {
4761     stack_t st;
4762     intptr_t retval, stack_top;
4763     retval = thr_stksegment(&st);
4764     assert(retval == 0, "incorrect return value from thr_stksegment");
4765     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
4766     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
4767     stack_top=(intptr_t)st.ss_sp-st.ss_size;
4768     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
4769   }
4770 }
4771 
4772 // ObjectMonitor park-unpark infrastructure ...
4773 //
4774 // We implement Solaris and Linux PlatformEvents with the
4775 // obvious condvar-mutex-flag triple.
4776 // Another alternative that works quite well is pipes:
4777 // Each PlatformEvent consists of a pipe-pair.
4778 // The thread associated with the PlatformEvent
4779 // calls park(), which reads from the input end of the pipe.
4780 // Unpark() writes into the other end of the pipe.
4781 // The write-side of the pipe must be set NDELAY.
4782 // Unfortunately pipes consume a large # of handles.
4783 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
4784 // Using pipes for the 1st few threads might be workable, however.
4785 //
4786 // park() is permitted to return spuriously.
4787 // Callers of park() should wrap the call to park() in
4788 // an appropriate loop.  A litmus test for the correct
4789 // usage of park is the following: if park() were modified
4790 // to immediately return 0 your code should still work,
4791 // albeit degenerating to a spin loop.
4792 //
4793 // In a sense, park()-unpark() just provides more polite spinning
4794 // and polling with the key difference over naive spinning being
4795 // that a parked thread needs to be explicitly unparked() in order
4796 // to wake up and to poll the underlying condition.
4797 //
4798 // Assumption:
4799 //    Only one parker can exist on an event, which is why we allocate
4800 //    them per-thread. Multiple unparkers can coexist.
4801 //
4802 // _Event transitions in park()
4803 //   -1 => -1 : illegal
4804 //    1 =>  0 : pass - return immediately
4805 //    0 => -1 : block; then set _Event to 0 before returning
4806 //
4807 // _Event transitions in unpark()
4808 //    0 => 1 : just return
4809 //    1 => 1 : just return
4810 //   -1 => either 0 or 1; must signal target thread
4811 //         That is, we can safely transition _Event from -1 to either
4812 //         0 or 1.
4813 //
4814 // _Event serves as a restricted-range semaphore.
4815 //   -1 : thread is blocked, i.e. there is a waiter
4816 //    0 : neutral: thread is running or ready,
4817 //        could have been signaled after a wait started
4818 //    1 : signaled - thread is running or ready
4819 //
4820 // Another possible encoding of _Event would be with
4821 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4822 //
4823 // TODO-FIXME: add DTRACE probes for:
4824 // 1.   Tx parks
4825 // 2.   Ty unparks Tx
4826 // 3.   Tx resumes from park
4827 
4828 
4829 // value determined through experimentation
4830 #define ROUNDINGFIX 11
4831 
4832 // utility to compute the abstime argument to timedwait.
4833 // TODO-FIXME: switch from compute_abstime() to unpackTime().
4834 
4835 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
4836   // millis is the relative timeout time
4837   // abstime will be the absolute timeout time
4838   if (millis < 0)  millis = 0;
4839   struct timeval now;
4840   int status = gettimeofday(&now, NULL);
4841   assert(status == 0, "gettimeofday");
4842   jlong seconds = millis / 1000;
4843   jlong max_wait_period;
4844 
4845   if (UseLWPSynchronization) {
4846     // forward port of fix for 4275818 (not sleeping long enough)
4847     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
4848     // _lwp_cond_timedwait() used a round_down algorithm rather
4849     // than a round_up. For millis less than our roundfactor
4850     // it rounded down to 0 which doesn't meet the spec.
4851     // For millis > roundfactor we may return a bit sooner, but
4852     // since we can not accurately identify the patch level and
4853     // this has already been fixed in Solaris 9 and 8 we will
4854     // leave it alone rather than always rounding down.
4855 
4856     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
4857     // It appears that when we go directly through Solaris _lwp_cond_timedwait()
4858     // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
4859     max_wait_period = 21000000;
4860   } else {
4861     max_wait_period = 50000000;
4862   }
4863   millis %= 1000;
4864   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
4865     seconds = max_wait_period;
4866   }
4867   abstime->tv_sec = now.tv_sec  + seconds;
4868   long       usec = now.tv_usec + millis * 1000;
4869   if (usec >= 1000000) {
4870     abstime->tv_sec += 1;
4871     usec -= 1000000;
4872   }
4873   abstime->tv_nsec = usec * 1000;
4874   return abstime;
4875 }
4876 
4877 void os::PlatformEvent::park() {           // AKA: down()
4878   // Transitions for _Event:
4879   //   -1 => -1 : illegal
4880   //    1 =>  0 : pass - return immediately
4881   //    0 => -1 : block; then set _Event to 0 before returning
4882 
4883   // Invariant: Only the thread associated with the Event/PlatformEvent
4884   // may call park().
4885   assert(_nParked == 0, "invariant");
4886 
4887   int v;
4888   for (;;) {
4889     v = _Event;
4890     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4891   }
4892   guarantee(v >= 0, "invariant");
4893   if (v == 0) {
4894     // Do this the hard way by blocking ...
4895     // See http://monaco.sfbay/detail.jsf?cr=5094058.
4896     int status = os::Solaris::mutex_lock(_mutex);
4897     assert_status(status == 0, status, "mutex_lock");
4898     guarantee(_nParked == 0, "invariant");
4899     ++_nParked;
4900     while (_Event < 0) {
4901       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4902       // Treat this the same as if the wait was interrupted
4903       // With usr/lib/lwp going to kernel, always handle ETIME
4904       status = os::Solaris::cond_wait(_cond, _mutex);
4905       if (status == ETIME) status = EINTR;
4906       assert_status(status == 0 || status == EINTR, status, "cond_wait");
4907     }
4908     --_nParked;
4909     _Event = 0;
4910     status = os::Solaris::mutex_unlock(_mutex);
4911     assert_status(status == 0, status, "mutex_unlock");
4912     // Paranoia to ensure our locked and lock-free paths interact
4913     // correctly with each other.
4914     OrderAccess::fence();
4915   }
4916 }
4917 
4918 int os::PlatformEvent::park(jlong millis) {
4919   // Transitions for _Event:
4920   //   -1 => -1 : illegal
4921   //    1 =>  0 : pass - return immediately
4922   //    0 => -1 : block; then set _Event to 0 before returning
4923 
4924   guarantee(_nParked == 0, "invariant");
4925   int v;
4926   for (;;) {
4927     v = _Event;
4928     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4929   }
4930   guarantee(v >= 0, "invariant");
4931   if (v != 0) return OS_OK;
4932 
4933   int ret = OS_TIMEOUT;
4934   timestruc_t abst;
4935   compute_abstime(&abst, millis);
4936 
4937   // See http://monaco.sfbay/detail.jsf?cr=5094058.
4938   int status = os::Solaris::mutex_lock(_mutex);
4939   assert_status(status == 0, status, "mutex_lock");
4940   guarantee(_nParked == 0, "invariant");
4941   ++_nParked;
4942   while (_Event < 0) {
4943     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
4944     assert_status(status == 0 || status == EINTR ||
4945                   status == ETIME || status == ETIMEDOUT,
4946                   status, "cond_timedwait");
4947     if (!FilterSpuriousWakeups) break;                // previous semantics
4948     if (status == ETIME || status == ETIMEDOUT) break;
4949     // We consume and ignore EINTR and spurious wakeups.
4950   }
4951   --_nParked;
4952   if (_Event >= 0) ret = OS_OK;
4953   _Event = 0;
4954   status = os::Solaris::mutex_unlock(_mutex);
4955   assert_status(status == 0, status, "mutex_unlock");
4956   // Paranoia to ensure our locked and lock-free paths interact
4957   // correctly with each other.
4958   OrderAccess::fence();
4959   return ret;
4960 }
4961 
4962 void os::PlatformEvent::unpark() {
4963   // Transitions for _Event:
4964   //    0 => 1 : just return
4965   //    1 => 1 : just return
4966   //   -1 => either 0 or 1; must signal target thread
4967   //         That is, we can safely transition _Event from -1 to either
4968   //         0 or 1.
4969   // See also: "Semaphores in Plan 9" by Mullender & Cox
4970   //
4971   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4972   // that it will take two back-to-back park() calls for the owning
4973   // thread to block. This has the benefit of forcing a spurious return
4974   // from the first park() call after an unpark() call which will help
4975   // shake out uses of park() and unpark() without condition variables.
4976 
4977   if (Atomic::xchg(1, &_Event) >= 0) return;
4978 
4979   // If the thread associated with the event was parked, wake it.
4980   // Wait for the thread assoc with the PlatformEvent to vacate.
4981   int status = os::Solaris::mutex_lock(_mutex);
4982   assert_status(status == 0, status, "mutex_lock");
4983   int AnyWaiters = _nParked;
4984   status = os::Solaris::mutex_unlock(_mutex);
4985   assert_status(status == 0, status, "mutex_unlock");
4986   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4987   if (AnyWaiters != 0) {
4988     // Note that we signal() *after* dropping the lock for "immortal" Events.
4989     // This is safe and avoids a common class of  futile wakeups.  In rare
4990     // circumstances this can cause a thread to return prematurely from
4991     // cond_{timed}wait() but the spurious wakeup is benign and the victim
4992     // will simply re-test the condition and re-park itself.
4993     // This provides particular benefit if the underlying platform does not
4994     // provide wait morphing.
4995     status = os::Solaris::cond_signal(_cond);
4996     assert_status(status == 0, status, "cond_signal");
4997   }
4998 }
4999 
5000 // JSR166
5001 // -------------------------------------------------------
5002 
5003 // The solaris and linux implementations of park/unpark are fairly
5004 // conservative for now, but can be improved. They currently use a
5005 // mutex/condvar pair, plus _counter.
5006 // Park decrements _counter if > 0, else does a condvar wait.  Unpark
5007 // sets count to 1 and signals condvar.  Only one thread ever waits
5008 // on the condvar. Contention seen when trying to park implies that someone
5009 // is unparking you, so don't wait. And spurious returns are fine, so there
5010 // is no need to track notifications.
5011 
5012 #define MAX_SECS 100000000
5013 
5014 // This code is common to linux and solaris and will be moved to a
5015 // common place in dolphin.
5016 //
5017 // The passed in time value is either a relative time in nanoseconds
5018 // or an absolute time in milliseconds. Either way it has to be unpacked
5019 // into suitable seconds and nanoseconds components and stored in the
5020 // given timespec structure.
5021 // Given time is a 64-bit value and the time_t used in the timespec is only
5022 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5023 // overflow if times way in the future are given. Further on Solaris versions
5024 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5025 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5026 // As it will be 28 years before "now + 100000000" will overflow we can
5027 // ignore overflow and just impose a hard-limit on seconds using the value
5028 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5029 // years from "now".
5030 //
5031 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5032   assert(time > 0, "convertTime");
5033 
5034   struct timeval now;
5035   int status = gettimeofday(&now, NULL);
5036   assert(status == 0, "gettimeofday");
5037 
5038   time_t max_secs = now.tv_sec + MAX_SECS;
5039 
5040   if (isAbsolute) {
5041     jlong secs = time / 1000;
5042     if (secs > max_secs) {
5043       absTime->tv_sec = max_secs;
5044     } else {
5045       absTime->tv_sec = secs;
5046     }
5047     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5048   } else {
5049     jlong secs = time / NANOSECS_PER_SEC;
5050     if (secs >= MAX_SECS) {
5051       absTime->tv_sec = max_secs;
5052       absTime->tv_nsec = 0;
5053     } else {
5054       absTime->tv_sec = now.tv_sec + secs;
5055       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5056       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5057         absTime->tv_nsec -= NANOSECS_PER_SEC;
5058         ++absTime->tv_sec; // note: this must be <= max_secs
5059       }
5060     }
5061   }
5062   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5063   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5064   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5065   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5066 }
5067 
5068 void Parker::park(bool isAbsolute, jlong time) {
5069   // Ideally we'd do something useful while spinning, such
5070   // as calling unpackTime().
5071 
5072   // Optional fast-path check:
5073   // Return immediately if a permit is available.
5074   // We depend on Atomic::xchg() having full barrier semantics
5075   // since we are doing a lock-free update to _counter.
5076   if (Atomic::xchg(0, &_counter) > 0) return;
5077 
5078   // Optional fast-exit: Check interrupt before trying to wait
5079   Thread* thread = Thread::current();
5080   assert(thread->is_Java_thread(), "Must be JavaThread");
5081   JavaThread *jt = (JavaThread *)thread;
5082   if (Thread::is_interrupted(thread, false)) {
5083     return;
5084   }
5085 
5086   // First, demultiplex/decode time arguments
5087   timespec absTime;
5088   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5089     return;
5090   }
5091   if (time > 0) {
5092     // Warning: this code might be exposed to the old Solaris time
5093     // round-down bugs.  Grep "roundingFix" for details.
5094     unpackTime(&absTime, isAbsolute, time);
5095   }
5096 
5097   // Enter safepoint region
5098   // Beware of deadlocks such as 6317397.
5099   // The per-thread Parker:: _mutex is a classic leaf-lock.
5100   // In particular a thread must never block on the Threads_lock while
5101   // holding the Parker:: mutex.  If safepoints are pending both the
5102   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5103   ThreadBlockInVM tbivm(jt);
5104 
5105   // Don't wait if cannot get lock since interference arises from
5106   // unblocking.  Also. check interrupt before trying wait
5107   if (Thread::is_interrupted(thread, false) ||
5108       os::Solaris::mutex_trylock(_mutex) != 0) {
5109     return;
5110   }
5111 
5112   int status;
5113 
5114   if (_counter > 0)  { // no wait needed
5115     _counter = 0;
5116     status = os::Solaris::mutex_unlock(_mutex);
5117     assert(status == 0, "invariant");
5118     // Paranoia to ensure our locked and lock-free paths interact
5119     // correctly with each other and Java-level accesses.
5120     OrderAccess::fence();
5121     return;
5122   }
5123 
5124   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5125   jt->set_suspend_equivalent();
5126   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5127 
5128   // Do this the hard way by blocking ...
5129   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5130   if (time == 0) {
5131     status = os::Solaris::cond_wait(_cond, _mutex);
5132   } else {
5133     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5134   }
5135   // Note that an untimed cond_wait() can sometimes return ETIME on older
5136   // versions of the Solaris.
5137   assert_status(status == 0 || status == EINTR ||
5138                 status == ETIME || status == ETIMEDOUT,
5139                 status, "cond_timedwait");
5140 
5141   _counter = 0;
5142   status = os::Solaris::mutex_unlock(_mutex);
5143   assert_status(status == 0, status, "mutex_unlock");
5144   // Paranoia to ensure our locked and lock-free paths interact
5145   // correctly with each other and Java-level accesses.
5146   OrderAccess::fence();
5147 
5148   // If externally suspended while waiting, re-suspend
5149   if (jt->handle_special_suspend_equivalent_condition()) {
5150     jt->java_suspend_self();
5151   }
5152 }
5153 
5154 void Parker::unpark() {
5155   int status = os::Solaris::mutex_lock(_mutex);
5156   assert(status == 0, "invariant");
5157   const int s = _counter;
5158   _counter = 1;
5159   status = os::Solaris::mutex_unlock(_mutex);
5160   assert(status == 0, "invariant");
5161 
5162   if (s < 1) {
5163     status = os::Solaris::cond_signal(_cond);
5164     assert(status == 0, "invariant");
5165   }
5166 }
5167 
5168 // Platform Monitor implementation
5169 
5170 os::PlatformMonitor::PlatformMonitor() {
5171   int status = os::Solaris::cond_init(&_cond);
5172   assert_status(status == 0, status, "cond_init");
5173   status = os::Solaris::mutex_init(&_mutex);
5174   assert_status(status == 0, status, "mutex_init");
5175 }
5176 
5177 os::PlatformMonitor::~PlatformMonitor() {
5178   int status = os::Solaris::cond_destroy(&_cond);
5179   assert_status(status == 0, status, "cond_destroy");
5180   status = os::Solaris::mutex_destroy(&_mutex);
5181   assert_status(status == 0, status, "mutex_destroy");
5182 }
5183 
5184 void os::PlatformMonitor::lock() {
5185   int status = os::Solaris::mutex_lock(&_mutex);
5186   assert_status(status == 0, status, "mutex_lock");
5187 }
5188 
5189 void os::PlatformMonitor::unlock() {
5190   int status = os::Solaris::mutex_unlock(&_mutex);
5191   assert_status(status == 0, status, "mutex_unlock");
5192 }
5193 
5194 bool os::PlatformMonitor::try_lock() {
5195   int status = os::Solaris::mutex_trylock(&_mutex);
5196   assert_status(status == 0 || status == EBUSY, status, "mutex_trylock");
5197   return status == 0;
5198 }
5199 
5200 // Must already be locked
5201 int os::PlatformMonitor::wait(jlong millis) {
5202   assert(millis >= 0, "negative timeout");
5203   if (millis > 0) {
5204     timestruc_t abst;
5205     int ret = OS_TIMEOUT;
5206     compute_abstime(&abst, millis);
5207     int status = os::Solaris::cond_timedwait(&_cond, &_mutex, &abst);
5208     assert_status(status == 0 || status == EINTR ||
5209                   status == ETIME || status == ETIMEDOUT,
5210                   status, "cond_timedwait");
5211     // EINTR acts as spurious wakeup - which is permitted anyway
5212     if (status == 0 || status == EINTR) {
5213       ret = OS_OK;
5214     }
5215     return ret;
5216   } else {
5217     int status = os::Solaris::cond_wait(&_cond, &_mutex);
5218     assert_status(status == 0 || status == EINTR,
5219                   status, "cond_wait");
5220     return OS_OK;
5221   }
5222 }
5223 
5224 void os::PlatformMonitor::notify() {
5225   int status = os::Solaris::cond_signal(&_cond);
5226   assert_status(status == 0, status, "cond_signal");
5227 }
5228 
5229 void os::PlatformMonitor::notify_all() {
5230   int status = os::Solaris::cond_broadcast(&_cond);
5231   assert_status(status == 0, status, "cond_broadcast");
5232 }
5233 
5234 extern char** environ;
5235 
5236 // Run the specified command in a separate process. Return its exit value,
5237 // or -1 on failure (e.g. can't fork a new process).
5238 // Unlike system(), this function can be called from signal handler. It
5239 // doesn't block SIGINT et al.
5240 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5241   char * argv[4];
5242   argv[0] = (char *)"sh";
5243   argv[1] = (char *)"-c";
5244   argv[2] = cmd;
5245   argv[3] = NULL;
5246 
5247   // fork is async-safe, fork1 is not so can't use in signal handler
5248   pid_t pid;
5249   Thread* t = Thread::current_or_null_safe();
5250   if (t != NULL && t->is_inside_signal_handler()) {
5251     pid = fork();
5252   } else {
5253     pid = fork1();
5254   }
5255 
5256   if (pid < 0) {
5257     // fork failed
5258     warning("fork failed: %s", os::strerror(errno));
5259     return -1;
5260 
5261   } else if (pid == 0) {
5262     // child process
5263 
5264     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5265     execve("/usr/bin/sh", argv, environ);
5266 
5267     // execve failed
5268     _exit(-1);
5269 
5270   } else  {
5271     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5272     // care about the actual exit code, for now.
5273 
5274     int status;
5275 
5276     // Wait for the child process to exit.  This returns immediately if
5277     // the child has already exited. */
5278     while (waitpid(pid, &status, 0) < 0) {
5279       switch (errno) {
5280       case ECHILD: return 0;
5281       case EINTR: break;
5282       default: return -1;
5283       }
5284     }
5285 
5286     if (WIFEXITED(status)) {
5287       // The child exited normally; get its exit code.
5288       return WEXITSTATUS(status);
5289     } else if (WIFSIGNALED(status)) {
5290       // The child exited because of a signal
5291       // The best value to return is 0x80 + signal number,
5292       // because that is what all Unix shells do, and because
5293       // it allows callers to distinguish between process exit and
5294       // process death by signal.
5295       return 0x80 + WTERMSIG(status);
5296     } else {
5297       // Unknown exit code; pass it through
5298       return status;
5299     }
5300   }
5301 }
5302 
5303 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5304   size_t res;
5305   RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5306   return res;
5307 }
5308 
5309 int os::close(int fd) {
5310   return ::close(fd);
5311 }
5312 
5313 int os::socket_close(int fd) {
5314   return ::close(fd);
5315 }
5316 
5317 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5318   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5319          "Assumed _thread_in_native");
5320   RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5321 }
5322 
5323 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5324   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5325          "Assumed _thread_in_native");
5326   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5327 }
5328 
5329 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5330   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5331 }
5332 
5333 // As both poll and select can be interrupted by signals, we have to be
5334 // prepared to restart the system call after updating the timeout, unless
5335 // a poll() is done with timeout == -1, in which case we repeat with this
5336 // "wait forever" value.
5337 
5338 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5339   int _result;
5340   _result = ::connect(fd, him, len);
5341 
5342   // On Solaris, when a connect() call is interrupted, the connection
5343   // can be established asynchronously (see 6343810). Subsequent calls
5344   // to connect() must check the errno value which has the semantic
5345   // described below (copied from the connect() man page). Handling
5346   // of asynchronously established connections is required for both
5347   // blocking and non-blocking sockets.
5348   //     EINTR            The  connection  attempt  was   interrupted
5349   //                      before  any data arrived by the delivery of
5350   //                      a signal. The connection, however, will  be
5351   //                      established asynchronously.
5352   //
5353   //     EINPROGRESS      The socket is non-blocking, and the connec-
5354   //                      tion  cannot  be completed immediately.
5355   //
5356   //     EALREADY         The socket is non-blocking,  and a previous
5357   //                      connection  attempt  has  not yet been com-
5358   //                      pleted.
5359   //
5360   //     EISCONN          The socket is already connected.
5361   if (_result == OS_ERR && errno == EINTR) {
5362     // restarting a connect() changes its errno semantics
5363     RESTARTABLE(::connect(fd, him, len), _result);
5364     // undo these changes
5365     if (_result == OS_ERR) {
5366       if (errno == EALREADY) {
5367         errno = EINPROGRESS; // fall through
5368       } else if (errno == EISCONN) {
5369         errno = 0;
5370         return OS_OK;
5371       }
5372     }
5373   }
5374   return _result;
5375 }
5376 
5377 // Get the default path to the core file
5378 // Returns the length of the string
5379 int os::get_core_path(char* buffer, size_t bufferSize) {
5380   const char* p = get_current_directory(buffer, bufferSize);
5381 
5382   if (p == NULL) {
5383     assert(p != NULL, "failed to get current directory");
5384     return 0;
5385   }
5386 
5387   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5388                                               p, current_process_id());
5389 
5390   return strlen(buffer);
5391 }
5392 
5393 #ifndef PRODUCT
5394 void TestReserveMemorySpecial_test() {
5395   // No tests available for this platform
5396 }
5397 #endif
5398 
5399 bool os::start_debugging(char *buf, int buflen) {
5400   int len = (int)strlen(buf);
5401   char *p = &buf[len];
5402 
5403   jio_snprintf(p, buflen-len,
5404                "\n\n"
5405                "Do you want to debug the problem?\n\n"
5406                "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5407                "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5408                "Otherwise, press RETURN to abort...",
5409                os::current_process_id(), os::current_thread_id());
5410 
5411   bool yes = os::message_box("Unexpected Error", buf);
5412 
5413   if (yes) {
5414     // yes, user asked VM to launch debugger
5415     jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5416 
5417     os::fork_and_exec(buf);
5418     yes = false;
5419   }
5420   return yes;
5421 }