1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compilerOracle.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  39 #include "gc/g1/heapRegion.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/collectedHeap.hpp"
  42 #include "gc/shared/gcLocker.inline.hpp"
  43 #include "interpreter/bytecode.hpp"
  44 #include "interpreter/interpreter.hpp"
  45 #include "interpreter/linkResolver.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "oops/objArrayKlass.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "opto/ad.hpp"
  50 #include "opto/addnode.hpp"
  51 #include "opto/callnode.hpp"
  52 #include "opto/cfgnode.hpp"
  53 #include "opto/graphKit.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/matcher.hpp"
  56 #include "opto/memnode.hpp"
  57 #include "opto/mulnode.hpp"
  58 #include "opto/runtime.hpp"
  59 #include "opto/subnode.hpp"
  60 #include "runtime/atomic.inline.hpp"
  61 #include "runtime/fprofiler.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/interfaceSupport.hpp"
  64 #include "runtime/javaCalls.hpp"
  65 #include "runtime/sharedRuntime.hpp"
  66 #include "runtime/signature.hpp"
  67 #include "runtime/threadCritical.hpp"
  68 #include "runtime/vframe.hpp"
  69 #include "runtime/vframeArray.hpp"
  70 #include "runtime/vframe_hp.hpp"
  71 #include "utilities/copy.hpp"
  72 #include "utilities/preserveException.hpp"
  73 
  74 
  75 // For debugging purposes:
  76 //  To force FullGCALot inside a runtime function, add the following two lines
  77 //
  78 //  Universe::release_fullgc_alot_dummy();
  79 //  MarkSweep::invoke(0, "Debugging");
  80 //
  81 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  82 
  83 
  84 
  85 
  86 // Compiled code entry points
  87 address OptoRuntime::_new_instance_Java                           = NULL;
  88 address OptoRuntime::_new_array_Java                              = NULL;
  89 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  90 address OptoRuntime::_multianewarray2_Java                        = NULL;
  91 address OptoRuntime::_multianewarray3_Java                        = NULL;
  92 address OptoRuntime::_multianewarray4_Java                        = NULL;
  93 address OptoRuntime::_multianewarray5_Java                        = NULL;
  94 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  95 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
  96 address OptoRuntime::_g1_wb_post_Java                             = NULL;
  97 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
  98 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
  99 address OptoRuntime::_rethrow_Java                                = NULL;
 100 
 101 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 102 address OptoRuntime::_register_finalizer_Java                     = NULL;
 103 address OptoRuntime::_montgomeryMultiply_Java                     = NULL;
 104 
 105 # ifdef ENABLE_ZAP_DEAD_LOCALS
 106 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 107 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 108 # endif
 109 
 110 ExceptionBlob* OptoRuntime::_exception_blob;
 111 
 112 // This should be called in an assertion at the start of OptoRuntime routines
 113 // which are entered from compiled code (all of them)
 114 #ifdef ASSERT
 115 static bool check_compiled_frame(JavaThread* thread) {
 116   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 117   RegisterMap map(thread, false);
 118   frame caller = thread->last_frame().sender(&map);
 119   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 120   return true;
 121 }
 122 #endif // ASSERT
 123 
 124 
 125 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 126   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 127   if (var == NULL) { return false; }
 128 
 129 bool OptoRuntime::generate(ciEnv* env) {
 130 
 131   generate_exception_blob();
 132 
 133   // Note: tls: Means fetching the return oop out of the thread-local storage
 134   //
 135   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 136   // -------------------------------------------------------------------------------------------------------------------------------
 137   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 138   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 139   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 140   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 141   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 142   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 143   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 144   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 145   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 146   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 147   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 148   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 149 
 150   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 151   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 152 
 153   gen(env, _montgomeryMultiply_Java        , montgomeryMultiply_Type      , SharedRuntime::montgomery_multiply
 154                                                                                                             ,    0 , false, false, false);
 155 
 156 # ifdef ENABLE_ZAP_DEAD_LOCALS
 157   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 158   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 159 # endif
 160   return true;
 161 }
 162 
 163 #undef gen
 164 
 165 
 166 // Helper method to do generation of RunTimeStub's
 167 address OptoRuntime::generate_stub( ciEnv* env,
 168                                     TypeFunc_generator gen, address C_function,
 169                                     const char *name, int is_fancy_jump,
 170                                     bool pass_tls,
 171                                     bool save_argument_registers,
 172                                     bool return_pc ) {
 173   ResourceMark rm;
 174   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 175   return  C.stub_entry_point();
 176 }
 177 
 178 const char* OptoRuntime::stub_name(address entry) {
 179 #ifndef PRODUCT
 180   CodeBlob* cb = CodeCache::find_blob(entry);
 181   RuntimeStub* rs =(RuntimeStub *)cb;
 182   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 183   return rs->name();
 184 #else
 185   // Fast implementation for product mode (maybe it should be inlined too)
 186   return "runtime stub";
 187 #endif
 188 }
 189 
 190 
 191 //=============================================================================
 192 // Opto compiler runtime routines
 193 //=============================================================================
 194 
 195 
 196 //=============================allocation======================================
 197 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 198 // and try allocation again.
 199 
 200 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 201   // After any safepoint, just before going back to compiled code,
 202   // we inform the GC that we will be doing initializing writes to
 203   // this object in the future without emitting card-marks, so
 204   // GC may take any compensating steps.
 205   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 206 
 207   oop new_obj = thread->vm_result();
 208   if (new_obj == NULL)  return;
 209 
 210   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 211          "compiler must check this first");
 212   // GC may decide to give back a safer copy of new_obj.
 213   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 214   thread->set_vm_result(new_obj);
 215 }
 216 
 217 // object allocation
 218 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 219   JRT_BLOCK;
 220 #ifndef PRODUCT
 221   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 222 #endif
 223   assert(check_compiled_frame(thread), "incorrect caller");
 224 
 225   // These checks are cheap to make and support reflective allocation.
 226   int lh = klass->layout_helper();
 227   if (Klass::layout_helper_needs_slow_path(lh)
 228       || !InstanceKlass::cast(klass)->is_initialized()) {
 229     KlassHandle kh(THREAD, klass);
 230     kh->check_valid_for_instantiation(false, THREAD);
 231     if (!HAS_PENDING_EXCEPTION) {
 232       InstanceKlass::cast(kh())->initialize(THREAD);
 233     }
 234     if (!HAS_PENDING_EXCEPTION) {
 235       klass = kh();
 236     } else {
 237       klass = NULL;
 238     }
 239   }
 240 
 241   if (klass != NULL) {
 242     // Scavenge and allocate an instance.
 243     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 244     thread->set_vm_result(result);
 245 
 246     // Pass oops back through thread local storage.  Our apparent type to Java
 247     // is that we return an oop, but we can block on exit from this routine and
 248     // a GC can trash the oop in C's return register.  The generated stub will
 249     // fetch the oop from TLS after any possible GC.
 250   }
 251 
 252   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 253   JRT_BLOCK_END;
 254 
 255   if (GraphKit::use_ReduceInitialCardMarks()) {
 256     // inform GC that we won't do card marks for initializing writes.
 257     new_store_pre_barrier(thread);
 258   }
 259 JRT_END
 260 
 261 
 262 // array allocation
 263 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 264   JRT_BLOCK;
 265 #ifndef PRODUCT
 266   SharedRuntime::_new_array_ctr++;            // new array requires GC
 267 #endif
 268   assert(check_compiled_frame(thread), "incorrect caller");
 269 
 270   // Scavenge and allocate an instance.
 271   oop result;
 272 
 273   if (array_type->oop_is_typeArray()) {
 274     // The oopFactory likes to work with the element type.
 275     // (We could bypass the oopFactory, since it doesn't add much value.)
 276     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 277     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 278   } else {
 279     // Although the oopFactory likes to work with the elem_type,
 280     // the compiler prefers the array_type, since it must already have
 281     // that latter value in hand for the fast path.
 282     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 283     result = oopFactory::new_objArray(elem_type, len, THREAD);
 284   }
 285 
 286   // Pass oops back through thread local storage.  Our apparent type to Java
 287   // is that we return an oop, but we can block on exit from this routine and
 288   // a GC can trash the oop in C's return register.  The generated stub will
 289   // fetch the oop from TLS after any possible GC.
 290   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 291   thread->set_vm_result(result);
 292   JRT_BLOCK_END;
 293 
 294   if (GraphKit::use_ReduceInitialCardMarks()) {
 295     // inform GC that we won't do card marks for initializing writes.
 296     new_store_pre_barrier(thread);
 297   }
 298 JRT_END
 299 
 300 // array allocation without zeroing
 301 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 302   JRT_BLOCK;
 303 #ifndef PRODUCT
 304   SharedRuntime::_new_array_ctr++;            // new array requires GC
 305 #endif
 306   assert(check_compiled_frame(thread), "incorrect caller");
 307 
 308   // Scavenge and allocate an instance.
 309   oop result;
 310 
 311   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 312   // The oopFactory likes to work with the element type.
 313   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 314   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 315 
 316   // Pass oops back through thread local storage.  Our apparent type to Java
 317   // is that we return an oop, but we can block on exit from this routine and
 318   // a GC can trash the oop in C's return register.  The generated stub will
 319   // fetch the oop from TLS after any possible GC.
 320   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 321   thread->set_vm_result(result);
 322   JRT_BLOCK_END;
 323 
 324   if (GraphKit::use_ReduceInitialCardMarks()) {
 325     // inform GC that we won't do card marks for initializing writes.
 326     new_store_pre_barrier(thread);
 327   }
 328 
 329   oop result = thread->vm_result();
 330   if ((len > 0) && (result != NULL) &&
 331       is_deoptimized_caller_frame(thread)) {
 332     // Zero array here if the caller is deoptimized.
 333     int size = ((typeArrayOop)result)->object_size();
 334     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 335     const size_t hs = arrayOopDesc::header_size(elem_type);
 336     // Align to next 8 bytes to avoid trashing arrays's length.
 337     const size_t aligned_hs = align_object_offset(hs);
 338     HeapWord* obj = (HeapWord*)result;
 339     if (aligned_hs > hs) {
 340       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 341     }
 342     // Optimized zeroing.
 343     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 344   }
 345 
 346 JRT_END
 347 
 348 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 349 
 350 // multianewarray for 2 dimensions
 351 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 352 #ifndef PRODUCT
 353   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 354 #endif
 355   assert(check_compiled_frame(thread), "incorrect caller");
 356   assert(elem_type->is_klass(), "not a class");
 357   jint dims[2];
 358   dims[0] = len1;
 359   dims[1] = len2;
 360   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 361   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 362   thread->set_vm_result(obj);
 363 JRT_END
 364 
 365 // multianewarray for 3 dimensions
 366 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 367 #ifndef PRODUCT
 368   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 369 #endif
 370   assert(check_compiled_frame(thread), "incorrect caller");
 371   assert(elem_type->is_klass(), "not a class");
 372   jint dims[3];
 373   dims[0] = len1;
 374   dims[1] = len2;
 375   dims[2] = len3;
 376   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 377   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 378   thread->set_vm_result(obj);
 379 JRT_END
 380 
 381 // multianewarray for 4 dimensions
 382 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 383 #ifndef PRODUCT
 384   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 385 #endif
 386   assert(check_compiled_frame(thread), "incorrect caller");
 387   assert(elem_type->is_klass(), "not a class");
 388   jint dims[4];
 389   dims[0] = len1;
 390   dims[1] = len2;
 391   dims[2] = len3;
 392   dims[3] = len4;
 393   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 394   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 395   thread->set_vm_result(obj);
 396 JRT_END
 397 
 398 // multianewarray for 5 dimensions
 399 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 400 #ifndef PRODUCT
 401   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 402 #endif
 403   assert(check_compiled_frame(thread), "incorrect caller");
 404   assert(elem_type->is_klass(), "not a class");
 405   jint dims[5];
 406   dims[0] = len1;
 407   dims[1] = len2;
 408   dims[2] = len3;
 409   dims[3] = len4;
 410   dims[4] = len5;
 411   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 412   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 413   thread->set_vm_result(obj);
 414 JRT_END
 415 
 416 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 417   assert(check_compiled_frame(thread), "incorrect caller");
 418   assert(elem_type->is_klass(), "not a class");
 419   assert(oop(dims)->is_typeArray(), "not an array");
 420 
 421   ResourceMark rm;
 422   jint len = dims->length();
 423   assert(len > 0, "Dimensions array should contain data");
 424   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 425   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 426   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 427 
 428   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 429   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 430   thread->set_vm_result(obj);
 431 JRT_END
 432 
 433 
 434 const TypeFunc *OptoRuntime::new_instance_Type() {
 435   // create input type (domain)
 436   const Type **fields = TypeTuple::fields(1);
 437   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 438   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 439 
 440   // create result type (range)
 441   fields = TypeTuple::fields(1);
 442   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 443 
 444   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 445 
 446   return TypeFunc::make(domain, range);
 447 }
 448 
 449 
 450 const TypeFunc *OptoRuntime::athrow_Type() {
 451   // create input type (domain)
 452   const Type **fields = TypeTuple::fields(1);
 453   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 454   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 455 
 456   // create result type (range)
 457   fields = TypeTuple::fields(0);
 458 
 459   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 460 
 461   return TypeFunc::make(domain, range);
 462 }
 463 
 464 
 465 const TypeFunc *OptoRuntime::new_array_Type() {
 466   // create input type (domain)
 467   const Type **fields = TypeTuple::fields(2);
 468   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 469   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 470   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 471 
 472   // create result type (range)
 473   fields = TypeTuple::fields(1);
 474   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 475 
 476   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 477 
 478   return TypeFunc::make(domain, range);
 479 }
 480 
 481 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 482   // create input type (domain)
 483   const int nargs = ndim + 1;
 484   const Type **fields = TypeTuple::fields(nargs);
 485   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 486   for( int i = 1; i < nargs; i++ )
 487     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 488   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 489 
 490   // create result type (range)
 491   fields = TypeTuple::fields(1);
 492   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 493   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 494 
 495   return TypeFunc::make(domain, range);
 496 }
 497 
 498 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 499   return multianewarray_Type(2);
 500 }
 501 
 502 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 503   return multianewarray_Type(3);
 504 }
 505 
 506 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 507   return multianewarray_Type(4);
 508 }
 509 
 510 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 511   return multianewarray_Type(5);
 512 }
 513 
 514 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 515   // create input type (domain)
 516   const Type **fields = TypeTuple::fields(2);
 517   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 518   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 519   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 520 
 521   // create result type (range)
 522   fields = TypeTuple::fields(1);
 523   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 524   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 525 
 526   return TypeFunc::make(domain, range);
 527 }
 528 
 529 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 530   const Type **fields = TypeTuple::fields(2);
 531   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 532   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 533   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 534 
 535   // create result type (range)
 536   fields = TypeTuple::fields(0);
 537   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 538 
 539   return TypeFunc::make(domain, range);
 540 }
 541 
 542 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 543 
 544   const Type **fields = TypeTuple::fields(2);
 545   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 546   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 547   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 548 
 549   // create result type (range)
 550   fields = TypeTuple::fields(0);
 551   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 552 
 553   return TypeFunc::make(domain, range);
 554 }
 555 
 556 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 557   // create input type (domain)
 558   const Type **fields = TypeTuple::fields(1);
 559   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 560   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 561 
 562   // create result type (range)
 563   fields = TypeTuple::fields(0);
 564   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 565 
 566   return TypeFunc::make(domain, range);
 567 }
 568 
 569 # ifdef ENABLE_ZAP_DEAD_LOCALS
 570 // Type used for stub generation for zap_dead_locals.
 571 // No inputs or outputs
 572 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 573   // create input type (domain)
 574   const Type **fields = TypeTuple::fields(0);
 575   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 576 
 577   // create result type (range)
 578   fields = TypeTuple::fields(0);
 579   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 580 
 581   return TypeFunc::make(domain,range);
 582 }
 583 # endif
 584 
 585 
 586 //-----------------------------------------------------------------------------
 587 // Monitor Handling
 588 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 589   // create input type (domain)
 590   const Type **fields = TypeTuple::fields(2);
 591   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 592   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 593   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 594 
 595   // create result type (range)
 596   fields = TypeTuple::fields(0);
 597 
 598   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 599 
 600   return TypeFunc::make(domain,range);
 601 }
 602 
 603 
 604 //-----------------------------------------------------------------------------
 605 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 606   // create input type (domain)
 607   const Type **fields = TypeTuple::fields(3);
 608   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 609   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 610   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 611   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
 612 
 613   // create result type (range)
 614   fields = TypeTuple::fields(0);
 615 
 616   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 617 
 618   return TypeFunc::make(domain,range);
 619 }
 620 
 621 const TypeFunc* OptoRuntime::flush_windows_Type() {
 622   // create input type (domain)
 623   const Type** fields = TypeTuple::fields(1);
 624   fields[TypeFunc::Parms+0] = NULL; // void
 625   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 626 
 627   // create result type
 628   fields = TypeTuple::fields(1);
 629   fields[TypeFunc::Parms+0] = NULL; // void
 630   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 631 
 632   return TypeFunc::make(domain, range);
 633 }
 634 
 635 const TypeFunc* OptoRuntime::l2f_Type() {
 636   // create input type (domain)
 637   const Type **fields = TypeTuple::fields(2);
 638   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 639   fields[TypeFunc::Parms+1] = Type::HALF;
 640   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 641 
 642   // create result type (range)
 643   fields = TypeTuple::fields(1);
 644   fields[TypeFunc::Parms+0] = Type::FLOAT;
 645   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 646 
 647   return TypeFunc::make(domain, range);
 648 }
 649 
 650 const TypeFunc* OptoRuntime::modf_Type() {
 651   const Type **fields = TypeTuple::fields(2);
 652   fields[TypeFunc::Parms+0] = Type::FLOAT;
 653   fields[TypeFunc::Parms+1] = Type::FLOAT;
 654   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 655 
 656   // create result type (range)
 657   fields = TypeTuple::fields(1);
 658   fields[TypeFunc::Parms+0] = Type::FLOAT;
 659 
 660   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 661 
 662   return TypeFunc::make(domain, range);
 663 }
 664 
 665 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 666   // create input type (domain)
 667   const Type **fields = TypeTuple::fields(2);
 668   // Symbol* name of class to be loaded
 669   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 670   fields[TypeFunc::Parms+1] = Type::HALF;
 671   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 672 
 673   // create result type (range)
 674   fields = TypeTuple::fields(2);
 675   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 676   fields[TypeFunc::Parms+1] = Type::HALF;
 677   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 678 
 679   return TypeFunc::make(domain, range);
 680 }
 681 
 682 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 683   const Type **fields = TypeTuple::fields(4);
 684   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 685   fields[TypeFunc::Parms+1] = Type::HALF;
 686   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 687   fields[TypeFunc::Parms+3] = Type::HALF;
 688   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 689 
 690   // create result type (range)
 691   fields = TypeTuple::fields(2);
 692   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 693   fields[TypeFunc::Parms+1] = Type::HALF;
 694   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 695 
 696   return TypeFunc::make(domain, range);
 697 }
 698 
 699 //-------------- currentTimeMillis, currentTimeNanos, etc
 700 
 701 const TypeFunc* OptoRuntime::void_long_Type() {
 702   // create input type (domain)
 703   const Type **fields = TypeTuple::fields(0);
 704   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 705 
 706   // create result type (range)
 707   fields = TypeTuple::fields(2);
 708   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 709   fields[TypeFunc::Parms+1] = Type::HALF;
 710   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 711 
 712   return TypeFunc::make(domain, range);
 713 }
 714 
 715 // arraycopy stub variations:
 716 enum ArrayCopyType {
 717   ac_fast,                      // void(ptr, ptr, size_t)
 718   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 719   ac_slow,                      // void(ptr, int, ptr, int, int)
 720   ac_generic                    //  int(ptr, int, ptr, int, int)
 721 };
 722 
 723 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 724   // create input type (domain)
 725   int num_args      = (act == ac_fast ? 3 : 5);
 726   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 727   int argcnt = num_args;
 728   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 729   const Type** fields = TypeTuple::fields(argcnt);
 730   int argp = TypeFunc::Parms;
 731   fields[argp++] = TypePtr::NOTNULL;    // src
 732   if (num_size_args == 0) {
 733     fields[argp++] = TypeInt::INT;      // src_pos
 734   }
 735   fields[argp++] = TypePtr::NOTNULL;    // dest
 736   if (num_size_args == 0) {
 737     fields[argp++] = TypeInt::INT;      // dest_pos
 738     fields[argp++] = TypeInt::INT;      // length
 739   }
 740   while (num_size_args-- > 0) {
 741     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 742     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 743   }
 744   if (act == ac_checkcast) {
 745     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 746   }
 747   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 748   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 749 
 750   // create result type if needed
 751   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 752   fields = TypeTuple::fields(1);
 753   if (retcnt == 0)
 754     fields[TypeFunc::Parms+0] = NULL; // void
 755   else
 756     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 757   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 758   return TypeFunc::make(domain, range);
 759 }
 760 
 761 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 762   // This signature is simple:  Two base pointers and a size_t.
 763   return make_arraycopy_Type(ac_fast);
 764 }
 765 
 766 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 767   // An extension of fast_arraycopy_Type which adds type checking.
 768   return make_arraycopy_Type(ac_checkcast);
 769 }
 770 
 771 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 772   // This signature is exactly the same as System.arraycopy.
 773   // There are no intptr_t (int/long) arguments.
 774   return make_arraycopy_Type(ac_slow);
 775 }
 776 
 777 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 778   // This signature is like System.arraycopy, except that it returns status.
 779   return make_arraycopy_Type(ac_generic);
 780 }
 781 
 782 
 783 const TypeFunc* OptoRuntime::array_fill_Type() {
 784   const Type** fields;
 785   int argp = TypeFunc::Parms;
 786   if (CCallingConventionRequiresIntsAsLongs) {
 787   // create input type (domain): pointer, int, size_t
 788     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
 789     fields[argp++] = TypePtr::NOTNULL;
 790     fields[argp++] = TypeLong::LONG;
 791     fields[argp++] = Type::HALF;
 792   } else {
 793     // create input type (domain): pointer, int, size_t
 794     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 795     fields[argp++] = TypePtr::NOTNULL;
 796     fields[argp++] = TypeInt::INT;
 797   }
 798   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 799   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 800   const TypeTuple *domain = TypeTuple::make(argp, fields);
 801 
 802   // create result type
 803   fields = TypeTuple::fields(1);
 804   fields[TypeFunc::Parms+0] = NULL; // void
 805   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 806 
 807   return TypeFunc::make(domain, range);
 808 }
 809 
 810 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 811 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 812   // create input type (domain)
 813   int num_args      = 3;
 814   if (Matcher::pass_original_key_for_aes()) {
 815     num_args = 4;
 816   }
 817   int argcnt = num_args;
 818   const Type** fields = TypeTuple::fields(argcnt);
 819   int argp = TypeFunc::Parms;
 820   fields[argp++] = TypePtr::NOTNULL;    // src
 821   fields[argp++] = TypePtr::NOTNULL;    // dest
 822   fields[argp++] = TypePtr::NOTNULL;    // k array
 823   if (Matcher::pass_original_key_for_aes()) {
 824     fields[argp++] = TypePtr::NOTNULL;    // original k array
 825   }
 826   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 827   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 828 
 829   // no result type needed
 830   fields = TypeTuple::fields(1);
 831   fields[TypeFunc::Parms+0] = NULL; // void
 832   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 833   return TypeFunc::make(domain, range);
 834 }
 835 
 836 /**
 837  * int updateBytesCRC32(int crc, byte* b, int len)
 838  */
 839 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 840   // create input type (domain)
 841   int num_args      = 3;
 842   int argcnt = num_args;
 843   const Type** fields = TypeTuple::fields(argcnt);
 844   int argp = TypeFunc::Parms;
 845   fields[argp++] = TypeInt::INT;        // crc
 846   fields[argp++] = TypePtr::NOTNULL;    // src
 847   fields[argp++] = TypeInt::INT;        // len
 848   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 849   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 850 
 851   // result type needed
 852   fields = TypeTuple::fields(1);
 853   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 854   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 855   return TypeFunc::make(domain, range);
 856 }
 857 
 858 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 859 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 860   // create input type (domain)
 861   int num_args      = 5;
 862   if (Matcher::pass_original_key_for_aes()) {
 863     num_args = 6;
 864   }
 865   int argcnt = num_args;
 866   const Type** fields = TypeTuple::fields(argcnt);
 867   int argp = TypeFunc::Parms;
 868   fields[argp++] = TypePtr::NOTNULL;    // src
 869   fields[argp++] = TypePtr::NOTNULL;    // dest
 870   fields[argp++] = TypePtr::NOTNULL;    // k array
 871   fields[argp++] = TypePtr::NOTNULL;    // r array
 872   fields[argp++] = TypeInt::INT;        // src len
 873   if (Matcher::pass_original_key_for_aes()) {
 874     fields[argp++] = TypePtr::NOTNULL;    // original k array
 875   }
 876   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 877   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 878 
 879   // returning cipher len (int)
 880   fields = TypeTuple::fields(1);
 881   fields[TypeFunc::Parms+0] = TypeInt::INT;
 882   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 883   return TypeFunc::make(domain, range);
 884 }
 885 
 886 /*
 887  * void implCompress(byte[] buf, int ofs)
 888  */
 889 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 890   // create input type (domain)
 891   int num_args = 2;
 892   int argcnt = num_args;
 893   const Type** fields = TypeTuple::fields(argcnt);
 894   int argp = TypeFunc::Parms;
 895   fields[argp++] = TypePtr::NOTNULL; // buf
 896   fields[argp++] = TypePtr::NOTNULL; // state
 897   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 898   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 899 
 900   // no result type needed
 901   fields = TypeTuple::fields(1);
 902   fields[TypeFunc::Parms+0] = NULL; // void
 903   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 904   return TypeFunc::make(domain, range);
 905 }
 906 
 907 /*
 908  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 909  */
 910 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 911   // create input type (domain)
 912   int num_args = 4;
 913   int argcnt = num_args;
 914   const Type** fields = TypeTuple::fields(argcnt);
 915   int argp = TypeFunc::Parms;
 916   fields[argp++] = TypePtr::NOTNULL; // buf
 917   fields[argp++] = TypePtr::NOTNULL; // state
 918   fields[argp++] = TypeInt::INT;     // ofs
 919   fields[argp++] = TypeInt::INT;     // limit
 920   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 921   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 922 
 923   // returning ofs (int)
 924   fields = TypeTuple::fields(1);
 925   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
 926   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 927   return TypeFunc::make(domain, range);
 928 }
 929 
 930 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
 931   // create input type (domain)
 932   int num_args      = 6;
 933   int argcnt = num_args;
 934   const Type** fields = TypeTuple::fields(argcnt);
 935   int argp = TypeFunc::Parms;
 936   fields[argp++] = TypePtr::NOTNULL;    // x
 937   fields[argp++] = TypeInt::INT;        // xlen
 938   fields[argp++] = TypePtr::NOTNULL;    // y
 939   fields[argp++] = TypeInt::INT;        // ylen
 940   fields[argp++] = TypePtr::NOTNULL;    // z
 941   fields[argp++] = TypeInt::INT;        // zlen
 942   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 943   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 944 
 945   // no result type needed
 946   fields = TypeTuple::fields(1);
 947   fields[TypeFunc::Parms+0] = NULL;
 948   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 949   return TypeFunc::make(domain, range);
 950 }
 951 
 952 const TypeFunc* OptoRuntime::squareToLen_Type() {
 953   // create input type (domain)
 954   int num_args      = 4;
 955   int argcnt = num_args;
 956   const Type** fields = TypeTuple::fields(argcnt);
 957   int argp = TypeFunc::Parms;
 958   fields[argp++] = TypePtr::NOTNULL;    // x
 959   fields[argp++] = TypeInt::INT;        // len
 960   fields[argp++] = TypePtr::NOTNULL;    // z
 961   fields[argp++] = TypeInt::INT;        // zlen
 962   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 963   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 964 
 965   // no result type needed
 966   fields = TypeTuple::fields(1);
 967   fields[TypeFunc::Parms+0] = NULL;
 968   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 969   return TypeFunc::make(domain, range);
 970 }
 971 
 972 // for mulAdd calls, 2 pointers and 3 ints, returning int
 973 const TypeFunc* OptoRuntime::mulAdd_Type() {
 974   // create input type (domain)
 975   int num_args      = 5;
 976   int argcnt = num_args;
 977   const Type** fields = TypeTuple::fields(argcnt);
 978   int argp = TypeFunc::Parms;
 979   fields[argp++] = TypePtr::NOTNULL;    // out
 980   fields[argp++] = TypePtr::NOTNULL;    // in
 981   fields[argp++] = TypeInt::INT;        // offset
 982   fields[argp++] = TypeInt::INT;        // len
 983   fields[argp++] = TypeInt::INT;        // k
 984   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 985   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 986 
 987   // returning carry (int)
 988   fields = TypeTuple::fields(1);
 989   fields[TypeFunc::Parms+0] = TypeInt::INT;
 990   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 991   return TypeFunc::make(domain, range);
 992 }
 993 
 994 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
 995   // create input type (domain)
 996   int num_args      = 8;
 997   int argcnt = num_args;
 998   const Type** fields = TypeTuple::fields(argcnt);
 999   int argp = TypeFunc::Parms;
1000   fields[argp++] = TypePtr::NOTNULL;    // a
1001   fields[argp++] = TypePtr::NOTNULL;    // b
1002   fields[argp++] = TypePtr::NOTNULL;    // n
1003   fields[argp++] = TypeInt::INT;        // len
1004   fields[argp++] = TypeLong::LONG;      // inv
1005   fields[argp++] = Type::HALF;
1006   fields[argp++] = TypePtr::NOTNULL;    // scratch
1007   fields[argp++] = TypePtr::NOTNULL;    // result
1008   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1009   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1010 
1011   // result type needed
1012   fields = TypeTuple::fields(1);
1013   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1014 
1015   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1016   return TypeFunc::make(domain, range);
1017 }
1018 
1019 
1020 
1021 //------------- Interpreter state access for on stack replacement
1022 const TypeFunc* OptoRuntime::osr_end_Type() {
1023   // create input type (domain)
1024   const Type **fields = TypeTuple::fields(1);
1025   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1026   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1027 
1028   // create result type
1029   fields = TypeTuple::fields(1);
1030   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1031   fields[TypeFunc::Parms+0] = NULL; // void
1032   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1033   return TypeFunc::make(domain, range);
1034 }
1035 
1036 //-------------- methodData update helpers
1037 
1038 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1039   // create input type (domain)
1040   const Type **fields = TypeTuple::fields(2);
1041   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1042   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1043   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1044 
1045   // create result type
1046   fields = TypeTuple::fields(1);
1047   fields[TypeFunc::Parms+0] = NULL; // void
1048   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1049   return TypeFunc::make(domain,range);
1050 }
1051 
1052 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1053   if (receiver == NULL) return;
1054   Klass* receiver_klass = receiver->klass();
1055 
1056   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1057   int empty_row = -1;           // free row, if any is encountered
1058 
1059   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1060   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1061     // if (vc->receiver(row) == receiver_klass)
1062     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1063     intptr_t row_recv = *(mdp + receiver_off);
1064     if (row_recv == (intptr_t) receiver_klass) {
1065       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1066       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1067       *(mdp + count_off) += DataLayout::counter_increment;
1068       return;
1069     } else if (row_recv == 0) {
1070       // else if (vc->receiver(row) == NULL)
1071       empty_row = (int) row;
1072     }
1073   }
1074 
1075   if (empty_row != -1) {
1076     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1077     // vc->set_receiver(empty_row, receiver_klass);
1078     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1079     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1080     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1081     *(mdp + count_off) = DataLayout::counter_increment;
1082   } else {
1083     // Receiver did not match any saved receiver and there is no empty row for it.
1084     // Increment total counter to indicate polymorphic case.
1085     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1086     *count_p += DataLayout::counter_increment;
1087   }
1088 JRT_END
1089 
1090 //-------------------------------------------------------------------------------------
1091 // register policy
1092 
1093 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1094   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1095   switch (register_save_policy[reg]) {
1096     case 'C': return false; //SOC
1097     case 'E': return true ; //SOE
1098     case 'N': return false; //NS
1099     case 'A': return false; //AS
1100   }
1101   ShouldNotReachHere();
1102   return false;
1103 }
1104 
1105 //-----------------------------------------------------------------------
1106 // Exceptions
1107 //
1108 
1109 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
1110 
1111 // The method is an entry that is always called by a C++ method not
1112 // directly from compiled code. Compiled code will call the C++ method following.
1113 // We can't allow async exception to be installed during  exception processing.
1114 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1115 
1116   // Do not confuse exception_oop with pending_exception. The exception_oop
1117   // is only used to pass arguments into the method. Not for general
1118   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1119   // the runtime stubs checks this on exit.
1120   assert(thread->exception_oop() != NULL, "exception oop is found");
1121   address handler_address = NULL;
1122 
1123   Handle exception(thread, thread->exception_oop());
1124   address pc = thread->exception_pc();
1125 
1126   // Clear out the exception oop and pc since looking up an
1127   // exception handler can cause class loading, which might throw an
1128   // exception and those fields are expected to be clear during
1129   // normal bytecode execution.
1130   thread->clear_exception_oop_and_pc();
1131 
1132   if (TraceExceptions) {
1133     trace_exception(exception(), pc, "");
1134   }
1135 
1136   // for AbortVMOnException flag
1137   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
1138 
1139 #ifdef ASSERT
1140   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1141     // should throw an exception here
1142     ShouldNotReachHere();
1143   }
1144 #endif
1145 
1146   // new exception handling: this method is entered only from adapters
1147   // exceptions from compiled java methods are handled in compiled code
1148   // using rethrow node
1149 
1150   nm = CodeCache::find_nmethod(pc);
1151   assert(nm != NULL, "No NMethod found");
1152   if (nm->is_native_method()) {
1153     fatal("Native method should not have path to exception handling");
1154   } else {
1155     // we are switching to old paradigm: search for exception handler in caller_frame
1156     // instead in exception handler of caller_frame.sender()
1157 
1158     if (JvmtiExport::can_post_on_exceptions()) {
1159       // "Full-speed catching" is not necessary here,
1160       // since we're notifying the VM on every catch.
1161       // Force deoptimization and the rest of the lookup
1162       // will be fine.
1163       deoptimize_caller_frame(thread);
1164     }
1165 
1166     // Check the stack guard pages.  If enabled, look for handler in this frame;
1167     // otherwise, forcibly unwind the frame.
1168     //
1169     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1170     bool force_unwind = !thread->reguard_stack();
1171     bool deopting = false;
1172     if (nm->is_deopt_pc(pc)) {
1173       deopting = true;
1174       RegisterMap map(thread, false);
1175       frame deoptee = thread->last_frame().sender(&map);
1176       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1177       // Adjust the pc back to the original throwing pc
1178       pc = deoptee.pc();
1179     }
1180 
1181     // If we are forcing an unwind because of stack overflow then deopt is
1182     // irrelevant since we are throwing the frame away anyway.
1183 
1184     if (deopting && !force_unwind) {
1185       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1186     } else {
1187 
1188       handler_address =
1189         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1190 
1191       if (handler_address == NULL) {
1192         Handle original_exception(thread, exception());
1193         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1194         assert (handler_address != NULL, "must have compiled handler");
1195         // Update the exception cache only when the unwind was not forced
1196         // and there didn't happen another exception during the computation of the
1197         // compiled exception handler.
1198         if (!force_unwind && original_exception() == exception()) {
1199           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1200         }
1201       } else {
1202         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1203       }
1204     }
1205 
1206     thread->set_exception_pc(pc);
1207     thread->set_exception_handler_pc(handler_address);
1208 
1209     // Check if the exception PC is a MethodHandle call site.
1210     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1211   }
1212 
1213   // Restore correct return pc.  Was saved above.
1214   thread->set_exception_oop(exception());
1215   return handler_address;
1216 
1217 JRT_END
1218 
1219 // We are entering here from exception_blob
1220 // If there is a compiled exception handler in this method, we will continue there;
1221 // otherwise we will unwind the stack and continue at the caller of top frame method
1222 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1223 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1224 // we looked up the handler for has been deoptimized in the meantime. If it has been
1225 // we must not use the handler and instead return the deopt blob.
1226 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1227 //
1228 // We are in Java not VM and in debug mode we have a NoHandleMark
1229 //
1230 #ifndef PRODUCT
1231   SharedRuntime::_find_handler_ctr++;          // find exception handler
1232 #endif
1233   debug_only(NoHandleMark __hm;)
1234   nmethod* nm = NULL;
1235   address handler_address = NULL;
1236   {
1237     // Enter the VM
1238 
1239     ResetNoHandleMark rnhm;
1240     handler_address = handle_exception_C_helper(thread, nm);
1241   }
1242 
1243   // Back in java: Use no oops, DON'T safepoint
1244 
1245   // Now check to see if the handler we are returning is in a now
1246   // deoptimized frame
1247 
1248   if (nm != NULL) {
1249     RegisterMap map(thread, false);
1250     frame caller = thread->last_frame().sender(&map);
1251 #ifdef ASSERT
1252     assert(caller.is_compiled_frame(), "must be");
1253 #endif // ASSERT
1254     if (caller.is_deoptimized_frame()) {
1255       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1256     }
1257   }
1258   return handler_address;
1259 }
1260 
1261 //------------------------------rethrow----------------------------------------
1262 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1263 // is either throwing or rethrowing an exception.  The callee-save registers
1264 // have been restored, synchronized objects have been unlocked and the callee
1265 // stack frame has been removed.  The return address was passed in.
1266 // Exception oop is passed as the 1st argument.  This routine is then called
1267 // from the stub.  On exit, we know where to jump in the caller's code.
1268 // After this C code exits, the stub will pop his frame and end in a jump
1269 // (instead of a return).  We enter the caller's default handler.
1270 //
1271 // This must be JRT_LEAF:
1272 //     - caller will not change its state as we cannot block on exit,
1273 //       therefore raw_exception_handler_for_return_address is all it takes
1274 //       to handle deoptimized blobs
1275 //
1276 // However, there needs to be a safepoint check in the middle!  So compiled
1277 // safepoints are completely watertight.
1278 //
1279 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1280 //
1281 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1282 //
1283 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1284 #ifndef PRODUCT
1285   SharedRuntime::_rethrow_ctr++;               // count rethrows
1286 #endif
1287   assert (exception != NULL, "should have thrown a NULLPointerException");
1288 #ifdef ASSERT
1289   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1290     // should throw an exception here
1291     ShouldNotReachHere();
1292   }
1293 #endif
1294 
1295   thread->set_vm_result(exception);
1296   // Frame not compiled (handles deoptimization blob)
1297   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1298 }
1299 
1300 
1301 const TypeFunc *OptoRuntime::rethrow_Type() {
1302   // create input type (domain)
1303   const Type **fields = TypeTuple::fields(1);
1304   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1305   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1306 
1307   // create result type (range)
1308   fields = TypeTuple::fields(1);
1309   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1310   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1311 
1312   return TypeFunc::make(domain, range);
1313 }
1314 
1315 
1316 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1317   // Deoptimize the caller before continuing, as the compiled
1318   // exception handler table may not be valid.
1319   if (!StressCompiledExceptionHandlers && doit) {
1320     deoptimize_caller_frame(thread);
1321   }
1322 }
1323 
1324 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1325   // Called from within the owner thread, so no need for safepoint
1326   RegisterMap reg_map(thread);
1327   frame stub_frame = thread->last_frame();
1328   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1329   frame caller_frame = stub_frame.sender(&reg_map);
1330 
1331   // Deoptimize the caller frame.
1332   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1333 }
1334 
1335 
1336 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1337   // Called from within the owner thread, so no need for safepoint
1338   RegisterMap reg_map(thread);
1339   frame stub_frame = thread->last_frame();
1340   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1341   frame caller_frame = stub_frame.sender(&reg_map);
1342   return caller_frame.is_deoptimized_frame();
1343 }
1344 
1345 
1346 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1347   // create input type (domain)
1348   const Type **fields = TypeTuple::fields(1);
1349   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1350   // // The JavaThread* is passed to each routine as the last argument
1351   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1352   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1353 
1354   // create result type (range)
1355   fields = TypeTuple::fields(0);
1356 
1357   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1358 
1359   return TypeFunc::make(domain,range);
1360 }
1361 
1362 
1363 //-----------------------------------------------------------------------------
1364 // Dtrace support.  entry and exit probes have the same signature
1365 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1366   // create input type (domain)
1367   const Type **fields = TypeTuple::fields(2);
1368   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1369   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1370   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1371 
1372   // create result type (range)
1373   fields = TypeTuple::fields(0);
1374 
1375   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1376 
1377   return TypeFunc::make(domain,range);
1378 }
1379 
1380 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1381   // create input type (domain)
1382   const Type **fields = TypeTuple::fields(2);
1383   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1384   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1385 
1386   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1387 
1388   // create result type (range)
1389   fields = TypeTuple::fields(0);
1390 
1391   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1392 
1393   return TypeFunc::make(domain,range);
1394 }
1395 
1396 
1397 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1398   assert(obj->is_oop(), "must be a valid oop");
1399   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1400   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1401 JRT_END
1402 
1403 //-----------------------------------------------------------------------------
1404 
1405 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1406 
1407 //
1408 // dump the collected NamedCounters.
1409 //
1410 void OptoRuntime::print_named_counters() {
1411   int total_lock_count = 0;
1412   int eliminated_lock_count = 0;
1413 
1414   NamedCounter* c = _named_counters;
1415   while (c) {
1416     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1417       int count = c->count();
1418       if (count > 0) {
1419         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1420         if (Verbose) {
1421           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1422         }
1423         total_lock_count += count;
1424         if (eliminated) {
1425           eliminated_lock_count += count;
1426         }
1427       }
1428     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1429       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1430       if (blc->nonzero()) {
1431         tty->print_cr("%s", c->name());
1432         blc->print_on(tty);
1433       }
1434 #if INCLUDE_RTM_OPT
1435     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1436       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1437       if (rlc->nonzero()) {
1438         tty->print_cr("%s", c->name());
1439         rlc->print_on(tty);
1440       }
1441 #endif
1442     }
1443     c = c->next();
1444   }
1445   if (total_lock_count > 0) {
1446     tty->print_cr("dynamic locks: %d", total_lock_count);
1447     if (eliminated_lock_count) {
1448       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1449                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1450     }
1451   }
1452 }
1453 
1454 //
1455 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1456 //  name which consists of method@line for the inlining tree.
1457 //
1458 
1459 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1460   int max_depth = youngest_jvms->depth();
1461 
1462   // Visit scopes from youngest to oldest.
1463   bool first = true;
1464   stringStream st;
1465   for (int depth = max_depth; depth >= 1; depth--) {
1466     JVMState* jvms = youngest_jvms->of_depth(depth);
1467     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1468     if (!first) {
1469       st.print(" ");
1470     } else {
1471       first = false;
1472     }
1473     int bci = jvms->bci();
1474     if (bci < 0) bci = 0;
1475     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1476     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1477   }
1478   NamedCounter* c;
1479   if (tag == NamedCounter::BiasedLockingCounter) {
1480     c = new BiasedLockingNamedCounter(st.as_string());
1481   } else if (tag == NamedCounter::RTMLockingCounter) {
1482     c = new RTMLockingNamedCounter(st.as_string());
1483   } else {
1484     c = new NamedCounter(st.as_string(), tag);
1485   }
1486 
1487   // atomically add the new counter to the head of the list.  We only
1488   // add counters so this is safe.
1489   NamedCounter* head;
1490   do {
1491     c->set_next(NULL);
1492     head = _named_counters;
1493     c->set_next(head);
1494   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1495   return c;
1496 }
1497 
1498 //-----------------------------------------------------------------------------
1499 // Non-product code
1500 #ifndef PRODUCT
1501 
1502 int trace_exception_counter = 0;
1503 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1504   ttyLocker ttyl;
1505   trace_exception_counter++;
1506   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1507   exception_oop->print_value();
1508   tty->print(" in ");
1509   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1510   if (blob->is_nmethod()) {
1511     nmethod* nm = blob->as_nmethod_or_null();
1512     nm->method()->print_value();
1513   } else if (blob->is_runtime_stub()) {
1514     tty->print("<runtime-stub>");
1515   } else {
1516     tty->print("<unknown>");
1517   }
1518   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1519   tty->print_cr("]");
1520 }
1521 
1522 #endif  // PRODUCT
1523 
1524 
1525 # ifdef ENABLE_ZAP_DEAD_LOCALS
1526 // Called from call sites in compiled code with oop maps (actually safepoints)
1527 // Zaps dead locals in first java frame.
1528 // Is entry because may need to lock to generate oop maps
1529 // Currently, only used for compiler frames, but someday may be used
1530 // for interpreter frames, too.
1531 
1532 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1533 
1534 // avoid pointers to member funcs with these helpers
1535 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1536 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1537 
1538 
1539 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1540                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1541   assert(JavaThread::current() == thread, "is this needed?");
1542 
1543   if ( !ZapDeadCompiledLocals )  return;
1544 
1545   bool skip = false;
1546 
1547        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1548   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1549   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1550     warning("starting zapping after skipping");
1551 
1552        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1553   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1554   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1555     warning("about to zap last zap");
1556 
1557   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1558 
1559   if ( skip )  return;
1560 
1561   // find java frame and zap it
1562 
1563   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1564     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1565       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1566       return;
1567     }
1568   }
1569   warning("no frame found to zap in zap_dead_Java_locals_C");
1570 }
1571 
1572 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1573   zap_dead_java_or_native_locals(thread, is_java_frame);
1574 JRT_END
1575 
1576 // The following does not work because for one thing, the
1577 // thread state is wrong; it expects java, but it is native.
1578 // Also, the invariants in a native stub are different and
1579 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1580 // in there.
1581 // So for now, we do not zap in native stubs.
1582 
1583 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1584   zap_dead_java_or_native_locals(thread, is_native_frame);
1585 JRT_END
1586 
1587 # endif