1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // no precompiled headers
  27 #include "asm/macroAssembler.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "code/nativeInst.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "jvm_linux.h"
  37 #include "memory/allocation.inline.hpp"
  38 #include "os_share_linux.hpp"
  39 #include "prims/jniFastGetField.hpp"
  40 #include "prims/jvm.h"
  41 #include "prims/jvm_misc.hpp"
  42 #include "runtime/arguments.hpp"
  43 #include "runtime/extendedPC.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/interfaceSupport.hpp"
  46 #include "runtime/java.hpp"
  47 #include "runtime/javaCalls.hpp"
  48 #include "runtime/mutexLocker.hpp"
  49 #include "runtime/osThread.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/thread.inline.hpp"
  53 #include "runtime/timer.hpp"
  54 #include "utilities/events.hpp"
  55 #include "utilities/vmError.hpp"
  56 #ifdef BUILTIN_SIM
  57 #include "../../../../../../simulator/simulator.hpp"
  58 #endif
  59 
  60 // put OS-includes here
  61 # include <sys/types.h>
  62 # include <sys/mman.h>
  63 # include <pthread.h>
  64 # include <signal.h>
  65 # include <errno.h>
  66 # include <dlfcn.h>
  67 # include <stdlib.h>
  68 # include <stdio.h>
  69 # include <unistd.h>
  70 # include <sys/resource.h>
  71 # include <pthread.h>
  72 # include <sys/stat.h>
  73 # include <sys/time.h>
  74 # include <sys/utsname.h>
  75 # include <sys/socket.h>
  76 # include <sys/wait.h>
  77 # include <pwd.h>
  78 # include <poll.h>
  79 # include <ucontext.h>
  80 # include <fpu_control.h>
  81 
  82 #ifdef BUILTIN_SIM
  83 #define REG_SP REG_RSP
  84 #define REG_PC REG_RIP
  85 #define REG_FP REG_RBP
  86 #define SPELL_REG_SP "rsp"
  87 #define SPELL_REG_FP "rbp"
  88 #else
  89 #define REG_FP 29
  90 #define REG_LR 30
  91 
  92 #define SPELL_REG_SP "sp"
  93 #define SPELL_REG_FP "x29"
  94 #endif
  95 
  96 address os::current_stack_pointer() {
  97   register void *esp __asm__ (SPELL_REG_SP);
  98   return (address) esp;
  99 }
 100 
 101 char* os::non_memory_address_word() {
 102   // Must never look like an address returned by reserve_memory,
 103   // even in its subfields (as defined by the CPU immediate fields,
 104   // if the CPU splits constants across multiple instructions).
 105 
 106   return (char*) 0xffffffffffff;
 107 }
 108 
 109 void os::initialize_thread(Thread *thr) {
 110 }
 111 
 112 address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
 113 #ifdef BUILTIN_SIM
 114   return (address)uc->uc_mcontext.gregs[REG_PC];
 115 #else
 116   return (address)uc->uc_mcontext.pc;
 117 #endif
 118 }
 119 
 120 void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
 121 #ifdef BUILTIN_SIM
 122   uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
 123 #else
 124   uc->uc_mcontext.pc = (intptr_t)pc;
 125 #endif
 126 }
 127 
 128 intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
 129 #ifdef BUILTIN_SIM
 130   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 131 #else
 132   return (intptr_t*)uc->uc_mcontext.sp;
 133 #endif
 134 }
 135 
 136 intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
 137 #ifdef BUILTIN_SIM
 138   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 139 #else
 140   return (intptr_t*)uc->uc_mcontext.regs[REG_FP];
 141 #endif
 142 }
 143 
 144 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 145 // is currently interrupted by SIGPROF.
 146 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
 147 // frames. Currently we don't do that on Linux, so it's the same as
 148 // os::fetch_frame_from_context().
 149 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
 150   const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 151 
 152   assert(thread != NULL, "just checking");
 153   assert(ret_sp != NULL, "just checking");
 154   assert(ret_fp != NULL, "just checking");
 155 
 156   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 157 }
 158 
 159 ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
 160                     intptr_t** ret_sp, intptr_t** ret_fp) {
 161 
 162   ExtendedPC  epc;
 163   const ucontext_t* uc = (const ucontext_t*)ucVoid;
 164 
 165   if (uc != NULL) {
 166     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
 167     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
 168     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
 169   } else {
 170     // construct empty ExtendedPC for return value checking
 171     epc = ExtendedPC(NULL);
 172     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 173     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 174   }
 175 
 176   return epc;
 177 }
 178 
 179 frame os::fetch_frame_from_context(const void* ucVoid) {
 180   intptr_t* sp;
 181   intptr_t* fp;
 182   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 183   return frame(sp, fp, epc.pc());
 184 }
 185 
 186 bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
 187   address pc = (address) os::Linux::ucontext_get_pc(uc);
 188   if (Interpreter::contains(pc)) {
 189     // interpreter performs stack banging after the fixed frame header has
 190     // been generated while the compilers perform it before. To maintain
 191     // semantic consistency between interpreted and compiled frames, the
 192     // method returns the Java sender of the current frame.
 193     *fr = os::fetch_frame_from_context(uc);
 194     if (!fr->is_first_java_frame()) {
 195       assert(fr->safe_for_sender(thread), "Safety check");
 196       *fr = fr->java_sender();
 197     }
 198   } else {
 199     // more complex code with compiled code
 200     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
 201     CodeBlob* cb = CodeCache::find_blob(pc);
 202     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
 203       // Not sure where the pc points to, fallback to default
 204       // stack overflow handling
 205       return false;
 206     } else {
 207       // In compiled code, the stack banging is performed before LR
 208       // has been saved in the frame.  LR is live, and SP and FP
 209       // belong to the caller.
 210       intptr_t* fp = os::Linux::ucontext_get_fp(uc);
 211       intptr_t* sp = os::Linux::ucontext_get_sp(uc);
 212       void* pc = (void*)(uc->uc_mcontext.regs[REG_LR]
 213                          - NativeInstruction::instruction_size);
 214       *fr = frame(sp, fp, pc);
 215       if (!fr->is_java_frame()) {
 216         assert(fr->safe_for_sender(thread), "Safety check");
 217         assert(!fr->is_first_frame(), "Safety check");
 218         *fr = fr->java_sender();
 219       }
 220     }
 221   }
 222   assert(fr->is_java_frame(), "Safety check");
 223   return true;
 224 }
 225 
 226 // By default, gcc always saves frame pointer rfp on this stack. This
 227 // may get turned off by -fomit-frame-pointer.
 228 frame os::get_sender_for_C_frame(frame* fr) {
 229 #ifdef BUILTIN_SIM
 230   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 231 #else
 232   return frame(fr->link(), fr->link(), fr->sender_pc());
 233 #endif
 234 }
 235 
 236 intptr_t* _get_previous_fp() {
 237   register intptr_t **ebp __asm__ (SPELL_REG_FP);
 238   return (intptr_t*) *ebp;   // we want what it points to.
 239 }
 240 
 241 
 242 frame os::current_frame() {
 243   intptr_t* fp = _get_previous_fp();
 244   frame myframe((intptr_t*)os::current_stack_pointer(),
 245                 (intptr_t*)fp,
 246                 CAST_FROM_FN_PTR(address, os::current_frame));
 247   if (os::is_first_C_frame(&myframe)) {
 248     // stack is not walkable
 249     return frame();
 250   } else {
 251     return os::get_sender_for_C_frame(&myframe);
 252   }
 253 }
 254 
 255 // Utility functions
 256 
 257 // From IA32 System Programming Guide
 258 enum {
 259   trap_page_fault = 0xE
 260 };
 261 
 262 #ifdef BUILTIN_SIM
 263 extern "C" void Fetch32PFI () ;
 264 extern "C" void Fetch32Resume () ;
 265 extern "C" void FetchNPFI () ;
 266 extern "C" void FetchNResume () ;
 267 #endif
 268 
 269 extern "C" JNIEXPORT int
 270 JVM_handle_linux_signal(int sig,
 271                         siginfo_t* info,
 272                         void* ucVoid,
 273                         int abort_if_unrecognized) {
 274   ucontext_t* uc = (ucontext_t*) ucVoid;
 275 
 276   Thread* t = Thread::current_or_null_safe();
 277 
 278   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 279   // (no destructors can be run)
 280   os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
 281 
 282   SignalHandlerMark shm(t);
 283 
 284   // Note: it's not uncommon that JNI code uses signal/sigset to install
 285   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 286   // or have a SIGILL handler when detecting CPU type). When that happens,
 287   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
 288   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 289   // that do not require siginfo/ucontext first.
 290 
 291   if (sig == SIGPIPE || sig == SIGXFSZ) {
 292     // allow chained handler to go first
 293     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 294       return true;
 295     } else {
 296       // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
 297       return true;
 298     }
 299   }
 300 
 301   JavaThread* thread = NULL;
 302   VMThread* vmthread = NULL;
 303   if (os::Linux::signal_handlers_are_installed) {
 304     if (t != NULL ){
 305       if(t->is_Java_thread()) {
 306         thread = (JavaThread*)t;
 307       }
 308       else if(t->is_VM_thread()){
 309         vmthread = (VMThread *)t;
 310       }
 311     }
 312   }
 313 /*
 314   NOTE: does not seem to work on linux.
 315   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 316     // can't decode this kind of signal
 317     info = NULL;
 318   } else {
 319     assert(sig == info->si_signo, "bad siginfo");
 320   }
 321 */
 322   // decide if this trap can be handled by a stub
 323   address stub = NULL;
 324 
 325   address pc          = NULL;
 326 
 327   //%note os_trap_1
 328   if (info != NULL && uc != NULL && thread != NULL) {
 329     pc = (address) os::Linux::ucontext_get_pc(uc);
 330 
 331 #ifdef BUILTIN_SIM
 332     if (pc == (address) Fetch32PFI) {
 333        uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
 334        return 1 ;
 335     }
 336     if (pc == (address) FetchNPFI) {
 337        uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
 338        return 1 ;
 339     }
 340 #else
 341     if (StubRoutines::is_safefetch_fault(pc)) {
 342       os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
 343       return 1;
 344     }
 345 #endif
 346 
 347     // Handle ALL stack overflow variations here
 348     if (sig == SIGSEGV) {
 349       address addr = (address) info->si_addr;
 350 
 351       // check if fault address is within thread stack
 352       if (thread->on_local_stack(addr)) {
 353         // stack overflow
 354         if (thread->in_stack_yellow_reserved_zone(addr)) {
 355           thread->disable_stack_yellow_reserved_zone();
 356           if (thread->thread_state() == _thread_in_Java) {
 357             if (thread->in_stack_reserved_zone(addr)) {
 358               frame fr;
 359               if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
 360                 assert(fr.is_java_frame(), "Must be a Java frame");
 361                 frame activation =
 362                   SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
 363                 if (activation.sp() != NULL) {
 364                   thread->disable_stack_reserved_zone();
 365                   if (activation.is_interpreted_frame()) {
 366                     thread->set_reserved_stack_activation((address)(
 367                       activation.fp() + frame::interpreter_frame_initial_sp_offset));
 368                   } else {
 369                     thread->set_reserved_stack_activation((address)activation.unextended_sp());
 370                   }
 371                   return 1;
 372                 }
 373               }
 374             }
 375             // Throw a stack overflow exception.  Guard pages will be reenabled
 376             // while unwinding the stack.
 377             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 378           } else {
 379             // Thread was in the vm or native code.  Return and try to finish.
 380             return 1;
 381           }
 382         } else if (thread->in_stack_red_zone(addr)) {
 383           // Fatal red zone violation.  Disable the guard pages and fall through
 384           // to handle_unexpected_exception way down below.
 385           thread->disable_stack_red_zone();
 386           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 387 
 388           // This is a likely cause, but hard to verify. Let's just print
 389           // it as a hint.
 390           tty->print_raw_cr("Please check if any of your loaded .so files has "
 391                             "enabled executable stack (see man page execstack(8))");
 392         } else {
 393           // Accessing stack address below sp may cause SEGV if current
 394           // thread has MAP_GROWSDOWN stack. This should only happen when
 395           // current thread was created by user code with MAP_GROWSDOWN flag
 396           // and then attached to VM. See notes in os_linux.cpp.
 397           if (thread->osthread()->expanding_stack() == 0) {
 398              thread->osthread()->set_expanding_stack();
 399              if (os::Linux::manually_expand_stack(thread, addr)) {
 400                thread->osthread()->clear_expanding_stack();
 401                return 1;
 402              }
 403              thread->osthread()->clear_expanding_stack();
 404           } else {
 405              fatal("recursive segv. expanding stack.");
 406           }
 407         }
 408       }
 409     }
 410 
 411     if (thread->thread_state() == _thread_in_Java) {
 412       // Java thread running in Java code => find exception handler if any
 413       // a fault inside compiled code, the interpreter, or a stub
 414 
 415       // Handle signal from NativeJump::patch_verified_entry().
 416       if ((sig == SIGILL || sig == SIGTRAP)
 417           && nativeInstruction_at(pc)->is_sigill_zombie_not_entrant()) {
 418         if (TraceTraps) {
 419           tty->print_cr("trap: zombie_not_entrant (%s)", (sig == SIGTRAP) ? "SIGTRAP" : "SIGILL");
 420         }
 421         stub = SharedRuntime::get_handle_wrong_method_stub();
 422       } else if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 423         stub = SharedRuntime::get_poll_stub(pc);
 424       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
 425         // BugId 4454115: A read from a MappedByteBuffer can fault
 426         // here if the underlying file has been truncated.
 427         // Do not crash the VM in such a case.
 428         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 429         CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
 430         if (nm != NULL && nm->has_unsafe_access()) {
 431           address next_pc = pc + NativeCall::instruction_size;
 432           stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 433         }
 434       }
 435       else
 436 
 437       if (sig == SIGFPE  &&
 438           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
 439         stub =
 440           SharedRuntime::
 441           continuation_for_implicit_exception(thread,
 442                                               pc,
 443                                               SharedRuntime::
 444                                               IMPLICIT_DIVIDE_BY_ZERO);
 445       } else if (sig == SIGSEGV &&
 446                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 447           // Determination of interpreter/vtable stub/compiled code null exception
 448           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 449       }
 450     } else if (thread->thread_state() == _thread_in_vm &&
 451                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
 452                thread->doing_unsafe_access()) {
 453       address next_pc = pc + NativeCall::instruction_size;
 454       stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 455     }
 456 
 457     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 458     // and the heap gets shrunk before the field access.
 459     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 460       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 461       if (addr != (address)-1) {
 462         stub = addr;
 463       }
 464     }
 465 
 466     // Check to see if we caught the safepoint code in the
 467     // process of write protecting the memory serialization page.
 468     // It write enables the page immediately after protecting it
 469     // so we can just return to retry the write.
 470     if ((sig == SIGSEGV) &&
 471         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
 472       // Block current thread until the memory serialize page permission restored.
 473       os::block_on_serialize_page_trap();
 474       return true;
 475     }
 476   }
 477 
 478   if (stub != NULL) {
 479     // save all thread context in case we need to restore it
 480     if (thread != NULL) thread->set_saved_exception_pc(pc);
 481 
 482     os::Linux::ucontext_set_pc(uc, stub);
 483     return true;
 484   }
 485 
 486   // signal-chaining
 487   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 488      return true;
 489   }
 490 
 491   if (!abort_if_unrecognized) {
 492     // caller wants another chance, so give it to him
 493     return false;
 494   }
 495 
 496   if (pc == NULL && uc != NULL) {
 497     pc = os::Linux::ucontext_get_pc(uc);
 498   }
 499 
 500   // unmask current signal
 501   sigset_t newset;
 502   sigemptyset(&newset);
 503   sigaddset(&newset, sig);
 504   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 505 
 506   VMError::report_and_die(t, sig, pc, info, ucVoid);
 507 
 508   ShouldNotReachHere();
 509   return true; // Mute compiler
 510 }
 511 
 512 void os::Linux::init_thread_fpu_state(void) {
 513 }
 514 
 515 int os::Linux::get_fpu_control_word(void) {
 516   return 0;
 517 }
 518 
 519 void os::Linux::set_fpu_control_word(int fpu_control) {
 520 }
 521 
 522 // Check that the linux kernel version is 2.4 or higher since earlier
 523 // versions do not support SSE without patches.
 524 bool os::supports_sse() {
 525   return true;
 526 }
 527 
 528 bool os::is_allocatable(size_t bytes) {
 529   return true;
 530 }
 531 
 532 ////////////////////////////////////////////////////////////////////////////////
 533 // thread stack
 534 
 535 // Minimum usable stack sizes required to get to user code. Space for
 536 // HotSpot guard pages is added later.
 537 size_t os::Posix::_compiler_thread_min_stack_allowed = 32 * K;
 538 size_t os::Posix::_java_thread_min_stack_allowed = 32 * K;
 539 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
 540 
 541 // return default stack size for thr_type
 542 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
 543   // default stack size (compiler thread needs larger stack)
 544   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 545   return s;
 546 }
 547 
 548 /////////////////////////////////////////////////////////////////////////////
 549 // helper functions for fatal error handler
 550 
 551 void os::print_context(outputStream *st, const void *context) {
 552   if (context == NULL) return;
 553 
 554   const ucontext_t *uc = (const ucontext_t*)context;
 555   st->print_cr("Registers:");
 556 #ifdef BUILTIN_SIM
 557   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 558   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 559   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 560   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 561   st->cr();
 562   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 563   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 564   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 565   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 566   st->cr();
 567   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 568   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 569   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 570   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 571   st->cr();
 572   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 573   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 574   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 575   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 576   st->cr();
 577   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
 578   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 579   st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
 580   st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
 581   st->cr();
 582   st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
 583   st->cr();
 584 #else
 585   for (int r = 0; r < 31; r++) {
 586     st->print("R%-2d=", r);
 587     print_location(st, uc->uc_mcontext.regs[r]);
 588   }
 589 #endif
 590   st->cr();
 591 
 592   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 593   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
 594   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 595   st->cr();
 596 
 597   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 598   // point to garbage if entry point in an nmethod is corrupted. Leave
 599   // this at the end, and hope for the best.
 600   address pc = os::Linux::ucontext_get_pc(uc);
 601   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
 602   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 603 }
 604 
 605 void os::print_register_info(outputStream *st, const void *context) {
 606   if (context == NULL) return;
 607 
 608   const ucontext_t *uc = (const ucontext_t*)context;
 609 
 610   st->print_cr("Register to memory mapping:");
 611   st->cr();
 612 
 613   // this is horrendously verbose but the layout of the registers in the
 614   // context does not match how we defined our abstract Register set, so
 615   // we can't just iterate through the gregs area
 616 
 617   // this is only for the "general purpose" registers
 618 
 619 #ifdef BUILTIN_SIM
 620   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 621   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 622   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 623   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 624   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 625   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 626   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 627   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 628   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 629   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 630   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 631   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 632   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 633   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 634   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 635   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 636 #else
 637   for (int r = 0; r < 31; r++)
 638     st->print_cr(  "R%d=" INTPTR_FORMAT, r, (uintptr_t)uc->uc_mcontext.regs[r]);
 639 #endif
 640   st->cr();
 641 }
 642 
 643 void os::setup_fpu() {
 644 }
 645 
 646 #ifndef PRODUCT
 647 void os::verify_stack_alignment() {
 648   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 649 }
 650 #endif
 651 
 652 int os::extra_bang_size_in_bytes() {
 653   // AArch64 does not require the additional stack bang.
 654   return 0;
 655 }
 656 
 657 extern "C" {
 658   int SpinPause() {
 659     return 0;
 660   }
 661 
 662   void _Copy_conjoint_jshorts_atomic(jshort* from, jshort* to, size_t count) {
 663     if (from > to) {
 664       jshort *end = from + count;
 665       while (from < end)
 666         *(to++) = *(from++);
 667     }
 668     else if (from < to) {
 669       jshort *end = from;
 670       from += count - 1;
 671       to   += count - 1;
 672       while (from >= end)
 673         *(to--) = *(from--);
 674     }
 675   }
 676   void _Copy_conjoint_jints_atomic(jint* from, jint* to, size_t count) {
 677     if (from > to) {
 678       jint *end = from + count;
 679       while (from < end)
 680         *(to++) = *(from++);
 681     }
 682     else if (from < to) {
 683       jint *end = from;
 684       from += count - 1;
 685       to   += count - 1;
 686       while (from >= end)
 687         *(to--) = *(from--);
 688     }
 689   }
 690   void _Copy_conjoint_jlongs_atomic(jlong* from, jlong* to, size_t count) {
 691     if (from > to) {
 692       jlong *end = from + count;
 693       while (from < end)
 694         os::atomic_copy64(from++, to++);
 695     }
 696     else if (from < to) {
 697       jlong *end = from;
 698       from += count - 1;
 699       to   += count - 1;
 700       while (from >= end)
 701         os::atomic_copy64(from--, to--);
 702     }
 703   }
 704 
 705   void _Copy_arrayof_conjoint_bytes(HeapWord* from,
 706                                     HeapWord* to,
 707                                     size_t    count) {
 708     memmove(to, from, count);
 709   }
 710   void _Copy_arrayof_conjoint_jshorts(HeapWord* from,
 711                                       HeapWord* to,
 712                                       size_t    count) {
 713     memmove(to, from, count * 2);
 714   }
 715   void _Copy_arrayof_conjoint_jints(HeapWord* from,
 716                                     HeapWord* to,
 717                                     size_t    count) {
 718     memmove(to, from, count * 4);
 719   }
 720   void _Copy_arrayof_conjoint_jlongs(HeapWord* from,
 721                                      HeapWord* to,
 722                                      size_t    count) {
 723     memmove(to, from, count * 8);
 724   }
 725 };