< prev index next >

modules/javafx.graphics/src/main/native-iio/libjpeg7/jchuff.c

Print this page

        

*** 1,10 **** /* * jchuff.c * * Copyright (C) 1991-1997, Thomas G. Lane. ! * Modified 2006-2009 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains Huffman entropy encoding routines. * Both sequential and progressive modes are supported in this single module. --- 1,10 ---- /* * jchuff.c * * Copyright (C) 1991-1997, Thomas G. Lane. ! * Modified 2006-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains Huffman entropy encoding routines. * Both sequential and progressive modes are supported in this single module.
*** 85,96 **** /* These fields are NOT loaded into local working state. */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ int next_restart_num; /* next restart number to write (0-7) */ - /* Following four fields used only in sequential mode */ - /* Pointers to derived tables (these workspaces have image lifespan) */ c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; /* Statistics tables for optimization */ --- 85,94 ----
*** 112,130 **** int ac_tbl_no; /* the table number of the single component */ unsigned int EOBRUN; /* run length of EOBs */ unsigned int BE; /* # of buffered correction bits before MCU */ char * bit_buffer; /* buffer for correction bits (1 per char) */ /* packing correction bits tightly would save some space but cost time... */ - - /* Pointers to derived tables (these workspaces have image lifespan). - * Since any one scan in progressive mode codes only DC or only AC, - * we only need one set of tables, not one for DC and one for AC. - */ - c_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; - - /* Statistics tables for optimization; again, one set is enough */ - long * count_ptrs[NUM_HUFF_TBLS]; } huff_entropy_encoder; typedef huff_entropy_encoder * huff_entropy_ptr; /* Working state while writing an MCU (sequential mode). --- 110,119 ----
*** 177,189 **** int p, i, l, lastp, si, maxsymbol; char huffsize[257]; unsigned int huffcode[257]; unsigned int code; - MEMZERO(huffsize, SIZEOF(huffsize)); - MEMZERO(huffcode, SIZEOF(huffcode)); - /* Note that huffsize[] and huffcode[] are filled in code-length order, * paralleling the order of the symbols themselves in htbl->huffval[]. */ /* Find the input Huffman table */ --- 166,175 ----
*** 320,343 **** LOCAL(boolean) emit_bits_s (working_state * state, unsigned int code, int size) /* Emit some bits; return TRUE if successful, FALSE if must suspend */ { /* This routine is heavily used, so it's worth coding tightly. */ ! register INT32 put_buffer = (INT32) code; ! register int put_bits = state->cur.put_bits; /* if size is 0, caller used an invalid Huffman table entry */ if (size == 0) ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); ! put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ ! put_bits += size; /* new number of bits in buffer */ put_buffer <<= 24 - put_bits; /* align incoming bits */ ! put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */ while (put_bits >= 8) { int c = (int) ((put_buffer >> 16) & 0xFF); emit_byte_s(state, c, return FALSE); --- 306,332 ---- LOCAL(boolean) emit_bits_s (working_state * state, unsigned int code, int size) /* Emit some bits; return TRUE if successful, FALSE if must suspend */ { /* This routine is heavily used, so it's worth coding tightly. */ ! register INT32 put_buffer; ! register int put_bits; /* if size is 0, caller used an invalid Huffman table entry */ if (size == 0) ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); ! /* mask off any extra bits in code */ ! put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1); ! /* new number of bits in buffer */ ! put_bits = size + state->cur.put_bits; put_buffer <<= 24 - put_bits; /* align incoming bits */ ! /* and merge with old buffer contents */ ! put_buffer |= state->cur.put_buffer; while (put_bits >= 8) { int c = (int) ((put_buffer >> 16) & 0xFF); emit_byte_s(state, c, return FALSE);
*** 359,381 **** LOCAL(void) emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size) /* Emit some bits, unless we are in gather mode */ { /* This routine is heavily used, so it's worth coding tightly. */ ! register INT32 put_buffer = (INT32) code; ! register int put_bits = entropy->saved.put_bits; /* if size is 0, caller used an invalid Huffman table entry */ if (size == 0) ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); if (entropy->gather_statistics) return; /* do nothing if we're only getting stats */ ! put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ ! put_bits += size; /* new number of bits in buffer */ put_buffer <<= 24 - put_bits; /* align incoming bits */ /* and merge with old buffer contents */ put_buffer |= entropy->saved.put_buffer; --- 348,372 ---- LOCAL(void) emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size) /* Emit some bits, unless we are in gather mode */ { /* This routine is heavily used, so it's worth coding tightly. */ ! register INT32 put_buffer; ! register int put_bits; /* if size is 0, caller used an invalid Huffman table entry */ if (size == 0) ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); if (entropy->gather_statistics) return; /* do nothing if we're only getting stats */ ! /* mask off any extra bits in code */ ! put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1); ! /* new number of bits in buffer */ ! put_bits = size + entropy->saved.put_bits; put_buffer <<= 24 - put_bits; /* align incoming bits */ /* and merge with old buffer contents */ put_buffer |= entropy->saved.put_buffer;
*** 420,435 **** * Emit (or just count) a Huffman symbol. */ INLINE LOCAL(void) ! emit_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) { if (entropy->gather_statistics) ! entropy->count_ptrs[tbl_no][symbol]++; else { ! c_derived_tbl * tbl = entropy->derived_tbls[tbl_no]; emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); } } --- 411,439 ---- * Emit (or just count) a Huffman symbol. */ INLINE LOCAL(void) ! emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) ! { ! if (entropy->gather_statistics) ! entropy->dc_count_ptrs[tbl_no][symbol]++; ! else { ! c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no]; ! emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); ! } ! } ! ! ! INLINE ! LOCAL(void) ! emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) { if (entropy->gather_statistics) ! entropy->ac_count_ptrs[tbl_no][symbol]++; else { ! c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no]; emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); } }
*** 468,478 **** nbits++; /* safety check: shouldn't happen given limited correction-bit buffer */ if (nbits > 14) ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); ! emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4); if (nbits) emit_bits_e(entropy, entropy->EOBRUN, nbits); entropy->EOBRUN = 0; --- 472,482 ---- nbits++; /* safety check: shouldn't happen given limited correction-bit buffer */ if (nbits > 14) ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); ! emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4); if (nbits) emit_bits_e(entropy, entropy->EOBRUN, nbits); entropy->EOBRUN = 0;
*** 542,555 **** encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; register int temp, temp2; register int nbits; ! int blkn, ci; ! int Al = cinfo->Al; ! JBLOCKROW block; ! jpeg_component_info * compptr; ISHIFT_TEMPS entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; --- 546,556 ---- encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; register int temp, temp2; register int nbits; ! int blkn, ci, tbl; ISHIFT_TEMPS entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer;
*** 558,582 **** if (entropy->restarts_to_go == 0) emit_restart_e(entropy, entropy->next_restart_num); /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; ! compptr = cinfo->cur_comp_info[ci]; /* Compute the DC value after the required point transform by Al. * This is simply an arithmetic right shift. */ ! temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); /* DC differences are figured on the point-transformed values. */ ! temp = temp2 - entropy->saved.last_dc_val[ci]; ! entropy->saved.last_dc_val[ci] = temp2; /* Encode the DC coefficient difference per section G.1.2.1 */ ! temp2 = temp; if (temp < 0) { temp = -temp; /* temp is abs value of input */ /* For a negative input, want temp2 = bitwise complement of abs(input) */ /* This code assumes we are on a two's complement machine */ temp2--; --- 559,582 ---- if (entropy->restarts_to_go == 0) emit_restart_e(entropy, entropy->next_restart_num); /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { ci = cinfo->MCU_membership[blkn]; ! tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; /* Compute the DC value after the required point transform by Al. * This is simply an arithmetic right shift. */ ! temp = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al); /* DC differences are figured on the point-transformed values. */ ! temp2 = temp - entropy->saved.last_dc_val[ci]; ! entropy->saved.last_dc_val[ci] = temp; /* Encode the DC coefficient difference per section G.1.2.1 */ ! temp = temp2; if (temp < 0) { temp = -temp; /* temp is abs value of input */ /* For a negative input, want temp2 = bitwise complement of abs(input) */ /* This code assumes we are on a two's complement machine */ temp2--;
*** 593,603 **** */ if (nbits > MAX_COEF_BITS+1) ERREXIT(cinfo, JERR_BAD_DCT_COEF); /* Count/emit the Huffman-coded symbol for the number of bits */ ! emit_symbol(entropy, compptr->dc_tbl_no, nbits); /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ if (nbits) /* emit_bits rejects calls with size 0 */ emit_bits_e(entropy, (unsigned int) temp2, nbits); --- 593,603 ---- */ if (nbits > MAX_COEF_BITS+1) ERREXIT(cinfo, JERR_BAD_DCT_COEF); /* Count/emit the Huffman-coded symbol for the number of bits */ ! emit_dc_symbol(entropy, tbl, nbits); /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ if (nbits) /* emit_bits rejects calls with size 0 */ emit_bits_e(entropy, (unsigned int) temp2, nbits);
*** 627,660 **** METHODDEF(boolean) encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; register int temp, temp2; register int nbits; register int r, k; ! int Se = cinfo->Se; ! int Al = cinfo->Al; ! JBLOCKROW block; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart_e(entropy, entropy->next_restart_num); /* Encode the MCU data block */ block = MCU_data[0]; /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ r = 0; /* r = run length of zeros */ for (k = cinfo->Ss; k <= Se; k++) { ! if ((temp = (*block)[jpeg_natural_order[k]]) == 0) { r++; continue; } /* We must apply the point transform by Al. For AC coefficients this * is an integer division with rounding towards 0. To do this portably --- 627,664 ---- METHODDEF(boolean) encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + const int * natural_order; + JBLOCKROW block; register int temp, temp2; register int nbits; register int r, k; ! int Se, Al; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart_e(entropy, entropy->next_restart_num); + Se = cinfo->Se; + Al = cinfo->Al; + natural_order = cinfo->natural_order; + /* Encode the MCU data block */ block = MCU_data[0]; /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ r = 0; /* r = run length of zeros */ for (k = cinfo->Ss; k <= Se; k++) { ! if ((temp = (*block)[natural_order[k]]) == 0) { r++; continue; } /* We must apply the point transform by Al. For AC coefficients this * is an integer division with rounding towards 0. To do this portably
*** 679,689 **** /* Emit any pending EOBRUN */ if (entropy->EOBRUN > 0) emit_eobrun(entropy); /* if run length > 15, must emit special run-length-16 codes (0xF0) */ while (r > 15) { ! emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); r -= 16; } /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 1; /* there must be at least one 1 bit */ --- 683,693 ---- /* Emit any pending EOBRUN */ if (entropy->EOBRUN > 0) emit_eobrun(entropy); /* if run length > 15, must emit special run-length-16 codes (0xF0) */ while (r > 15) { ! emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); r -= 16; } /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 1; /* there must be at least one 1 bit */
*** 692,702 **** /* Check for out-of-range coefficient values */ if (nbits > MAX_COEF_BITS) ERREXIT(cinfo, JERR_BAD_DCT_COEF); /* Count/emit Huffman symbol for run length / number of bits */ ! emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ emit_bits_e(entropy, (unsigned int) temp2, nbits); --- 696,706 ---- /* Check for out-of-range coefficient values */ if (nbits > MAX_COEF_BITS) ERREXIT(cinfo, JERR_BAD_DCT_COEF); /* Count/emit Huffman symbol for run length / number of bits */ ! emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ emit_bits_e(entropy, (unsigned int) temp2, nbits);
*** 726,763 **** } /* * MCU encoding for DC successive approximation refinement scan. ! * Note: we assume such scans can be multi-component, although the spec ! * is not very clear on the point. */ METHODDEF(boolean) encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; ! register int temp; ! int blkn; ! int Al = cinfo->Al; ! JBLOCKROW block; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart_e(entropy, entropy->next_restart_num); /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - block = MCU_data[blkn]; - /* We simply emit the Al'th bit of the DC coefficient value. */ ! temp = (*block)[0]; ! emit_bits_e(entropy, (unsigned int) (temp >> Al), 1); } cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; --- 730,763 ---- } /* * MCU encoding for DC successive approximation refinement scan. ! * Note: we assume such scans can be multi-component, ! * although the spec is not very clear on the point. */ METHODDEF(boolean) encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; ! int Al, blkn; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart_e(entropy, entropy->next_restart_num); + Al = cinfo->Al; + /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { /* We simply emit the Al'th bit of the DC coefficient value. */ ! emit_bits_e(entropy, (unsigned int) (MCU_data[blkn][0][0] >> Al), 1); } cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer;
*** 781,819 **** METHODDEF(boolean) encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; register int temp; register int r, k; int EOB; char *BR_buffer; unsigned int BR; - int Se = cinfo->Se; - int Al = cinfo->Al; - JBLOCKROW block; int absvalues[DCTSIZE2]; - MEMZERO(absvalues, SIZEOF(absvalues)); - entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart_e(entropy, entropy->next_restart_num); /* Encode the MCU data block */ block = MCU_data[0]; /* It is convenient to make a pre-pass to determine the transformed * coefficients' absolute values and the EOB position. */ EOB = 0; for (k = cinfo->Ss; k <= Se; k++) { ! temp = (*block)[jpeg_natural_order[k]]; /* We must apply the point transform by Al. For AC coefficients this * is an integer division with rounding towards 0. To do this portably * in C, we shift after obtaining the absolute value. */ if (temp < 0) --- 781,821 ---- METHODDEF(boolean) encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + const int * natural_order; + JBLOCKROW block; register int temp; register int r, k; + int Se, Al; int EOB; char *BR_buffer; unsigned int BR; int absvalues[DCTSIZE2]; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart_e(entropy, entropy->next_restart_num); + Se = cinfo->Se; + Al = cinfo->Al; + natural_order = cinfo->natural_order; + /* Encode the MCU data block */ block = MCU_data[0]; /* It is convenient to make a pre-pass to determine the transformed * coefficients' absolute values and the EOB position. */ EOB = 0; for (k = cinfo->Ss; k <= Se; k++) { ! temp = (*block)[natural_order[k]]; /* We must apply the point transform by Al. For AC coefficients this * is an integer division with rounding towards 0. To do this portably * in C, we shift after obtaining the absolute value. */ if (temp < 0)
*** 839,849 **** /* Emit any required ZRLs, but not if they can be folded into EOB */ while (r > 15 && k <= EOB) { /* emit any pending EOBRUN and the BE correction bits */ emit_eobrun(entropy); /* Emit ZRL */ ! emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); r -= 16; /* Emit buffered correction bits that must be associated with ZRL */ emit_buffered_bits(entropy, BR_buffer, BR); BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ BR = 0; --- 841,851 ---- /* Emit any required ZRLs, but not if they can be folded into EOB */ while (r > 15 && k <= EOB) { /* emit any pending EOBRUN and the BE correction bits */ emit_eobrun(entropy); /* Emit ZRL */ ! emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); r -= 16; /* Emit buffered correction bits that must be associated with ZRL */ emit_buffered_bits(entropy, BR_buffer, BR); BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ BR = 0;
*** 862,875 **** /* Emit any pending EOBRUN and the BE correction bits */ emit_eobrun(entropy); /* Count/emit Huffman symbol for run length / number of bits */ ! emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); /* Emit output bit for newly-nonzero coef */ ! temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1; emit_bits_e(entropy, (unsigned int) temp, 1); /* Emit buffered correction bits that must be associated with this code */ emit_buffered_bits(entropy, BR_buffer, BR); BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ --- 864,877 ---- /* Emit any pending EOBRUN and the BE correction bits */ emit_eobrun(entropy); /* Count/emit Huffman symbol for run length / number of bits */ ! emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); /* Emit output bit for newly-nonzero coef */ ! temp = ((*block)[natural_order[k]] < 0) ? 0 : 1; emit_bits_e(entropy, (unsigned int) temp, 1); /* Emit buffered correction bits that must be associated with this code */ emit_buffered_bits(entropy, BR_buffer, BR); BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
*** 911,921 **** encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) { register int temp, temp2; register int nbits; ! register int k, r, i; /* Encode the DC coefficient difference per section F.1.2.1 */ temp = temp2 = block[0] - last_dc_val; --- 913,925 ---- encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) { register int temp, temp2; register int nbits; ! register int r, k; ! int Se = state->cinfo->lim_Se; ! const int * natural_order = state->cinfo->natural_order; /* Encode the DC coefficient difference per section F.1.2.1 */ temp = temp2 = block[0] - last_dc_val;
*** 950,971 **** /* Encode the AC coefficients per section F.1.2.2 */ r = 0; /* r = run length of zeros */ ! for (k = 1; k < DCTSIZE2; k++) { ! if ((temp = block[jpeg_natural_order[k]]) == 0) { r++; } else { /* if run length > 15, must emit special run-length-16 codes (0xF0) */ while (r > 15) { if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) return FALSE; r -= 16; } ! temp2 = temp; if (temp < 0) { temp = -temp; /* temp is abs value of input */ /* This code assumes we are on a two's complement machine */ temp2--; } --- 954,975 ---- /* Encode the AC coefficients per section F.1.2.2 */ r = 0; /* r = run length of zeros */ ! for (k = 1; k <= Se; k++) { ! if ((temp2 = block[natural_order[k]]) == 0) { r++; } else { /* if run length > 15, must emit special run-length-16 codes (0xF0) */ while (r > 15) { if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) return FALSE; r -= 16; } ! temp = temp2; if (temp < 0) { temp = -temp; /* temp is abs value of input */ /* This code assumes we are on a two's complement machine */ temp2--; }
*** 977,988 **** /* Check for out-of-range coefficient values */ if (nbits > MAX_COEF_BITS) ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); /* Emit Huffman symbol for run length / number of bits */ ! i = (r << 4) + nbits; ! if (! emit_bits_s(state, actbl->ehufco[i], actbl->ehufsi[i])) return FALSE; /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ if (! emit_bits_s(state, (unsigned int) temp2, nbits)) --- 981,992 ---- /* Check for out-of-range coefficient values */ if (nbits > MAX_COEF_BITS) ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); /* Emit Huffman symbol for run length / number of bits */ ! temp = (r << 4) + nbits; ! if (! emit_bits_s(state, actbl->ehufco[temp], actbl->ehufsi[temp])) return FALSE; /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ if (! emit_bits_s(state, (unsigned int) temp2, nbits))
*** 1115,1125 **** htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, long dc_counts[], long ac_counts[]) { register int temp; register int nbits; ! register int k, r; /* Encode the DC coefficient difference per section F.1.2.1 */ temp = block[0] - last_dc_val; if (temp < 0) --- 1119,1131 ---- htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, long dc_counts[], long ac_counts[]) { register int temp; register int nbits; ! register int r, k; ! int Se = cinfo->lim_Se; ! const int * natural_order = cinfo->natural_order; /* Encode the DC coefficient difference per section F.1.2.1 */ temp = block[0] - last_dc_val; if (temp < 0)
*** 1142,1153 **** /* Encode the AC coefficients per section F.1.2.2 */ r = 0; /* r = run length of zeros */ ! for (k = 1; k < DCTSIZE2; k++) { ! if ((temp = block[jpeg_natural_order[k]]) == 0) { r++; } else { /* if run length > 15, must emit special run-length-16 codes (0xF0) */ while (r > 15) { ac_counts[0xF0]++; --- 1148,1159 ---- /* Encode the AC coefficients per section F.1.2.2 */ r = 0; /* r = run length of zeros */ ! for (k = 1; k <= Se; k++) { ! if ((temp = block[natural_order[k]]) == 0) { r++; } else { /* if run length > 15, must emit special run-length-16 codes (0xF0) */ while (r > 15) { ac_counts[0xF0]++;
*** 1386,1452 **** METHODDEF(void) finish_pass_gather (j_compress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; ! int ci, dctbl, actbl, tbl; jpeg_component_info * compptr; JHUFF_TBL **htblptr; boolean did_dc[NUM_HUFF_TBLS]; boolean did_ac[NUM_HUFF_TBLS]; - boolean did[NUM_HUFF_TBLS]; /* It's important not to apply jpeg_gen_optimal_table more than once * per table, because it clobbers the input frequency counts! */ ! if (cinfo->progressive_mode) { /* Flush out buffered data (all we care about is counting the EOB symbol) */ emit_eobrun(entropy); ! MEMZERO(did, SIZEOF(did)); for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; ! if (cinfo->Ss == 0) { ! if (cinfo->Ah != 0) /* DC refinement needs no table */ ! continue; tbl = compptr->dc_tbl_no; ! } else { ! tbl = compptr->ac_tbl_no; ! } ! if (! did[tbl]) { ! if (cinfo->Ss == 0) htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; - else - htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); ! jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]); ! did[tbl] = TRUE; ! } } - } else { - MEMZERO(did_dc, SIZEOF(did_dc)); - MEMZERO(did_ac, SIZEOF(did_ac)); - - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - dctbl = compptr->dc_tbl_no; - actbl = compptr->ac_tbl_no; - if (! did_dc[dctbl]) { - htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl]; - if (*htblptr == NULL) - *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); - jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]); - did_dc[dctbl] = TRUE; } ! if (! did_ac[actbl]) { ! htblptr = & cinfo->ac_huff_tbl_ptrs[actbl]; if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); ! jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]); ! did_ac[actbl] = TRUE; } } } } --- 1392,1439 ---- METHODDEF(void) finish_pass_gather (j_compress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; ! int ci, tbl; jpeg_component_info * compptr; JHUFF_TBL **htblptr; boolean did_dc[NUM_HUFF_TBLS]; boolean did_ac[NUM_HUFF_TBLS]; /* It's important not to apply jpeg_gen_optimal_table more than once * per table, because it clobbers the input frequency counts! */ ! if (cinfo->progressive_mode) /* Flush out buffered data (all we care about is counting the EOB symbol) */ emit_eobrun(entropy); ! MEMZERO(did_dc, SIZEOF(did_dc)); ! MEMZERO(did_ac, SIZEOF(did_ac)); for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; ! /* DC needs no table for refinement scan */ ! if (cinfo->Ss == 0 && cinfo->Ah == 0) { tbl = compptr->dc_tbl_no; ! if (! did_dc[tbl]) { htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); ! jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]); ! did_dc[tbl] = TRUE; } } ! /* AC needs no table when not present */ ! if (cinfo->Se) { ! tbl = compptr->ac_tbl_no; ! if (! did_ac[tbl]) { ! htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); ! jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]); ! did_ac[tbl] = TRUE; } } } }
*** 1459,1469 **** METHODDEF(void) start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; ! int ci, dctbl, actbl, tbl; jpeg_component_info * compptr; if (gather_statistics) entropy->pub.finish_pass = finish_pass_gather; else --- 1446,1456 ---- METHODDEF(void) start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; ! int ci, tbl; jpeg_component_info * compptr; if (gather_statistics) entropy->pub.finish_pass = finish_pass_gather; else
*** 1492,1579 **** (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, MAX_CORR_BITS * SIZEOF(char)); } } - /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1 - * for AC coefficients. - */ - for (ci = 0; ci < cinfo->comps_in_scan; ci++) { - compptr = cinfo->cur_comp_info[ci]; - /* Initialize DC predictions to 0 */ - entropy->saved.last_dc_val[ci] = 0; - /* Get table index */ - if (cinfo->Ss == 0) { - if (cinfo->Ah != 0) /* DC refinement needs no table */ - continue; - tbl = compptr->dc_tbl_no; - } else { - entropy->ac_tbl_no = tbl = compptr->ac_tbl_no; - } - if (gather_statistics) { - /* Check for invalid table index */ - /* (make_c_derived_tbl does this in the other path) */ - if (tbl < 0 || tbl >= NUM_HUFF_TBLS) - ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); - /* Allocate and zero the statistics tables */ - /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ - if (entropy->count_ptrs[tbl] == NULL) - entropy->count_ptrs[tbl] = (long *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - 257 * SIZEOF(long)); - MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long)); - } else { - /* Compute derived values for Huffman table */ - /* We may do this more than once for a table, but it's not expensive */ - jpeg_make_c_derived_tbl(cinfo, cinfo->Ss == 0, tbl, - & entropy->derived_tbls[tbl]); - } - } - /* Initialize AC stuff */ entropy->EOBRUN = 0; entropy->BE = 0; } else { if (gather_statistics) entropy->pub.encode_mcu = encode_mcu_gather; else entropy->pub.encode_mcu = encode_mcu_huff; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; ! dctbl = compptr->dc_tbl_no; ! actbl = compptr->ac_tbl_no; if (gather_statistics) { ! /* Check for invalid table indexes */ /* (make_c_derived_tbl does this in the other path) */ ! if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS) ! ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); ! if (actbl < 0 || actbl >= NUM_HUFF_TBLS) ! ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); /* Allocate and zero the statistics tables */ /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ ! if (entropy->dc_count_ptrs[dctbl] == NULL) ! entropy->dc_count_ptrs[dctbl] = (long *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long)); ! MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long)); ! if (entropy->ac_count_ptrs[actbl] == NULL) ! entropy->ac_count_ptrs[actbl] = (long *) ! (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, ! 257 * SIZEOF(long)); ! MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long)); } else { /* Compute derived values for Huffman tables */ /* We may do this more than once for a table, but it's not expensive */ ! jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl, ! & entropy->dc_derived_tbls[dctbl]); ! jpeg_make_c_derived_tbl(cinfo, FALSE, actbl, ! & entropy->ac_derived_tbls[actbl]); } /* Initialize DC predictions to 0 */ entropy->saved.last_dc_val[ci] = 0; } } /* Initialize bit buffer to empty */ entropy->saved.put_buffer = 0; entropy->saved.put_bits = 0; --- 1479,1541 ---- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, MAX_CORR_BITS * SIZEOF(char)); } } /* Initialize AC stuff */ + entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no; entropy->EOBRUN = 0; entropy->BE = 0; } else { if (gather_statistics) entropy->pub.encode_mcu = encode_mcu_gather; else entropy->pub.encode_mcu = encode_mcu_huff; + } for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; ! /* DC needs no table for refinement scan */ ! if (cinfo->Ss == 0 && cinfo->Ah == 0) { ! tbl = compptr->dc_tbl_no; if (gather_statistics) { ! /* Check for invalid table index */ /* (make_c_derived_tbl does this in the other path) */ ! if (tbl < 0 || tbl >= NUM_HUFF_TBLS) ! ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); /* Allocate and zero the statistics tables */ /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ ! if (entropy->dc_count_ptrs[tbl] == NULL) ! entropy->dc_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long)); ! MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long)); } else { /* Compute derived values for Huffman tables */ /* We may do this more than once for a table, but it's not expensive */ ! jpeg_make_c_derived_tbl(cinfo, TRUE, tbl, ! & entropy->dc_derived_tbls[tbl]); } /* Initialize DC predictions to 0 */ entropy->saved.last_dc_val[ci] = 0; } + /* AC needs no table when not present */ + if (cinfo->Se) { + tbl = compptr->ac_tbl_no; + if (gather_statistics) { + if (tbl < 0 || tbl >= NUM_HUFF_TBLS) + ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); + if (entropy->ac_count_ptrs[tbl] == NULL) + entropy->ac_count_ptrs[tbl] = (long *) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + 257 * SIZEOF(long)); + MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long)); + } else { + jpeg_make_c_derived_tbl(cinfo, FALSE, tbl, + & entropy->ac_derived_tbls[tbl]); + } + } } /* Initialize bit buffer to empty */ entropy->saved.put_buffer = 0; entropy->saved.put_bits = 0;
*** 1595,1617 **** int i; entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_encoder)); ! cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; entropy->pub.start_pass = start_pass_huff; - if (cinfo->progressive_mode) { - /* Mark tables unallocated */ - for (i = 0; i < NUM_HUFF_TBLS; i++) { - entropy->derived_tbls[i] = NULL; - entropy->count_ptrs[i] = NULL; - } - entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ - } else { /* Mark tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; } ! } } --- 1557,1573 ---- int i; entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_encoder)); ! cinfo->entropy = &entropy->pub; entropy->pub.start_pass = start_pass_huff; /* Mark tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; } ! ! if (cinfo->progressive_mode) ! entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ }
< prev index next >