< prev index next >

modules/javafx.graphics/src/main/native-iio/libjpeg7/jchuff.c

Print this page


   1 /*
   2  * jchuff.c
   3  *
   4  * Copyright (C) 1991-1997, Thomas G. Lane.
   5  * Modified 2006-2009 by Guido Vollbeding.
   6  * This file is part of the Independent JPEG Group's software.
   7  * For conditions of distribution and use, see the accompanying README file.
   8  *
   9  * This file contains Huffman entropy encoding routines.
  10  * Both sequential and progressive modes are supported in this single module.
  11  *
  12  * Much of the complexity here has to do with supporting output suspension.
  13  * If the data destination module demands suspension, we want to be able to
  14  * back up to the start of the current MCU.  To do this, we copy state
  15  * variables into local working storage, and update them back to the
  16  * permanent JPEG objects only upon successful completion of an MCU.
  17  *
  18  * We do not support output suspension for the progressive JPEG mode, since
  19  * the library currently does not allow multiple-scan files to be written
  20  * with output suspension.
  21  */
  22 
  23 #define JPEG_INTERNALS
  24 #include "jinclude.h"
  25 #include "jpeglib.h"


  70 #define ASSIGN_STATE(dest,src)  \
  71         ((dest).put_buffer = (src).put_buffer, \
  72          (dest).put_bits = (src).put_bits, \
  73          (dest).last_dc_val[0] = (src).last_dc_val[0], \
  74          (dest).last_dc_val[1] = (src).last_dc_val[1], \
  75          (dest).last_dc_val[2] = (src).last_dc_val[2], \
  76          (dest).last_dc_val[3] = (src).last_dc_val[3])
  77 #endif
  78 #endif
  79 
  80 
  81 typedef struct {
  82   struct jpeg_entropy_encoder pub; /* public fields */
  83 
  84   savable_state saved;          /* Bit buffer & DC state at start of MCU */
  85 
  86   /* These fields are NOT loaded into local working state. */
  87   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
  88   int next_restart_num;         /* next restart number to write (0-7) */
  89 
  90   /* Following four fields used only in sequential mode */
  91 
  92   /* Pointers to derived tables (these workspaces have image lifespan) */
  93   c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
  94   c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
  95 
  96   /* Statistics tables for optimization */
  97   long * dc_count_ptrs[NUM_HUFF_TBLS];
  98   long * ac_count_ptrs[NUM_HUFF_TBLS];
  99 
 100   /* Following fields used only in progressive mode */
 101 
 102   /* Mode flag: TRUE for optimization, FALSE for actual data output */
 103   boolean gather_statistics;
 104 
 105   /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
 106    */
 107   JOCTET * next_output_byte;    /* => next byte to write in buffer */
 108   size_t free_in_buffer;        /* # of byte spaces remaining in buffer */
 109   j_compress_ptr cinfo;         /* link to cinfo (needed for dump_buffer) */
 110 
 111   /* Coding status for AC components */
 112   int ac_tbl_no;                /* the table number of the single component */
 113   unsigned int EOBRUN;          /* run length of EOBs */
 114   unsigned int BE;              /* # of buffered correction bits before MCU */
 115   char * bit_buffer;            /* buffer for correction bits (1 per char) */
 116   /* packing correction bits tightly would save some space but cost time... */
 117 
 118   /* Pointers to derived tables (these workspaces have image lifespan).
 119    * Since any one scan in progressive mode codes only DC or only AC,
 120    * we only need one set of tables, not one for DC and one for AC.
 121    */
 122   c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
 123 
 124   /* Statistics tables for optimization; again, one set is enough */
 125   long * count_ptrs[NUM_HUFF_TBLS];
 126 } huff_entropy_encoder;
 127 
 128 typedef huff_entropy_encoder * huff_entropy_ptr;
 129 
 130 /* Working state while writing an MCU (sequential mode).
 131  * This struct contains all the fields that are needed by subroutines.
 132  */
 133 
 134 typedef struct {
 135   JOCTET * next_output_byte;    /* => next byte to write in buffer */
 136   size_t free_in_buffer;        /* # of byte spaces remaining in buffer */
 137   savable_state cur;            /* Current bit buffer & DC state */
 138   j_compress_ptr cinfo;         /* dump_buffer needs access to this */
 139 } working_state;
 140 
 141 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
 142  * buffer can hold.  Larger sizes may slightly improve compression, but
 143  * 1000 is already well into the realm of overkill.
 144  * The minimum safe size is 64 bits.
 145  */


 162 #define IRIGHT_SHIFT(x,shft)    ((x) >> (shft))
 163 #endif
 164 
 165 
 166 /*
 167  * Compute the derived values for a Huffman table.
 168  * This routine also performs some validation checks on the table.
 169  */
 170 
 171 LOCAL(void)
 172 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
 173                          c_derived_tbl ** pdtbl)
 174 {
 175   JHUFF_TBL *htbl;
 176   c_derived_tbl *dtbl;
 177   int p, i, l, lastp, si, maxsymbol;
 178   char huffsize[257];
 179   unsigned int huffcode[257];
 180   unsigned int code;
 181 
 182   MEMZERO(huffsize, SIZEOF(huffsize));
 183   MEMZERO(huffcode, SIZEOF(huffcode));
 184 
 185   /* Note that huffsize[] and huffcode[] are filled in code-length order,
 186    * paralleling the order of the symbols themselves in htbl->huffval[].
 187    */
 188 
 189   /* Find the input Huffman table */
 190   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
 191     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 192   htbl =
 193     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
 194   if (htbl == NULL)
 195     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 196 
 197   /* Allocate a workspace if we haven't already done so. */
 198   if (*pdtbl == NULL)
 199     *pdtbl = (c_derived_tbl *)
 200       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 201                                   SIZEOF(c_derived_tbl));
 202   dtbl = *pdtbl;
 203 
 204   /* Figure C.1: make table of Huffman code length for each symbol */


 305   /* After a successful buffer dump, must reset buffer pointers */
 306   entropy->next_output_byte = dest->next_output_byte;
 307   entropy->free_in_buffer = dest->free_in_buffer;
 308 }
 309 
 310 
 311 /* Outputting bits to the file */
 312 
 313 /* Only the right 24 bits of put_buffer are used; the valid bits are
 314  * left-justified in this part.  At most 16 bits can be passed to emit_bits
 315  * in one call, and we never retain more than 7 bits in put_buffer
 316  * between calls, so 24 bits are sufficient.
 317  */
 318 
 319 INLINE
 320 LOCAL(boolean)
 321 emit_bits_s (working_state * state, unsigned int code, int size)
 322 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
 323 {
 324   /* This routine is heavily used, so it's worth coding tightly. */
 325   register INT32 put_buffer = (INT32) code;
 326   register int put_bits = state->cur.put_bits;
 327 
 328   /* if size is 0, caller used an invalid Huffman table entry */
 329   if (size == 0)
 330     ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
 331 
 332   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */

 333 
 334   put_bits += size;             /* new number of bits in buffer */

 335 
 336   put_buffer <<= 24 - put_bits; /* align incoming bits */
 337 
 338   put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */

 339 
 340   while (put_bits >= 8) {
 341     int c = (int) ((put_buffer >> 16) & 0xFF);
 342 
 343     emit_byte_s(state, c, return FALSE);
 344     if (c == 0xFF) {            /* need to stuff a zero byte? */
 345       emit_byte_s(state, 0, return FALSE);
 346     }
 347     put_buffer <<= 8;
 348     put_bits -= 8;
 349   }
 350 
 351   state->cur.put_buffer = put_buffer; /* update state variables */
 352   state->cur.put_bits = put_bits;
 353 
 354   return TRUE;
 355 }
 356 
 357 
 358 INLINE
 359 LOCAL(void)
 360 emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size)
 361 /* Emit some bits, unless we are in gather mode */
 362 {
 363   /* This routine is heavily used, so it's worth coding tightly. */
 364   register INT32 put_buffer = (INT32) code;
 365   register int put_bits = entropy->saved.put_bits;
 366 
 367   /* if size is 0, caller used an invalid Huffman table entry */
 368   if (size == 0)
 369     ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
 370 
 371   if (entropy->gather_statistics)
 372     return;                     /* do nothing if we're only getting stats */
 373 
 374   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */

 375 
 376   put_bits += size;             /* new number of bits in buffer */

 377 
 378   put_buffer <<= 24 - put_bits; /* align incoming bits */
 379 
 380   /* and merge with old buffer contents */
 381   put_buffer |= entropy->saved.put_buffer;
 382 
 383   while (put_bits >= 8) {
 384     int c = (int) ((put_buffer >> 16) & 0xFF);
 385 
 386     emit_byte_e(entropy, c);
 387     if (c == 0xFF) {            /* need to stuff a zero byte? */
 388       emit_byte_e(entropy, 0);
 389     }
 390     put_buffer <<= 8;
 391     put_bits -= 8;
 392   }
 393 
 394   entropy->saved.put_buffer = put_buffer; /* update variables */
 395   entropy->saved.put_bits = put_bits;
 396 }


 405   state->cur.put_bits = 0;
 406   return TRUE;
 407 }
 408 
 409 
 410 LOCAL(void)
 411 flush_bits_e (huff_entropy_ptr entropy)
 412 {
 413   emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */
 414   entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */
 415   entropy->saved.put_bits = 0;
 416 }
 417 
 418 
 419 /*
 420  * Emit (or just count) a Huffman symbol.
 421  */
 422 
 423 INLINE
 424 LOCAL(void)
 425 emit_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)













 426 {
 427   if (entropy->gather_statistics)
 428     entropy->count_ptrs[tbl_no][symbol]++;
 429   else {
 430     c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
 431     emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
 432   }
 433 }
 434 
 435 
 436 /*
 437  * Emit bits from a correction bit buffer.
 438  */
 439 
 440 LOCAL(void)
 441 emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart,
 442                     unsigned int nbits)
 443 {
 444   if (entropy->gather_statistics)
 445     return;                     /* no real work */
 446 
 447   while (nbits > 0) {
 448     emit_bits_e(entropy, (unsigned int) (*bufstart), 1);
 449     bufstart++;
 450     nbits--;


 453 
 454 
 455 /*
 456  * Emit any pending EOBRUN symbol.
 457  */
 458 
 459 LOCAL(void)
 460 emit_eobrun (huff_entropy_ptr entropy)
 461 {
 462   register int temp, nbits;
 463 
 464   if (entropy->EOBRUN > 0) {    /* if there is any pending EOBRUN */
 465     temp = entropy->EOBRUN;
 466     nbits = 0;
 467     while ((temp >>= 1))
 468       nbits++;
 469     /* safety check: shouldn't happen given limited correction-bit buffer */
 470     if (nbits > 14)
 471       ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
 472 
 473     emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
 474     if (nbits)
 475       emit_bits_e(entropy, entropy->EOBRUN, nbits);
 476 
 477     entropy->EOBRUN = 0;
 478 
 479     /* Emit any buffered correction bits */
 480     emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
 481     entropy->BE = 0;
 482   }
 483 }
 484 
 485 
 486 /*
 487  * Emit a restart marker & resynchronize predictions.
 488  */
 489 
 490 LOCAL(boolean)
 491 emit_restart_s (working_state * state, int restart_num)
 492 {
 493   int ci;


 527       entropy->saved.last_dc_val[ci] = 0;
 528   } else {
 529     /* Re-initialize all AC-related fields to 0 */
 530     entropy->EOBRUN = 0;
 531     entropy->BE = 0;
 532   }
 533 }
 534 
 535 
 536 /*
 537  * MCU encoding for DC initial scan (either spectral selection,
 538  * or first pass of successive approximation).
 539  */
 540 
 541 METHODDEF(boolean)
 542 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 543 {
 544   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 545   register int temp, temp2;
 546   register int nbits;
 547   int blkn, ci;
 548   int Al = cinfo->Al;
 549   JBLOCKROW block;
 550   jpeg_component_info * compptr;
 551   ISHIFT_TEMPS
 552 
 553   entropy->next_output_byte = cinfo->dest->next_output_byte;
 554   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
 555 
 556   /* Emit restart marker if needed */
 557   if (cinfo->restart_interval)
 558     if (entropy->restarts_to_go == 0)
 559       emit_restart_e(entropy, entropy->next_restart_num);
 560 
 561   /* Encode the MCU data blocks */
 562   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 563     block = MCU_data[blkn];
 564     ci = cinfo->MCU_membership[blkn];
 565     compptr = cinfo->cur_comp_info[ci];
 566 
 567     /* Compute the DC value after the required point transform by Al.
 568      * This is simply an arithmetic right shift.
 569      */
 570     temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
 571 
 572     /* DC differences are figured on the point-transformed values. */
 573     temp = temp2 - entropy->saved.last_dc_val[ci];
 574     entropy->saved.last_dc_val[ci] = temp2;
 575 
 576     /* Encode the DC coefficient difference per section G.1.2.1 */
 577     temp2 = temp;
 578     if (temp < 0) {
 579       temp = -temp;             /* temp is abs value of input */
 580       /* For a negative input, want temp2 = bitwise complement of abs(input) */
 581       /* This code assumes we are on a two's complement machine */
 582       temp2--;
 583     }
 584 
 585     /* Find the number of bits needed for the magnitude of the coefficient */
 586     nbits = 0;
 587     while (temp) {
 588       nbits++;
 589       temp >>= 1;
 590     }
 591     /* Check for out-of-range coefficient values.
 592      * Since we're encoding a difference, the range limit is twice as much.
 593      */
 594     if (nbits > MAX_COEF_BITS+1)
 595       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
 596 
 597     /* Count/emit the Huffman-coded symbol for the number of bits */
 598     emit_symbol(entropy, compptr->dc_tbl_no, nbits);
 599 
 600     /* Emit that number of bits of the value, if positive, */
 601     /* or the complement of its magnitude, if negative. */
 602     if (nbits)                  /* emit_bits rejects calls with size 0 */
 603       emit_bits_e(entropy, (unsigned int) temp2, nbits);
 604   }
 605 
 606   cinfo->dest->next_output_byte = entropy->next_output_byte;
 607   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
 608 
 609   /* Update restart-interval state too */
 610   if (cinfo->restart_interval) {
 611     if (entropy->restarts_to_go == 0) {
 612       entropy->restarts_to_go = cinfo->restart_interval;
 613       entropy->next_restart_num++;
 614       entropy->next_restart_num &= 7;
 615     }
 616     entropy->restarts_to_go--;
 617   }
 618 
 619   return TRUE;
 620 }
 621 
 622 
 623 /*
 624  * MCU encoding for AC initial scan (either spectral selection,
 625  * or first pass of successive approximation).
 626  */
 627 
 628 METHODDEF(boolean)
 629 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 630 {
 631   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;


 632   register int temp, temp2;
 633   register int nbits;
 634   register int r, k;
 635   int Se = cinfo->Se;
 636   int Al = cinfo->Al;
 637   JBLOCKROW block;
 638 
 639   entropy->next_output_byte = cinfo->dest->next_output_byte;
 640   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
 641 
 642   /* Emit restart marker if needed */
 643   if (cinfo->restart_interval)
 644     if (entropy->restarts_to_go == 0)
 645       emit_restart_e(entropy, entropy->next_restart_num);
 646 




 647   /* Encode the MCU data block */
 648   block = MCU_data[0];
 649 
 650   /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
 651 
 652   r = 0;                        /* r = run length of zeros */
 653 
 654   for (k = cinfo->Ss; k <= Se; k++) {
 655     if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
 656       r++;
 657       continue;
 658     }
 659     /* We must apply the point transform by Al.  For AC coefficients this
 660      * is an integer division with rounding towards 0.  To do this portably
 661      * in C, we shift after obtaining the absolute value; so the code is
 662      * interwoven with finding the abs value (temp) and output bits (temp2).
 663      */
 664     if (temp < 0) {
 665       temp = -temp;             /* temp is abs value of input */
 666       temp >>= Al;              /* apply the point transform */
 667       /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
 668       temp2 = ~temp;
 669     } else {
 670       temp >>= Al;              /* apply the point transform */
 671       temp2 = temp;
 672     }
 673     /* Watch out for case that nonzero coef is zero after point transform */
 674     if (temp == 0) {
 675       r++;
 676       continue;
 677     }
 678 
 679     /* Emit any pending EOBRUN */
 680     if (entropy->EOBRUN > 0)
 681       emit_eobrun(entropy);
 682     /* if run length > 15, must emit special run-length-16 codes (0xF0) */
 683     while (r > 15) {
 684       emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
 685       r -= 16;
 686     }
 687 
 688     /* Find the number of bits needed for the magnitude of the coefficient */
 689     nbits = 1;                  /* there must be at least one 1 bit */
 690     while ((temp >>= 1))
 691       nbits++;
 692     /* Check for out-of-range coefficient values */
 693     if (nbits > MAX_COEF_BITS)
 694       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
 695 
 696     /* Count/emit Huffman symbol for run length / number of bits */
 697     emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
 698 
 699     /* Emit that number of bits of the value, if positive, */
 700     /* or the complement of its magnitude, if negative. */
 701     emit_bits_e(entropy, (unsigned int) temp2, nbits);
 702 
 703     r = 0;                      /* reset zero run length */
 704   }
 705 
 706   if (r > 0) {                  /* If there are trailing zeroes, */
 707     entropy->EOBRUN++;          /* count an EOB */
 708     if (entropy->EOBRUN == 0x7FFF)
 709       emit_eobrun(entropy);     /* force it out to avoid overflow */
 710   }
 711 
 712   cinfo->dest->next_output_byte = entropy->next_output_byte;
 713   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
 714 
 715   /* Update restart-interval state too */
 716   if (cinfo->restart_interval) {
 717     if (entropy->restarts_to_go == 0) {
 718       entropy->restarts_to_go = cinfo->restart_interval;
 719       entropy->next_restart_num++;
 720       entropy->next_restart_num &= 7;
 721     }
 722     entropy->restarts_to_go--;
 723   }
 724 
 725   return TRUE;
 726 }
 727 
 728 
 729 /*
 730  * MCU encoding for DC successive approximation refinement scan.
 731  * Note: we assume such scans can be multi-component, although the spec
 732  * is not very clear on the point.
 733  */
 734 
 735 METHODDEF(boolean)
 736 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 737 {
 738   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 739   register int temp;
 740   int blkn;
 741   int Al = cinfo->Al;
 742   JBLOCKROW block;
 743 
 744   entropy->next_output_byte = cinfo->dest->next_output_byte;
 745   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
 746 
 747   /* Emit restart marker if needed */
 748   if (cinfo->restart_interval)
 749     if (entropy->restarts_to_go == 0)
 750       emit_restart_e(entropy, entropy->next_restart_num);
 751 


 752   /* Encode the MCU data blocks */
 753   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 754     block = MCU_data[blkn];
 755 
 756     /* We simply emit the Al'th bit of the DC coefficient value. */
 757     temp = (*block)[0];
 758     emit_bits_e(entropy, (unsigned int) (temp >> Al), 1);
 759   }
 760 
 761   cinfo->dest->next_output_byte = entropy->next_output_byte;
 762   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
 763 
 764   /* Update restart-interval state too */
 765   if (cinfo->restart_interval) {
 766     if (entropy->restarts_to_go == 0) {
 767       entropy->restarts_to_go = cinfo->restart_interval;
 768       entropy->next_restart_num++;
 769       entropy->next_restart_num &= 7;
 770     }
 771     entropy->restarts_to_go--;
 772   }
 773 
 774   return TRUE;
 775 }
 776 
 777 
 778 /*
 779  * MCU encoding for AC successive approximation refinement scan.
 780  */
 781 
 782 METHODDEF(boolean)
 783 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 784 {
 785   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;


 786   register int temp;
 787   register int r, k;

 788   int EOB;
 789   char *BR_buffer;
 790   unsigned int BR;
 791   int Se = cinfo->Se;
 792   int Al = cinfo->Al;
 793   JBLOCKROW block;
 794   int absvalues[DCTSIZE2];
 795 
 796   MEMZERO(absvalues, SIZEOF(absvalues));
 797 
 798   entropy->next_output_byte = cinfo->dest->next_output_byte;
 799   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
 800 
 801   /* Emit restart marker if needed */
 802   if (cinfo->restart_interval)
 803     if (entropy->restarts_to_go == 0)
 804       emit_restart_e(entropy, entropy->next_restart_num);
 805 




 806   /* Encode the MCU data block */
 807   block = MCU_data[0];
 808 
 809   /* It is convenient to make a pre-pass to determine the transformed
 810    * coefficients' absolute values and the EOB position.
 811    */
 812   EOB = 0;
 813   for (k = cinfo->Ss; k <= Se; k++) {
 814     temp = (*block)[jpeg_natural_order[k]];
 815     /* We must apply the point transform by Al.  For AC coefficients this
 816      * is an integer division with rounding towards 0.  To do this portably
 817      * in C, we shift after obtaining the absolute value.
 818      */
 819     if (temp < 0)
 820       temp = -temp;             /* temp is abs value of input */
 821     temp >>= Al;                /* apply the point transform */
 822     absvalues[k] = temp;        /* save abs value for main pass */
 823     if (temp == 1)
 824       EOB = k;                  /* EOB = index of last newly-nonzero coef */
 825   }
 826 
 827   /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
 828 
 829   r = 0;                        /* r = run length of zeros */
 830   BR = 0;                       /* BR = count of buffered bits added now */
 831   BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
 832 
 833   for (k = cinfo->Ss; k <= Se; k++) {
 834     if ((temp = absvalues[k]) == 0) {
 835       r++;
 836       continue;
 837     }
 838 
 839     /* Emit any required ZRLs, but not if they can be folded into EOB */
 840     while (r > 15 && k <= EOB) {
 841       /* emit any pending EOBRUN and the BE correction bits */
 842       emit_eobrun(entropy);
 843       /* Emit ZRL */
 844       emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
 845       r -= 16;
 846       /* Emit buffered correction bits that must be associated with ZRL */
 847       emit_buffered_bits(entropy, BR_buffer, BR);
 848       BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
 849       BR = 0;
 850     }
 851 
 852     /* If the coef was previously nonzero, it only needs a correction bit.
 853      * NOTE: a straight translation of the spec's figure G.7 would suggest
 854      * that we also need to test r > 15.  But if r > 15, we can only get here
 855      * if k > EOB, which implies that this coefficient is not 1.
 856      */
 857     if (temp > 1) {
 858       /* The correction bit is the next bit of the absolute value. */
 859       BR_buffer[BR++] = (char) (temp & 1);
 860       continue;
 861     }
 862 
 863     /* Emit any pending EOBRUN and the BE correction bits */
 864     emit_eobrun(entropy);
 865 
 866     /* Count/emit Huffman symbol for run length / number of bits */
 867     emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
 868 
 869     /* Emit output bit for newly-nonzero coef */
 870     temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
 871     emit_bits_e(entropy, (unsigned int) temp, 1);
 872 
 873     /* Emit buffered correction bits that must be associated with this code */
 874     emit_buffered_bits(entropy, BR_buffer, BR);
 875     BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
 876     BR = 0;
 877     r = 0;                      /* reset zero run length */
 878   }
 879 
 880   if (r > 0 || BR > 0) {        /* If there are trailing zeroes, */
 881     entropy->EOBRUN++;          /* count an EOB */
 882     entropy->BE += BR;          /* concat my correction bits to older ones */
 883     /* We force out the EOB if we risk either:
 884      * 1. overflow of the EOB counter;
 885      * 2. overflow of the correction bit buffer during the next MCU.
 886      */
 887     if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
 888       emit_eobrun(entropy);
 889   }
 890 


 896     if (entropy->restarts_to_go == 0) {
 897       entropy->restarts_to_go = cinfo->restart_interval;
 898       entropy->next_restart_num++;
 899       entropy->next_restart_num &= 7;
 900     }
 901     entropy->restarts_to_go--;
 902   }
 903 
 904   return TRUE;
 905 }
 906 
 907 
 908 /* Encode a single block's worth of coefficients */
 909 
 910 LOCAL(boolean)
 911 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
 912                   c_derived_tbl *dctbl, c_derived_tbl *actbl)
 913 {
 914   register int temp, temp2;
 915   register int nbits;
 916   register int k, r, i;


 917 
 918   /* Encode the DC coefficient difference per section F.1.2.1 */
 919 
 920   temp = temp2 = block[0] - last_dc_val;
 921 
 922   if (temp < 0) {
 923     temp = -temp;               /* temp is abs value of input */
 924     /* For a negative input, want temp2 = bitwise complement of abs(input) */
 925     /* This code assumes we are on a two's complement machine */
 926     temp2--;
 927   }
 928 
 929   /* Find the number of bits needed for the magnitude of the coefficient */
 930   nbits = 0;
 931   while (temp) {
 932     nbits++;
 933     temp >>= 1;
 934   }
 935   /* Check for out-of-range coefficient values.
 936    * Since we're encoding a difference, the range limit is twice as much.
 937    */
 938   if (nbits > MAX_COEF_BITS+1)
 939     ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
 940 
 941   /* Emit the Huffman-coded symbol for the number of bits */
 942   if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
 943     return FALSE;
 944 
 945   /* Emit that number of bits of the value, if positive, */
 946   /* or the complement of its magnitude, if negative. */
 947   if (nbits)                    /* emit_bits rejects calls with size 0 */
 948     if (! emit_bits_s(state, (unsigned int) temp2, nbits))
 949       return FALSE;
 950 
 951   /* Encode the AC coefficients per section F.1.2.2 */
 952 
 953   r = 0;                        /* r = run length of zeros */
 954 
 955   for (k = 1; k < DCTSIZE2; k++) {
 956     if ((temp = block[jpeg_natural_order[k]]) == 0) {
 957       r++;
 958     } else {
 959       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
 960       while (r > 15) {
 961         if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
 962           return FALSE;
 963         r -= 16;
 964       }
 965 
 966       temp2 = temp;
 967       if (temp < 0) {
 968         temp = -temp;           /* temp is abs value of input */
 969         /* This code assumes we are on a two's complement machine */
 970         temp2--;
 971       }
 972 
 973       /* Find the number of bits needed for the magnitude of the coefficient */
 974       nbits = 1;                /* there must be at least one 1 bit */
 975       while ((temp >>= 1))
 976         nbits++;
 977       /* Check for out-of-range coefficient values */
 978       if (nbits > MAX_COEF_BITS)
 979         ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
 980 
 981       /* Emit Huffman symbol for run length / number of bits */
 982       i = (r << 4) + nbits;
 983       if (! emit_bits_s(state, actbl->ehufco[i], actbl->ehufsi[i]))
 984         return FALSE;
 985 
 986       /* Emit that number of bits of the value, if positive, */
 987       /* or the complement of its magnitude, if negative. */
 988       if (! emit_bits_s(state, (unsigned int) temp2, nbits))
 989         return FALSE;
 990 
 991       r = 0;
 992     }
 993   }
 994 
 995   /* If the last coef(s) were zero, emit an end-of-block code */
 996   if (r > 0)
 997     if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0]))
 998       return FALSE;
 999 
1000   return TRUE;
1001 }
1002 
1003 


1100 /*
1101  * Huffman coding optimization.
1102  *
1103  * We first scan the supplied data and count the number of uses of each symbol
1104  * that is to be Huffman-coded. (This process MUST agree with the code above.)
1105  * Then we build a Huffman coding tree for the observed counts.
1106  * Symbols which are not needed at all for the particular image are not
1107  * assigned any code, which saves space in the DHT marker as well as in
1108  * the compressed data.
1109  */
1110 
1111 
1112 /* Process a single block's worth of coefficients */
1113 
1114 LOCAL(void)
1115 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
1116                  long dc_counts[], long ac_counts[])
1117 {
1118   register int temp;
1119   register int nbits;
1120   register int k, r;


1121 
1122   /* Encode the DC coefficient difference per section F.1.2.1 */
1123 
1124   temp = block[0] - last_dc_val;
1125   if (temp < 0)
1126     temp = -temp;
1127 
1128   /* Find the number of bits needed for the magnitude of the coefficient */
1129   nbits = 0;
1130   while (temp) {
1131     nbits++;
1132     temp >>= 1;
1133   }
1134   /* Check for out-of-range coefficient values.
1135    * Since we're encoding a difference, the range limit is twice as much.
1136    */
1137   if (nbits > MAX_COEF_BITS+1)
1138     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
1139 
1140   /* Count the Huffman symbol for the number of bits */
1141   dc_counts[nbits]++;
1142 
1143   /* Encode the AC coefficients per section F.1.2.2 */
1144 
1145   r = 0;                        /* r = run length of zeros */
1146 
1147   for (k = 1; k < DCTSIZE2; k++) {
1148     if ((temp = block[jpeg_natural_order[k]]) == 0) {
1149       r++;
1150     } else {
1151       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
1152       while (r > 15) {
1153         ac_counts[0xF0]++;
1154         r -= 16;
1155       }
1156 
1157       /* Find the number of bits needed for the magnitude of the coefficient */
1158       if (temp < 0)
1159         temp = -temp;
1160 
1161       /* Find the number of bits needed for the magnitude of the coefficient */
1162       nbits = 1;                /* there must be at least one 1 bit */
1163       while ((temp >>= 1))
1164         nbits++;
1165       /* Check for out-of-range coefficient values */
1166       if (nbits > MAX_COEF_BITS)
1167         ERREXIT(cinfo, JERR_BAD_DCT_COEF);
1168 


1371       if (codesize[j] == i) {
1372         htbl->huffval[p] = (UINT8) j;
1373         p++;
1374       }
1375     }
1376   }
1377 
1378   /* Set sent_table FALSE so updated table will be written to JPEG file. */
1379   htbl->sent_table = FALSE;
1380 }
1381 
1382 
1383 /*
1384  * Finish up a statistics-gathering pass and create the new Huffman tables.
1385  */
1386 
1387 METHODDEF(void)
1388 finish_pass_gather (j_compress_ptr cinfo)
1389 {
1390   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1391   int ci, dctbl, actbl, tbl;
1392   jpeg_component_info * compptr;
1393   JHUFF_TBL **htblptr;
1394   boolean did_dc[NUM_HUFF_TBLS];
1395   boolean did_ac[NUM_HUFF_TBLS];
1396   boolean did[NUM_HUFF_TBLS];
1397 
1398   /* It's important not to apply jpeg_gen_optimal_table more than once
1399    * per table, because it clobbers the input frequency counts!
1400    */
1401   if (cinfo->progressive_mode) {
1402     /* Flush out buffered data (all we care about is counting the EOB symbol) */
1403     emit_eobrun(entropy);
1404 
1405     MEMZERO(did, SIZEOF(did));

1406 
1407     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1408       compptr = cinfo->cur_comp_info[ci];
1409       if (cinfo->Ss == 0) {
1410         if (cinfo->Ah != 0)     /* DC refinement needs no table */
1411           continue;
1412         tbl = compptr->dc_tbl_no;
1413       } else {
1414         tbl = compptr->ac_tbl_no;
1415       }
1416       if (! did[tbl]) {
1417         if (cinfo->Ss == 0)
1418           htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
1419         else
1420           htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
1421         if (*htblptr == NULL)
1422           *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1423         jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
1424         did[tbl] = TRUE;
1425       }
1426     }
1427   } else {
1428     MEMZERO(did_dc, SIZEOF(did_dc));
1429     MEMZERO(did_ac, SIZEOF(did_ac));
1430 
1431     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1432       compptr = cinfo->cur_comp_info[ci];
1433       dctbl = compptr->dc_tbl_no;
1434       actbl = compptr->ac_tbl_no;
1435       if (! did_dc[dctbl]) {
1436         htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
1437         if (*htblptr == NULL)
1438           *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1439         jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
1440         did_dc[dctbl] = TRUE;
1441       }
1442       if (! did_ac[actbl]) {
1443         htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];



1444         if (*htblptr == NULL)
1445           *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1446         jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
1447         did_ac[actbl] = TRUE;
1448       }
1449     }
1450   }
1451 }
1452 
1453 
1454 /*
1455  * Initialize for a Huffman-compressed scan.
1456  * If gather_statistics is TRUE, we do not output anything during the scan,
1457  * just count the Huffman symbols used and generate Huffman code tables.
1458  */
1459 
1460 METHODDEF(void)
1461 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
1462 {
1463   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1464   int ci, dctbl, actbl, tbl;
1465   jpeg_component_info * compptr;
1466 
1467   if (gather_statistics)
1468     entropy->pub.finish_pass = finish_pass_gather;
1469   else
1470     entropy->pub.finish_pass = finish_pass_huff;
1471 
1472   if (cinfo->progressive_mode) {
1473     entropy->cinfo = cinfo;
1474     entropy->gather_statistics = gather_statistics;
1475 
1476     /* We assume jcmaster.c already validated the scan parameters. */
1477 
1478     /* Select execution routine */
1479     if (cinfo->Ah == 0) {
1480       if (cinfo->Ss == 0)
1481         entropy->pub.encode_mcu = encode_mcu_DC_first;
1482       else
1483         entropy->pub.encode_mcu = encode_mcu_AC_first;
1484     } else {
1485       if (cinfo->Ss == 0)
1486         entropy->pub.encode_mcu = encode_mcu_DC_refine;
1487       else {
1488         entropy->pub.encode_mcu = encode_mcu_AC_refine;
1489         /* AC refinement needs a correction bit buffer */
1490         if (entropy->bit_buffer == NULL)
1491           entropy->bit_buffer = (char *)
1492             (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1493                                         MAX_CORR_BITS * SIZEOF(char));
1494       }
1495     }
1496 
1497     /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
1498      * for AC coefficients.
1499      */
1500     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1501       compptr = cinfo->cur_comp_info[ci];
1502       /* Initialize DC predictions to 0 */
1503       entropy->saved.last_dc_val[ci] = 0;
1504       /* Get table index */
1505       if (cinfo->Ss == 0) {
1506         if (cinfo->Ah != 0)     /* DC refinement needs no table */
1507           continue;
1508         tbl = compptr->dc_tbl_no;
1509       } else {
1510         entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
1511       }
1512       if (gather_statistics) {
1513         /* Check for invalid table index */
1514         /* (make_c_derived_tbl does this in the other path) */
1515         if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
1516           ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
1517         /* Allocate and zero the statistics tables */
1518         /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
1519         if (entropy->count_ptrs[tbl] == NULL)
1520           entropy->count_ptrs[tbl] = (long *)
1521             (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1522                                         257 * SIZEOF(long));
1523         MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
1524       } else {
1525         /* Compute derived values for Huffman table */
1526         /* We may do this more than once for a table, but it's not expensive */
1527         jpeg_make_c_derived_tbl(cinfo, cinfo->Ss == 0, tbl,
1528                                 & entropy->derived_tbls[tbl]);
1529       }
1530     }
1531 
1532     /* Initialize AC stuff */

1533     entropy->EOBRUN = 0;
1534     entropy->BE = 0;
1535   } else {
1536     if (gather_statistics)
1537       entropy->pub.encode_mcu = encode_mcu_gather;
1538     else
1539       entropy->pub.encode_mcu = encode_mcu_huff;

1540 
1541     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1542       compptr = cinfo->cur_comp_info[ci];
1543       dctbl = compptr->dc_tbl_no;
1544       actbl = compptr->ac_tbl_no;

1545       if (gather_statistics) {
1546         /* Check for invalid table indexes */
1547         /* (make_c_derived_tbl does this in the other path) */
1548         if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
1549           ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
1550         if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
1551           ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
1552         /* Allocate and zero the statistics tables */
1553         /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
1554         if (entropy->dc_count_ptrs[dctbl] == NULL)
1555           entropy->dc_count_ptrs[dctbl] = (long *)
1556             (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1557                                         257 * SIZEOF(long));
1558         MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
1559         if (entropy->ac_count_ptrs[actbl] == NULL)
1560           entropy->ac_count_ptrs[actbl] = (long *)
1561             (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1562                                         257 * SIZEOF(long));
1563         MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
1564       } else {
1565         /* Compute derived values for Huffman tables */
1566         /* We may do this more than once for a table, but it's not expensive */
1567         jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
1568                                 & entropy->dc_derived_tbls[dctbl]);
1569         jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
1570                                 & entropy->ac_derived_tbls[actbl]);
1571       }
1572       /* Initialize DC predictions to 0 */
1573       entropy->saved.last_dc_val[ci] = 0;
1574     }
















1575   }
1576 
1577   /* Initialize bit buffer to empty */
1578   entropy->saved.put_buffer = 0;
1579   entropy->saved.put_bits = 0;
1580 
1581   /* Initialize restart stuff */
1582   entropy->restarts_to_go = cinfo->restart_interval;
1583   entropy->next_restart_num = 0;
1584 }
1585 
1586 
1587 /*
1588  * Module initialization routine for Huffman entropy encoding.
1589  */
1590 
1591 GLOBAL(void)
1592 jinit_huff_encoder (j_compress_ptr cinfo)
1593 {
1594   huff_entropy_ptr entropy;
1595   int i;
1596 
1597   entropy = (huff_entropy_ptr)
1598     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1599                                 SIZEOF(huff_entropy_encoder));
1600   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
1601   entropy->pub.start_pass = start_pass_huff;
1602 
1603   if (cinfo->progressive_mode) {
1604     /* Mark tables unallocated */
1605     for (i = 0; i < NUM_HUFF_TBLS; i++) {
1606       entropy->derived_tbls[i] = NULL;
1607       entropy->count_ptrs[i] = NULL;
1608     }
1609     entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
1610   } else {
1611     /* Mark tables unallocated */
1612     for (i = 0; i < NUM_HUFF_TBLS; i++) {
1613       entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1614       entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
1615     }
1616   }


1617 }
   1 /*
   2  * jchuff.c
   3  *
   4  * Copyright (C) 1991-1997, Thomas G. Lane.
   5  * Modified 2006-2013 by Guido Vollbeding.
   6  * This file is part of the Independent JPEG Group's software.
   7  * For conditions of distribution and use, see the accompanying README file.
   8  *
   9  * This file contains Huffman entropy encoding routines.
  10  * Both sequential and progressive modes are supported in this single module.
  11  *
  12  * Much of the complexity here has to do with supporting output suspension.
  13  * If the data destination module demands suspension, we want to be able to
  14  * back up to the start of the current MCU.  To do this, we copy state
  15  * variables into local working storage, and update them back to the
  16  * permanent JPEG objects only upon successful completion of an MCU.
  17  *
  18  * We do not support output suspension for the progressive JPEG mode, since
  19  * the library currently does not allow multiple-scan files to be written
  20  * with output suspension.
  21  */
  22 
  23 #define JPEG_INTERNALS
  24 #include "jinclude.h"
  25 #include "jpeglib.h"


  70 #define ASSIGN_STATE(dest,src)  \
  71         ((dest).put_buffer = (src).put_buffer, \
  72          (dest).put_bits = (src).put_bits, \
  73          (dest).last_dc_val[0] = (src).last_dc_val[0], \
  74          (dest).last_dc_val[1] = (src).last_dc_val[1], \
  75          (dest).last_dc_val[2] = (src).last_dc_val[2], \
  76          (dest).last_dc_val[3] = (src).last_dc_val[3])
  77 #endif
  78 #endif
  79 
  80 
  81 typedef struct {
  82   struct jpeg_entropy_encoder pub; /* public fields */
  83 
  84   savable_state saved;          /* Bit buffer & DC state at start of MCU */
  85 
  86   /* These fields are NOT loaded into local working state. */
  87   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
  88   int next_restart_num;         /* next restart number to write (0-7) */
  89 


  90   /* Pointers to derived tables (these workspaces have image lifespan) */
  91   c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
  92   c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
  93 
  94   /* Statistics tables for optimization */
  95   long * dc_count_ptrs[NUM_HUFF_TBLS];
  96   long * ac_count_ptrs[NUM_HUFF_TBLS];
  97 
  98   /* Following fields used only in progressive mode */
  99 
 100   /* Mode flag: TRUE for optimization, FALSE for actual data output */
 101   boolean gather_statistics;
 102 
 103   /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
 104    */
 105   JOCTET * next_output_byte;    /* => next byte to write in buffer */
 106   size_t free_in_buffer;        /* # of byte spaces remaining in buffer */
 107   j_compress_ptr cinfo;         /* link to cinfo (needed for dump_buffer) */
 108 
 109   /* Coding status for AC components */
 110   int ac_tbl_no;                /* the table number of the single component */
 111   unsigned int EOBRUN;          /* run length of EOBs */
 112   unsigned int BE;              /* # of buffered correction bits before MCU */
 113   char * bit_buffer;            /* buffer for correction bits (1 per char) */
 114   /* packing correction bits tightly would save some space but cost time... */









 115 } huff_entropy_encoder;
 116 
 117 typedef huff_entropy_encoder * huff_entropy_ptr;
 118 
 119 /* Working state while writing an MCU (sequential mode).
 120  * This struct contains all the fields that are needed by subroutines.
 121  */
 122 
 123 typedef struct {
 124   JOCTET * next_output_byte;    /* => next byte to write in buffer */
 125   size_t free_in_buffer;        /* # of byte spaces remaining in buffer */
 126   savable_state cur;            /* Current bit buffer & DC state */
 127   j_compress_ptr cinfo;         /* dump_buffer needs access to this */
 128 } working_state;
 129 
 130 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
 131  * buffer can hold.  Larger sizes may slightly improve compression, but
 132  * 1000 is already well into the realm of overkill.
 133  * The minimum safe size is 64 bits.
 134  */


 151 #define IRIGHT_SHIFT(x,shft)    ((x) >> (shft))
 152 #endif
 153 
 154 
 155 /*
 156  * Compute the derived values for a Huffman table.
 157  * This routine also performs some validation checks on the table.
 158  */
 159 
 160 LOCAL(void)
 161 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
 162                          c_derived_tbl ** pdtbl)
 163 {
 164   JHUFF_TBL *htbl;
 165   c_derived_tbl *dtbl;
 166   int p, i, l, lastp, si, maxsymbol;
 167   char huffsize[257];
 168   unsigned int huffcode[257];
 169   unsigned int code;
 170 



 171   /* Note that huffsize[] and huffcode[] are filled in code-length order,
 172    * paralleling the order of the symbols themselves in htbl->huffval[].
 173    */
 174 
 175   /* Find the input Huffman table */
 176   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
 177     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 178   htbl =
 179     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
 180   if (htbl == NULL)
 181     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 182 
 183   /* Allocate a workspace if we haven't already done so. */
 184   if (*pdtbl == NULL)
 185     *pdtbl = (c_derived_tbl *)
 186       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 187                                   SIZEOF(c_derived_tbl));
 188   dtbl = *pdtbl;
 189   
 190   /* Figure C.1: make table of Huffman code length for each symbol */


 291   /* After a successful buffer dump, must reset buffer pointers */
 292   entropy->next_output_byte = dest->next_output_byte;
 293   entropy->free_in_buffer = dest->free_in_buffer;
 294 }
 295 
 296 
 297 /* Outputting bits to the file */
 298 
 299 /* Only the right 24 bits of put_buffer are used; the valid bits are
 300  * left-justified in this part.  At most 16 bits can be passed to emit_bits
 301  * in one call, and we never retain more than 7 bits in put_buffer
 302  * between calls, so 24 bits are sufficient.
 303  */
 304 
 305 INLINE
 306 LOCAL(boolean)
 307 emit_bits_s (working_state * state, unsigned int code, int size)
 308 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
 309 {
 310   /* This routine is heavily used, so it's worth coding tightly. */
 311   register INT32 put_buffer;
 312   register int put_bits;
 313 
 314   /* if size is 0, caller used an invalid Huffman table entry */
 315   if (size == 0)
 316     ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
 317 
 318   /* mask off any extra bits in code */
 319   put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1);
 320 
 321   /* new number of bits in buffer */
 322   put_bits = size + state->cur.put_bits;
 323 
 324   put_buffer <<= 24 - put_bits; /* align incoming bits */
 325 
 326   /* and merge with old buffer contents */
 327   put_buffer |= state->cur.put_buffer;
 328 
 329   while (put_bits >= 8) {
 330     int c = (int) ((put_buffer >> 16) & 0xFF);
 331 
 332     emit_byte_s(state, c, return FALSE);
 333     if (c == 0xFF) {            /* need to stuff a zero byte? */
 334       emit_byte_s(state, 0, return FALSE);
 335     }
 336     put_buffer <<= 8;
 337     put_bits -= 8;
 338   }
 339 
 340   state->cur.put_buffer = put_buffer; /* update state variables */
 341   state->cur.put_bits = put_bits;
 342 
 343   return TRUE;
 344 }
 345 
 346 
 347 INLINE
 348 LOCAL(void)
 349 emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size)
 350 /* Emit some bits, unless we are in gather mode */
 351 {
 352   /* This routine is heavily used, so it's worth coding tightly. */
 353   register INT32 put_buffer;
 354   register int put_bits;
 355 
 356   /* if size is 0, caller used an invalid Huffman table entry */
 357   if (size == 0)
 358     ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
 359 
 360   if (entropy->gather_statistics)
 361     return;                     /* do nothing if we're only getting stats */
 362 
 363   /* mask off any extra bits in code */
 364   put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1);
 365 
 366   /* new number of bits in buffer */
 367   put_bits = size + entropy->saved.put_bits;
 368 
 369   put_buffer <<= 24 - put_bits; /* align incoming bits */
 370 
 371   /* and merge with old buffer contents */
 372   put_buffer |= entropy->saved.put_buffer;
 373 
 374   while (put_bits >= 8) {
 375     int c = (int) ((put_buffer >> 16) & 0xFF);
 376 
 377     emit_byte_e(entropy, c);
 378     if (c == 0xFF) {            /* need to stuff a zero byte? */
 379       emit_byte_e(entropy, 0);
 380     }
 381     put_buffer <<= 8;
 382     put_bits -= 8;
 383   }
 384 
 385   entropy->saved.put_buffer = put_buffer; /* update variables */
 386   entropy->saved.put_bits = put_bits;
 387 }


 396   state->cur.put_bits = 0;
 397   return TRUE;
 398 }
 399 
 400 
 401 LOCAL(void)
 402 flush_bits_e (huff_entropy_ptr entropy)
 403 {
 404   emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */
 405   entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */
 406   entropy->saved.put_bits = 0;
 407 }
 408 
 409 
 410 /*
 411  * Emit (or just count) a Huffman symbol.
 412  */
 413 
 414 INLINE
 415 LOCAL(void)
 416 emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
 417 {
 418   if (entropy->gather_statistics)
 419     entropy->dc_count_ptrs[tbl_no][symbol]++;
 420   else {
 421     c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no];
 422     emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
 423   }
 424 }
 425 
 426 
 427 INLINE
 428 LOCAL(void)
 429 emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
 430 {
 431   if (entropy->gather_statistics)
 432     entropy->ac_count_ptrs[tbl_no][symbol]++;
 433   else {
 434     c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no];
 435     emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
 436   }
 437 }
 438 
 439 
 440 /*
 441  * Emit bits from a correction bit buffer.
 442  */
 443 
 444 LOCAL(void)
 445 emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart,
 446                     unsigned int nbits)
 447 {
 448   if (entropy->gather_statistics)
 449     return;                     /* no real work */
 450 
 451   while (nbits > 0) {
 452     emit_bits_e(entropy, (unsigned int) (*bufstart), 1);
 453     bufstart++;
 454     nbits--;


 457 
 458 
 459 /*
 460  * Emit any pending EOBRUN symbol.
 461  */
 462 
 463 LOCAL(void)
 464 emit_eobrun (huff_entropy_ptr entropy)
 465 {
 466   register int temp, nbits;
 467 
 468   if (entropy->EOBRUN > 0) {      /* if there is any pending EOBRUN */
 469     temp = entropy->EOBRUN;
 470     nbits = 0;
 471     while ((temp >>= 1))
 472       nbits++;
 473     /* safety check: shouldn't happen given limited correction-bit buffer */
 474     if (nbits > 14)
 475       ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
 476 
 477     emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
 478     if (nbits)
 479       emit_bits_e(entropy, entropy->EOBRUN, nbits);
 480 
 481     entropy->EOBRUN = 0;
 482 
 483     /* Emit any buffered correction bits */
 484     emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
 485     entropy->BE = 0;
 486   }
 487 }
 488 
 489 
 490 /*
 491  * Emit a restart marker & resynchronize predictions.
 492  */
 493 
 494 LOCAL(boolean)
 495 emit_restart_s (working_state * state, int restart_num)
 496 {
 497   int ci;


 531       entropy->saved.last_dc_val[ci] = 0;
 532   } else {
 533     /* Re-initialize all AC-related fields to 0 */
 534     entropy->EOBRUN = 0;
 535     entropy->BE = 0;
 536   }
 537 }
 538 
 539 
 540 /*
 541  * MCU encoding for DC initial scan (either spectral selection,
 542  * or first pass of successive approximation).
 543  */
 544 
 545 METHODDEF(boolean)
 546 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 547 {
 548   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 549   register int temp, temp2;
 550   register int nbits;
 551   int blkn, ci, tbl;



 552   ISHIFT_TEMPS
 553 
 554   entropy->next_output_byte = cinfo->dest->next_output_byte;
 555   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
 556 
 557   /* Emit restart marker if needed */
 558   if (cinfo->restart_interval)
 559     if (entropy->restarts_to_go == 0)
 560       emit_restart_e(entropy, entropy->next_restart_num);
 561 
 562   /* Encode the MCU data blocks */
 563   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {

 564     ci = cinfo->MCU_membership[blkn];
 565     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
 566 
 567     /* Compute the DC value after the required point transform by Al.
 568      * This is simply an arithmetic right shift.
 569      */
 570     temp = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al);
 571 
 572     /* DC differences are figured on the point-transformed values. */
 573     temp2 = temp - entropy->saved.last_dc_val[ci];
 574     entropy->saved.last_dc_val[ci] = temp;
 575 
 576     /* Encode the DC coefficient difference per section G.1.2.1 */
 577     temp = temp2;
 578     if (temp < 0) {
 579       temp = -temp;             /* temp is abs value of input */
 580       /* For a negative input, want temp2 = bitwise complement of abs(input) */
 581       /* This code assumes we are on a two's complement machine */
 582       temp2--;
 583     }
 584 
 585     /* Find the number of bits needed for the magnitude of the coefficient */
 586     nbits = 0;
 587     while (temp) {
 588       nbits++;
 589       temp >>= 1;
 590     }
 591     /* Check for out-of-range coefficient values.
 592      * Since we're encoding a difference, the range limit is twice as much.
 593      */
 594     if (nbits > MAX_COEF_BITS+1)
 595       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
 596 
 597     /* Count/emit the Huffman-coded symbol for the number of bits */
 598     emit_dc_symbol(entropy, tbl, nbits);
 599 
 600     /* Emit that number of bits of the value, if positive, */
 601     /* or the complement of its magnitude, if negative. */
 602     if (nbits)                  /* emit_bits rejects calls with size 0 */
 603       emit_bits_e(entropy, (unsigned int) temp2, nbits);
 604   }
 605 
 606   cinfo->dest->next_output_byte = entropy->next_output_byte;
 607   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
 608 
 609   /* Update restart-interval state too */
 610   if (cinfo->restart_interval) {
 611     if (entropy->restarts_to_go == 0) {
 612       entropy->restarts_to_go = cinfo->restart_interval;
 613       entropy->next_restart_num++;
 614       entropy->next_restart_num &= 7;
 615     }
 616     entropy->restarts_to_go--;
 617   }
 618 
 619   return TRUE;
 620 }
 621 
 622 
 623 /*
 624  * MCU encoding for AC initial scan (either spectral selection,
 625  * or first pass of successive approximation).
 626  */
 627 
 628 METHODDEF(boolean)
 629 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 630 {
 631   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 632   const int * natural_order;
 633   JBLOCKROW block;
 634   register int temp, temp2;
 635   register int nbits;
 636   register int r, k;
 637   int Se, Al;


 638 
 639   entropy->next_output_byte = cinfo->dest->next_output_byte;
 640   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
 641 
 642   /* Emit restart marker if needed */
 643   if (cinfo->restart_interval)
 644     if (entropy->restarts_to_go == 0)
 645       emit_restart_e(entropy, entropy->next_restart_num);
 646 
 647   Se = cinfo->Se;
 648   Al = cinfo->Al;
 649   natural_order = cinfo->natural_order;
 650 
 651   /* Encode the MCU data block */
 652   block = MCU_data[0];
 653 
 654   /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
 655   
 656   r = 0;                        /* r = run length of zeros */
 657    
 658   for (k = cinfo->Ss; k <= Se; k++) {
 659     if ((temp = (*block)[natural_order[k]]) == 0) {
 660       r++;
 661       continue;
 662     }
 663     /* We must apply the point transform by Al.  For AC coefficients this
 664      * is an integer division with rounding towards 0.  To do this portably
 665      * in C, we shift after obtaining the absolute value; so the code is
 666      * interwoven with finding the abs value (temp) and output bits (temp2).
 667      */
 668     if (temp < 0) {
 669       temp = -temp;             /* temp is abs value of input */
 670       temp >>= Al;                /* apply the point transform */
 671       /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
 672       temp2 = ~temp;
 673     } else {
 674       temp >>= Al;                /* apply the point transform */
 675       temp2 = temp;
 676     }
 677     /* Watch out for case that nonzero coef is zero after point transform */
 678     if (temp == 0) {
 679       r++;
 680       continue;
 681     }
 682 
 683     /* Emit any pending EOBRUN */
 684     if (entropy->EOBRUN > 0)
 685       emit_eobrun(entropy);
 686     /* if run length > 15, must emit special run-length-16 codes (0xF0) */
 687     while (r > 15) {
 688       emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
 689       r -= 16;
 690     }
 691 
 692     /* Find the number of bits needed for the magnitude of the coefficient */
 693     nbits = 1;                  /* there must be at least one 1 bit */
 694     while ((temp >>= 1))
 695       nbits++;
 696     /* Check for out-of-range coefficient values */
 697     if (nbits > MAX_COEF_BITS)
 698       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
 699 
 700     /* Count/emit Huffman symbol for run length / number of bits */
 701     emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
 702 
 703     /* Emit that number of bits of the value, if positive, */
 704     /* or the complement of its magnitude, if negative. */
 705     emit_bits_e(entropy, (unsigned int) temp2, nbits);
 706 
 707     r = 0;                      /* reset zero run length */
 708   }
 709 
 710   if (r > 0) {                       /* If there are trailing zeroes, */
 711     entropy->EOBRUN++;               /* count an EOB */
 712     if (entropy->EOBRUN == 0x7FFF)
 713       emit_eobrun(entropy);     /* force it out to avoid overflow */
 714   }
 715 
 716   cinfo->dest->next_output_byte = entropy->next_output_byte;
 717   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
 718 
 719   /* Update restart-interval state too */
 720   if (cinfo->restart_interval) {
 721     if (entropy->restarts_to_go == 0) {
 722       entropy->restarts_to_go = cinfo->restart_interval;
 723       entropy->next_restart_num++;
 724       entropy->next_restart_num &= 7;
 725     }
 726     entropy->restarts_to_go--;
 727   }
 728 
 729   return TRUE;
 730 }
 731 
 732 
 733 /*
 734  * MCU encoding for DC successive approximation refinement scan.
 735  * Note: we assume such scans can be multi-component,
 736  * although the spec is not very clear on the point.
 737  */
 738 
 739 METHODDEF(boolean)
 740 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 741 {
 742   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 743   int Al, blkn;



 744 
 745   entropy->next_output_byte = cinfo->dest->next_output_byte;
 746   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
 747 
 748   /* Emit restart marker if needed */
 749   if (cinfo->restart_interval)
 750     if (entropy->restarts_to_go == 0)
 751       emit_restart_e(entropy, entropy->next_restart_num);
 752 
 753   Al = cinfo->Al;
 754 
 755   /* Encode the MCU data blocks */
 756   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {


 757     /* We simply emit the Al'th bit of the DC coefficient value. */
 758     emit_bits_e(entropy, (unsigned int) (MCU_data[blkn][0][0] >> Al), 1);

 759   }
 760 
 761   cinfo->dest->next_output_byte = entropy->next_output_byte;
 762   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
 763 
 764   /* Update restart-interval state too */
 765   if (cinfo->restart_interval) {
 766     if (entropy->restarts_to_go == 0) {
 767       entropy->restarts_to_go = cinfo->restart_interval;
 768       entropy->next_restart_num++;
 769       entropy->next_restart_num &= 7;
 770     }
 771     entropy->restarts_to_go--;
 772   }
 773 
 774   return TRUE;
 775 }
 776 
 777 
 778 /*
 779  * MCU encoding for AC successive approximation refinement scan.
 780  */
 781 
 782 METHODDEF(boolean)
 783 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 784 {
 785   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 786   const int * natural_order;
 787   JBLOCKROW block;
 788   register int temp;
 789   register int r, k;
 790   int Se, Al;
 791   int EOB;
 792   char *BR_buffer;
 793   unsigned int BR;



 794   int absvalues[DCTSIZE2];
 795 


 796   entropy->next_output_byte = cinfo->dest->next_output_byte;
 797   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
 798 
 799   /* Emit restart marker if needed */
 800   if (cinfo->restart_interval)
 801     if (entropy->restarts_to_go == 0)
 802       emit_restart_e(entropy, entropy->next_restart_num);
 803 
 804   Se = cinfo->Se;
 805   Al = cinfo->Al;
 806   natural_order = cinfo->natural_order;
 807 
 808   /* Encode the MCU data block */
 809   block = MCU_data[0];
 810 
 811   /* It is convenient to make a pre-pass to determine the transformed
 812    * coefficients' absolute values and the EOB position.
 813    */
 814   EOB = 0;
 815   for (k = cinfo->Ss; k <= Se; k++) {
 816     temp = (*block)[natural_order[k]];
 817     /* We must apply the point transform by Al.  For AC coefficients this
 818      * is an integer division with rounding towards 0.  To do this portably
 819      * in C, we shift after obtaining the absolute value.
 820      */
 821     if (temp < 0)
 822       temp = -temp;             /* temp is abs value of input */
 823     temp >>= Al;          /* apply the point transform */
 824     absvalues[k] = temp;        /* save abs value for main pass */
 825     if (temp == 1)
 826       EOB = k;                  /* EOB = index of last newly-nonzero coef */
 827   }
 828 
 829   /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
 830   
 831   r = 0;                        /* r = run length of zeros */
 832   BR = 0;                       /* BR = count of buffered bits added now */
 833   BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
 834 
 835   for (k = cinfo->Ss; k <= Se; k++) {
 836     if ((temp = absvalues[k]) == 0) {
 837       r++;
 838       continue;
 839     }
 840 
 841     /* Emit any required ZRLs, but not if they can be folded into EOB */
 842     while (r > 15 && k <= EOB) {
 843       /* emit any pending EOBRUN and the BE correction bits */
 844       emit_eobrun(entropy);
 845       /* Emit ZRL */
 846       emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
 847       r -= 16;
 848       /* Emit buffered correction bits that must be associated with ZRL */
 849       emit_buffered_bits(entropy, BR_buffer, BR);
 850       BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
 851       BR = 0;
 852     }
 853 
 854     /* If the coef was previously nonzero, it only needs a correction bit.
 855      * NOTE: a straight translation of the spec's figure G.7 would suggest
 856      * that we also need to test r > 15.  But if r > 15, we can only get here
 857      * if k > EOB, which implies that this coefficient is not 1.
 858      */
 859     if (temp > 1) {
 860       /* The correction bit is the next bit of the absolute value. */
 861       BR_buffer[BR++] = (char) (temp & 1);
 862       continue;
 863     }
 864 
 865     /* Emit any pending EOBRUN and the BE correction bits */
 866     emit_eobrun(entropy);
 867 
 868     /* Count/emit Huffman symbol for run length / number of bits */
 869     emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
 870 
 871     /* Emit output bit for newly-nonzero coef */
 872     temp = ((*block)[natural_order[k]] < 0) ? 0 : 1;
 873     emit_bits_e(entropy, (unsigned int) temp, 1);
 874 
 875     /* Emit buffered correction bits that must be associated with this code */
 876     emit_buffered_bits(entropy, BR_buffer, BR);
 877     BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
 878     BR = 0;
 879     r = 0;                      /* reset zero run length */
 880   }
 881 
 882   if (r > 0 || BR > 0) {  /* If there are trailing zeroes, */
 883     entropy->EOBRUN++;               /* count an EOB */
 884     entropy->BE += BR;               /* concat my correction bits to older ones */
 885     /* We force out the EOB if we risk either:
 886      * 1. overflow of the EOB counter;
 887      * 2. overflow of the correction bit buffer during the next MCU.
 888      */
 889     if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
 890       emit_eobrun(entropy);
 891   }
 892 


 898     if (entropy->restarts_to_go == 0) {
 899       entropy->restarts_to_go = cinfo->restart_interval;
 900       entropy->next_restart_num++;
 901       entropy->next_restart_num &= 7;
 902     }
 903     entropy->restarts_to_go--;
 904   }
 905 
 906   return TRUE;
 907 }
 908 
 909 
 910 /* Encode a single block's worth of coefficients */
 911 
 912 LOCAL(boolean)
 913 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
 914                   c_derived_tbl *dctbl, c_derived_tbl *actbl)
 915 {
 916   register int temp, temp2;
 917   register int nbits;
 918   register int r, k;
 919   int Se = state->cinfo->lim_Se;
 920   const int * natural_order = state->cinfo->natural_order;
 921 
 922   /* Encode the DC coefficient difference per section F.1.2.1 */
 923 
 924   temp = temp2 = block[0] - last_dc_val;
 925 
 926   if (temp < 0) {
 927     temp = -temp;               /* temp is abs value of input */
 928     /* For a negative input, want temp2 = bitwise complement of abs(input) */
 929     /* This code assumes we are on a two's complement machine */
 930     temp2--;
 931   }
 932 
 933   /* Find the number of bits needed for the magnitude of the coefficient */
 934   nbits = 0;
 935   while (temp) {
 936     nbits++;
 937     temp >>= 1;
 938   }
 939   /* Check for out-of-range coefficient values.
 940    * Since we're encoding a difference, the range limit is twice as much.
 941    */
 942   if (nbits > MAX_COEF_BITS+1)
 943     ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
 944 
 945   /* Emit the Huffman-coded symbol for the number of bits */
 946   if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
 947     return FALSE;
 948 
 949   /* Emit that number of bits of the value, if positive, */
 950   /* or the complement of its magnitude, if negative. */
 951   if (nbits)                    /* emit_bits rejects calls with size 0 */
 952     if (! emit_bits_s(state, (unsigned int) temp2, nbits))
 953       return FALSE;
 954 
 955   /* Encode the AC coefficients per section F.1.2.2 */
 956 
 957   r = 0;                        /* r = run length of zeros */
 958 
 959   for (k = 1; k <= Se; k++) {
 960     if ((temp2 = block[natural_order[k]]) == 0) {
 961       r++;
 962     } else {
 963       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
 964       while (r > 15) {
 965         if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
 966           return FALSE;
 967         r -= 16;
 968       }
 969 
 970       temp = temp2;
 971       if (temp < 0) {
 972         temp = -temp;           /* temp is abs value of input */
 973         /* This code assumes we are on a two's complement machine */
 974         temp2--;
 975       }
 976 
 977       /* Find the number of bits needed for the magnitude of the coefficient */
 978       nbits = 1;                /* there must be at least one 1 bit */
 979       while ((temp >>= 1))
 980         nbits++;
 981       /* Check for out-of-range coefficient values */
 982       if (nbits > MAX_COEF_BITS)
 983         ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
 984 
 985       /* Emit Huffman symbol for run length / number of bits */
 986       temp = (r << 4) + nbits;
 987       if (! emit_bits_s(state, actbl->ehufco[temp], actbl->ehufsi[temp]))
 988         return FALSE;
 989 
 990       /* Emit that number of bits of the value, if positive, */
 991       /* or the complement of its magnitude, if negative. */
 992       if (! emit_bits_s(state, (unsigned int) temp2, nbits))
 993         return FALSE;
 994 
 995       r = 0;
 996     }
 997   }
 998 
 999   /* If the last coef(s) were zero, emit an end-of-block code */
1000   if (r > 0)
1001     if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0]))
1002       return FALSE;
1003 
1004   return TRUE;
1005 }
1006 
1007 


1104 /*
1105  * Huffman coding optimization.
1106  *
1107  * We first scan the supplied data and count the number of uses of each symbol
1108  * that is to be Huffman-coded. (This process MUST agree with the code above.)
1109  * Then we build a Huffman coding tree for the observed counts.
1110  * Symbols which are not needed at all for the particular image are not
1111  * assigned any code, which saves space in the DHT marker as well as in
1112  * the compressed data.
1113  */
1114 
1115 
1116 /* Process a single block's worth of coefficients */
1117 
1118 LOCAL(void)
1119 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
1120                  long dc_counts[], long ac_counts[])
1121 {
1122   register int temp;
1123   register int nbits;
1124   register int r, k;
1125   int Se = cinfo->lim_Se;
1126   const int * natural_order = cinfo->natural_order;
1127 
1128   /* Encode the DC coefficient difference per section F.1.2.1 */
1129 
1130   temp = block[0] - last_dc_val;
1131   if (temp < 0)
1132     temp = -temp;
1133 
1134   /* Find the number of bits needed for the magnitude of the coefficient */
1135   nbits = 0;
1136   while (temp) {
1137     nbits++;
1138     temp >>= 1;
1139   }
1140   /* Check for out-of-range coefficient values.
1141    * Since we're encoding a difference, the range limit is twice as much.
1142    */
1143   if (nbits > MAX_COEF_BITS+1)
1144     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
1145 
1146   /* Count the Huffman symbol for the number of bits */
1147   dc_counts[nbits]++;
1148 
1149   /* Encode the AC coefficients per section F.1.2.2 */
1150 
1151   r = 0;                        /* r = run length of zeros */
1152 
1153   for (k = 1; k <= Se; k++) {
1154     if ((temp = block[natural_order[k]]) == 0) {
1155       r++;
1156     } else {
1157       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
1158       while (r > 15) {
1159         ac_counts[0xF0]++;
1160         r -= 16;
1161       }
1162 
1163       /* Find the number of bits needed for the magnitude of the coefficient */
1164       if (temp < 0)
1165         temp = -temp;
1166 
1167       /* Find the number of bits needed for the magnitude of the coefficient */
1168       nbits = 1;                /* there must be at least one 1 bit */
1169       while ((temp >>= 1))
1170         nbits++;
1171       /* Check for out-of-range coefficient values */
1172       if (nbits > MAX_COEF_BITS)
1173         ERREXIT(cinfo, JERR_BAD_DCT_COEF);
1174 


1377       if (codesize[j] == i) {
1378         htbl->huffval[p] = (UINT8) j;
1379         p++;
1380       }
1381     }
1382   }
1383 
1384   /* Set sent_table FALSE so updated table will be written to JPEG file. */
1385   htbl->sent_table = FALSE;
1386 }
1387 
1388 
1389 /*
1390  * Finish up a statistics-gathering pass and create the new Huffman tables.
1391  */
1392 
1393 METHODDEF(void)
1394 finish_pass_gather (j_compress_ptr cinfo)
1395 {
1396   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1397   int ci, tbl;
1398   jpeg_component_info * compptr;
1399   JHUFF_TBL **htblptr;
1400   boolean did_dc[NUM_HUFF_TBLS];
1401   boolean did_ac[NUM_HUFF_TBLS];

1402 
1403   /* It's important not to apply jpeg_gen_optimal_table more than once
1404    * per table, because it clobbers the input frequency counts!
1405    */
1406   if (cinfo->progressive_mode)
1407     /* Flush out buffered data (all we care about is counting the EOB symbol) */
1408     emit_eobrun(entropy);
1409 
1410   MEMZERO(did_dc, SIZEOF(did_dc));
1411   MEMZERO(did_ac, SIZEOF(did_ac));
1412 
1413   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1414     compptr = cinfo->cur_comp_info[ci];
1415     /* DC needs no table for refinement scan */
1416     if (cinfo->Ss == 0 && cinfo->Ah == 0) {

1417       tbl = compptr->dc_tbl_no;
1418       if (! did_dc[tbl]) {




1419         htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];


1420         if (*htblptr == NULL)
1421           *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1422         jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]);
1423         did_dc[tbl] = TRUE;

1424       }














1425     }
1426     /* AC needs no table when not present */
1427     if (cinfo->Se) {
1428       tbl = compptr->ac_tbl_no;
1429       if (! did_ac[tbl]) {
1430         htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
1431         if (*htblptr == NULL)
1432           *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1433         jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]);
1434         did_ac[tbl] = TRUE;
1435       }
1436     }
1437   }
1438 }
1439 
1440 
1441 /*
1442  * Initialize for a Huffman-compressed scan.
1443  * If gather_statistics is TRUE, we do not output anything during the scan,
1444  * just count the Huffman symbols used and generate Huffman code tables.
1445  */
1446 
1447 METHODDEF(void)
1448 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
1449 {
1450   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1451   int ci, tbl;
1452   jpeg_component_info * compptr;
1453 
1454   if (gather_statistics)
1455     entropy->pub.finish_pass = finish_pass_gather;
1456   else
1457     entropy->pub.finish_pass = finish_pass_huff;
1458 
1459   if (cinfo->progressive_mode) {
1460     entropy->cinfo = cinfo;
1461     entropy->gather_statistics = gather_statistics;
1462 
1463     /* We assume jcmaster.c already validated the scan parameters. */
1464 
1465     /* Select execution routine */
1466     if (cinfo->Ah == 0) {
1467       if (cinfo->Ss == 0)
1468         entropy->pub.encode_mcu = encode_mcu_DC_first;
1469       else
1470         entropy->pub.encode_mcu = encode_mcu_AC_first;
1471     } else {
1472       if (cinfo->Ss == 0)
1473         entropy->pub.encode_mcu = encode_mcu_DC_refine;
1474       else {
1475         entropy->pub.encode_mcu = encode_mcu_AC_refine;
1476         /* AC refinement needs a correction bit buffer */
1477         if (entropy->bit_buffer == NULL)
1478           entropy->bit_buffer = (char *)
1479             (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1480                                         MAX_CORR_BITS * SIZEOF(char));
1481       }
1482     }
1483 



































1484     /* Initialize AC stuff */
1485     entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no;
1486     entropy->EOBRUN = 0;
1487     entropy->BE = 0;
1488   } else {
1489     if (gather_statistics)
1490       entropy->pub.encode_mcu = encode_mcu_gather;
1491     else
1492       entropy->pub.encode_mcu = encode_mcu_huff;
1493   }
1494 
1495   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1496     compptr = cinfo->cur_comp_info[ci];
1497     /* DC needs no table for refinement scan */
1498     if (cinfo->Ss == 0 && cinfo->Ah == 0) {
1499       tbl = compptr->dc_tbl_no;
1500       if (gather_statistics) {
1501         /* Check for invalid table index */
1502         /* (make_c_derived_tbl does this in the other path) */
1503         if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
1504           ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);


1505         /* Allocate and zero the statistics tables */
1506         /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
1507         if (entropy->dc_count_ptrs[tbl] == NULL)
1508           entropy->dc_count_ptrs[tbl] = (long *)
1509             (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1510                                         257 * SIZEOF(long));
1511         MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long));





1512       } else {
1513         /* Compute derived values for Huffman tables */
1514         /* We may do this more than once for a table, but it's not expensive */
1515         jpeg_make_c_derived_tbl(cinfo, TRUE, tbl,
1516                                 & entropy->dc_derived_tbls[tbl]);


1517       }
1518       /* Initialize DC predictions to 0 */
1519       entropy->saved.last_dc_val[ci] = 0;
1520     }
1521     /* AC needs no table when not present */
1522     if (cinfo->Se) {
1523       tbl = compptr->ac_tbl_no;
1524       if (gather_statistics) {
1525         if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
1526           ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
1527         if (entropy->ac_count_ptrs[tbl] == NULL)
1528           entropy->ac_count_ptrs[tbl] = (long *)
1529             (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1530                                         257 * SIZEOF(long));
1531         MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long));
1532       } else {
1533         jpeg_make_c_derived_tbl(cinfo, FALSE, tbl,
1534                                 & entropy->ac_derived_tbls[tbl]);
1535       }
1536     }
1537   }
1538 
1539   /* Initialize bit buffer to empty */
1540   entropy->saved.put_buffer = 0;
1541   entropy->saved.put_bits = 0;
1542 
1543   /* Initialize restart stuff */
1544   entropy->restarts_to_go = cinfo->restart_interval;
1545   entropy->next_restart_num = 0;
1546 }
1547 
1548 
1549 /*
1550  * Module initialization routine for Huffman entropy encoding.
1551  */
1552 
1553 GLOBAL(void)
1554 jinit_huff_encoder (j_compress_ptr cinfo)
1555 {
1556   huff_entropy_ptr entropy;
1557   int i;
1558 
1559   entropy = (huff_entropy_ptr)
1560     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1561                                 SIZEOF(huff_entropy_encoder));
1562   cinfo->entropy = &entropy->pub;
1563   entropy->pub.start_pass = start_pass_huff;
1564 








1565   /* Mark tables unallocated */
1566   for (i = 0; i < NUM_HUFF_TBLS; i++) {
1567     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1568     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
1569   }
1570 
1571   if (cinfo->progressive_mode)
1572     entropy->bit_buffer = NULL;      /* needed only in AC refinement scan */
1573 }
< prev index next >