< prev index next >

modules/javafx.graphics/src/main/native-iio/libjpeg7/jdhuff.c

Print this page


   1 /*
   2  * jdhuff.c
   3  *
   4  * Copyright (C) 1991-1997, Thomas G. Lane.
   5  * Modified 2006-2009 by Guido Vollbeding.
   6  * This file is part of the Independent JPEG Group's software.
   7  * For conditions of distribution and use, see the accompanying README file.
   8  *
   9  * This file contains Huffman entropy decoding routines.
  10  * Both sequential and progressive modes are supported in this single module.
  11  *
  12  * Much of the complexity here has to do with supporting input suspension.
  13  * If the data source module demands suspension, we want to be able to back
  14  * up to the start of the current MCU.  To do this, we copy state variables
  15  * into local working storage, and update them back to the permanent
  16  * storage only upon successful completion of an MCU.
  17  */
  18 
  19 #define JPEG_INTERNALS
  20 #include "jinclude.h"
  21 #include "jpeglib.h"
  22 
  23 
  24 /* Derived data constructed for each Huffman table */
  25 


 212 #define ASSIGN_STATE(dest,src)  \
 213         ((dest).EOBRUN = (src).EOBRUN, \
 214          (dest).last_dc_val[0] = (src).last_dc_val[0], \
 215          (dest).last_dc_val[1] = (src).last_dc_val[1], \
 216          (dest).last_dc_val[2] = (src).last_dc_val[2], \
 217          (dest).last_dc_val[3] = (src).last_dc_val[3])
 218 #endif
 219 #endif
 220 
 221 
 222 typedef struct {
 223   struct jpeg_entropy_decoder pub; /* public fields */
 224 
 225   /* These fields are loaded into local variables at start of each MCU.
 226    * In case of suspension, we exit WITHOUT updating them.
 227    */
 228   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
 229   savable_state saved;          /* Other state at start of MCU */
 230 
 231   /* These fields are NOT loaded into local working state. */

 232   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
 233 
 234   /* Following two fields used only in progressive mode */
 235 
 236   /* Pointers to derived tables (these workspaces have image lifespan) */
 237   d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
 238 
 239   d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
 240 
 241   /* Following fields used only in sequential mode */
 242 
 243   /* Pointers to derived tables (these workspaces have image lifespan) */
 244   d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
 245   d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
 246 
 247   /* Precalculated info set up by start_pass for use in decode_mcu: */
 248 
 249   /* Pointers to derived tables to be used for each block within an MCU */
 250   d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
 251   d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
 252   /* Whether we care about the DC and AC coefficient values for each block */
 253   int coef_limit[D_MAX_BLOCKS_IN_MCU];
 254 } huff_entropy_decoder;
 255 
 256 typedef huff_entropy_decoder * huff_entropy_ptr;
 257 
 258 
 259 static const int jpeg_zigzag_order[8][8] = {
 260   {  0,  1,  5,  6, 14, 15, 27, 28 },
 261   {  2,  4,  7, 13, 16, 26, 29, 42 },
 262   {  3,  8, 12, 17, 25, 30, 41, 43 },
 263   {  9, 11, 18, 24, 31, 40, 44, 53 },
 264   { 10, 19, 23, 32, 39, 45, 52, 54 },
 265   { 20, 22, 33, 38, 46, 51, 55, 60 },
 266   { 21, 34, 37, 47, 50, 56, 59, 61 },
 267   { 35, 36, 48, 49, 57, 58, 62, 63 }
 268 };
 269 













































 270 
 271 /*
 272  * Compute the derived values for a Huffman table.
 273  * This routine also performs some validation checks on the table.
 274  */
 275 
 276 LOCAL(void)
 277 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
 278                          d_derived_tbl ** pdtbl)
 279 {
 280   JHUFF_TBL *htbl;
 281   d_derived_tbl *dtbl;
 282   int p, i, l, si, numsymbols;
 283   int lookbits, ctr;
 284   char huffsize[257];
 285   unsigned int huffcode[257];
 286   unsigned int code;
 287 
 288   MEMZERO(huffsize, SIZEOF(huffsize));
 289   MEMZERO(huffcode, SIZEOF(huffcode));
 290 
 291   /* Note that huffsize[] and huffcode[] are filled in code-length order,
 292    * paralleling the order of the symbols themselves in htbl->huffval[].
 293    */
 294 
 295   /* Find the input Huffman table */
 296   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
 297     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 298   htbl =
 299     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
 300   if (htbl == NULL)
 301     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 302 
 303   /* Allocate a workspace if we haven't already done so. */
 304   if (*pdtbl == NULL)
 305     *pdtbl = (d_derived_tbl *)
 306       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 307                                   SIZEOF(d_derived_tbl));
 308   dtbl = *pdtbl;
 309   dtbl->pub = htbl;             /* fill in back link */
 310 


 482           goto no_more_bytes;
 483         }
 484       }
 485 
 486       /* OK, load c into get_buffer */
 487       get_buffer = (get_buffer << 8) | c;
 488       bits_left += 8;
 489     } /* end while */
 490   } else {
 491   no_more_bytes:
 492     /* We get here if we've read the marker that terminates the compressed
 493      * data segment.  There should be enough bits in the buffer register
 494      * to satisfy the request; if so, no problem.
 495      */
 496     if (nbits > bits_left) {
 497       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
 498        * the data stream, so that we can produce some kind of image.
 499        * We use a nonvolatile flag to ensure that only one warning message
 500        * appears per data segment.
 501        */
 502       if (! cinfo->entropy->insufficient_data) {
 503         WARNMS(cinfo, JWRN_HIT_MARKER);
 504         cinfo->entropy->insufficient_data = TRUE;
 505       }
 506       /* Fill the buffer with zero bits */
 507       get_buffer <<= MIN_GET_BITS - bits_left;
 508       bits_left = MIN_GET_BITS;
 509     }
 510   }
 511 
 512   /* Unload the local registers */
 513   state->next_input_byte = next_input_byte;
 514   state->bytes_in_buffer = bytes_in_buffer;
 515   state->get_buffer = get_buffer;
 516   state->bits_left = bits_left;
 517 
 518   return TRUE;
 519 }
 520 
 521 
 522 /*
 523  * Figure F.12: extend sign bit.
 524  * On some machines, a shift and sub will be faster than a table lookup.


 559   CHECK_BIT_BUFFER(*state, l, return -1);
 560   code = GET_BITS(l);
 561 
 562   /* Collect the rest of the Huffman code one bit at a time. */
 563   /* This is per Figure F.16 in the JPEG spec. */
 564 
 565   while (code > htbl->maxcode[l]) {
 566     code <<= 1;
 567     CHECK_BIT_BUFFER(*state, 1, return -1);
 568     code |= GET_BITS(1);
 569     l++;
 570   }
 571 
 572   /* Unload the local registers */
 573   state->get_buffer = get_buffer;
 574   state->bits_left = bits_left;
 575 
 576   /* With garbage input we may reach the sentinel value l = 17. */
 577 
 578   if (l > 16) {
 579     int br_offset = state->next_input_byte - state->cinfo->src->next_input_byte;
 580     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
 581     state->next_input_byte = state->cinfo->src->next_input_byte + br_offset;
 582     return 0;                   /* fake a zero as the safest result */
 583   }
 584 
 585   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
 586 }
 587 
 588 
 589 /*
















 590  * Check for a restart marker & resynchronize decoder.
 591  * Returns FALSE if must suspend.
 592  */
 593 
 594 LOCAL(boolean)
 595 process_restart (j_decompress_ptr cinfo)
 596 {
 597   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 598   int ci;
 599 
 600   /* Throw away any unused bits remaining in bit buffer; */
 601   /* include any full bytes in next_marker's count of discarded bytes */
 602   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
 603   entropy->bitstate.bits_left = 0;
 604 
 605   /* Advance past the RSTn marker */
 606   if (! (*cinfo->marker->read_restart_marker) (cinfo))
 607     return FALSE;
 608 
 609   /* Re-initialize DC predictions to 0 */
 610   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
 611     entropy->saved.last_dc_val[ci] = 0;
 612   /* Re-init EOB run count, too */
 613   entropy->saved.EOBRUN = 0;
 614 
 615   /* Reset restart counter */
 616   entropy->restarts_to_go = cinfo->restart_interval;
 617 
 618   /* Reset out-of-data flag, unless read_restart_marker left us smack up
 619    * against a marker.  In that case we will end up treating the next data
 620    * segment as empty, and we can avoid producing bogus output pixels by
 621    * leaving the flag set.
 622    */
 623   if (cinfo->unread_marker == 0)
 624     entropy->pub.insufficient_data = FALSE;
 625 
 626   return TRUE;
 627 }
 628 
 629 
 630 /*
 631  * Huffman MCU decoding.
 632  * Each of these routines decodes and returns one MCU's worth of
 633  * Huffman-compressed coefficients.
 634  * The coefficients are reordered from zigzag order into natural array order,
 635  * but are not dequantized.
 636  *
 637  * The i'th block of the MCU is stored into the block pointed to by
 638  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
 639  * (Wholesale zeroing is usually a little faster than retail...)
 640  *
 641  * We return FALSE if data source requested suspension.  In that case no
 642  * changes have been made to permanent state.  (Exception: some output
 643  * coefficients may already have been assigned.  This is harmless for
 644  * spectral selection, since we'll just re-assign them on the next call.


 656   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 657   int Al = cinfo->Al;
 658   register int s, r;
 659   int blkn, ci;
 660   JBLOCKROW block;
 661   BITREAD_STATE_VARS;
 662   savable_state state;
 663   d_derived_tbl * tbl;
 664   jpeg_component_info * compptr;
 665 
 666   /* Process restart marker if needed; may have to suspend */
 667   if (cinfo->restart_interval) {
 668     if (entropy->restarts_to_go == 0)
 669       if (! process_restart(cinfo))
 670         return FALSE;
 671   }
 672 
 673   /* If we've run out of data, just leave the MCU set to zeroes.
 674    * This way, we return uniform gray for the remainder of the segment.
 675    */
 676   if (! entropy->pub.insufficient_data) {
 677 
 678     /* Load up working state */
 679     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
 680     ASSIGN_STATE(state, entropy->saved);
 681 
 682     /* Outer loop handles each block in the MCU */
 683 
 684     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 685       block = MCU_data[blkn];
 686       ci = cinfo->MCU_membership[blkn];
 687       compptr = cinfo->cur_comp_info[ci];
 688       tbl = entropy->derived_tbls[compptr->dc_tbl_no];
 689 
 690       /* Decode a single block's worth of coefficients */
 691 
 692       /* Section F.2.2.1: decode the DC coefficient difference */
 693       HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
 694       if (s) {
 695         CHECK_BIT_BUFFER(br_state, s, return FALSE);
 696         r = GET_BITS(s);


 708     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
 709     ASSIGN_STATE(entropy->saved, state);
 710   }
 711 
 712   /* Account for restart interval (no-op if not using restarts) */
 713   entropy->restarts_to_go--;
 714 
 715   return TRUE;
 716 }
 717 
 718 
 719 /*
 720  * MCU decoding for AC initial scan (either spectral selection,
 721  * or first pass of successive approximation).
 722  */
 723 
 724 METHODDEF(boolean)
 725 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 726 {
 727   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 728   int Se = cinfo->Se;
 729   int Al = cinfo->Al;
 730   register int s, k, r;
 731   unsigned int EOBRUN;


 732   JBLOCKROW block;
 733   BITREAD_STATE_VARS;
 734   d_derived_tbl * tbl;
 735 
 736   /* Process restart marker if needed; may have to suspend */
 737   if (cinfo->restart_interval) {
 738     if (entropy->restarts_to_go == 0)
 739       if (! process_restart(cinfo))
 740         return FALSE;
 741   }
 742 
 743   /* If we've run out of data, just leave the MCU set to zeroes.
 744    * This way, we return uniform gray for the remainder of the segment.
 745    */
 746   if (! entropy->pub.insufficient_data) {
 747 
 748     /* Load up working state.
 749      * We can avoid loading/saving bitread state if in an EOB run.
 750      */
 751     EOBRUN = entropy->saved.EOBRUN;     /* only part of saved state we need */
 752 
 753     /* There is always only one block per MCU */
 754 
 755     if (EOBRUN > 0)             /* if it's a band of zeroes... */
 756       EOBRUN--;                 /* ...process it now (we do nothing) */
 757     else {
 758       BITREAD_LOAD_STATE(cinfo,entropy->bitstate);



 759       block = MCU_data[0];
 760       tbl = entropy->ac_derived_tbl;
 761 
 762       for (k = cinfo->Ss; k <= Se; k++) {
 763         HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
 764         r = s >> 4;
 765         s &= 15;
 766         if (s) {
 767           k += r;
 768           CHECK_BIT_BUFFER(br_state, s, return FALSE);
 769           r = GET_BITS(s);
 770           s = HUFF_EXTEND(r, s);
 771           /* Scale and output coefficient in natural (dezigzagged) order */
 772           (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
 773         } else {
 774           if (r == 15) {        /* ZRL */
 775             k += 15;            /* skip 15 zeroes in band */
 776           } else {              /* EOBr, run length is 2^r + appended bits */
 777             EOBRUN = 1 << r;
 778             if (r) {            /* EOBr, r > 0 */

 779               CHECK_BIT_BUFFER(br_state, r, return FALSE);
 780               r = GET_BITS(r);
 781               EOBRUN += r;
 782             }
 783             EOBRUN--;           /* this band is processed at this moment */

 784             break;              /* force end-of-band */
 785           }

 786         }
 787       }
 788 
 789       BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
 790     }
 791 
 792     /* Completed MCU, so update state */
 793     entropy->saved.EOBRUN = EOBRUN;     /* only part of saved state we need */
 794   }
 795 
 796   /* Account for restart interval (no-op if not using restarts) */
 797   entropy->restarts_to_go--;
 798 
 799   return TRUE;
 800 }
 801 
 802 
 803 /*
 804  * MCU decoding for DC successive approximation refinement scan.
 805  * Note: we assume such scans can be multi-component, although the spec
 806  * is not very clear on the point.
 807  */
 808 
 809 METHODDEF(boolean)
 810 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 811 {
 812   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 813   int p1 = 1 << cinfo->Al;      /* 1 in the bit position being coded */
 814   int blkn;
 815   JBLOCKROW block;
 816   BITREAD_STATE_VARS;
 817 
 818   /* Process restart marker if needed; may have to suspend */
 819   if (cinfo->restart_interval) {
 820     if (entropy->restarts_to_go == 0)
 821       if (! process_restart(cinfo))
 822         return FALSE;
 823   }
 824 
 825   /* Not worth the cycles to check insufficient_data here,
 826    * since we will not change the data anyway if we read zeroes.
 827    */
 828 
 829   /* Load up working state */
 830   BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
 831 


 832   /* Outer loop handles each block in the MCU */
 833 
 834   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 835     block = MCU_data[blkn];
 836 
 837     /* Encoded data is simply the next bit of the two's-complement DC value */
 838     CHECK_BIT_BUFFER(br_state, 1, return FALSE);
 839     if (GET_BITS(1))
 840       (*block)[0] |= p1;
 841     /* Note: since we use |=, repeating the assignment later is safe */
 842   }
 843 
 844   /* Completed MCU, so update state */
 845   BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
 846 
 847   /* Account for restart interval (no-op if not using restarts) */
 848   entropy->restarts_to_go--;
 849 
 850   return TRUE;
 851 }
 852 
 853 
 854 /*
 855  * MCU decoding for AC successive approximation refinement scan.
 856  */
 857 
 858 METHODDEF(boolean)
 859 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 860 {
 861   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 862   int Se = cinfo->Se;
 863   int p1 = 1 << cinfo->Al;      /* 1 in the bit position being coded */
 864   int m1 = (-1) << cinfo->Al;   /* -1 in the bit position being coded */
 865   register int s, k, r;
 866   unsigned int EOBRUN;


 867   JBLOCKROW block;
 868   JCOEFPTR thiscoef;
 869   BITREAD_STATE_VARS;
 870   d_derived_tbl * tbl;
 871   int num_newnz;
 872   int newnz_pos[DCTSIZE2];
 873 
 874   /* Process restart marker if needed; may have to suspend */
 875   if (cinfo->restart_interval) {
 876     if (entropy->restarts_to_go == 0)
 877       if (! process_restart(cinfo))
 878         return FALSE;
 879   }
 880 
 881   /* If we've run out of data, don't modify the MCU.
 882    */
 883   if (! entropy->pub.insufficient_data) {





 884 
 885     /* Load up working state */
 886     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
 887     EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
 888 
 889     /* There is always only one block per MCU */
 890     block = MCU_data[0];
 891     tbl = entropy->ac_derived_tbl;
 892 
 893     /* If we are forced to suspend, we must undo the assignments to any newly
 894      * nonzero coefficients in the block, because otherwise we'd get confused
 895      * next time about which coefficients were already nonzero.
 896      * But we need not undo addition of bits to already-nonzero coefficients;
 897      * instead, we can test the current bit to see if we already did it.
 898      */
 899     num_newnz = 0;
 900 
 901     /* initialize coefficient loop counter to start of band */
 902     k = cinfo->Ss;
 903 
 904     if (EOBRUN == 0) {
 905       for (; k <= Se; k++) {
 906         HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
 907         r = s >> 4;
 908         s &= 15;
 909         if (s) {
 910           if (s != 1)           /* size of new coef should always be 1 */
 911             WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
 912           CHECK_BIT_BUFFER(br_state, 1, goto undoit);
 913           if (GET_BITS(1))
 914             s = p1;             /* newly nonzero coef is positive */
 915           else
 916             s = m1;             /* newly nonzero coef is negative */
 917         } else {
 918           if (r != 15) {
 919             EOBRUN = 1 << r;    /* EOBr, run length is 2^r + appended bits */
 920             if (r) {
 921               CHECK_BIT_BUFFER(br_state, r, goto undoit);
 922               r = GET_BITS(r);
 923               EOBRUN += r;
 924             }
 925             break;              /* rest of block is handled by EOB logic */
 926           }
 927           /* note s = 0 for processing ZRL */
 928         }
 929         /* Advance over already-nonzero coefs and r still-zero coefs,
 930          * appending correction bits to the nonzeroes.  A correction bit is 1
 931          * if the absolute value of the coefficient must be increased.
 932          */
 933         do {
 934           thiscoef = *block + jpeg_natural_order[k];
 935           if (*thiscoef != 0) {
 936             CHECK_BIT_BUFFER(br_state, 1, goto undoit);
 937             if (GET_BITS(1)) {
 938               if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
 939                 if (*thiscoef >= 0)
 940                   *thiscoef += p1;
 941                 else
 942                   *thiscoef += m1;
 943               }
 944             }
 945           } else {
 946             if (--r < 0)
 947               break;            /* reached target zero coefficient */
 948           }
 949           k++;
 950         } while (k <= Se);
 951         if (s) {
 952           int pos = jpeg_natural_order[k];
 953           /* Output newly nonzero coefficient */
 954           (*block)[pos] = (JCOEF) s;
 955           /* Remember its position in case we have to suspend */
 956           newnz_pos[num_newnz++] = pos;
 957         }
 958       }

 959     }
 960 
 961     if (EOBRUN > 0) {
 962       /* Scan any remaining coefficient positions after the end-of-band
 963        * (the last newly nonzero coefficient, if any).  Append a correction
 964        * bit to each already-nonzero coefficient.  A correction bit is 1
 965        * if the absolute value of the coefficient must be increased.
 966        */
 967       for (; k <= Se; k++) {
 968         thiscoef = *block + jpeg_natural_order[k];
 969         if (*thiscoef != 0) {
 970           CHECK_BIT_BUFFER(br_state, 1, goto undoit);
 971           if (GET_BITS(1)) {
 972             if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
 973               if (*thiscoef >= 0)
 974                 *thiscoef += p1;
 975               else
 976                 *thiscoef += m1;
 977             }
 978           }
 979         }
 980       }

 981       /* Count one block completed in EOB run */
 982       EOBRUN--;
 983     }
 984 
 985     /* Completed MCU, so update state */
 986     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
 987     entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
 988   }
 989 
 990   /* Account for restart interval (no-op if not using restarts) */
 991   entropy->restarts_to_go--;
 992 
 993   return TRUE;
 994 
 995 undoit:
 996   /* Re-zero any output coefficients that we made newly nonzero */
 997   while (num_newnz > 0)
 998     (*block)[newnz_pos[--num_newnz]] = 0;
 999 
1000   return FALSE;
1001 }
1002 
1003 
1004 /*
1005  * Decode one MCU's worth of Huffman-compressed coefficients.

































































































































1006  */
1007 
1008 METHODDEF(boolean)
1009 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
1010 {
1011   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1012   int blkn;
1013   BITREAD_STATE_VARS;
1014   savable_state state;
1015 
1016   /* Process restart marker if needed; may have to suspend */
1017   if (cinfo->restart_interval) {
1018     if (entropy->restarts_to_go == 0)
1019       if (! process_restart(cinfo))
1020         return FALSE;
1021   }
1022 
1023   /* If we've run out of data, just leave the MCU set to zeroes.
1024    * This way, we return uniform gray for the remainder of the segment.
1025    */
1026   if (! entropy->pub.insufficient_data) {
1027 
1028     /* Load up working state */
1029     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
1030     ASSIGN_STATE(state, entropy->saved);
1031 
1032     /* Outer loop handles each block in the MCU */
1033 
1034     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1035       JBLOCKROW block = MCU_data[blkn];
1036       d_derived_tbl * htbl;
1037       register int s, k, r;
1038       int coef_limit, ci;
1039 
1040       /* Decode a single block's worth of coefficients */
1041 
1042       /* Section F.2.2.1: decode the DC coefficient difference */
1043       htbl = entropy->dc_cur_tbls[blkn];
1044       HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
1045 
1046       htbl = entropy->ac_cur_tbls[blkn];


1115     /* Completed MCU, so update state */
1116     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
1117     ASSIGN_STATE(entropy->saved, state);
1118   }
1119 
1120   /* Account for restart interval (no-op if not using restarts) */
1121   entropy->restarts_to_go--;
1122 
1123   return TRUE;
1124 }
1125 
1126 
1127 /*
1128  * Initialize for a Huffman-compressed scan.
1129  */
1130 
1131 METHODDEF(void)
1132 start_pass_huff_decoder (j_decompress_ptr cinfo)
1133 {
1134   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1135   int ci, blkn, dctbl, actbl, i;
1136   jpeg_component_info * compptr;
1137 
1138   if (cinfo->progressive_mode) {
1139     /* Validate progressive scan parameters */
1140     if (cinfo->Ss == 0) {
1141       if (cinfo->Se != 0)
1142         goto bad;
1143     } else {
1144       /* need not check Ss/Se < 0 since they came from unsigned bytes */
1145       if (cinfo->Se < cinfo->Ss || cinfo->Se >= DCTSIZE2)
1146         goto bad;
1147       /* AC scans may have only one component */
1148       if (cinfo->comps_in_scan != 1)
1149         goto bad;
1150     }
1151     if (cinfo->Ah != 0) {
1152       /* Successive approximation refinement scan: must have Al = Ah-1. */
1153       if (cinfo->Ah-1 != cinfo->Al)
1154         goto bad;
1155     }
1156     if (cinfo->Al > 13) {       /* need not check for < 0 */
1157       /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
1158        * but the spec doesn't say so, and we try to be liberal about what we
1159        * accept.  Note: large Al values could result in out-of-range DC
1160        * coefficients during early scans, leading to bizarre displays due to
1161        * overflows in the IDCT math.  But we won't crash.
1162        */
1163       bad:
1164       ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
1165                cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);


1184     /* Select MCU decoding routine */
1185     if (cinfo->Ah == 0) {
1186       if (cinfo->Ss == 0)
1187         entropy->pub.decode_mcu = decode_mcu_DC_first;
1188       else
1189         entropy->pub.decode_mcu = decode_mcu_AC_first;
1190     } else {
1191       if (cinfo->Ss == 0)
1192         entropy->pub.decode_mcu = decode_mcu_DC_refine;
1193       else
1194         entropy->pub.decode_mcu = decode_mcu_AC_refine;
1195     }
1196 
1197     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1198       compptr = cinfo->cur_comp_info[ci];
1199       /* Make sure requested tables are present, and compute derived tables.
1200        * We may build same derived table more than once, but it's not expensive.
1201        */
1202       if (cinfo->Ss == 0) {
1203         if (cinfo->Ah == 0) {   /* DC refinement needs no table */
1204           i = compptr->dc_tbl_no;
1205           jpeg_make_d_derived_tbl(cinfo, TRUE, i,
1206                                   & entropy->derived_tbls[i]);
1207         }
1208       } else {
1209         i = compptr->ac_tbl_no;
1210         jpeg_make_d_derived_tbl(cinfo, FALSE, i,
1211                                 & entropy->derived_tbls[i]);
1212         /* remember the single active table */
1213         entropy->ac_derived_tbl = entropy->derived_tbls[i];
1214       }
1215       /* Initialize DC predictions to 0 */
1216       entropy->saved.last_dc_val[ci] = 0;
1217     }
1218 
1219     /* Initialize private state variables */
1220     entropy->saved.EOBRUN = 0;
1221   } else {
1222     /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
1223      * This ought to be an error condition, but we make it a warning because
1224      * there are some baseline files out there with all zeroes in these bytes.
1225      */
1226     if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
1227         cinfo->Ah != 0 || cinfo->Al != 0)

1228       WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
1229 
1230     /* Select MCU decoding routine */









1231     entropy->pub.decode_mcu = decode_mcu;
1232 
1233     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1234       compptr = cinfo->cur_comp_info[ci];
1235       dctbl = compptr->dc_tbl_no;
1236       actbl = compptr->ac_tbl_no;
1237       /* Compute derived values for Huffman tables */
1238       /* We may do this more than once for a table, but it's not expensive */
1239       jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
1240                               & entropy->dc_derived_tbls[dctbl]);
1241       jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
1242                               & entropy->ac_derived_tbls[actbl]);




1243       /* Initialize DC predictions to 0 */
1244       entropy->saved.last_dc_val[ci] = 0;
1245     }
1246 
1247     /* Precalculate decoding info for each block in an MCU of this scan */
1248     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1249       ci = cinfo->MCU_membership[blkn];
1250       compptr = cinfo->cur_comp_info[ci];
1251       /* Precalculate which table to use for each block */
1252       entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
1253       entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
1254       /* Decide whether we really care about the coefficient values */
1255       if (compptr->component_needed) {
1256         ci = compptr->DCT_v_scaled_size;
1257         if (ci <= 0 || ci > 8) ci = 8;
1258         i = compptr->DCT_h_scaled_size;




































1259         if (i <= 0 || i > 8) i = 8;
1260         entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];


1261       } else {
1262         entropy->coef_limit[blkn] = 0;
1263       }
1264     }
1265   }
1266 
1267   /* Initialize bitread state variables */
1268   entropy->bitstate.bits_left = 0;
1269   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
1270   entropy->pub.insufficient_data = FALSE;
1271 
1272   /* Initialize restart counter */
1273   entropy->restarts_to_go = cinfo->restart_interval;
1274 }
1275 
1276 
1277 /*
1278  * Module initialization routine for Huffman entropy decoding.
1279  */
1280 
1281 GLOBAL(void)
1282 jinit_huff_decoder (j_decompress_ptr cinfo)
1283 {
1284   huff_entropy_ptr entropy;
1285   int i;
1286 
1287   entropy = (huff_entropy_ptr)
1288     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1289                                 SIZEOF(huff_entropy_decoder));
1290   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
1291   entropy->pub.start_pass = start_pass_huff_decoder;

1292 
1293   if (cinfo->progressive_mode) {
1294     /* Create progression status table */
1295     int *coef_bit_ptr, ci;
1296     cinfo->coef_bits = (int (*)[DCTSIZE2])
1297       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1298                                   cinfo->num_components*DCTSIZE2*SIZEOF(int));
1299     coef_bit_ptr = & cinfo->coef_bits[0][0];
1300     for (ci = 0; ci < cinfo->num_components; ci++)
1301       for (i = 0; i < DCTSIZE2; i++)
1302         *coef_bit_ptr++ = -1;
1303 
1304     /* Mark derived tables unallocated */
1305     for (i = 0; i < NUM_HUFF_TBLS; i++) {
1306       entropy->derived_tbls[i] = NULL;
1307     }
1308   } else {
1309     /* Mark tables unallocated */
1310     for (i = 0; i < NUM_HUFF_TBLS; i++) {
1311       entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
   1 /*
   2  * jdhuff.c
   3  *
   4  * Copyright (C) 1991-1997, Thomas G. Lane.
   5  * Modified 2006-2016 by Guido Vollbeding.
   6  * This file is part of the Independent JPEG Group's software.
   7  * For conditions of distribution and use, see the accompanying README file.
   8  *
   9  * This file contains Huffman entropy decoding routines.
  10  * Both sequential and progressive modes are supported in this single module.
  11  *
  12  * Much of the complexity here has to do with supporting input suspension.
  13  * If the data source module demands suspension, we want to be able to back
  14  * up to the start of the current MCU.  To do this, we copy state variables
  15  * into local working storage, and update them back to the permanent
  16  * storage only upon successful completion of an MCU.
  17  */
  18 
  19 #define JPEG_INTERNALS
  20 #include "jinclude.h"
  21 #include "jpeglib.h"
  22 
  23 
  24 /* Derived data constructed for each Huffman table */
  25 


 212 #define ASSIGN_STATE(dest,src)  \
 213         ((dest).EOBRUN = (src).EOBRUN, \
 214          (dest).last_dc_val[0] = (src).last_dc_val[0], \
 215          (dest).last_dc_val[1] = (src).last_dc_val[1], \
 216          (dest).last_dc_val[2] = (src).last_dc_val[2], \
 217          (dest).last_dc_val[3] = (src).last_dc_val[3])
 218 #endif
 219 #endif
 220 
 221 
 222 typedef struct {
 223   struct jpeg_entropy_decoder pub; /* public fields */
 224 
 225   /* These fields are loaded into local variables at start of each MCU.
 226    * In case of suspension, we exit WITHOUT updating them.
 227    */
 228   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
 229   savable_state saved;          /* Other state at start of MCU */
 230 
 231   /* These fields are NOT loaded into local working state. */
 232   boolean insufficient_data;    /* set TRUE after emitting warning */
 233   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
 234 
 235   /* Following two fields used only in progressive mode */
 236 
 237   /* Pointers to derived tables (these workspaces have image lifespan) */
 238   d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
 239 
 240   d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
 241 
 242   /* Following fields used only in sequential mode */
 243 
 244   /* Pointers to derived tables (these workspaces have image lifespan) */
 245   d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
 246   d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
 247 
 248   /* Precalculated info set up by start_pass for use in decode_mcu: */
 249 
 250   /* Pointers to derived tables to be used for each block within an MCU */
 251   d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
 252   d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
 253   /* Whether we care about the DC and AC coefficient values for each block */
 254   int coef_limit[D_MAX_BLOCKS_IN_MCU];
 255 } huff_entropy_decoder;
 256 
 257 typedef huff_entropy_decoder * huff_entropy_ptr;
 258 
 259 
 260 static const int jpeg_zigzag_order[8][8] = {
 261   {  0,  1,  5,  6, 14, 15, 27, 28 },
 262   {  2,  4,  7, 13, 16, 26, 29, 42 },
 263   {  3,  8, 12, 17, 25, 30, 41, 43 },
 264   {  9, 11, 18, 24, 31, 40, 44, 53 },
 265   { 10, 19, 23, 32, 39, 45, 52, 54 },
 266   { 20, 22, 33, 38, 46, 51, 55, 60 },
 267   { 21, 34, 37, 47, 50, 56, 59, 61 },
 268   { 35, 36, 48, 49, 57, 58, 62, 63 }
 269 };
 270 
 271 static const int jpeg_zigzag_order7[7][7] = {
 272   {  0,  1,  5,  6, 14, 15, 27 },
 273   {  2,  4,  7, 13, 16, 26, 28 },
 274   {  3,  8, 12, 17, 25, 29, 38 },
 275   {  9, 11, 18, 24, 30, 37, 39 },
 276   { 10, 19, 23, 31, 36, 40, 45 },
 277   { 20, 22, 32, 35, 41, 44, 46 },
 278   { 21, 33, 34, 42, 43, 47, 48 }
 279 };
 280 
 281 static const int jpeg_zigzag_order6[6][6] = {
 282   {  0,  1,  5,  6, 14, 15 },
 283   {  2,  4,  7, 13, 16, 25 },
 284   {  3,  8, 12, 17, 24, 26 },
 285   {  9, 11, 18, 23, 27, 32 },
 286   { 10, 19, 22, 28, 31, 33 },
 287   { 20, 21, 29, 30, 34, 35 }
 288 };
 289 
 290 static const int jpeg_zigzag_order5[5][5] = {
 291   {  0,  1,  5,  6, 14 },
 292   {  2,  4,  7, 13, 15 },
 293   {  3,  8, 12, 16, 21 },
 294   {  9, 11, 17, 20, 22 },
 295   { 10, 18, 19, 23, 24 }
 296 };
 297 
 298 static const int jpeg_zigzag_order4[4][4] = {
 299   { 0,  1,  5,  6 },
 300   { 2,  4,  7, 12 },
 301   { 3,  8, 11, 13 },
 302   { 9, 10, 14, 15 }
 303 };
 304 
 305 static const int jpeg_zigzag_order3[3][3] = {
 306   { 0, 1, 5 },
 307   { 2, 4, 6 },
 308   { 3, 7, 8 }
 309 };
 310 
 311 static const int jpeg_zigzag_order2[2][2] = {
 312   { 0, 1 },
 313   { 2, 3 }
 314 };
 315 
 316 
 317 /*
 318  * Compute the derived values for a Huffman table.
 319  * This routine also performs some validation checks on the table.
 320  */
 321 
 322 LOCAL(void)
 323 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
 324                          d_derived_tbl ** pdtbl)
 325 {
 326   JHUFF_TBL *htbl;
 327   d_derived_tbl *dtbl;
 328   int p, i, l, si, numsymbols;
 329   int lookbits, ctr;
 330   char huffsize[257];
 331   unsigned int huffcode[257];
 332   unsigned int code;
 333 



 334   /* Note that huffsize[] and huffcode[] are filled in code-length order,
 335    * paralleling the order of the symbols themselves in htbl->huffval[].
 336    */
 337 
 338   /* Find the input Huffman table */
 339   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
 340     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 341   htbl =
 342     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
 343   if (htbl == NULL)
 344     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 345 
 346   /* Allocate a workspace if we haven't already done so. */
 347   if (*pdtbl == NULL)
 348     *pdtbl = (d_derived_tbl *)
 349       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 350                                   SIZEOF(d_derived_tbl));
 351   dtbl = *pdtbl;
 352   dtbl->pub = htbl;          /* fill in back link */
 353   


 525           goto no_more_bytes;
 526         }
 527       }
 528 
 529       /* OK, load c into get_buffer */
 530       get_buffer = (get_buffer << 8) | c;
 531       bits_left += 8;
 532     } /* end while */
 533   } else {
 534   no_more_bytes:
 535     /* We get here if we've read the marker that terminates the compressed
 536      * data segment.  There should be enough bits in the buffer register
 537      * to satisfy the request; if so, no problem.
 538      */
 539     if (nbits > bits_left) {
 540       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
 541        * the data stream, so that we can produce some kind of image.
 542        * We use a nonvolatile flag to ensure that only one warning message
 543        * appears per data segment.
 544        */
 545       if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) {
 546         WARNMS(cinfo, JWRN_HIT_MARKER);
 547         ((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE;
 548       }
 549       /* Fill the buffer with zero bits */
 550       get_buffer <<= MIN_GET_BITS - bits_left;
 551       bits_left = MIN_GET_BITS;
 552     }
 553   }
 554 
 555   /* Unload the local registers */
 556   state->next_input_byte = next_input_byte;
 557   state->bytes_in_buffer = bytes_in_buffer;
 558   state->get_buffer = get_buffer;
 559   state->bits_left = bits_left;
 560 
 561   return TRUE;
 562 }
 563 
 564 
 565 /*
 566  * Figure F.12: extend sign bit.
 567  * On some machines, a shift and sub will be faster than a table lookup.


 602   CHECK_BIT_BUFFER(*state, l, return -1);
 603   code = GET_BITS(l);
 604 
 605   /* Collect the rest of the Huffman code one bit at a time. */
 606   /* This is per Figure F.16 in the JPEG spec. */
 607 
 608   while (code > htbl->maxcode[l]) {
 609     code <<= 1;
 610     CHECK_BIT_BUFFER(*state, 1, return -1);
 611     code |= GET_BITS(1);
 612     l++;
 613   }
 614 
 615   /* Unload the local registers */
 616   state->get_buffer = get_buffer;
 617   state->bits_left = bits_left;
 618 
 619   /* With garbage input we may reach the sentinel value l = 17. */
 620 
 621   if (l > 16) {

 622     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);

 623     return 0;                   /* fake a zero as the safest result */
 624   }
 625 
 626   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
 627 }
 628 
 629 
 630 /*
 631  * Finish up at the end of a Huffman-compressed scan.
 632  */
 633 
 634 METHODDEF(void)
 635 finish_pass_huff (j_decompress_ptr cinfo)
 636 {
 637   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 638 
 639   /* Throw away any unused bits remaining in bit buffer; */
 640   /* include any full bytes in next_marker's count of discarded bytes */
 641   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
 642   entropy->bitstate.bits_left = 0;
 643 }
 644 
 645 
 646 /*
 647  * Check for a restart marker & resynchronize decoder.
 648  * Returns FALSE if must suspend.
 649  */
 650 
 651 LOCAL(boolean)
 652 process_restart (j_decompress_ptr cinfo)
 653 {
 654   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 655   int ci;
 656 
 657   finish_pass_huff(cinfo);



 658 
 659   /* Advance past the RSTn marker */
 660   if (! (*cinfo->marker->read_restart_marker) (cinfo))
 661     return FALSE;
 662 
 663   /* Re-initialize DC predictions to 0 */
 664   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
 665     entropy->saved.last_dc_val[ci] = 0;
 666   /* Re-init EOB run count, too */
 667   entropy->saved.EOBRUN = 0;
 668 
 669   /* Reset restart counter */
 670   entropy->restarts_to_go = cinfo->restart_interval;
 671 
 672   /* Reset out-of-data flag, unless read_restart_marker left us smack up
 673    * against a marker.  In that case we will end up treating the next data
 674    * segment as empty, and we can avoid producing bogus output pixels by
 675    * leaving the flag set.
 676    */
 677   if (cinfo->unread_marker == 0)
 678     entropy->insufficient_data = FALSE;
 679 
 680   return TRUE;
 681 }
 682 
 683 
 684 /*
 685  * Huffman MCU decoding.
 686  * Each of these routines decodes and returns one MCU's worth of
 687  * Huffman-compressed coefficients. 
 688  * The coefficients are reordered from zigzag order into natural array order,
 689  * but are not dequantized.
 690  *
 691  * The i'th block of the MCU is stored into the block pointed to by
 692  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
 693  * (Wholesale zeroing is usually a little faster than retail...)
 694  *
 695  * We return FALSE if data source requested suspension.  In that case no
 696  * changes have been made to permanent state.  (Exception: some output
 697  * coefficients may already have been assigned.  This is harmless for
 698  * spectral selection, since we'll just re-assign them on the next call.


 710   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 711   int Al = cinfo->Al;
 712   register int s, r;
 713   int blkn, ci;
 714   JBLOCKROW block;
 715   BITREAD_STATE_VARS;
 716   savable_state state;
 717   d_derived_tbl * tbl;
 718   jpeg_component_info * compptr;
 719 
 720   /* Process restart marker if needed; may have to suspend */
 721   if (cinfo->restart_interval) {
 722     if (entropy->restarts_to_go == 0)
 723       if (! process_restart(cinfo))
 724         return FALSE;
 725   }
 726 
 727   /* If we've run out of data, just leave the MCU set to zeroes.
 728    * This way, we return uniform gray for the remainder of the segment.
 729    */
 730   if (! entropy->insufficient_data) {
 731 
 732     /* Load up working state */
 733     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
 734     ASSIGN_STATE(state, entropy->saved);
 735 
 736     /* Outer loop handles each block in the MCU */
 737 
 738     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 739       block = MCU_data[blkn];
 740       ci = cinfo->MCU_membership[blkn];
 741       compptr = cinfo->cur_comp_info[ci];
 742       tbl = entropy->derived_tbls[compptr->dc_tbl_no];
 743 
 744       /* Decode a single block's worth of coefficients */
 745 
 746       /* Section F.2.2.1: decode the DC coefficient difference */
 747       HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
 748       if (s) {
 749         CHECK_BIT_BUFFER(br_state, s, return FALSE);
 750         r = GET_BITS(s);


 762     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
 763     ASSIGN_STATE(entropy->saved, state);
 764   }
 765 
 766   /* Account for restart interval (no-op if not using restarts) */
 767   entropy->restarts_to_go--;
 768 
 769   return TRUE;
 770 }
 771 
 772 
 773 /*
 774  * MCU decoding for AC initial scan (either spectral selection,
 775  * or first pass of successive approximation).
 776  */
 777 
 778 METHODDEF(boolean)
 779 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 780 {   
 781   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;


 782   register int s, k, r;
 783   unsigned int EOBRUN;
 784   int Se, Al;
 785   const int * natural_order;
 786   JBLOCKROW block;
 787   BITREAD_STATE_VARS;
 788   d_derived_tbl * tbl;
 789 
 790   /* Process restart marker if needed; may have to suspend */
 791   if (cinfo->restart_interval) {
 792     if (entropy->restarts_to_go == 0)
 793       if (! process_restart(cinfo))
 794         return FALSE;
 795   }
 796 
 797   /* If we've run out of data, just leave the MCU set to zeroes.
 798    * This way, we return uniform gray for the remainder of the segment.
 799    */
 800   if (! entropy->insufficient_data) {
 801 
 802     /* Load up working state.
 803      * We can avoid loading/saving bitread state if in an EOB run.
 804      */
 805     EOBRUN = entropy->saved.EOBRUN;  /* only part of saved state we need */
 806 
 807     /* There is always only one block per MCU */
 808 
 809     if (EOBRUN)                 /* if it's a band of zeroes... */
 810       EOBRUN--;                 /* ...process it now (we do nothing) */
 811     else {
 812       BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
 813       Se = cinfo->Se;
 814       Al = cinfo->Al;
 815       natural_order = cinfo->natural_order;
 816       block = MCU_data[0];
 817       tbl = entropy->ac_derived_tbl;
 818 
 819       for (k = cinfo->Ss; k <= Se; k++) {
 820         HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
 821         r = s >> 4;
 822         s &= 15;
 823         if (s) {
 824           k += r;
 825           CHECK_BIT_BUFFER(br_state, s, return FALSE);
 826           r = GET_BITS(s);
 827           s = HUFF_EXTEND(r, s);
 828           /* Scale and output coefficient in natural (dezigzagged) order */
 829           (*block)[natural_order[k]] = (JCOEF) (s << Al);
 830         } else {
 831           if (r != 15) {        /* EOBr, run length is 2^r + appended bits */



 832             if (r) {            /* EOBr, r > 0 */
 833               EOBRUN = 1 << r;
 834               CHECK_BIT_BUFFER(br_state, r, return FALSE);
 835               r = GET_BITS(r);
 836               EOBRUN += r;

 837               EOBRUN--;         /* this band is processed at this moment */
 838             }
 839             break;              /* force end-of-band */
 840           }
 841           k += 15;              /* ZRL: skip 15 zeroes in band */
 842         }
 843       }
 844 
 845       BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
 846     }
 847 
 848     /* Completed MCU, so update state */
 849     entropy->saved.EOBRUN = EOBRUN;  /* only part of saved state we need */
 850   }
 851 
 852   /* Account for restart interval (no-op if not using restarts) */
 853   entropy->restarts_to_go--;
 854 
 855   return TRUE;
 856 }
 857 
 858 
 859 /*
 860  * MCU decoding for DC successive approximation refinement scan.
 861  * Note: we assume such scans can be multi-component,
 862  * although the spec is not very clear on the point.
 863  */
 864 
 865 METHODDEF(boolean)
 866 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 867 {   
 868   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 869   int p1, blkn;


 870   BITREAD_STATE_VARS;
 871 
 872   /* Process restart marker if needed; may have to suspend */
 873   if (cinfo->restart_interval) {
 874     if (entropy->restarts_to_go == 0)
 875       if (! process_restart(cinfo))
 876         return FALSE;
 877   }
 878 
 879   /* Not worth the cycles to check insufficient_data here,
 880    * since we will not change the data anyway if we read zeroes.
 881    */
 882 
 883   /* Load up working state */
 884   BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
 885 
 886   p1 = 1 << cinfo->Al;         /* 1 in the bit position being coded */
 887 
 888   /* Outer loop handles each block in the MCU */
 889 
 890   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {


 891     /* Encoded data is simply the next bit of the two's-complement DC value */
 892     CHECK_BIT_BUFFER(br_state, 1, return FALSE);
 893     if (GET_BITS(1))
 894       MCU_data[blkn][0][0] |= p1;
 895     /* Note: since we use |=, repeating the assignment later is safe */
 896   }
 897 
 898   /* Completed MCU, so update state */
 899   BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
 900 
 901   /* Account for restart interval (no-op if not using restarts) */
 902   entropy->restarts_to_go--;
 903 
 904   return TRUE;
 905 }
 906 
 907 
 908 /*
 909  * MCU decoding for AC successive approximation refinement scan.
 910  */
 911 
 912 METHODDEF(boolean)
 913 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 914 {   
 915   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;



 916   register int s, k, r;
 917   unsigned int EOBRUN;
 918   int Se, p1, m1;
 919   const int * natural_order;
 920   JBLOCKROW block;
 921   JCOEFPTR thiscoef;
 922   BITREAD_STATE_VARS;
 923   d_derived_tbl * tbl;
 924   int num_newnz;
 925   int newnz_pos[DCTSIZE2];
 926 
 927   /* Process restart marker if needed; may have to suspend */
 928   if (cinfo->restart_interval) {
 929     if (entropy->restarts_to_go == 0)
 930       if (! process_restart(cinfo))
 931         return FALSE;
 932   }
 933 
 934   /* If we've run out of data, don't modify the MCU.
 935    */
 936   if (! entropy->insufficient_data) {
 937 
 938     Se = cinfo->Se;
 939     p1 = 1 << cinfo->Al;       /* 1 in the bit position being coded */
 940     m1 = (-1) << cinfo->Al;    /* -1 in the bit position being coded */
 941     natural_order = cinfo->natural_order;
 942 
 943     /* Load up working state */
 944     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
 945     EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
 946 
 947     /* There is always only one block per MCU */
 948     block = MCU_data[0];
 949     tbl = entropy->ac_derived_tbl;
 950 
 951     /* If we are forced to suspend, we must undo the assignments to any newly
 952      * nonzero coefficients in the block, because otherwise we'd get confused
 953      * next time about which coefficients were already nonzero.
 954      * But we need not undo addition of bits to already-nonzero coefficients;
 955      * instead, we can test the current bit to see if we already did it.
 956      */
 957     num_newnz = 0;
 958 
 959     /* initialize coefficient loop counter to start of band */
 960     k = cinfo->Ss;
 961 
 962     if (EOBRUN == 0) {
 963       do {
 964         HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
 965         r = s >> 4;
 966         s &= 15;
 967         if (s) {
 968           if (s != 1)           /* size of new coef should always be 1 */
 969             WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
 970           CHECK_BIT_BUFFER(br_state, 1, goto undoit);
 971           if (GET_BITS(1))
 972             s = p1;             /* newly nonzero coef is positive */
 973           else
 974             s = m1;             /* newly nonzero coef is negative */
 975         } else {
 976           if (r != 15) {
 977             EOBRUN = 1 << r;      /* EOBr, run length is 2^r + appended bits */
 978             if (r) {
 979               CHECK_BIT_BUFFER(br_state, r, goto undoit);
 980               r = GET_BITS(r);
 981               EOBRUN += r;
 982             }
 983             break;              /* rest of block is handled by EOB logic */
 984           }
 985           /* note s = 0 for processing ZRL */
 986         }
 987         /* Advance over already-nonzero coefs and r still-zero coefs,
 988          * appending correction bits to the nonzeroes.  A correction bit is 1
 989          * if the absolute value of the coefficient must be increased.
 990          */
 991         do {
 992           thiscoef = *block + natural_order[k];
 993           if (*thiscoef) {
 994             CHECK_BIT_BUFFER(br_state, 1, goto undoit);
 995             if (GET_BITS(1)) {
 996               if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
 997                 if (*thiscoef >= 0)
 998                   *thiscoef += p1;
 999                 else
1000                   *thiscoef += m1;
1001               }
1002             }
1003           } else {
1004             if (--r < 0)
1005               break;            /* reached target zero coefficient */
1006           }
1007           k++;
1008         } while (k <= Se);
1009         if (s) {
1010           int pos = natural_order[k];
1011           /* Output newly nonzero coefficient */
1012           (*block)[pos] = (JCOEF) s;
1013           /* Remember its position in case we have to suspend */
1014           newnz_pos[num_newnz++] = pos;
1015         }
1016         k++;
1017       } while (k <= Se);
1018     }
1019 
1020     if (EOBRUN) {
1021       /* Scan any remaining coefficient positions after the end-of-band
1022        * (the last newly nonzero coefficient, if any).  Append a correction
1023        * bit to each already-nonzero coefficient.  A correction bit is 1
1024        * if the absolute value of the coefficient must be increased.
1025        */
1026       do {
1027         thiscoef = *block + natural_order[k];
1028         if (*thiscoef) {
1029           CHECK_BIT_BUFFER(br_state, 1, goto undoit);
1030           if (GET_BITS(1)) {
1031             if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
1032               if (*thiscoef >= 0)
1033                 *thiscoef += p1;
1034               else
1035                 *thiscoef += m1;
1036             }
1037           }
1038         }
1039         k++;
1040       } while (k <= Se);
1041       /* Count one block completed in EOB run */
1042       EOBRUN--;
1043     }
1044 
1045     /* Completed MCU, so update state */
1046     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
1047     entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
1048   }
1049 
1050   /* Account for restart interval (no-op if not using restarts) */
1051   entropy->restarts_to_go--;
1052 
1053   return TRUE;
1054 
1055 undoit:
1056   /* Re-zero any output coefficients that we made newly nonzero */
1057   while (num_newnz)
1058     (*block)[newnz_pos[--num_newnz]] = 0;
1059 
1060   return FALSE;
1061 }
1062 
1063 
1064 /*
1065  * Decode one MCU's worth of Huffman-compressed coefficients,
1066  * partial blocks.
1067  */
1068 
1069 METHODDEF(boolean)
1070 decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
1071 {
1072   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1073   const int * natural_order;
1074   int Se, blkn;
1075   BITREAD_STATE_VARS;
1076   savable_state state;
1077 
1078   /* Process restart marker if needed; may have to suspend */
1079   if (cinfo->restart_interval) {
1080     if (entropy->restarts_to_go == 0)
1081       if (! process_restart(cinfo))
1082         return FALSE;
1083   }
1084 
1085   /* If we've run out of data, just leave the MCU set to zeroes.
1086    * This way, we return uniform gray for the remainder of the segment.
1087    */
1088   if (! entropy->insufficient_data) {
1089 
1090     natural_order = cinfo->natural_order;
1091     Se = cinfo->lim_Se;
1092 
1093     /* Load up working state */
1094     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
1095     ASSIGN_STATE(state, entropy->saved);
1096 
1097     /* Outer loop handles each block in the MCU */
1098 
1099     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1100       JBLOCKROW block = MCU_data[blkn];
1101       d_derived_tbl * htbl;
1102       register int s, k, r;
1103       int coef_limit, ci;
1104 
1105       /* Decode a single block's worth of coefficients */
1106 
1107       /* Section F.2.2.1: decode the DC coefficient difference */
1108       htbl = entropy->dc_cur_tbls[blkn];
1109       HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
1110 
1111       htbl = entropy->ac_cur_tbls[blkn];
1112       k = 1;
1113       coef_limit = entropy->coef_limit[blkn];
1114       if (coef_limit) {
1115         /* Convert DC difference to actual value, update last_dc_val */
1116         if (s) {
1117           CHECK_BIT_BUFFER(br_state, s, return FALSE);
1118           r = GET_BITS(s);
1119           s = HUFF_EXTEND(r, s);
1120         }
1121         ci = cinfo->MCU_membership[blkn];
1122         s += state.last_dc_val[ci];
1123         state.last_dc_val[ci] = s;
1124         /* Output the DC coefficient */
1125         (*block)[0] = (JCOEF) s;
1126 
1127         /* Section F.2.2.2: decode the AC coefficients */
1128         /* Since zeroes are skipped, output area must be cleared beforehand */
1129         for (; k < coef_limit; k++) {
1130           HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
1131 
1132           r = s >> 4;
1133           s &= 15;
1134 
1135           if (s) {
1136             k += r;
1137             CHECK_BIT_BUFFER(br_state, s, return FALSE);
1138             r = GET_BITS(s);
1139             s = HUFF_EXTEND(r, s);
1140             /* Output coefficient in natural (dezigzagged) order.
1141              * Note: the extra entries in natural_order[] will save us
1142              * if k > Se, which could happen if the data is corrupted.
1143              */
1144             (*block)[natural_order[k]] = (JCOEF) s;
1145           } else {
1146             if (r != 15)
1147               goto EndOfBlock;
1148             k += 15;
1149           }
1150         }
1151       } else {
1152         if (s) {
1153           CHECK_BIT_BUFFER(br_state, s, return FALSE);
1154           DROP_BITS(s);
1155         }
1156       }
1157 
1158       /* Section F.2.2.2: decode the AC coefficients */
1159       /* In this path we just discard the values */
1160       for (; k <= Se; k++) {
1161         HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
1162 
1163         r = s >> 4;
1164         s &= 15;
1165 
1166         if (s) {
1167           k += r;
1168           CHECK_BIT_BUFFER(br_state, s, return FALSE);
1169           DROP_BITS(s);
1170         } else {
1171           if (r != 15)
1172             break;
1173           k += 15;
1174         }
1175       }
1176 
1177       EndOfBlock: ;
1178     }
1179 
1180     /* Completed MCU, so update state */
1181     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
1182     ASSIGN_STATE(entropy->saved, state);
1183   }
1184 
1185   /* Account for restart interval (no-op if not using restarts) */
1186   entropy->restarts_to_go--;
1187 
1188   return TRUE;
1189 }
1190 
1191 
1192 /*
1193  * Decode one MCU's worth of Huffman-compressed coefficients,
1194  * full-size blocks.
1195  */
1196 
1197 METHODDEF(boolean)
1198 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
1199 {
1200   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1201   int blkn;
1202   BITREAD_STATE_VARS;
1203   savable_state state;
1204 
1205   /* Process restart marker if needed; may have to suspend */
1206   if (cinfo->restart_interval) {
1207     if (entropy->restarts_to_go == 0)
1208       if (! process_restart(cinfo))
1209         return FALSE;
1210   }
1211 
1212   /* If we've run out of data, just leave the MCU set to zeroes.
1213    * This way, we return uniform gray for the remainder of the segment.
1214    */
1215   if (! entropy->insufficient_data) {
1216 
1217     /* Load up working state */
1218     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
1219     ASSIGN_STATE(state, entropy->saved);
1220 
1221     /* Outer loop handles each block in the MCU */
1222 
1223     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1224       JBLOCKROW block = MCU_data[blkn];
1225       d_derived_tbl * htbl;
1226       register int s, k, r;
1227       int coef_limit, ci;
1228 
1229       /* Decode a single block's worth of coefficients */
1230 
1231       /* Section F.2.2.1: decode the DC coefficient difference */
1232       htbl = entropy->dc_cur_tbls[blkn];
1233       HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
1234 
1235       htbl = entropy->ac_cur_tbls[blkn];


1304     /* Completed MCU, so update state */
1305     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
1306     ASSIGN_STATE(entropy->saved, state);
1307   }
1308 
1309   /* Account for restart interval (no-op if not using restarts) */
1310   entropy->restarts_to_go--;
1311 
1312   return TRUE;
1313 }
1314 
1315 
1316 /*
1317  * Initialize for a Huffman-compressed scan.
1318  */
1319 
1320 METHODDEF(void)
1321 start_pass_huff_decoder (j_decompress_ptr cinfo)
1322 {
1323   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1324   int ci, blkn, tbl, i;
1325   jpeg_component_info * compptr;
1326 
1327   if (cinfo->progressive_mode) {
1328     /* Validate progressive scan parameters */
1329     if (cinfo->Ss == 0) {
1330       if (cinfo->Se != 0)
1331         goto bad;
1332     } else {
1333       /* need not check Ss/Se < 0 since they came from unsigned bytes */
1334       if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
1335         goto bad;
1336       /* AC scans may have only one component */
1337       if (cinfo->comps_in_scan != 1)
1338         goto bad;
1339     }
1340     if (cinfo->Ah != 0) {
1341       /* Successive approximation refinement scan: must have Al = Ah-1. */
1342       if (cinfo->Ah-1 != cinfo->Al)
1343         goto bad;
1344     }
1345     if (cinfo->Al > 13) { /* need not check for < 0 */
1346       /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
1347        * but the spec doesn't say so, and we try to be liberal about what we
1348        * accept.  Note: large Al values could result in out-of-range DC
1349        * coefficients during early scans, leading to bizarre displays due to
1350        * overflows in the IDCT math.  But we won't crash.
1351        */
1352       bad:
1353       ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
1354                cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);


1373     /* Select MCU decoding routine */
1374     if (cinfo->Ah == 0) {
1375       if (cinfo->Ss == 0)
1376         entropy->pub.decode_mcu = decode_mcu_DC_first;
1377       else
1378         entropy->pub.decode_mcu = decode_mcu_AC_first;
1379     } else {
1380       if (cinfo->Ss == 0)
1381         entropy->pub.decode_mcu = decode_mcu_DC_refine;
1382       else
1383         entropy->pub.decode_mcu = decode_mcu_AC_refine;
1384     }
1385 
1386     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1387       compptr = cinfo->cur_comp_info[ci];
1388       /* Make sure requested tables are present, and compute derived tables.
1389        * We may build same derived table more than once, but it's not expensive.
1390        */
1391       if (cinfo->Ss == 0) {
1392         if (cinfo->Ah == 0) {        /* DC refinement needs no table */
1393           tbl = compptr->dc_tbl_no;
1394           jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
1395                                   & entropy->derived_tbls[tbl]);
1396         }
1397       } else {
1398         tbl = compptr->ac_tbl_no;
1399         jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
1400                                 & entropy->derived_tbls[tbl]);
1401         /* remember the single active table */
1402         entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
1403       }
1404       /* Initialize DC predictions to 0 */
1405       entropy->saved.last_dc_val[ci] = 0;
1406     }
1407 
1408     /* Initialize private state variables */
1409     entropy->saved.EOBRUN = 0;
1410   } else {
1411     /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
1412      * This ought to be an error condition, but we make it a warning because
1413      * there are some baseline files out there with all zeroes in these bytes.
1414      */
1415     if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
1416         ((cinfo->is_baseline || cinfo->Se < DCTSIZE2) &&
1417         cinfo->Se != cinfo->lim_Se))
1418       WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
1419 
1420     /* Select MCU decoding routine */
1421     /* We retain the hard-coded case for full-size blocks.
1422      * This is not necessary, but it appears that this version is slightly
1423      * more performant in the given implementation.
1424      * With an improved implementation we would prefer a single optimized
1425      * function.
1426      */
1427     if (cinfo->lim_Se != DCTSIZE2-1)
1428       entropy->pub.decode_mcu = decode_mcu_sub;
1429     else
1430       entropy->pub.decode_mcu = decode_mcu;
1431 
1432     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1433       compptr = cinfo->cur_comp_info[ci];


1434       /* Compute derived values for Huffman tables */
1435       /* We may do this more than once for a table, but it's not expensive */
1436       tbl = compptr->dc_tbl_no;
1437       jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
1438                               & entropy->dc_derived_tbls[tbl]);
1439       if (cinfo->lim_Se) {   /* AC needs no table when not present */
1440         tbl = compptr->ac_tbl_no;
1441         jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
1442                                 & entropy->ac_derived_tbls[tbl]);
1443       }
1444       /* Initialize DC predictions to 0 */
1445       entropy->saved.last_dc_val[ci] = 0;
1446     }
1447 
1448     /* Precalculate decoding info for each block in an MCU of this scan */
1449     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1450       ci = cinfo->MCU_membership[blkn];
1451       compptr = cinfo->cur_comp_info[ci];
1452       /* Precalculate which table to use for each block */
1453       entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
1454       entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
1455       /* Decide whether we really care about the coefficient values */
1456       if (compptr->component_needed) {
1457         ci = compptr->DCT_v_scaled_size;

1458         i = compptr->DCT_h_scaled_size;
1459         switch (cinfo->lim_Se) {
1460         case (1*1-1):
1461           entropy->coef_limit[blkn] = 1;
1462           break;
1463         case (2*2-1):
1464           if (ci <= 0 || ci > 2) ci = 2;
1465           if (i <= 0 || i > 2) i = 2;
1466           entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1];
1467           break;
1468         case (3*3-1):
1469           if (ci <= 0 || ci > 3) ci = 3;
1470           if (i <= 0 || i > 3) i = 3;
1471           entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1];
1472           break;
1473         case (4*4-1):
1474           if (ci <= 0 || ci > 4) ci = 4;
1475           if (i <= 0 || i > 4) i = 4;
1476           entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1];
1477           break;
1478         case (5*5-1):
1479           if (ci <= 0 || ci > 5) ci = 5;
1480           if (i <= 0 || i > 5) i = 5;
1481           entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1];
1482           break;
1483         case (6*6-1):
1484           if (ci <= 0 || ci > 6) ci = 6;
1485           if (i <= 0 || i > 6) i = 6;
1486           entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1];
1487           break;
1488         case (7*7-1):
1489           if (ci <= 0 || ci > 7) ci = 7;
1490           if (i <= 0 || i > 7) i = 7;
1491           entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1];
1492           break;
1493         default:
1494           if (ci <= 0 || ci > 8) ci = 8;
1495           if (i <= 0 || i > 8) i = 8;
1496           entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
1497           break;
1498         }
1499       } else {
1500         entropy->coef_limit[blkn] = 0;
1501       }
1502     }
1503   }
1504 
1505   /* Initialize bitread state variables */
1506   entropy->bitstate.bits_left = 0;
1507   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
1508   entropy->insufficient_data = FALSE;
1509 
1510   /* Initialize restart counter */
1511   entropy->restarts_to_go = cinfo->restart_interval;
1512 }
1513 
1514 
1515 /*
1516  * Module initialization routine for Huffman entropy decoding.
1517  */
1518 
1519 GLOBAL(void)
1520 jinit_huff_decoder (j_decompress_ptr cinfo)
1521 {
1522   huff_entropy_ptr entropy;
1523   int i;
1524 
1525   entropy = (huff_entropy_ptr)
1526     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1527                                 SIZEOF(huff_entropy_decoder));
1528   cinfo->entropy = &entropy->pub;
1529   entropy->pub.start_pass = start_pass_huff_decoder;
1530   entropy->pub.finish_pass = finish_pass_huff;
1531 
1532   if (cinfo->progressive_mode) {
1533     /* Create progression status table */
1534     int *coef_bit_ptr, ci;
1535     cinfo->coef_bits = (int (*)[DCTSIZE2])
1536       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1537                                   cinfo->num_components*DCTSIZE2*SIZEOF(int));
1538     coef_bit_ptr = & cinfo->coef_bits[0][0];
1539     for (ci = 0; ci < cinfo->num_components; ci++)
1540       for (i = 0; i < DCTSIZE2; i++)
1541         *coef_bit_ptr++ = -1;
1542 
1543     /* Mark derived tables unallocated */
1544     for (i = 0; i < NUM_HUFF_TBLS; i++) {
1545       entropy->derived_tbls[i] = NULL;
1546     }
1547   } else {
1548     /* Mark tables unallocated */
1549     for (i = 0; i < NUM_HUFF_TBLS; i++) {
1550       entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
< prev index next >