< prev index next >

modules/javafx.graphics/src/main/native-iio/libjpeg7/jidctflt.c

Print this page

        

*** 1,9 **** --- 1,10 ---- /* * jidctflt.c * * Copyright (C) 1994-1998, Thomas G. Lane. + * Modified 2010-2017 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains a floating-point implementation of the * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
*** 47,57 **** /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 ! Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce a float result. --- 48,58 ---- /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 ! Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ #endif /* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce a float result.
*** 60,69 **** --- 61,72 ---- #define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval)) /* * Perform dequantization and inverse DCT on one block of coefficients. + * + * cK represents cos(K*pi/16). */ GLOBAL(void) jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block,
*** 77,87 **** FAST_FLOAT * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ - SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; --- 80,89 ----
*** 150,182 **** tmp7 = z11 + z13; /* phase 5 */ tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ ! tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ ! tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ tmp6 = tmp12 - tmp7; /* phase 2 */ tmp5 = tmp11 - tmp6; ! tmp4 = tmp10 + tmp5; wsptr[DCTSIZE*0] = tmp0 + tmp7; wsptr[DCTSIZE*7] = tmp0 - tmp7; wsptr[DCTSIZE*1] = tmp1 + tmp6; wsptr[DCTSIZE*6] = tmp1 - tmp6; wsptr[DCTSIZE*2] = tmp2 + tmp5; wsptr[DCTSIZE*5] = tmp2 - tmp5; ! wsptr[DCTSIZE*4] = tmp3 + tmp4; ! wsptr[DCTSIZE*3] = tmp3 - tmp4; inptr++; /* advance pointers to next column */ quantptr++; wsptr++; } /* Pass 2: process rows from work array, store into output array. */ - /* Note that we must descale the results by a factor of 8 == 2**3. */ wsptr = workspace; for (ctr = 0; ctr < DCTSIZE; ctr++) { outptr = output_buf[ctr] + output_col; /* Rows of zeroes can be exploited in the same way as we did with columns. --- 152,183 ---- tmp7 = z11 + z13; /* phase 5 */ tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ ! tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */ ! tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */ tmp6 = tmp12 - tmp7; /* phase 2 */ tmp5 = tmp11 - tmp6; ! tmp4 = tmp10 - tmp5; wsptr[DCTSIZE*0] = tmp0 + tmp7; wsptr[DCTSIZE*7] = tmp0 - tmp7; wsptr[DCTSIZE*1] = tmp1 + tmp6; wsptr[DCTSIZE*6] = tmp1 - tmp6; wsptr[DCTSIZE*2] = tmp2 + tmp5; wsptr[DCTSIZE*5] = tmp2 - tmp5; ! wsptr[DCTSIZE*3] = tmp3 + tmp4; ! wsptr[DCTSIZE*4] = tmp3 - tmp4; inptr++; /* advance pointers to next column */ quantptr++; wsptr++; } /* Pass 2: process rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < DCTSIZE; ctr++) { outptr = output_buf[ctr] + output_col; /* Rows of zeroes can be exploited in the same way as we did with columns.
*** 185,199 **** * And testing floats for zero is relatively expensive, so we don't bother. */ /* Even part */ ! tmp10 = wsptr[0] + wsptr[4]; ! tmp11 = wsptr[0] - wsptr[4]; tmp13 = wsptr[2] + wsptr[6]; ! tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13; tmp0 = tmp10 + tmp13; tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; --- 186,203 ---- * And testing floats for zero is relatively expensive, so we don't bother. */ /* Even part */ ! /* Prepare range-limit and float->int conversion */ ! z5 = wsptr[0] + (((FAST_FLOAT) RANGE_CENTER) + ((FAST_FLOAT) 0.5)); ! tmp10 = z5 + wsptr[4]; ! tmp11 = z5 - wsptr[4]; tmp13 = wsptr[2] + wsptr[6]; ! tmp12 = (wsptr[2] - wsptr[6]) * ! ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ tmp0 = tmp10 + tmp13; tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12;
*** 203,241 **** z13 = wsptr[5] + wsptr[3]; z10 = wsptr[5] - wsptr[3]; z11 = wsptr[1] + wsptr[7]; z12 = wsptr[1] - wsptr[7]; ! tmp7 = z11 + z13; ! tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ ! tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ ! tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ ! tmp6 = tmp12 - tmp7; tmp5 = tmp11 - tmp6; ! tmp4 = tmp10 + tmp5; ! /* Final output stage: scale down by a factor of 8 and range-limit */ ! outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3) ! & RANGE_MASK]; ! outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3) ! & RANGE_MASK]; ! outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3) ! & RANGE_MASK]; ! outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3) ! & RANGE_MASK]; ! outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3) ! & RANGE_MASK]; ! outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3) ! & RANGE_MASK]; ! outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3) ! & RANGE_MASK]; ! outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3) ! & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } } --- 207,237 ---- z13 = wsptr[5] + wsptr[3]; z10 = wsptr[5] - wsptr[3]; z11 = wsptr[1] + wsptr[7]; z12 = wsptr[1] - wsptr[7]; ! tmp7 = z11 + z13; /* phase 5 */ ! tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ ! tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */ ! tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */ ! tmp6 = tmp12 - tmp7; /* phase 2 */ tmp5 = tmp11 - tmp6; ! tmp4 = tmp10 - tmp5; ! /* Final output stage: float->int conversion and range-limit */ ! outptr[0] = range_limit[(int) (tmp0 + tmp7) & RANGE_MASK]; ! outptr[7] = range_limit[(int) (tmp0 - tmp7) & RANGE_MASK]; ! outptr[1] = range_limit[(int) (tmp1 + tmp6) & RANGE_MASK]; ! outptr[6] = range_limit[(int) (tmp1 - tmp6) & RANGE_MASK]; ! outptr[2] = range_limit[(int) (tmp2 + tmp5) & RANGE_MASK]; ! outptr[5] = range_limit[(int) (tmp2 - tmp5) & RANGE_MASK]; ! outptr[3] = range_limit[(int) (tmp3 + tmp4) & RANGE_MASK]; ! outptr[4] = range_limit[(int) (tmp3 - tmp4) & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } }
< prev index next >