< prev index next >

modules/javafx.graphics/src/main/native-iio/libjpeg7/jutils.c

Print this page


   1 /*
   2  * jutils.c
   3  *
   4  * Copyright (C) 1991-1996, Thomas G. Lane.

   5  * This file is part of the Independent JPEG Group's software.
   6  * For conditions of distribution and use, see the accompanying README file.
   7  *
   8  * This file contains tables and miscellaneous utility routines needed
   9  * for both compression and decompression.
  10  * Note we prefix all global names with "j" to minimize conflicts with
  11  * a surrounding application.
  12  */
  13 
  14 #define JPEG_INTERNALS
  15 #include "jinclude.h"
  16 #include "jpeglib.h"
  17 
  18 
  19 /*
  20  * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
  21  * of a DCT block read in natural order (left to right, top to bottom).
  22  */
  23 
  24 #if 0                           /* This table is not actually needed in v6a */


  46  * wild stores without adding an inner-loop test, we put some extra
  47  * "63"s after the real entries.  This will cause the extra coefficient
  48  * to be stored in location 63 of the block, not somewhere random.
  49  * The worst case would be a run-length of 15, which means we need 16
  50  * fake entries.
  51  */
  52 
  53 const int jpeg_natural_order[DCTSIZE2+16] = {
  54   0,  1,  8, 16,  9,  2,  3, 10,
  55  17, 24, 32, 25, 18, 11,  4,  5,
  56  12, 19, 26, 33, 40, 48, 41, 34,
  57  27, 20, 13,  6,  7, 14, 21, 28,
  58  35, 42, 49, 56, 57, 50, 43, 36,
  59  29, 22, 15, 23, 30, 37, 44, 51,
  60  58, 59, 52, 45, 38, 31, 39, 46,
  61  53, 60, 61, 54, 47, 55, 62, 63,
  62  63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
  63  63, 63, 63, 63, 63, 63, 63, 63
  64 };
  65 



















































  66 
  67 /*
  68  * Arithmetic utilities
  69  */
  70 
  71 GLOBAL(long)
  72 jdiv_round_up (long a, long b)
  73 /* Compute a/b rounded up to next integer, ie, ceil(a/b) */
  74 /* Assumes a >= 0, b > 0 */
  75 {
  76   return (a + b - 1L) / b;
  77 }
  78 
  79 
  80 GLOBAL(long)
  81 jround_up (long a, long b)
  82 /* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
  83 /* Assumes a >= 0, b > 0 */
  84 {
  85   a += b - 1L;
  86   return a - (a % b);
  87 }
  88 
  89 
  90 /* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
  91  * and coefficient-block arrays.  This won't work on 80x86 because the arrays
  92  * are FAR and we're assuming a small-pointer memory model.  However, some
  93  * DOS compilers provide far-pointer versions of memcpy() and memset() even
  94  * in the small-model libraries.  These will be used if USE_FMEM is defined.
  95  * Otherwise, the routines below do it the hard way.  (The performance cost
  96  * is not all that great, because these routines aren't very heavily used.)
  97  */
  98 
  99 #ifndef NEED_FAR_POINTERS       /* normal case, same as regular macros */
 100 #define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size)
 101 #define FMEMZERO(target,size)   MEMZERO(target,size)
 102 #else                           /* 80x86 case, define if we can */
 103 #ifdef USE_FMEM
 104 #define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size))
 105 #define FMEMZERO(target,size)   _fmemset((void FAR *)(target), 0, (size_t)(size))















 106 #endif
 107 #endif
 108 
 109 
 110 GLOBAL(void)
 111 jcopy_sample_rows (JSAMPARRAY input_array, int source_row,
 112                    JSAMPARRAY output_array, int dest_row,
 113                    int num_rows, JDIMENSION num_cols)
 114 /* Copy some rows of samples from one place to another.
 115  * num_rows rows are copied from input_array[source_row++]
 116  * to output_array[dest_row++]; these areas may overlap for duplication.
 117  * The source and destination arrays must be at least as wide as num_cols.
 118  */
 119 {
 120   register JSAMPROW inptr, outptr;
 121 #ifdef FMEMCOPY
 122   register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE));
 123 #else
 124   register JDIMENSION count;
 125 #endif


 139 #endif
 140   }
 141 }
 142 
 143 
 144 GLOBAL(void)
 145 jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row,
 146                  JDIMENSION num_blocks)
 147 /* Copy a row of coefficient blocks from one place to another. */
 148 {
 149 #ifdef FMEMCOPY
 150   FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF)));
 151 #else
 152   register JCOEFPTR inptr, outptr;
 153   register long count;
 154 
 155   inptr = (JCOEFPTR) input_row;
 156   outptr = (JCOEFPTR) output_row;
 157   for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) {
 158     *outptr++ = *inptr++;
 159   }
 160 #endif
 161 }
 162 
 163 
 164 GLOBAL(void)
 165 jzero_far (void FAR * target, size_t bytestozero)
 166 /* Zero out a chunk of FAR memory. */
 167 /* This might be sample-array data, block-array data, or alloc_large data. */
 168 {
 169 #ifdef FMEMZERO
 170   FMEMZERO(target, bytestozero);
 171 #else
 172   register char FAR * ptr = (char FAR *) target;
 173   register size_t count;
 174 
 175   for (count = bytestozero; count > 0; count--) {
 176     *ptr++ = 0;
 177   }
 178 #endif
 179 }
   1 /*
   2  * jutils.c
   3  *
   4  * Copyright (C) 1991-1996, Thomas G. Lane.
   5  * Modified 2009-2011 by Guido Vollbeding.
   6  * This file is part of the Independent JPEG Group's software.
   7  * For conditions of distribution and use, see the accompanying README file.
   8  *
   9  * This file contains tables and miscellaneous utility routines needed
  10  * for both compression and decompression.
  11  * Note we prefix all global names with "j" to minimize conflicts with
  12  * a surrounding application.
  13  */
  14 
  15 #define JPEG_INTERNALS
  16 #include "jinclude.h"
  17 #include "jpeglib.h"
  18 
  19 
  20 /*
  21  * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
  22  * of a DCT block read in natural order (left to right, top to bottom).
  23  */
  24 
  25 #if 0                           /* This table is not actually needed in v6a */


  47  * wild stores without adding an inner-loop test, we put some extra
  48  * "63"s after the real entries.  This will cause the extra coefficient
  49  * to be stored in location 63 of the block, not somewhere random.
  50  * The worst case would be a run-length of 15, which means we need 16
  51  * fake entries.
  52  */
  53 
  54 const int jpeg_natural_order[DCTSIZE2+16] = {
  55   0,  1,  8, 16,  9,  2,  3, 10,
  56  17, 24, 32, 25, 18, 11,  4,  5,
  57  12, 19, 26, 33, 40, 48, 41, 34,
  58  27, 20, 13,  6,  7, 14, 21, 28,
  59  35, 42, 49, 56, 57, 50, 43, 36,
  60  29, 22, 15, 23, 30, 37, 44, 51,
  61  58, 59, 52, 45, 38, 31, 39, 46,
  62  53, 60, 61, 54, 47, 55, 62, 63,
  63  63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
  64  63, 63, 63, 63, 63, 63, 63, 63
  65 };
  66 
  67 const int jpeg_natural_order7[7*7+16] = {
  68   0,  1,  8, 16,  9,  2,  3, 10,
  69  17, 24, 32, 25, 18, 11,  4,  5,
  70  12, 19, 26, 33, 40, 48, 41, 34,
  71  27, 20, 13,  6, 14, 21, 28, 35,
  72  42, 49, 50, 43, 36, 29, 22, 30,
  73  37, 44, 51, 52, 45, 38, 46, 53,
  74  54,
  75  63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
  76  63, 63, 63, 63, 63, 63, 63, 63
  77 };
  78 
  79 const int jpeg_natural_order6[6*6+16] = {
  80   0,  1,  8, 16,  9,  2,  3, 10,
  81  17, 24, 32, 25, 18, 11,  4,  5,
  82  12, 19, 26, 33, 40, 41, 34, 27,
  83  20, 13, 21, 28, 35, 42, 43, 36,
  84  29, 37, 44, 45,
  85  63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
  86  63, 63, 63, 63, 63, 63, 63, 63
  87 };
  88 
  89 const int jpeg_natural_order5[5*5+16] = {
  90   0,  1,  8, 16,  9,  2,  3, 10,
  91  17, 24, 32, 25, 18, 11,  4, 12,
  92  19, 26, 33, 34, 27, 20, 28, 35,
  93  36,
  94  63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
  95  63, 63, 63, 63, 63, 63, 63, 63
  96 };
  97 
  98 const int jpeg_natural_order4[4*4+16] = {
  99   0,  1,  8, 16,  9,  2,  3, 10,
 100  17, 24, 25, 18, 11, 19, 26, 27,
 101  63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
 102  63, 63, 63, 63, 63, 63, 63, 63
 103 };
 104 
 105 const int jpeg_natural_order3[3*3+16] = {
 106   0,  1,  8, 16,  9,  2, 10, 17,
 107  18,
 108  63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
 109  63, 63, 63, 63, 63, 63, 63, 63
 110 };
 111 
 112 const int jpeg_natural_order2[2*2+16] = {
 113   0,  1,  8,  9,
 114  63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
 115  63, 63, 63, 63, 63, 63, 63, 63
 116 };
 117 
 118 
 119 /*
 120  * Arithmetic utilities
 121  */
 122 
 123 GLOBAL(long)
 124 jdiv_round_up (long a, long b)
 125 /* Compute a/b rounded up to next integer, ie, ceil(a/b) */
 126 /* Assumes a >= 0, b > 0 */
 127 {
 128   return (a + b - 1L) / b;
 129 }
 130 
 131 
 132 GLOBAL(long)
 133 jround_up (long a, long b)
 134 /* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
 135 /* Assumes a >= 0, b > 0 */
 136 {
 137   a += b - 1L;
 138   return a - (a % b);
 139 }
 140 
 141 
 142 /* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
 143  * and coefficient-block arrays.  This won't work on 80x86 because the arrays
 144  * are FAR and we're assuming a small-pointer memory model.  However, some
 145  * DOS compilers provide far-pointer versions of memcpy() and memset() even
 146  * in the small-model libraries.  These will be used if USE_FMEM is defined.
 147  * Otherwise, the routines below do it the hard way.  (The performance cost
 148  * is not all that great, because these routines aren't very heavily used.)
 149  */
 150 
 151 #ifndef NEED_FAR_POINTERS       /* normal case, same as regular macro */
 152 #define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size)

 153 #else                           /* 80x86 case, define if we can */
 154 #ifdef USE_FMEM
 155 #define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size))
 156 #else
 157 /* This function is for use by the FMEMZERO macro defined in jpegint.h.
 158  * Do not call this function directly, use the FMEMZERO macro instead.
 159  */
 160 GLOBAL(void)
 161 jzero_far (void FAR * target, size_t bytestozero)
 162 /* Zero out a chunk of FAR memory. */
 163 /* This might be sample-array data, block-array data, or alloc_large data. */
 164 {
 165   register char FAR * ptr = (char FAR *) target;
 166   register size_t count;
 167 
 168   for (count = bytestozero; count > 0; count--) {
 169     *ptr++ = 0;
 170   }
 171 }
 172 #endif
 173 #endif
 174 
 175 
 176 GLOBAL(void)
 177 jcopy_sample_rows (JSAMPARRAY input_array, int source_row,
 178                    JSAMPARRAY output_array, int dest_row,
 179                    int num_rows, JDIMENSION num_cols)
 180 /* Copy some rows of samples from one place to another.
 181  * num_rows rows are copied from input_array[source_row++]
 182  * to output_array[dest_row++]; these areas may overlap for duplication.
 183  * The source and destination arrays must be at least as wide as num_cols.
 184  */
 185 {
 186   register JSAMPROW inptr, outptr;
 187 #ifdef FMEMCOPY
 188   register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE));
 189 #else
 190   register JDIMENSION count;
 191 #endif


 205 #endif
 206   }
 207 }
 208 
 209 
 210 GLOBAL(void)
 211 jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row,
 212                  JDIMENSION num_blocks)
 213 /* Copy a row of coefficient blocks from one place to another. */
 214 {
 215 #ifdef FMEMCOPY
 216   FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF)));
 217 #else
 218   register JCOEFPTR inptr, outptr;
 219   register long count;
 220 
 221   inptr = (JCOEFPTR) input_row;
 222   outptr = (JCOEFPTR) output_row;
 223   for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) {
 224     *outptr++ = *inptr++;


















 225   }
 226 #endif
 227 }
< prev index next >