1 /*
   2  * jquant2.c
   3  *
   4  * Copyright (C) 1991-1996, Thomas G. Lane.
   5  * This file is part of the Independent JPEG Group's software.
   6  * For conditions of distribution and use, see the accompanying README file.
   7  *
   8  * This file contains 2-pass color quantization (color mapping) routines.
   9  * These routines provide selection of a custom color map for an image,
  10  * followed by mapping of the image to that color map, with optional
  11  * Floyd-Steinberg dithering.
  12  * It is also possible to use just the second pass to map to an arbitrary
  13  * externally-given color map.
  14  *
  15  * Note: ordered dithering is not supported, since there isn't any fast
  16  * way to compute intercolor distances; it's unclear that ordered dither's
  17  * fundamental assumptions even hold with an irregularly spaced color map.
  18  */
  19 
  20 #define JPEG_INTERNALS
  21 #include "jinclude.h"
  22 #include "jpeglib.h"
  23 
  24 #ifdef QUANT_2PASS_SUPPORTED
  25 
  26 
  27 /*
  28  * This module implements the well-known Heckbert paradigm for color
  29  * quantization.  Most of the ideas used here can be traced back to
  30  * Heckbert's seminal paper
  31  *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
  32  *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
  33  *
  34  * In the first pass over the image, we accumulate a histogram showing the
  35  * usage count of each possible color.  To keep the histogram to a reasonable
  36  * size, we reduce the precision of the input; typical practice is to retain
  37  * 5 or 6 bits per color, so that 8 or 4 different input values are counted
  38  * in the same histogram cell.
  39  *
  40  * Next, the color-selection step begins with a box representing the whole
  41  * color space, and repeatedly splits the "largest" remaining box until we
  42  * have as many boxes as desired colors.  Then the mean color in each
  43  * remaining box becomes one of the possible output colors.
  44  *
  45  * The second pass over the image maps each input pixel to the closest output
  46  * color (optionally after applying a Floyd-Steinberg dithering correction).
  47  * This mapping is logically trivial, but making it go fast enough requires
  48  * considerable care.
  49  *
  50  * Heckbert-style quantizers vary a good deal in their policies for choosing
  51  * the "largest" box and deciding where to cut it.  The particular policies
  52  * used here have proved out well in experimental comparisons, but better ones
  53  * may yet be found.
  54  *
  55  * In earlier versions of the IJG code, this module quantized in YCbCr color
  56  * space, processing the raw upsampled data without a color conversion step.
  57  * This allowed the color conversion math to be done only once per colormap
  58  * entry, not once per pixel.  However, that optimization precluded other
  59  * useful optimizations (such as merging color conversion with upsampling)
  60  * and it also interfered with desired capabilities such as quantizing to an
  61  * externally-supplied colormap.  We have therefore abandoned that approach.
  62  * The present code works in the post-conversion color space, typically RGB.
  63  *
  64  * To improve the visual quality of the results, we actually work in scaled
  65  * RGB space, giving G distances more weight than R, and R in turn more than
  66  * B.  To do everything in integer math, we must use integer scale factors.
  67  * The 2/3/1 scale factors used here correspond loosely to the relative
  68  * weights of the colors in the NTSC grayscale equation.
  69  * If you want to use this code to quantize a non-RGB color space, you'll
  70  * probably need to change these scale factors.
  71  */
  72 
  73 #define R_SCALE 2               /* scale R distances by this much */
  74 #define G_SCALE 3               /* scale G distances by this much */
  75 #define B_SCALE 1               /* and B by this much */
  76 
  77 /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
  78  * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
  79  * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
  80  * you'll get compile errors until you extend this logic.  In that case
  81  * you'll probably want to tweak the histogram sizes too.
  82  */
  83 
  84 #if RGB_RED == 0
  85 #define C0_SCALE R_SCALE
  86 #endif
  87 #if RGB_BLUE == 0
  88 #define C0_SCALE B_SCALE
  89 #endif
  90 #if RGB_GREEN == 1
  91 #define C1_SCALE G_SCALE
  92 #endif
  93 #if RGB_RED == 2
  94 #define C2_SCALE R_SCALE
  95 #endif
  96 #if RGB_BLUE == 2
  97 #define C2_SCALE B_SCALE
  98 #endif
  99 
 100 
 101 /*
 102  * First we have the histogram data structure and routines for creating it.
 103  *
 104  * The number of bits of precision can be adjusted by changing these symbols.
 105  * We recommend keeping 6 bits for G and 5 each for R and B.
 106  * If you have plenty of memory and cycles, 6 bits all around gives marginally
 107  * better results; if you are short of memory, 5 bits all around will save
 108  * some space but degrade the results.
 109  * To maintain a fully accurate histogram, we'd need to allocate a "long"
 110  * (preferably unsigned long) for each cell.  In practice this is overkill;
 111  * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
 112  * and clamping those that do overflow to the maximum value will give close-
 113  * enough results.  This reduces the recommended histogram size from 256Kb
 114  * to 128Kb, which is a useful savings on PC-class machines.
 115  * (In the second pass the histogram space is re-used for pixel mapping data;
 116  * in that capacity, each cell must be able to store zero to the number of
 117  * desired colors.  16 bits/cell is plenty for that too.)
 118  * Since the JPEG code is intended to run in small memory model on 80x86
 119  * machines, we can't just allocate the histogram in one chunk.  Instead
 120  * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
 121  * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
 122  * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
 123  * on 80x86 machines, the pointer row is in near memory but the actual
 124  * arrays are in far memory (same arrangement as we use for image arrays).
 125  */
 126 
 127 #define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
 128 
 129 /* These will do the right thing for either R,G,B or B,G,R color order,
 130  * but you may not like the results for other color orders.
 131  */
 132 #define HIST_C0_BITS  5         /* bits of precision in R/B histogram */
 133 #define HIST_C1_BITS  6         /* bits of precision in G histogram */
 134 #define HIST_C2_BITS  5         /* bits of precision in B/R histogram */
 135 
 136 /* Number of elements along histogram axes. */
 137 #define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
 138 #define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
 139 #define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
 140 
 141 /* These are the amounts to shift an input value to get a histogram index. */
 142 #define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
 143 #define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
 144 #define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
 145 
 146 
 147 typedef UINT16 histcell;        /* histogram cell; prefer an unsigned type */
 148 
 149 typedef histcell FAR * histptr; /* for pointers to histogram cells */
 150 
 151 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
 152 typedef hist1d FAR * hist2d;    /* type for the 2nd-level pointers */
 153 typedef hist2d * hist3d;        /* type for top-level pointer */
 154 
 155 
 156 /* Declarations for Floyd-Steinberg dithering.
 157  *
 158  * Errors are accumulated into the array fserrors[], at a resolution of
 159  * 1/16th of a pixel count.  The error at a given pixel is propagated
 160  * to its not-yet-processed neighbors using the standard F-S fractions,
 161  *              ...     (here)  7/16
 162  *              3/16    5/16    1/16
 163  * We work left-to-right on even rows, right-to-left on odd rows.
 164  *
 165  * We can get away with a single array (holding one row's worth of errors)
 166  * by using it to store the current row's errors at pixel columns not yet
 167  * processed, but the next row's errors at columns already processed.  We
 168  * need only a few extra variables to hold the errors immediately around the
 169  * current column.  (If we are lucky, those variables are in registers, but
 170  * even if not, they're probably cheaper to access than array elements are.)
 171  *
 172  * The fserrors[] array has (#columns + 2) entries; the extra entry at
 173  * each end saves us from special-casing the first and last pixels.
 174  * Each entry is three values long, one value for each color component.
 175  *
 176  * Note: on a wide image, we might not have enough room in a PC's near data
 177  * segment to hold the error array; so it is allocated with alloc_large.
 178  */
 179 
 180 #if BITS_IN_JSAMPLE == 8
 181 typedef INT16 FSERROR;          /* 16 bits should be enough */
 182 typedef int LOCFSERROR;         /* use 'int' for calculation temps */
 183 #else
 184 typedef INT32 FSERROR;          /* may need more than 16 bits */
 185 typedef INT32 LOCFSERROR;       /* be sure calculation temps are big enough */
 186 #endif
 187 
 188 typedef FSERROR FAR *FSERRPTR;  /* pointer to error array (in FAR storage!) */
 189 
 190 
 191 /* Private subobject */
 192 
 193 typedef struct {
 194   struct jpeg_color_quantizer pub; /* public fields */
 195 
 196   /* Space for the eventually created colormap is stashed here */
 197   JSAMPARRAY sv_colormap;       /* colormap allocated at init time */
 198   int desired;                  /* desired # of colors = size of colormap */
 199 
 200   /* Variables for accumulating image statistics */
 201   hist3d histogram;             /* pointer to the histogram */
 202 
 203   boolean needs_zeroed;         /* TRUE if next pass must zero histogram */
 204 
 205   /* Variables for Floyd-Steinberg dithering */
 206   FSERRPTR fserrors;            /* accumulated errors */
 207   boolean on_odd_row;           /* flag to remember which row we are on */
 208   int * error_limiter;          /* table for clamping the applied error */
 209 } my_cquantizer;
 210 
 211 typedef my_cquantizer * my_cquantize_ptr;
 212 
 213 
 214 /*
 215  * Prescan some rows of pixels.
 216  * In this module the prescan simply updates the histogram, which has been
 217  * initialized to zeroes by start_pass.
 218  * An output_buf parameter is required by the method signature, but no data
 219  * is actually output (in fact the buffer controller is probably passing a
 220  * NULL pointer).
 221  */
 222 
 223 METHODDEF(void)
 224 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
 225                   JSAMPARRAY output_buf, int num_rows)
 226 {
 227   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 228   register JSAMPROW ptr;
 229   register histptr histp;
 230   register hist3d histogram = cquantize->histogram;
 231   int row;
 232   JDIMENSION col;
 233   JDIMENSION width = cinfo->output_width;
 234 
 235   for (row = 0; row < num_rows; row++) {
 236     ptr = input_buf[row];
 237     for (col = width; col > 0; col--) {
 238       /* get pixel value and index into the histogram */
 239       histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
 240                          [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
 241                          [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
 242       /* increment, check for overflow and undo increment if so. */
 243       if (++(*histp) <= 0)
 244         (*histp)--;
 245       ptr += 3;
 246     }
 247   }
 248 }
 249 
 250 
 251 /*
 252  * Next we have the really interesting routines: selection of a colormap
 253  * given the completed histogram.
 254  * These routines work with a list of "boxes", each representing a rectangular
 255  * subset of the input color space (to histogram precision).
 256  */
 257 
 258 typedef struct {
 259   /* The bounds of the box (inclusive); expressed as histogram indexes */
 260   int c0min, c0max;
 261   int c1min, c1max;
 262   int c2min, c2max;
 263   /* The volume (actually 2-norm) of the box */
 264   INT32 volume;
 265   /* The number of nonzero histogram cells within this box */
 266   long colorcount;
 267 } box;
 268 
 269 typedef box * boxptr;
 270 
 271 
 272 LOCAL(boxptr)
 273 find_biggest_color_pop (boxptr boxlist, int numboxes)
 274 /* Find the splittable box with the largest color population */
 275 /* Returns NULL if no splittable boxes remain */
 276 {
 277   register boxptr boxp;
 278   register int i;
 279   register long maxc = 0;
 280   boxptr which = NULL;
 281 
 282   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
 283     if (boxp->colorcount > maxc && boxp->volume > 0) {
 284       which = boxp;
 285       maxc = boxp->colorcount;
 286     }
 287   }
 288   return which;
 289 }
 290 
 291 
 292 LOCAL(boxptr)
 293 find_biggest_volume (boxptr boxlist, int numboxes)
 294 /* Find the splittable box with the largest (scaled) volume */
 295 /* Returns NULL if no splittable boxes remain */
 296 {
 297   register boxptr boxp;
 298   register int i;
 299   register INT32 maxv = 0;
 300   boxptr which = NULL;
 301 
 302   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
 303     if (boxp->volume > maxv) {
 304       which = boxp;
 305       maxv = boxp->volume;
 306     }
 307   }
 308   return which;
 309 }
 310 
 311 
 312 LOCAL(void)
 313 update_box (j_decompress_ptr cinfo, boxptr boxp)
 314 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
 315 /* and recompute its volume and population */
 316 {
 317   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 318   hist3d histogram = cquantize->histogram;
 319   histptr histp;
 320   int c0,c1,c2;
 321   int c0min,c0max,c1min,c1max,c2min,c2max;
 322   INT32 dist0,dist1,dist2;
 323   long ccount;
 324 
 325   c0min = boxp->c0min;  c0max = boxp->c0max;
 326   c1min = boxp->c1min;  c1max = boxp->c1max;
 327   c2min = boxp->c2min;  c2max = boxp->c2max;
 328 
 329   if (c0max > c0min)
 330     for (c0 = c0min; c0 <= c0max; c0++)
 331       for (c1 = c1min; c1 <= c1max; c1++) {
 332         histp = & histogram[c0][c1][c2min];
 333         for (c2 = c2min; c2 <= c2max; c2++)
 334           if (*histp++ != 0) {
 335             boxp->c0min = c0min = c0;
 336             goto have_c0min;
 337           }
 338       }
 339  have_c0min:
 340   if (c0max > c0min)
 341     for (c0 = c0max; c0 >= c0min; c0--)
 342       for (c1 = c1min; c1 <= c1max; c1++) {
 343         histp = & histogram[c0][c1][c2min];
 344         for (c2 = c2min; c2 <= c2max; c2++)
 345           if (*histp++ != 0) {
 346             boxp->c0max = c0max = c0;
 347             goto have_c0max;
 348           }
 349       }
 350  have_c0max:
 351   if (c1max > c1min)
 352     for (c1 = c1min; c1 <= c1max; c1++)
 353       for (c0 = c0min; c0 <= c0max; c0++) {
 354         histp = & histogram[c0][c1][c2min];
 355         for (c2 = c2min; c2 <= c2max; c2++)
 356           if (*histp++ != 0) {
 357             boxp->c1min = c1min = c1;
 358             goto have_c1min;
 359           }
 360       }
 361  have_c1min:
 362   if (c1max > c1min)
 363     for (c1 = c1max; c1 >= c1min; c1--)
 364       for (c0 = c0min; c0 <= c0max; c0++) {
 365         histp = & histogram[c0][c1][c2min];
 366         for (c2 = c2min; c2 <= c2max; c2++)
 367           if (*histp++ != 0) {
 368             boxp->c1max = c1max = c1;
 369             goto have_c1max;
 370           }
 371       }
 372  have_c1max:
 373   if (c2max > c2min)
 374     for (c2 = c2min; c2 <= c2max; c2++)
 375       for (c0 = c0min; c0 <= c0max; c0++) {
 376         histp = & histogram[c0][c1min][c2];
 377         for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
 378           if (*histp != 0) {
 379             boxp->c2min = c2min = c2;
 380             goto have_c2min;
 381           }
 382       }
 383  have_c2min:
 384   if (c2max > c2min)
 385     for (c2 = c2max; c2 >= c2min; c2--)
 386       for (c0 = c0min; c0 <= c0max; c0++) {
 387         histp = & histogram[c0][c1min][c2];
 388         for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
 389           if (*histp != 0) {
 390             boxp->c2max = c2max = c2;
 391             goto have_c2max;
 392           }
 393       }
 394  have_c2max:
 395 
 396   /* Update box volume.
 397    * We use 2-norm rather than real volume here; this biases the method
 398    * against making long narrow boxes, and it has the side benefit that
 399    * a box is splittable iff norm > 0.
 400    * Since the differences are expressed in histogram-cell units,
 401    * we have to shift back to JSAMPLE units to get consistent distances;
 402    * after which, we scale according to the selected distance scale factors.
 403    */
 404   dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
 405   dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
 406   dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
 407   boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
 408 
 409   /* Now scan remaining volume of box and compute population */
 410   ccount = 0;
 411   for (c0 = c0min; c0 <= c0max; c0++)
 412     for (c1 = c1min; c1 <= c1max; c1++) {
 413       histp = & histogram[c0][c1][c2min];
 414       for (c2 = c2min; c2 <= c2max; c2++, histp++)
 415         if (*histp != 0) {
 416           ccount++;
 417         }
 418     }
 419   boxp->colorcount = ccount;
 420 }
 421 
 422 
 423 LOCAL(int)
 424 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
 425             int desired_colors)
 426 /* Repeatedly select and split the largest box until we have enough boxes */
 427 {
 428   int n,lb;
 429   int c0,c1,c2,cmax;
 430   register boxptr b1,b2;
 431 
 432   while (numboxes < desired_colors) {
 433     /* Select box to split.
 434      * Current algorithm: by population for first half, then by volume.
 435      */
 436     if (numboxes*2 <= desired_colors) {
 437       b1 = find_biggest_color_pop(boxlist, numboxes);
 438     } else {
 439       b1 = find_biggest_volume(boxlist, numboxes);
 440     }
 441     if (b1 == NULL)             /* no splittable boxes left! */
 442       break;
 443     b2 = &boxlist[numboxes];    /* where new box will go */
 444     /* Copy the color bounds to the new box. */
 445     b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
 446     b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
 447     /* Choose which axis to split the box on.
 448      * Current algorithm: longest scaled axis.
 449      * See notes in update_box about scaling distances.
 450      */
 451     c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
 452     c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
 453     c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
 454     /* We want to break any ties in favor of green, then red, blue last.
 455      * This code does the right thing for R,G,B or B,G,R color orders only.
 456      */
 457 #if RGB_RED == 0
 458     cmax = c1; n = 1;
 459     if (c0 > cmax) { cmax = c0; n = 0; }
 460     if (c2 > cmax) { n = 2; }
 461 #else
 462     cmax = c1; n = 1;
 463     if (c2 > cmax) { cmax = c2; n = 2; }
 464     if (c0 > cmax) { n = 0; }
 465 #endif
 466     /* Choose split point along selected axis, and update box bounds.
 467      * Current algorithm: split at halfway point.
 468      * (Since the box has been shrunk to minimum volume,
 469      * any split will produce two nonempty subboxes.)
 470      * Note that lb value is max for lower box, so must be < old max.
 471      */
 472     switch (n) {
 473     case 0:
 474       lb = (b1->c0max + b1->c0min) / 2;
 475       b1->c0max = lb;
 476       b2->c0min = lb+1;
 477       break;
 478     case 1:
 479       lb = (b1->c1max + b1->c1min) / 2;
 480       b1->c1max = lb;
 481       b2->c1min = lb+1;
 482       break;
 483     case 2:
 484       lb = (b1->c2max + b1->c2min) / 2;
 485       b1->c2max = lb;
 486       b2->c2min = lb+1;
 487       break;
 488     }
 489     /* Update stats for boxes */
 490     update_box(cinfo, b1);
 491     update_box(cinfo, b2);
 492     numboxes++;
 493   }
 494   return numboxes;
 495 }
 496 
 497 
 498 LOCAL(void)
 499 compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
 500 /* Compute representative color for a box, put it in colormap[icolor] */
 501 {
 502   /* Current algorithm: mean weighted by pixels (not colors) */
 503   /* Note it is important to get the rounding correct! */
 504   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 505   hist3d histogram = cquantize->histogram;
 506   histptr histp;
 507   int c0,c1,c2;
 508   int c0min,c0max,c1min,c1max,c2min,c2max;
 509   long count;
 510   long total = 0;
 511   long c0total = 0;
 512   long c1total = 0;
 513   long c2total = 0;
 514 
 515   c0min = boxp->c0min;  c0max = boxp->c0max;
 516   c1min = boxp->c1min;  c1max = boxp->c1max;
 517   c2min = boxp->c2min;  c2max = boxp->c2max;
 518 
 519   for (c0 = c0min; c0 <= c0max; c0++)
 520     for (c1 = c1min; c1 <= c1max; c1++) {
 521       histp = & histogram[c0][c1][c2min];
 522       for (c2 = c2min; c2 <= c2max; c2++) {
 523         if ((count = *histp++) != 0) {
 524           total += count;
 525           c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
 526           c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
 527           c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
 528         }
 529       }
 530     }
 531 
 532   cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
 533   cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
 534   cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
 535 }
 536 
 537 
 538 LOCAL(void)
 539 select_colors (j_decompress_ptr cinfo, int desired_colors)
 540 /* Master routine for color selection */
 541 {
 542   boxptr boxlist;
 543   int numboxes;
 544   int i;
 545 
 546   /* Allocate workspace for box list */
 547   boxlist = (boxptr) (*cinfo->mem->alloc_small)
 548     ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
 549   /* Initialize one box containing whole space */
 550   numboxes = 1;
 551   boxlist[0].c0min = 0;
 552   boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
 553   boxlist[0].c1min = 0;
 554   boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
 555   boxlist[0].c2min = 0;
 556   boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
 557   /* Shrink it to actually-used volume and set its statistics */
 558   update_box(cinfo, & boxlist[0]);
 559   /* Perform median-cut to produce final box list */
 560   numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
 561   /* Compute the representative color for each box, fill colormap */
 562   for (i = 0; i < numboxes; i++)
 563     compute_color(cinfo, & boxlist[i], i);
 564   cinfo->actual_number_of_colors = numboxes;
 565   TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
 566 }
 567 
 568 
 569 /*
 570  * These routines are concerned with the time-critical task of mapping input
 571  * colors to the nearest color in the selected colormap.
 572  *
 573  * We re-use the histogram space as an "inverse color map", essentially a
 574  * cache for the results of nearest-color searches.  All colors within a
 575  * histogram cell will be mapped to the same colormap entry, namely the one
 576  * closest to the cell's center.  This may not be quite the closest entry to
 577  * the actual input color, but it's almost as good.  A zero in the cache
 578  * indicates we haven't found the nearest color for that cell yet; the array
 579  * is cleared to zeroes before starting the mapping pass.  When we find the
 580  * nearest color for a cell, its colormap index plus one is recorded in the
 581  * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
 582  * when they need to use an unfilled entry in the cache.
 583  *
 584  * Our method of efficiently finding nearest colors is based on the "locally
 585  * sorted search" idea described by Heckbert and on the incremental distance
 586  * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
 587  * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
 588  * the distances from a given colormap entry to each cell of the histogram can
 589  * be computed quickly using an incremental method: the differences between
 590  * distances to adjacent cells themselves differ by a constant.  This allows a
 591  * fairly fast implementation of the "brute force" approach of computing the
 592  * distance from every colormap entry to every histogram cell.  Unfortunately,
 593  * it needs a work array to hold the best-distance-so-far for each histogram
 594  * cell (because the inner loop has to be over cells, not colormap entries).
 595  * The work array elements have to be INT32s, so the work array would need
 596  * 256Kb at our recommended precision.  This is not feasible in DOS machines.
 597  *
 598  * To get around these problems, we apply Thomas' method to compute the
 599  * nearest colors for only the cells within a small subbox of the histogram.
 600  * The work array need be only as big as the subbox, so the memory usage
 601  * problem is solved.  Furthermore, we need not fill subboxes that are never
 602  * referenced in pass2; many images use only part of the color gamut, so a
 603  * fair amount of work is saved.  An additional advantage of this
 604  * approach is that we can apply Heckbert's locality criterion to quickly
 605  * eliminate colormap entries that are far away from the subbox; typically
 606  * three-fourths of the colormap entries are rejected by Heckbert's criterion,
 607  * and we need not compute their distances to individual cells in the subbox.
 608  * The speed of this approach is heavily influenced by the subbox size: too
 609  * small means too much overhead, too big loses because Heckbert's criterion
 610  * can't eliminate as many colormap entries.  Empirically the best subbox
 611  * size seems to be about 1/512th of the histogram (1/8th in each direction).
 612  *
 613  * Thomas' article also describes a refined method which is asymptotically
 614  * faster than the brute-force method, but it is also far more complex and
 615  * cannot efficiently be applied to small subboxes.  It is therefore not
 616  * useful for programs intended to be portable to DOS machines.  On machines
 617  * with plenty of memory, filling the whole histogram in one shot with Thomas'
 618  * refined method might be faster than the present code --- but then again,
 619  * it might not be any faster, and it's certainly more complicated.
 620  */
 621 
 622 
 623 /* log2(histogram cells in update box) for each axis; this can be adjusted */
 624 #define BOX_C0_LOG  (HIST_C0_BITS-3)
 625 #define BOX_C1_LOG  (HIST_C1_BITS-3)
 626 #define BOX_C2_LOG  (HIST_C2_BITS-3)
 627 
 628 #define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
 629 #define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
 630 #define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
 631 
 632 #define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
 633 #define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
 634 #define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
 635 
 636 
 637 /*
 638  * The next three routines implement inverse colormap filling.  They could
 639  * all be folded into one big routine, but splitting them up this way saves
 640  * some stack space (the mindist[] and bestdist[] arrays need not coexist)
 641  * and may allow some compilers to produce better code by registerizing more
 642  * inner-loop variables.
 643  */
 644 
 645 LOCAL(int)
 646 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
 647                     JSAMPLE colorlist[])
 648 /* Locate the colormap entries close enough to an update box to be candidates
 649  * for the nearest entry to some cell(s) in the update box.  The update box
 650  * is specified by the center coordinates of its first cell.  The number of
 651  * candidate colormap entries is returned, and their colormap indexes are
 652  * placed in colorlist[].
 653  * This routine uses Heckbert's "locally sorted search" criterion to select
 654  * the colors that need further consideration.
 655  */
 656 {
 657   int numcolors = cinfo->actual_number_of_colors;
 658   int maxc0, maxc1, maxc2;
 659   int centerc0, centerc1, centerc2;
 660   int i, x, ncolors;
 661   INT32 minmaxdist, min_dist, max_dist, tdist;
 662   INT32 mindist[MAXNUMCOLORS];  /* min distance to colormap entry i */
 663 
 664   /* Compute true coordinates of update box's upper corner and center.
 665    * Actually we compute the coordinates of the center of the upper-corner
 666    * histogram cell, which are the upper bounds of the volume we care about.
 667    * Note that since ">>" rounds down, the "center" values may be closer to
 668    * min than to max; hence comparisons to them must be "<=", not "<".
 669    */
 670   maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
 671   centerc0 = (minc0 + maxc0) >> 1;
 672   maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
 673   centerc1 = (minc1 + maxc1) >> 1;
 674   maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
 675   centerc2 = (minc2 + maxc2) >> 1;
 676 
 677   /* For each color in colormap, find:
 678    *  1. its minimum squared-distance to any point in the update box
 679    *     (zero if color is within update box);
 680    *  2. its maximum squared-distance to any point in the update box.
 681    * Both of these can be found by considering only the corners of the box.
 682    * We save the minimum distance for each color in mindist[];
 683    * only the smallest maximum distance is of interest.
 684    */
 685   minmaxdist = 0x7FFFFFFFL;
 686 
 687   for (i = 0; i < numcolors; i++) {
 688     /* We compute the squared-c0-distance term, then add in the other two. */
 689     x = GETJSAMPLE(cinfo->colormap[0][i]);
 690     if (x < minc0) {
 691       tdist = (x - minc0) * C0_SCALE;
 692       min_dist = tdist*tdist;
 693       tdist = (x - maxc0) * C0_SCALE;
 694       max_dist = tdist*tdist;
 695     } else if (x > maxc0) {
 696       tdist = (x - maxc0) * C0_SCALE;
 697       min_dist = tdist*tdist;
 698       tdist = (x - minc0) * C0_SCALE;
 699       max_dist = tdist*tdist;
 700     } else {
 701       /* within cell range so no contribution to min_dist */
 702       min_dist = 0;
 703       if (x <= centerc0) {
 704         tdist = (x - maxc0) * C0_SCALE;
 705         max_dist = tdist*tdist;
 706       } else {
 707         tdist = (x - minc0) * C0_SCALE;
 708         max_dist = tdist*tdist;
 709       }
 710     }
 711 
 712     x = GETJSAMPLE(cinfo->colormap[1][i]);
 713     if (x < minc1) {
 714       tdist = (x - minc1) * C1_SCALE;
 715       min_dist += tdist*tdist;
 716       tdist = (x - maxc1) * C1_SCALE;
 717       max_dist += tdist*tdist;
 718     } else if (x > maxc1) {
 719       tdist = (x - maxc1) * C1_SCALE;
 720       min_dist += tdist*tdist;
 721       tdist = (x - minc1) * C1_SCALE;
 722       max_dist += tdist*tdist;
 723     } else {
 724       /* within cell range so no contribution to min_dist */
 725       if (x <= centerc1) {
 726         tdist = (x - maxc1) * C1_SCALE;
 727         max_dist += tdist*tdist;
 728       } else {
 729         tdist = (x - minc1) * C1_SCALE;
 730         max_dist += tdist*tdist;
 731       }
 732     }
 733 
 734     x = GETJSAMPLE(cinfo->colormap[2][i]);
 735     if (x < minc2) {
 736       tdist = (x - minc2) * C2_SCALE;
 737       min_dist += tdist*tdist;
 738       tdist = (x - maxc2) * C2_SCALE;
 739       max_dist += tdist*tdist;
 740     } else if (x > maxc2) {
 741       tdist = (x - maxc2) * C2_SCALE;
 742       min_dist += tdist*tdist;
 743       tdist = (x - minc2) * C2_SCALE;
 744       max_dist += tdist*tdist;
 745     } else {
 746       /* within cell range so no contribution to min_dist */
 747       if (x <= centerc2) {
 748         tdist = (x - maxc2) * C2_SCALE;
 749         max_dist += tdist*tdist;
 750       } else {
 751         tdist = (x - minc2) * C2_SCALE;
 752         max_dist += tdist*tdist;
 753       }
 754     }
 755 
 756     mindist[i] = min_dist;      /* save away the results */
 757     if (max_dist < minmaxdist)
 758       minmaxdist = max_dist;
 759   }
 760 
 761   /* Now we know that no cell in the update box is more than minmaxdist
 762    * away from some colormap entry.  Therefore, only colors that are
 763    * within minmaxdist of some part of the box need be considered.
 764    */
 765   ncolors = 0;
 766   for (i = 0; i < numcolors; i++) {
 767     if (mindist[i] <= minmaxdist)
 768       colorlist[ncolors++] = (JSAMPLE) i;
 769   }
 770   return ncolors;
 771 }
 772 
 773 
 774 LOCAL(void)
 775 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
 776                   int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
 777 /* Find the closest colormap entry for each cell in the update box,
 778  * given the list of candidate colors prepared by find_nearby_colors.
 779  * Return the indexes of the closest entries in the bestcolor[] array.
 780  * This routine uses Thomas' incremental distance calculation method to
 781  * find the distance from a colormap entry to successive cells in the box.
 782  */
 783 {
 784   int ic0, ic1, ic2;
 785   int i, icolor;
 786   register INT32 * bptr;        /* pointer into bestdist[] array */
 787   JSAMPLE * cptr;               /* pointer into bestcolor[] array */
 788   INT32 dist0, dist1;           /* initial distance values */
 789   register INT32 dist2;         /* current distance in inner loop */
 790   INT32 xx0, xx1;               /* distance increments */
 791   register INT32 xx2;
 792   INT32 inc0, inc1, inc2;       /* initial values for increments */
 793   /* This array holds the distance to the nearest-so-far color for each cell */
 794   INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
 795 
 796   /* Initialize best-distance for each cell of the update box */
 797   bptr = bestdist;
 798   for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
 799     *bptr++ = 0x7FFFFFFFL;
 800 
 801   /* For each color selected by find_nearby_colors,
 802    * compute its distance to the center of each cell in the box.
 803    * If that's less than best-so-far, update best distance and color number.
 804    */
 805 
 806   /* Nominal steps between cell centers ("x" in Thomas article) */
 807 #define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
 808 #define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
 809 #define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
 810 
 811   for (i = 0; i < numcolors; i++) {
 812     icolor = GETJSAMPLE(colorlist[i]);
 813     /* Compute (square of) distance from minc0/c1/c2 to this color */
 814     inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
 815     dist0 = inc0*inc0;
 816     inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
 817     dist0 += inc1*inc1;
 818     inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
 819     dist0 += inc2*inc2;
 820     /* Form the initial difference increments */
 821     inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
 822     inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
 823     inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
 824     /* Now loop over all cells in box, updating distance per Thomas method */
 825     bptr = bestdist;
 826     cptr = bestcolor;
 827     xx0 = inc0;
 828     for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
 829       dist1 = dist0;
 830       xx1 = inc1;
 831       for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
 832         dist2 = dist1;
 833         xx2 = inc2;
 834         for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
 835           if (dist2 < *bptr) {
 836             *bptr = dist2;
 837             *cptr = (JSAMPLE) icolor;
 838           }
 839           dist2 += xx2;
 840           xx2 += 2 * STEP_C2 * STEP_C2;
 841           bptr++;
 842           cptr++;
 843         }
 844         dist1 += xx1;
 845         xx1 += 2 * STEP_C1 * STEP_C1;
 846       }
 847       dist0 += xx0;
 848       xx0 += 2 * STEP_C0 * STEP_C0;
 849     }
 850   }
 851 }
 852 
 853 
 854 LOCAL(void)
 855 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
 856 /* Fill the inverse-colormap entries in the update box that contains */
 857 /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
 858 /* we can fill as many others as we wish.) */
 859 {
 860   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 861   hist3d histogram = cquantize->histogram;
 862   int minc0, minc1, minc2;      /* lower left corner of update box */
 863   int ic0, ic1, ic2;
 864   register JSAMPLE * cptr;      /* pointer into bestcolor[] array */
 865   register histptr cachep;      /* pointer into main cache array */
 866   /* This array lists the candidate colormap indexes. */
 867   JSAMPLE colorlist[MAXNUMCOLORS];
 868   int numcolors;                /* number of candidate colors */
 869   /* This array holds the actually closest colormap index for each cell. */
 870   JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
 871 
 872   /* Convert cell coordinates to update box ID */
 873   c0 >>= BOX_C0_LOG;
 874   c1 >>= BOX_C1_LOG;
 875   c2 >>= BOX_C2_LOG;
 876 
 877   /* Compute true coordinates of update box's origin corner.
 878    * Actually we compute the coordinates of the center of the corner
 879    * histogram cell, which are the lower bounds of the volume we care about.
 880    */
 881   minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
 882   minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
 883   minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
 884 
 885   /* Determine which colormap entries are close enough to be candidates
 886    * for the nearest entry to some cell in the update box.
 887    */
 888   numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
 889 
 890   /* Determine the actually nearest colors. */
 891   find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
 892                    bestcolor);
 893 
 894   /* Save the best color numbers (plus 1) in the main cache array */
 895   c0 <<= BOX_C0_LOG;            /* convert ID back to base cell indexes */
 896   c1 <<= BOX_C1_LOG;
 897   c2 <<= BOX_C2_LOG;
 898   cptr = bestcolor;
 899   for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
 900     for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
 901       cachep = & histogram[c0+ic0][c1+ic1][c2];
 902       for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
 903         *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
 904       }
 905     }
 906   }
 907 }
 908 
 909 
 910 /*
 911  * Map some rows of pixels to the output colormapped representation.
 912  */
 913 
 914 METHODDEF(void)
 915 pass2_no_dither (j_decompress_ptr cinfo,
 916                  JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
 917 /* This version performs no dithering */
 918 {
 919   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 920   hist3d histogram = cquantize->histogram;
 921   register JSAMPROW inptr, outptr;
 922   register histptr cachep;
 923   register int c0, c1, c2;
 924   int row;
 925   JDIMENSION col;
 926   JDIMENSION width = cinfo->output_width;
 927 
 928   for (row = 0; row < num_rows; row++) {
 929     inptr = input_buf[row];
 930     outptr = output_buf[row];
 931     for (col = width; col > 0; col--) {
 932       /* get pixel value and index into the cache */
 933       c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
 934       c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
 935       c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
 936       cachep = & histogram[c0][c1][c2];
 937       /* If we have not seen this color before, find nearest colormap entry */
 938       /* and update the cache */
 939       if (*cachep == 0)
 940         fill_inverse_cmap(cinfo, c0,c1,c2);
 941       /* Now emit the colormap index for this cell */
 942       *outptr++ = (JSAMPLE) (*cachep - 1);
 943     }
 944   }
 945 }
 946 
 947 
 948 METHODDEF(void)
 949 pass2_fs_dither (j_decompress_ptr cinfo,
 950                  JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
 951 /* This version performs Floyd-Steinberg dithering */
 952 {
 953   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 954   hist3d histogram = cquantize->histogram;
 955   register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
 956   LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
 957   LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
 958   register FSERRPTR errorptr;   /* => fserrors[] at column before current */
 959   JSAMPROW inptr;               /* => current input pixel */
 960   JSAMPROW outptr;              /* => current output pixel */
 961   histptr cachep;
 962   int dir;                      /* +1 or -1 depending on direction */
 963   int dir3;                     /* 3*dir, for advancing inptr & errorptr */
 964   int row;
 965   JDIMENSION col;
 966   JDIMENSION width = cinfo->output_width;
 967   JSAMPLE *range_limit = cinfo->sample_range_limit;
 968   int *error_limit = cquantize->error_limiter;
 969   JSAMPROW colormap0 = cinfo->colormap[0];
 970   JSAMPROW colormap1 = cinfo->colormap[1];
 971   JSAMPROW colormap2 = cinfo->colormap[2];
 972   SHIFT_TEMPS
 973 
 974   for (row = 0; row < num_rows; row++) {
 975     inptr = input_buf[row];
 976     outptr = output_buf[row];
 977     if (cquantize->on_odd_row) {
 978       /* work right to left in this row */
 979       inptr += (width-1) * 3;   /* so point to rightmost pixel */
 980       outptr += width-1;
 981       dir = -1;
 982       dir3 = -3;
 983       errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
 984       cquantize->on_odd_row = FALSE; /* flip for next time */
 985     } else {
 986       /* work left to right in this row */
 987       dir = 1;
 988       dir3 = 3;
 989       errorptr = cquantize->fserrors; /* => entry before first real column */
 990       cquantize->on_odd_row = TRUE; /* flip for next time */
 991     }
 992     /* Preset error values: no error propagated to first pixel from left */
 993     cur0 = cur1 = cur2 = 0;
 994     /* and no error propagated to row below yet */
 995     belowerr0 = belowerr1 = belowerr2 = 0;
 996     bpreverr0 = bpreverr1 = bpreverr2 = 0;
 997 
 998     for (col = width; col > 0; col--) {
 999       /* curN holds the error propagated from the previous pixel on the
1000        * current line.  Add the error propagated from the previous line
1001        * to form the complete error correction term for this pixel, and
1002        * round the error term (which is expressed * 16) to an integer.
1003        * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1004        * for either sign of the error value.
1005        * Note: errorptr points to *previous* column's array entry.
1006        */
1007       cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
1008       cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
1009       cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
1010       /* Limit the error using transfer function set by init_error_limit.
1011        * See comments with init_error_limit for rationale.
1012        */
1013       cur0 = error_limit[cur0];
1014       cur1 = error_limit[cur1];
1015       cur2 = error_limit[cur2];
1016       /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1017        * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1018        * this sets the required size of the range_limit array.
1019        */
1020       cur0 += GETJSAMPLE(inptr[0]);
1021       cur1 += GETJSAMPLE(inptr[1]);
1022       cur2 += GETJSAMPLE(inptr[2]);
1023       cur0 = GETJSAMPLE(range_limit[cur0]);
1024       cur1 = GETJSAMPLE(range_limit[cur1]);
1025       cur2 = GETJSAMPLE(range_limit[cur2]);
1026       /* Index into the cache with adjusted pixel value */
1027       cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1028       /* If we have not seen this color before, find nearest colormap */
1029       /* entry and update the cache */
1030       if (*cachep == 0)
1031         fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
1032       /* Now emit the colormap index for this cell */
1033       { register int pixcode = *cachep - 1;
1034         *outptr = (JSAMPLE) pixcode;
1035         /* Compute representation error for this pixel */
1036         cur0 -= GETJSAMPLE(colormap0[pixcode]);
1037         cur1 -= GETJSAMPLE(colormap1[pixcode]);
1038         cur2 -= GETJSAMPLE(colormap2[pixcode]);
1039       }
1040       /* Compute error fractions to be propagated to adjacent pixels.
1041        * Add these into the running sums, and simultaneously shift the
1042        * next-line error sums left by 1 column.
1043        */
1044       { register LOCFSERROR bnexterr, delta;
1045 
1046         bnexterr = cur0;        /* Process component 0 */
1047         delta = cur0 * 2;
1048         cur0 += delta;          /* form error * 3 */
1049         errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1050         cur0 += delta;          /* form error * 5 */
1051         bpreverr0 = belowerr0 + cur0;
1052         belowerr0 = bnexterr;
1053         cur0 += delta;          /* form error * 7 */
1054         bnexterr = cur1;        /* Process component 1 */
1055         delta = cur1 * 2;
1056         cur1 += delta;          /* form error * 3 */
1057         errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1058         cur1 += delta;          /* form error * 5 */
1059         bpreverr1 = belowerr1 + cur1;
1060         belowerr1 = bnexterr;
1061         cur1 += delta;          /* form error * 7 */
1062         bnexterr = cur2;        /* Process component 2 */
1063         delta = cur2 * 2;
1064         cur2 += delta;          /* form error * 3 */
1065         errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1066         cur2 += delta;          /* form error * 5 */
1067         bpreverr2 = belowerr2 + cur2;
1068         belowerr2 = bnexterr;
1069         cur2 += delta;          /* form error * 7 */
1070       }
1071       /* At this point curN contains the 7/16 error value to be propagated
1072        * to the next pixel on the current line, and all the errors for the
1073        * next line have been shifted over.  We are therefore ready to move on.
1074        */
1075       inptr += dir3;            /* Advance pixel pointers to next column */
1076       outptr += dir;
1077       errorptr += dir3;         /* advance errorptr to current column */
1078     }
1079     /* Post-loop cleanup: we must unload the final error values into the
1080      * final fserrors[] entry.  Note we need not unload belowerrN because
1081      * it is for the dummy column before or after the actual array.
1082      */
1083     errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1084     errorptr[1] = (FSERROR) bpreverr1;
1085     errorptr[2] = (FSERROR) bpreverr2;
1086   }
1087 }
1088 
1089 
1090 /*
1091  * Initialize the error-limiting transfer function (lookup table).
1092  * The raw F-S error computation can potentially compute error values of up to
1093  * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
1094  * much less, otherwise obviously wrong pixels will be created.  (Typical
1095  * effects include weird fringes at color-area boundaries, isolated bright
1096  * pixels in a dark area, etc.)  The standard advice for avoiding this problem
1097  * is to ensure that the "corners" of the color cube are allocated as output
1098  * colors; then repeated errors in the same direction cannot cause cascading
1099  * error buildup.  However, that only prevents the error from getting
1100  * completely out of hand; Aaron Giles reports that error limiting improves
1101  * the results even with corner colors allocated.
1102  * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1103  * well, but the smoother transfer function used below is even better.  Thanks
1104  * to Aaron Giles for this idea.
1105  */
1106 
1107 LOCAL(void)
1108 init_error_limit (j_decompress_ptr cinfo)
1109 /* Allocate and fill in the error_limiter table */
1110 {
1111   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1112   int * table;
1113   int in, out;
1114 
1115   table = (int *) (*cinfo->mem->alloc_small)
1116     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
1117   table += MAXJSAMPLE;          /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1118   cquantize->error_limiter = table;
1119 
1120 #define STEPSIZE ((MAXJSAMPLE+1)/16)
1121   /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1122   out = 0;
1123   for (in = 0; in < STEPSIZE; in++, out++) {
1124     table[in] = out; table[-in] = -out;
1125   }
1126   /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1127   for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1128     table[in] = out; table[-in] = -out;
1129   }
1130   /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1131   for (; in <= MAXJSAMPLE; in++) {
1132     table[in] = out; table[-in] = -out;
1133   }
1134 #undef STEPSIZE
1135 }
1136 
1137 
1138 /*
1139  * Finish up at the end of each pass.
1140  */
1141 
1142 METHODDEF(void)
1143 finish_pass1 (j_decompress_ptr cinfo)
1144 {
1145   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1146 
1147   /* Select the representative colors and fill in cinfo->colormap */
1148   cinfo->colormap = cquantize->sv_colormap;
1149   select_colors(cinfo, cquantize->desired);
1150   /* Force next pass to zero the color index table */
1151   cquantize->needs_zeroed = TRUE;
1152 }
1153 
1154 
1155 METHODDEF(void)
1156 finish_pass2 (j_decompress_ptr cinfo)
1157 {
1158   /* no work */
1159 }
1160 
1161 
1162 /*
1163  * Initialize for each processing pass.
1164  */
1165 
1166 METHODDEF(void)
1167 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
1168 {
1169   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1170   hist3d histogram = cquantize->histogram;
1171   int i;
1172 
1173   /* Only F-S dithering or no dithering is supported. */
1174   /* If user asks for ordered dither, give him F-S. */
1175   if (cinfo->dither_mode != JDITHER_NONE)
1176     cinfo->dither_mode = JDITHER_FS;
1177 
1178   if (is_pre_scan) {
1179     /* Set up method pointers */
1180     cquantize->pub.color_quantize = prescan_quantize;
1181     cquantize->pub.finish_pass = finish_pass1;
1182     cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1183   } else {
1184     /* Set up method pointers */
1185     if (cinfo->dither_mode == JDITHER_FS)
1186       cquantize->pub.color_quantize = pass2_fs_dither;
1187     else
1188       cquantize->pub.color_quantize = pass2_no_dither;
1189     cquantize->pub.finish_pass = finish_pass2;
1190 
1191     /* Make sure color count is acceptable */
1192     i = cinfo->actual_number_of_colors;
1193     if (i < 1)
1194       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1195     if (i > MAXNUMCOLORS)
1196       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1197 
1198     if (cinfo->dither_mode == JDITHER_FS) {
1199       size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1200                                    (3 * SIZEOF(FSERROR)));
1201       /* Allocate Floyd-Steinberg workspace if we didn't already. */
1202       if (cquantize->fserrors == NULL)
1203         cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1204           ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
1205       /* Initialize the propagated errors to zero. */
1206       jzero_far((void FAR *) cquantize->fserrors, arraysize);
1207       /* Make the error-limit table if we didn't already. */
1208       if (cquantize->error_limiter == NULL)
1209         init_error_limit(cinfo);
1210       cquantize->on_odd_row = FALSE;
1211     }
1212 
1213   }
1214   /* Zero the histogram or inverse color map, if necessary */
1215   if (cquantize->needs_zeroed) {
1216     for (i = 0; i < HIST_C0_ELEMS; i++) {
1217       jzero_far((void FAR *) histogram[i],
1218                 HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1219     }
1220     cquantize->needs_zeroed = FALSE;
1221   }
1222 }
1223 
1224 
1225 /*
1226  * Switch to a new external colormap between output passes.
1227  */
1228 
1229 METHODDEF(void)
1230 new_color_map_2_quant (j_decompress_ptr cinfo)
1231 {
1232   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1233 
1234   /* Reset the inverse color map */
1235   cquantize->needs_zeroed = TRUE;
1236 }
1237 
1238 
1239 /*
1240  * Module initialization routine for 2-pass color quantization.
1241  */
1242 
1243 GLOBAL(void)
1244 jinit_2pass_quantizer (j_decompress_ptr cinfo)
1245 {
1246   my_cquantize_ptr cquantize;
1247   int i;
1248 
1249   cquantize = (my_cquantize_ptr)
1250     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1251                                 SIZEOF(my_cquantizer));
1252   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1253   cquantize->pub.start_pass = start_pass_2_quant;
1254   cquantize->pub.new_color_map = new_color_map_2_quant;
1255   cquantize->fserrors = NULL;   /* flag optional arrays not allocated */
1256   cquantize->error_limiter = NULL;
1257 
1258   /* Make sure jdmaster didn't give me a case I can't handle */
1259   if (cinfo->out_color_components != 3)
1260     ERREXIT(cinfo, JERR_NOTIMPL);
1261 
1262   /* Allocate the histogram/inverse colormap storage */
1263   cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
1264     ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
1265   for (i = 0; i < HIST_C0_ELEMS; i++) {
1266     cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
1267       ((j_common_ptr) cinfo, JPOOL_IMAGE,
1268        HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1269   }
1270   cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1271 
1272   /* Allocate storage for the completed colormap, if required.
1273    * We do this now since it is FAR storage and may affect
1274    * the memory manager's space calculations.
1275    */
1276   if (cinfo->enable_2pass_quant) {
1277     /* Make sure color count is acceptable */
1278     int desired = cinfo->desired_number_of_colors;
1279     /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1280     if (desired < 8)
1281       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1282     /* Make sure colormap indexes can be represented by JSAMPLEs */
1283     if (desired > MAXNUMCOLORS)
1284       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1285     cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
1286       ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
1287     cquantize->desired = desired;
1288   } else
1289     cquantize->sv_colormap = NULL;
1290 
1291   /* Only F-S dithering or no dithering is supported. */
1292   /* If user asks for ordered dither, give him F-S. */
1293   if (cinfo->dither_mode != JDITHER_NONE)
1294     cinfo->dither_mode = JDITHER_FS;
1295 
1296   /* Allocate Floyd-Steinberg workspace if necessary.
1297    * This isn't really needed until pass 2, but again it is FAR storage.
1298    * Although we will cope with a later change in dither_mode,
1299    * we do not promise to honor max_memory_to_use if dither_mode changes.
1300    */
1301   if (cinfo->dither_mode == JDITHER_FS) {
1302     cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1303       ((j_common_ptr) cinfo, JPOOL_IMAGE,
1304        (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
1305     /* Might as well create the error-limiting table too. */
1306     init_error_limit(cinfo);
1307   }
1308 }
1309 
1310 #endif /* QUANT_2PASS_SUPPORTED */