1 /*
   2  * jquant2.c
   3  *
   4  * Copyright (C) 1991-1996, Thomas G. Lane.
   5  * Modified 2011 by Guido Vollbeding.
   6  * This file is part of the Independent JPEG Group's software.
   7  * For conditions of distribution and use, see the accompanying README file.
   8  *
   9  * This file contains 2-pass color quantization (color mapping) routines.
  10  * These routines provide selection of a custom color map for an image,
  11  * followed by mapping of the image to that color map, with optional
  12  * Floyd-Steinberg dithering.
  13  * It is also possible to use just the second pass to map to an arbitrary
  14  * externally-given color map.
  15  *
  16  * Note: ordered dithering is not supported, since there isn't any fast
  17  * way to compute intercolor distances; it's unclear that ordered dither's
  18  * fundamental assumptions even hold with an irregularly spaced color map.
  19  */
  20 
  21 #define JPEG_INTERNALS
  22 #include "jinclude.h"
  23 #include "jpeglib.h"
  24 
  25 #ifdef QUANT_2PASS_SUPPORTED
  26 
  27 
  28 /*
  29  * This module implements the well-known Heckbert paradigm for color
  30  * quantization.  Most of the ideas used here can be traced back to
  31  * Heckbert's seminal paper
  32  *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
  33  *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
  34  *
  35  * In the first pass over the image, we accumulate a histogram showing the
  36  * usage count of each possible color.  To keep the histogram to a reasonable
  37  * size, we reduce the precision of the input; typical practice is to retain
  38  * 5 or 6 bits per color, so that 8 or 4 different input values are counted
  39  * in the same histogram cell.
  40  *
  41  * Next, the color-selection step begins with a box representing the whole
  42  * color space, and repeatedly splits the "largest" remaining box until we
  43  * have as many boxes as desired colors.  Then the mean color in each
  44  * remaining box becomes one of the possible output colors.
  45  * 
  46  * The second pass over the image maps each input pixel to the closest output
  47  * color (optionally after applying a Floyd-Steinberg dithering correction).
  48  * This mapping is logically trivial, but making it go fast enough requires
  49  * considerable care.
  50  *
  51  * Heckbert-style quantizers vary a good deal in their policies for choosing
  52  * the "largest" box and deciding where to cut it.  The particular policies
  53  * used here have proved out well in experimental comparisons, but better ones
  54  * may yet be found.
  55  *
  56  * In earlier versions of the IJG code, this module quantized in YCbCr color
  57  * space, processing the raw upsampled data without a color conversion step.
  58  * This allowed the color conversion math to be done only once per colormap
  59  * entry, not once per pixel.  However, that optimization precluded other
  60  * useful optimizations (such as merging color conversion with upsampling)
  61  * and it also interfered with desired capabilities such as quantizing to an
  62  * externally-supplied colormap.  We have therefore abandoned that approach.
  63  * The present code works in the post-conversion color space, typically RGB.
  64  *
  65  * To improve the visual quality of the results, we actually work in scaled
  66  * RGB space, giving G distances more weight than R, and R in turn more than
  67  * B.  To do everything in integer math, we must use integer scale factors.
  68  * The 2/3/1 scale factors used here correspond loosely to the relative
  69  * weights of the colors in the NTSC grayscale equation.
  70  * If you want to use this code to quantize a non-RGB color space, you'll
  71  * probably need to change these scale factors.
  72  */
  73 
  74 #define R_SCALE 2               /* scale R distances by this much */
  75 #define G_SCALE 3               /* scale G distances by this much */
  76 #define B_SCALE 1               /* and B by this much */
  77 
  78 /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
  79  * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
  80  * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
  81  * you'll get compile errors until you extend this logic.  In that case
  82  * you'll probably want to tweak the histogram sizes too.
  83  */
  84 
  85 #if RGB_RED == 0
  86 #define C0_SCALE R_SCALE
  87 #endif
  88 #if RGB_BLUE == 0
  89 #define C0_SCALE B_SCALE
  90 #endif
  91 #if RGB_GREEN == 1
  92 #define C1_SCALE G_SCALE
  93 #endif
  94 #if RGB_RED == 2
  95 #define C2_SCALE R_SCALE
  96 #endif
  97 #if RGB_BLUE == 2
  98 #define C2_SCALE B_SCALE
  99 #endif
 100 
 101 
 102 /*
 103  * First we have the histogram data structure and routines for creating it.
 104  *
 105  * The number of bits of precision can be adjusted by changing these symbols.
 106  * We recommend keeping 6 bits for G and 5 each for R and B.
 107  * If you have plenty of memory and cycles, 6 bits all around gives marginally
 108  * better results; if you are short of memory, 5 bits all around will save
 109  * some space but degrade the results.
 110  * To maintain a fully accurate histogram, we'd need to allocate a "long"
 111  * (preferably unsigned long) for each cell.  In practice this is overkill;
 112  * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
 113  * and clamping those that do overflow to the maximum value will give close-
 114  * enough results.  This reduces the recommended histogram size from 256Kb
 115  * to 128Kb, which is a useful savings on PC-class machines.
 116  * (In the second pass the histogram space is re-used for pixel mapping data;
 117  * in that capacity, each cell must be able to store zero to the number of
 118  * desired colors.  16 bits/cell is plenty for that too.)
 119  * Since the JPEG code is intended to run in small memory model on 80x86
 120  * machines, we can't just allocate the histogram in one chunk.  Instead
 121  * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
 122  * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
 123  * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
 124  * on 80x86 machines, the pointer row is in near memory but the actual
 125  * arrays are in far memory (same arrangement as we use for image arrays).
 126  */
 127 
 128 #define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
 129 
 130 /* These will do the right thing for either R,G,B or B,G,R color order,
 131  * but you may not like the results for other color orders.
 132  */
 133 #define HIST_C0_BITS  5         /* bits of precision in R/B histogram */
 134 #define HIST_C1_BITS  6         /* bits of precision in G histogram */
 135 #define HIST_C2_BITS  5         /* bits of precision in B/R histogram */
 136 
 137 /* Number of elements along histogram axes. */
 138 #define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
 139 #define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
 140 #define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
 141 
 142 /* These are the amounts to shift an input value to get a histogram index. */
 143 #define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
 144 #define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
 145 #define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
 146 
 147 
 148 typedef UINT16 histcell;        /* histogram cell; prefer an unsigned type */
 149 
 150 typedef histcell FAR * histptr; /* for pointers to histogram cells */
 151 
 152 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
 153 typedef hist1d FAR * hist2d;    /* type for the 2nd-level pointers */
 154 typedef hist2d * hist3d;        /* type for top-level pointer */
 155 
 156 
 157 /* Declarations for Floyd-Steinberg dithering.
 158  *
 159  * Errors are accumulated into the array fserrors[], at a resolution of
 160  * 1/16th of a pixel count.  The error at a given pixel is propagated
 161  * to its not-yet-processed neighbors using the standard F-S fractions,
 162  *              ...     (here)  7/16
 163  *              3/16    5/16    1/16
 164  * We work left-to-right on even rows, right-to-left on odd rows.
 165  *
 166  * We can get away with a single array (holding one row's worth of errors)
 167  * by using it to store the current row's errors at pixel columns not yet
 168  * processed, but the next row's errors at columns already processed.  We
 169  * need only a few extra variables to hold the errors immediately around the
 170  * current column.  (If we are lucky, those variables are in registers, but
 171  * even if not, they're probably cheaper to access than array elements are.)
 172  *
 173  * The fserrors[] array has (#columns + 2) entries; the extra entry at
 174  * each end saves us from special-casing the first and last pixels.
 175  * Each entry is three values long, one value for each color component.
 176  *
 177  * Note: on a wide image, we might not have enough room in a PC's near data
 178  * segment to hold the error array; so it is allocated with alloc_large.
 179  */
 180 
 181 #if BITS_IN_JSAMPLE == 8
 182 typedef INT16 FSERROR;          /* 16 bits should be enough */
 183 typedef int LOCFSERROR;         /* use 'int' for calculation temps */
 184 #else
 185 typedef INT32 FSERROR;          /* may need more than 16 bits */
 186 typedef INT32 LOCFSERROR;       /* be sure calculation temps are big enough */
 187 #endif
 188 
 189 typedef FSERROR FAR *FSERRPTR;  /* pointer to error array (in FAR storage!) */
 190 
 191 
 192 /* Private subobject */
 193 
 194 typedef struct {
 195   struct jpeg_color_quantizer pub; /* public fields */
 196 
 197   /* Space for the eventually created colormap is stashed here */
 198   JSAMPARRAY sv_colormap;       /* colormap allocated at init time */
 199   int desired;                  /* desired # of colors = size of colormap */
 200 
 201   /* Variables for accumulating image statistics */
 202   hist3d histogram;             /* pointer to the histogram */
 203 
 204   boolean needs_zeroed;         /* TRUE if next pass must zero histogram */
 205 
 206   /* Variables for Floyd-Steinberg dithering */
 207   FSERRPTR fserrors;            /* accumulated errors */
 208   boolean on_odd_row;           /* flag to remember which row we are on */
 209   int * error_limiter;          /* table for clamping the applied error */
 210 } my_cquantizer;
 211 
 212 typedef my_cquantizer * my_cquantize_ptr;
 213 
 214 
 215 /*
 216  * Prescan some rows of pixels.
 217  * In this module the prescan simply updates the histogram, which has been
 218  * initialized to zeroes by start_pass.
 219  * An output_buf parameter is required by the method signature, but no data
 220  * is actually output (in fact the buffer controller is probably passing a
 221  * NULL pointer).
 222  */
 223 
 224 METHODDEF(void)
 225 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
 226                   JSAMPARRAY output_buf, int num_rows)
 227 {
 228   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 229   register JSAMPROW ptr;
 230   register histptr histp;
 231   register hist3d histogram = cquantize->histogram;
 232   int row;
 233   JDIMENSION col;
 234   JDIMENSION width = cinfo->output_width;
 235 
 236   for (row = 0; row < num_rows; row++) {
 237     ptr = input_buf[row];
 238     for (col = width; col > 0; col--) {
 239       /* get pixel value and index into the histogram */
 240       histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
 241                          [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
 242                          [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
 243       /* increment, check for overflow and undo increment if so. */
 244       if (++(*histp) <= 0)
 245         (*histp)--;
 246       ptr += 3;
 247     }
 248   }
 249 }
 250 
 251 
 252 /*
 253  * Next we have the really interesting routines: selection of a colormap
 254  * given the completed histogram.
 255  * These routines work with a list of "boxes", each representing a rectangular
 256  * subset of the input color space (to histogram precision).
 257  */
 258 
 259 typedef struct {
 260   /* The bounds of the box (inclusive); expressed as histogram indexes */
 261   int c0min, c0max;
 262   int c1min, c1max;
 263   int c2min, c2max;
 264   /* The volume (actually 2-norm) of the box */
 265   INT32 volume;
 266   /* The number of nonzero histogram cells within this box */
 267   long colorcount;
 268 } box;
 269 
 270 typedef box * boxptr;
 271 
 272 
 273 LOCAL(boxptr)
 274 find_biggest_color_pop (boxptr boxlist, int numboxes)
 275 /* Find the splittable box with the largest color population */
 276 /* Returns NULL if no splittable boxes remain */
 277 {
 278   register boxptr boxp;
 279   register int i;
 280   register long maxc = 0;
 281   boxptr which = NULL;
 282   
 283   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
 284     if (boxp->colorcount > maxc && boxp->volume > 0) {
 285       which = boxp;
 286       maxc = boxp->colorcount;
 287     }
 288   }
 289   return which;
 290 }
 291 
 292 
 293 LOCAL(boxptr)
 294 find_biggest_volume (boxptr boxlist, int numboxes)
 295 /* Find the splittable box with the largest (scaled) volume */
 296 /* Returns NULL if no splittable boxes remain */
 297 {
 298   register boxptr boxp;
 299   register int i;
 300   register INT32 maxv = 0;
 301   boxptr which = NULL;
 302   
 303   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
 304     if (boxp->volume > maxv) {
 305       which = boxp;
 306       maxv = boxp->volume;
 307     }
 308   }
 309   return which;
 310 }
 311 
 312 
 313 LOCAL(void)
 314 update_box (j_decompress_ptr cinfo, boxptr boxp)
 315 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
 316 /* and recompute its volume and population */
 317 {
 318   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 319   hist3d histogram = cquantize->histogram;
 320   histptr histp;
 321   int c0,c1,c2;
 322   int c0min,c0max,c1min,c1max,c2min,c2max;
 323   INT32 dist0,dist1,dist2;
 324   long ccount;
 325   
 326   c0min = boxp->c0min;  c0max = boxp->c0max;
 327   c1min = boxp->c1min;  c1max = boxp->c1max;
 328   c2min = boxp->c2min;  c2max = boxp->c2max;
 329   
 330   if (c0max > c0min)
 331     for (c0 = c0min; c0 <= c0max; c0++)
 332       for (c1 = c1min; c1 <= c1max; c1++) {
 333         histp = & histogram[c0][c1][c2min];
 334         for (c2 = c2min; c2 <= c2max; c2++)
 335           if (*histp++ != 0) {
 336             boxp->c0min = c0min = c0;
 337             goto have_c0min;
 338           }
 339       }
 340  have_c0min:
 341   if (c0max > c0min)
 342     for (c0 = c0max; c0 >= c0min; c0--)
 343       for (c1 = c1min; c1 <= c1max; c1++) {
 344         histp = & histogram[c0][c1][c2min];
 345         for (c2 = c2min; c2 <= c2max; c2++)
 346           if (*histp++ != 0) {
 347             boxp->c0max = c0max = c0;
 348             goto have_c0max;
 349           }
 350       }
 351  have_c0max:
 352   if (c1max > c1min)
 353     for (c1 = c1min; c1 <= c1max; c1++)
 354       for (c0 = c0min; c0 <= c0max; c0++) {
 355         histp = & histogram[c0][c1][c2min];
 356         for (c2 = c2min; c2 <= c2max; c2++)
 357           if (*histp++ != 0) {
 358             boxp->c1min = c1min = c1;
 359             goto have_c1min;
 360           }
 361       }
 362  have_c1min:
 363   if (c1max > c1min)
 364     for (c1 = c1max; c1 >= c1min; c1--)
 365       for (c0 = c0min; c0 <= c0max; c0++) {
 366         histp = & histogram[c0][c1][c2min];
 367         for (c2 = c2min; c2 <= c2max; c2++)
 368           if (*histp++ != 0) {
 369             boxp->c1max = c1max = c1;
 370             goto have_c1max;
 371           }
 372       }
 373  have_c1max:
 374   if (c2max > c2min)
 375     for (c2 = c2min; c2 <= c2max; c2++)
 376       for (c0 = c0min; c0 <= c0max; c0++) {
 377         histp = & histogram[c0][c1min][c2];
 378         for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
 379           if (*histp != 0) {
 380             boxp->c2min = c2min = c2;
 381             goto have_c2min;
 382           }
 383       }
 384  have_c2min:
 385   if (c2max > c2min)
 386     for (c2 = c2max; c2 >= c2min; c2--)
 387       for (c0 = c0min; c0 <= c0max; c0++) {
 388         histp = & histogram[c0][c1min][c2];
 389         for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
 390           if (*histp != 0) {
 391             boxp->c2max = c2max = c2;
 392             goto have_c2max;
 393           }
 394       }
 395  have_c2max:
 396 
 397   /* Update box volume.
 398    * We use 2-norm rather than real volume here; this biases the method
 399    * against making long narrow boxes, and it has the side benefit that
 400    * a box is splittable iff norm > 0.
 401    * Since the differences are expressed in histogram-cell units,
 402    * we have to shift back to JSAMPLE units to get consistent distances;
 403    * after which, we scale according to the selected distance scale factors.
 404    */
 405   dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
 406   dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
 407   dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
 408   boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
 409   
 410   /* Now scan remaining volume of box and compute population */
 411   ccount = 0;
 412   for (c0 = c0min; c0 <= c0max; c0++)
 413     for (c1 = c1min; c1 <= c1max; c1++) {
 414       histp = & histogram[c0][c1][c2min];
 415       for (c2 = c2min; c2 <= c2max; c2++, histp++)
 416         if (*histp != 0) {
 417           ccount++;
 418         }
 419     }
 420   boxp->colorcount = ccount;
 421 }
 422 
 423 
 424 LOCAL(int)
 425 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
 426             int desired_colors)
 427 /* Repeatedly select and split the largest box until we have enough boxes */
 428 {
 429   int n,lb;
 430   int c0,c1,c2,cmax;
 431   register boxptr b1,b2;
 432 
 433   while (numboxes < desired_colors) {
 434     /* Select box to split.
 435      * Current algorithm: by population for first half, then by volume.
 436      */
 437     if (numboxes*2 <= desired_colors) {
 438       b1 = find_biggest_color_pop(boxlist, numboxes);
 439     } else {
 440       b1 = find_biggest_volume(boxlist, numboxes);
 441     }
 442     if (b1 == NULL)             /* no splittable boxes left! */
 443       break;
 444     b2 = &boxlist[numboxes];        /* where new box will go */
 445     /* Copy the color bounds to the new box. */
 446     b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
 447     b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
 448     /* Choose which axis to split the box on.
 449      * Current algorithm: longest scaled axis.
 450      * See notes in update_box about scaling distances.
 451      */
 452     c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
 453     c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
 454     c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
 455     /* We want to break any ties in favor of green, then red, blue last.
 456      * This code does the right thing for R,G,B or B,G,R color orders only.
 457      */
 458 #if RGB_RED == 0
 459     cmax = c1; n = 1;
 460     if (c0 > cmax) { cmax = c0; n = 0; }
 461     if (c2 > cmax) { n = 2; }
 462 #else
 463     cmax = c1; n = 1;
 464     if (c2 > cmax) { cmax = c2; n = 2; }
 465     if (c0 > cmax) { n = 0; }
 466 #endif
 467     /* Choose split point along selected axis, and update box bounds.
 468      * Current algorithm: split at halfway point.
 469      * (Since the box has been shrunk to minimum volume,
 470      * any split will produce two nonempty subboxes.)
 471      * Note that lb value is max for lower box, so must be < old max.
 472      */
 473     switch (n) {
 474     case 0:
 475       lb = (b1->c0max + b1->c0min) / 2;
 476       b1->c0max = lb;
 477       b2->c0min = lb+1;
 478       break;
 479     case 1:
 480       lb = (b1->c1max + b1->c1min) / 2;
 481       b1->c1max = lb;
 482       b2->c1min = lb+1;
 483       break;
 484     case 2:
 485       lb = (b1->c2max + b1->c2min) / 2;
 486       b1->c2max = lb;
 487       b2->c2min = lb+1;
 488       break;
 489     }
 490     /* Update stats for boxes */
 491     update_box(cinfo, b1);
 492     update_box(cinfo, b2);
 493     numboxes++;
 494   }
 495   return numboxes;
 496 }
 497 
 498 
 499 LOCAL(void)
 500 compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
 501 /* Compute representative color for a box, put it in colormap[icolor] */
 502 {
 503   /* Current algorithm: mean weighted by pixels (not colors) */
 504   /* Note it is important to get the rounding correct! */
 505   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 506   hist3d histogram = cquantize->histogram;
 507   histptr histp;
 508   int c0,c1,c2;
 509   int c0min,c0max,c1min,c1max,c2min,c2max;
 510   long count;
 511   long total = 0;
 512   long c0total = 0;
 513   long c1total = 0;
 514   long c2total = 0;
 515   
 516   c0min = boxp->c0min;  c0max = boxp->c0max;
 517   c1min = boxp->c1min;  c1max = boxp->c1max;
 518   c2min = boxp->c2min;  c2max = boxp->c2max;
 519   
 520   for (c0 = c0min; c0 <= c0max; c0++)
 521     for (c1 = c1min; c1 <= c1max; c1++) {
 522       histp = & histogram[c0][c1][c2min];
 523       for (c2 = c2min; c2 <= c2max; c2++) {
 524         if ((count = *histp++) != 0) {
 525           total += count;
 526           c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
 527           c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
 528           c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
 529         }
 530       }
 531     }
 532   
 533   cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
 534   cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
 535   cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
 536 }
 537 
 538 
 539 LOCAL(void)
 540 select_colors (j_decompress_ptr cinfo, int desired_colors)
 541 /* Master routine for color selection */
 542 {
 543   boxptr boxlist;
 544   int numboxes;
 545   int i;
 546 
 547   /* Allocate workspace for box list */
 548   boxlist = (boxptr) (*cinfo->mem->alloc_small)
 549     ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
 550   /* Initialize one box containing whole space */
 551   numboxes = 1;
 552   boxlist[0].c0min = 0;
 553   boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
 554   boxlist[0].c1min = 0;
 555   boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
 556   boxlist[0].c2min = 0;
 557   boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
 558   /* Shrink it to actually-used volume and set its statistics */
 559   update_box(cinfo, & boxlist[0]);
 560   /* Perform median-cut to produce final box list */
 561   numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
 562   /* Compute the representative color for each box, fill colormap */
 563   for (i = 0; i < numboxes; i++)
 564     compute_color(cinfo, & boxlist[i], i);
 565   cinfo->actual_number_of_colors = numboxes;
 566   TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
 567 }
 568 
 569 
 570 /*
 571  * These routines are concerned with the time-critical task of mapping input
 572  * colors to the nearest color in the selected colormap.
 573  *
 574  * We re-use the histogram space as an "inverse color map", essentially a
 575  * cache for the results of nearest-color searches.  All colors within a
 576  * histogram cell will be mapped to the same colormap entry, namely the one
 577  * closest to the cell's center.  This may not be quite the closest entry to
 578  * the actual input color, but it's almost as good.  A zero in the cache
 579  * indicates we haven't found the nearest color for that cell yet; the array
 580  * is cleared to zeroes before starting the mapping pass.  When we find the
 581  * nearest color for a cell, its colormap index plus one is recorded in the
 582  * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
 583  * when they need to use an unfilled entry in the cache.
 584  *
 585  * Our method of efficiently finding nearest colors is based on the "locally
 586  * sorted search" idea described by Heckbert and on the incremental distance
 587  * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
 588  * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
 589  * the distances from a given colormap entry to each cell of the histogram can
 590  * be computed quickly using an incremental method: the differences between
 591  * distances to adjacent cells themselves differ by a constant.  This allows a
 592  * fairly fast implementation of the "brute force" approach of computing the
 593  * distance from every colormap entry to every histogram cell.  Unfortunately,
 594  * it needs a work array to hold the best-distance-so-far for each histogram
 595  * cell (because the inner loop has to be over cells, not colormap entries).
 596  * The work array elements have to be INT32s, so the work array would need
 597  * 256Kb at our recommended precision.  This is not feasible in DOS machines.
 598  *
 599  * To get around these problems, we apply Thomas' method to compute the
 600  * nearest colors for only the cells within a small subbox of the histogram.
 601  * The work array need be only as big as the subbox, so the memory usage
 602  * problem is solved.  Furthermore, we need not fill subboxes that are never
 603  * referenced in pass2; many images use only part of the color gamut, so a
 604  * fair amount of work is saved.  An additional advantage of this
 605  * approach is that we can apply Heckbert's locality criterion to quickly
 606  * eliminate colormap entries that are far away from the subbox; typically
 607  * three-fourths of the colormap entries are rejected by Heckbert's criterion,
 608  * and we need not compute their distances to individual cells in the subbox.
 609  * The speed of this approach is heavily influenced by the subbox size: too
 610  * small means too much overhead, too big loses because Heckbert's criterion
 611  * can't eliminate as many colormap entries.  Empirically the best subbox
 612  * size seems to be about 1/512th of the histogram (1/8th in each direction).
 613  *
 614  * Thomas' article also describes a refined method which is asymptotically
 615  * faster than the brute-force method, but it is also far more complex and
 616  * cannot efficiently be applied to small subboxes.  It is therefore not
 617  * useful for programs intended to be portable to DOS machines.  On machines
 618  * with plenty of memory, filling the whole histogram in one shot with Thomas'
 619  * refined method might be faster than the present code --- but then again,
 620  * it might not be any faster, and it's certainly more complicated.
 621  */
 622 
 623 
 624 /* log2(histogram cells in update box) for each axis; this can be adjusted */
 625 #define BOX_C0_LOG  (HIST_C0_BITS-3)
 626 #define BOX_C1_LOG  (HIST_C1_BITS-3)
 627 #define BOX_C2_LOG  (HIST_C2_BITS-3)
 628 
 629 #define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
 630 #define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
 631 #define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
 632 
 633 #define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
 634 #define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
 635 #define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
 636 
 637 
 638 /*
 639  * The next three routines implement inverse colormap filling.  They could
 640  * all be folded into one big routine, but splitting them up this way saves
 641  * some stack space (the mindist[] and bestdist[] arrays need not coexist)
 642  * and may allow some compilers to produce better code by registerizing more
 643  * inner-loop variables.
 644  */
 645 
 646 LOCAL(int)
 647 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
 648                     JSAMPLE colorlist[])
 649 /* Locate the colormap entries close enough to an update box to be candidates
 650  * for the nearest entry to some cell(s) in the update box.  The update box
 651  * is specified by the center coordinates of its first cell.  The number of
 652  * candidate colormap entries is returned, and their colormap indexes are
 653  * placed in colorlist[].
 654  * This routine uses Heckbert's "locally sorted search" criterion to select
 655  * the colors that need further consideration.
 656  */
 657 {
 658   int numcolors = cinfo->actual_number_of_colors;
 659   int maxc0, maxc1, maxc2;
 660   int centerc0, centerc1, centerc2;
 661   int i, x, ncolors;
 662   INT32 minmaxdist, min_dist, max_dist, tdist;
 663   INT32 mindist[MAXNUMCOLORS];  /* min distance to colormap entry i */
 664 
 665   /* Compute true coordinates of update box's upper corner and center.
 666    * Actually we compute the coordinates of the center of the upper-corner
 667    * histogram cell, which are the upper bounds of the volume we care about.
 668    * Note that since ">>" rounds down, the "center" values may be closer to
 669    * min than to max; hence comparisons to them must be "<=", not "<".
 670    */
 671   maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
 672   centerc0 = (minc0 + maxc0) >> 1;
 673   maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
 674   centerc1 = (minc1 + maxc1) >> 1;
 675   maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
 676   centerc2 = (minc2 + maxc2) >> 1;
 677 
 678   /* For each color in colormap, find:
 679    *  1. its minimum squared-distance to any point in the update box
 680    *     (zero if color is within update box);
 681    *  2. its maximum squared-distance to any point in the update box.
 682    * Both of these can be found by considering only the corners of the box.
 683    * We save the minimum distance for each color in mindist[];
 684    * only the smallest maximum distance is of interest.
 685    */
 686   minmaxdist = 0x7FFFFFFFL;
 687 
 688   for (i = 0; i < numcolors; i++) {
 689     /* We compute the squared-c0-distance term, then add in the other two. */
 690     x = GETJSAMPLE(cinfo->colormap[0][i]);
 691     if (x < minc0) {
 692       tdist = (x - minc0) * C0_SCALE;
 693       min_dist = tdist*tdist;
 694       tdist = (x - maxc0) * C0_SCALE;
 695       max_dist = tdist*tdist;
 696     } else if (x > maxc0) {
 697       tdist = (x - maxc0) * C0_SCALE;
 698       min_dist = tdist*tdist;
 699       tdist = (x - minc0) * C0_SCALE;
 700       max_dist = tdist*tdist;
 701     } else {
 702       /* within cell range so no contribution to min_dist */
 703       min_dist = 0;
 704       if (x <= centerc0) {
 705         tdist = (x - maxc0) * C0_SCALE;
 706         max_dist = tdist*tdist;
 707       } else {
 708         tdist = (x - minc0) * C0_SCALE;
 709         max_dist = tdist*tdist;
 710       }
 711     }
 712 
 713     x = GETJSAMPLE(cinfo->colormap[1][i]);
 714     if (x < minc1) {
 715       tdist = (x - minc1) * C1_SCALE;
 716       min_dist += tdist*tdist;
 717       tdist = (x - maxc1) * C1_SCALE;
 718       max_dist += tdist*tdist;
 719     } else if (x > maxc1) {
 720       tdist = (x - maxc1) * C1_SCALE;
 721       min_dist += tdist*tdist;
 722       tdist = (x - minc1) * C1_SCALE;
 723       max_dist += tdist*tdist;
 724     } else {
 725       /* within cell range so no contribution to min_dist */
 726       if (x <= centerc1) {
 727         tdist = (x - maxc1) * C1_SCALE;
 728         max_dist += tdist*tdist;
 729       } else {
 730         tdist = (x - minc1) * C1_SCALE;
 731         max_dist += tdist*tdist;
 732       }
 733     }
 734 
 735     x = GETJSAMPLE(cinfo->colormap[2][i]);
 736     if (x < minc2) {
 737       tdist = (x - minc2) * C2_SCALE;
 738       min_dist += tdist*tdist;
 739       tdist = (x - maxc2) * C2_SCALE;
 740       max_dist += tdist*tdist;
 741     } else if (x > maxc2) {
 742       tdist = (x - maxc2) * C2_SCALE;
 743       min_dist += tdist*tdist;
 744       tdist = (x - minc2) * C2_SCALE;
 745       max_dist += tdist*tdist;
 746     } else {
 747       /* within cell range so no contribution to min_dist */
 748       if (x <= centerc2) {
 749         tdist = (x - maxc2) * C2_SCALE;
 750         max_dist += tdist*tdist;
 751       } else {
 752         tdist = (x - minc2) * C2_SCALE;
 753         max_dist += tdist*tdist;
 754       }
 755     }
 756 
 757     mindist[i] = min_dist;      /* save away the results */
 758     if (max_dist < minmaxdist)
 759       minmaxdist = max_dist;
 760   }
 761 
 762   /* Now we know that no cell in the update box is more than minmaxdist
 763    * away from some colormap entry.  Therefore, only colors that are
 764    * within minmaxdist of some part of the box need be considered.
 765    */
 766   ncolors = 0;
 767   for (i = 0; i < numcolors; i++) {
 768     if (mindist[i] <= minmaxdist)
 769       colorlist[ncolors++] = (JSAMPLE) i;
 770   }
 771   return ncolors;
 772 }
 773 
 774 
 775 LOCAL(void)
 776 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
 777                   int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
 778 /* Find the closest colormap entry for each cell in the update box,
 779  * given the list of candidate colors prepared by find_nearby_colors.
 780  * Return the indexes of the closest entries in the bestcolor[] array.
 781  * This routine uses Thomas' incremental distance calculation method to
 782  * find the distance from a colormap entry to successive cells in the box.
 783  */
 784 {
 785   int ic0, ic1, ic2;
 786   int i, icolor;
 787   register INT32 * bptr;        /* pointer into bestdist[] array */
 788   JSAMPLE * cptr;               /* pointer into bestcolor[] array */
 789   INT32 dist0, dist1;           /* initial distance values */
 790   register INT32 dist2;         /* current distance in inner loop */
 791   INT32 xx0, xx1;               /* distance increments */
 792   register INT32 xx2;
 793   INT32 inc0, inc1, inc2;       /* initial values for increments */
 794   /* This array holds the distance to the nearest-so-far color for each cell */
 795   INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
 796 
 797   /* Initialize best-distance for each cell of the update box */
 798   bptr = bestdist;
 799   for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
 800     *bptr++ = 0x7FFFFFFFL;
 801   
 802   /* For each color selected by find_nearby_colors,
 803    * compute its distance to the center of each cell in the box.
 804    * If that's less than best-so-far, update best distance and color number.
 805    */
 806   
 807   /* Nominal steps between cell centers ("x" in Thomas article) */
 808 #define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
 809 #define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
 810 #define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
 811   
 812   for (i = 0; i < numcolors; i++) {
 813     icolor = GETJSAMPLE(colorlist[i]);
 814     /* Compute (square of) distance from minc0/c1/c2 to this color */
 815     inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
 816     dist0 = inc0*inc0;
 817     inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
 818     dist0 += inc1*inc1;
 819     inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
 820     dist0 += inc2*inc2;
 821     /* Form the initial difference increments */
 822     inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
 823     inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
 824     inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
 825     /* Now loop over all cells in box, updating distance per Thomas method */
 826     bptr = bestdist;
 827     cptr = bestcolor;
 828     xx0 = inc0;
 829     for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
 830       dist1 = dist0;
 831       xx1 = inc1;
 832       for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
 833         dist2 = dist1;
 834         xx2 = inc2;
 835         for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
 836           if (dist2 < *bptr) {
 837             *bptr = dist2;
 838             *cptr = (JSAMPLE) icolor;
 839           }
 840           dist2 += xx2;
 841           xx2 += 2 * STEP_C2 * STEP_C2;
 842           bptr++;
 843           cptr++;
 844         }
 845         dist1 += xx1;
 846         xx1 += 2 * STEP_C1 * STEP_C1;
 847       }
 848       dist0 += xx0;
 849       xx0 += 2 * STEP_C0 * STEP_C0;
 850     }
 851   }
 852 }
 853 
 854 
 855 LOCAL(void)
 856 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
 857 /* Fill the inverse-colormap entries in the update box that contains */
 858 /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
 859 /* we can fill as many others as we wish.) */
 860 {
 861   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 862   hist3d histogram = cquantize->histogram;
 863   int minc0, minc1, minc2;      /* lower left corner of update box */
 864   int ic0, ic1, ic2;
 865   register JSAMPLE * cptr;      /* pointer into bestcolor[] array */
 866   register histptr cachep;      /* pointer into main cache array */
 867   /* This array lists the candidate colormap indexes. */
 868   JSAMPLE colorlist[MAXNUMCOLORS];
 869   int numcolors;                /* number of candidate colors */
 870   /* This array holds the actually closest colormap index for each cell. */
 871   JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
 872 
 873   /* Convert cell coordinates to update box ID */
 874   c0 >>= BOX_C0_LOG;
 875   c1 >>= BOX_C1_LOG;
 876   c2 >>= BOX_C2_LOG;
 877 
 878   /* Compute true coordinates of update box's origin corner.
 879    * Actually we compute the coordinates of the center of the corner
 880    * histogram cell, which are the lower bounds of the volume we care about.
 881    */
 882   minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
 883   minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
 884   minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
 885   
 886   /* Determine which colormap entries are close enough to be candidates
 887    * for the nearest entry to some cell in the update box.
 888    */
 889   numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
 890 
 891   /* Determine the actually nearest colors. */
 892   find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
 893                    bestcolor);
 894 
 895   /* Save the best color numbers (plus 1) in the main cache array */
 896   c0 <<= BOX_C0_LOG;              /* convert ID back to base cell indexes */
 897   c1 <<= BOX_C1_LOG;
 898   c2 <<= BOX_C2_LOG;
 899   cptr = bestcolor;
 900   for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
 901     for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
 902       cachep = & histogram[c0+ic0][c1+ic1][c2];
 903       for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
 904         *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
 905       }
 906     }
 907   }
 908 }
 909 
 910 
 911 /*
 912  * Map some rows of pixels to the output colormapped representation.
 913  */
 914 
 915 METHODDEF(void)
 916 pass2_no_dither (j_decompress_ptr cinfo,
 917                  JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
 918 /* This version performs no dithering */
 919 {
 920   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 921   hist3d histogram = cquantize->histogram;
 922   register JSAMPROW inptr, outptr;
 923   register histptr cachep;
 924   register int c0, c1, c2;
 925   int row;
 926   JDIMENSION col;
 927   JDIMENSION width = cinfo->output_width;
 928 
 929   for (row = 0; row < num_rows; row++) {
 930     inptr = input_buf[row];
 931     outptr = output_buf[row];
 932     for (col = width; col > 0; col--) {
 933       /* get pixel value and index into the cache */
 934       c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
 935       c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
 936       c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
 937       cachep = & histogram[c0][c1][c2];
 938       /* If we have not seen this color before, find nearest colormap entry */
 939       /* and update the cache */
 940       if (*cachep == 0)
 941         fill_inverse_cmap(cinfo, c0,c1,c2);
 942       /* Now emit the colormap index for this cell */
 943       *outptr++ = (JSAMPLE) (*cachep - 1);
 944     }
 945   }
 946 }
 947 
 948 
 949 METHODDEF(void)
 950 pass2_fs_dither (j_decompress_ptr cinfo,
 951                  JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
 952 /* This version performs Floyd-Steinberg dithering */
 953 {
 954   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 955   hist3d histogram = cquantize->histogram;
 956   register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
 957   LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
 958   LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
 959   register FSERRPTR errorptr;   /* => fserrors[] at column before current */
 960   JSAMPROW inptr;               /* => current input pixel */
 961   JSAMPROW outptr;              /* => current output pixel */
 962   histptr cachep;
 963   int dir;                      /* +1 or -1 depending on direction */
 964   int dir3;                     /* 3*dir, for advancing inptr & errorptr */
 965   int row;
 966   JDIMENSION col;
 967   JDIMENSION width = cinfo->output_width;
 968   JSAMPLE *range_limit = cinfo->sample_range_limit;
 969   int *error_limit = cquantize->error_limiter;
 970   JSAMPROW colormap0 = cinfo->colormap[0];
 971   JSAMPROW colormap1 = cinfo->colormap[1];
 972   JSAMPROW colormap2 = cinfo->colormap[2];
 973   SHIFT_TEMPS
 974 
 975   for (row = 0; row < num_rows; row++) {
 976     inptr = input_buf[row];
 977     outptr = output_buf[row];
 978     if (cquantize->on_odd_row) {
 979       /* work right to left in this row */
 980       inptr += (width-1) * 3;   /* so point to rightmost pixel */
 981       outptr += width-1;
 982       dir = -1;
 983       dir3 = -3;
 984       errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
 985       cquantize->on_odd_row = FALSE; /* flip for next time */
 986     } else {
 987       /* work left to right in this row */
 988       dir = 1;
 989       dir3 = 3;
 990       errorptr = cquantize->fserrors; /* => entry before first real column */
 991       cquantize->on_odd_row = TRUE; /* flip for next time */
 992     }
 993     /* Preset error values: no error propagated to first pixel from left */
 994     cur0 = cur1 = cur2 = 0;
 995     /* and no error propagated to row below yet */
 996     belowerr0 = belowerr1 = belowerr2 = 0;
 997     bpreverr0 = bpreverr1 = bpreverr2 = 0;
 998 
 999     for (col = width; col > 0; col--) {
1000       /* curN holds the error propagated from the previous pixel on the
1001        * current line.  Add the error propagated from the previous line
1002        * to form the complete error correction term for this pixel, and
1003        * round the error term (which is expressed * 16) to an integer.
1004        * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1005        * for either sign of the error value.
1006        * Note: errorptr points to *previous* column's array entry.
1007        */
1008       cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
1009       cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
1010       cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
1011       /* Limit the error using transfer function set by init_error_limit.
1012        * See comments with init_error_limit for rationale.
1013        */
1014       cur0 = error_limit[cur0];
1015       cur1 = error_limit[cur1];
1016       cur2 = error_limit[cur2];
1017       /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1018        * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1019        * this sets the required size of the range_limit array.
1020        */
1021       cur0 += GETJSAMPLE(inptr[0]);
1022       cur1 += GETJSAMPLE(inptr[1]);
1023       cur2 += GETJSAMPLE(inptr[2]);
1024       cur0 = GETJSAMPLE(range_limit[cur0]);
1025       cur1 = GETJSAMPLE(range_limit[cur1]);
1026       cur2 = GETJSAMPLE(range_limit[cur2]);
1027       /* Index into the cache with adjusted pixel value */
1028       cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1029       /* If we have not seen this color before, find nearest colormap */
1030       /* entry and update the cache */
1031       if (*cachep == 0)
1032         fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
1033       /* Now emit the colormap index for this cell */
1034       { register int pixcode = *cachep - 1;
1035         *outptr = (JSAMPLE) pixcode;
1036         /* Compute representation error for this pixel */
1037         cur0 -= GETJSAMPLE(colormap0[pixcode]);
1038         cur1 -= GETJSAMPLE(colormap1[pixcode]);
1039         cur2 -= GETJSAMPLE(colormap2[pixcode]);
1040       }
1041       /* Compute error fractions to be propagated to adjacent pixels.
1042        * Add these into the running sums, and simultaneously shift the
1043        * next-line error sums left by 1 column.
1044        */
1045       { register LOCFSERROR bnexterr, delta;
1046 
1047         bnexterr = cur0;        /* Process component 0 */
1048         delta = cur0 * 2;
1049         cur0 += delta;          /* form error * 3 */
1050         errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1051         cur0 += delta;          /* form error * 5 */
1052         bpreverr0 = belowerr0 + cur0;
1053         belowerr0 = bnexterr;
1054         cur0 += delta;          /* form error * 7 */
1055         bnexterr = cur1;        /* Process component 1 */
1056         delta = cur1 * 2;
1057         cur1 += delta;          /* form error * 3 */
1058         errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1059         cur1 += delta;          /* form error * 5 */
1060         bpreverr1 = belowerr1 + cur1;
1061         belowerr1 = bnexterr;
1062         cur1 += delta;          /* form error * 7 */
1063         bnexterr = cur2;        /* Process component 2 */
1064         delta = cur2 * 2;
1065         cur2 += delta;          /* form error * 3 */
1066         errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1067         cur2 += delta;          /* form error * 5 */
1068         bpreverr2 = belowerr2 + cur2;
1069         belowerr2 = bnexterr;
1070         cur2 += delta;          /* form error * 7 */
1071       }
1072       /* At this point curN contains the 7/16 error value to be propagated
1073        * to the next pixel on the current line, and all the errors for the
1074        * next line have been shifted over.  We are therefore ready to move on.
1075        */
1076       inptr += dir3;            /* Advance pixel pointers to next column */
1077       outptr += dir;
1078       errorptr += dir3;         /* advance errorptr to current column */
1079     }
1080     /* Post-loop cleanup: we must unload the final error values into the
1081      * final fserrors[] entry.  Note we need not unload belowerrN because
1082      * it is for the dummy column before or after the actual array.
1083      */
1084     errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1085     errorptr[1] = (FSERROR) bpreverr1;
1086     errorptr[2] = (FSERROR) bpreverr2;
1087   }
1088 }
1089 
1090 
1091 /*
1092  * Initialize the error-limiting transfer function (lookup table).
1093  * The raw F-S error computation can potentially compute error values of up to
1094  * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
1095  * much less, otherwise obviously wrong pixels will be created.  (Typical
1096  * effects include weird fringes at color-area boundaries, isolated bright
1097  * pixels in a dark area, etc.)  The standard advice for avoiding this problem
1098  * is to ensure that the "corners" of the color cube are allocated as output
1099  * colors; then repeated errors in the same direction cannot cause cascading
1100  * error buildup.  However, that only prevents the error from getting
1101  * completely out of hand; Aaron Giles reports that error limiting improves
1102  * the results even with corner colors allocated.
1103  * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1104  * well, but the smoother transfer function used below is even better.  Thanks
1105  * to Aaron Giles for this idea.
1106  */
1107 
1108 LOCAL(void)
1109 init_error_limit (j_decompress_ptr cinfo)
1110 /* Allocate and fill in the error_limiter table */
1111 {
1112   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1113   int * table;
1114   int in, out;
1115 
1116   table = (int *) (*cinfo->mem->alloc_small)
1117     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
1118   table += MAXJSAMPLE;          /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1119   cquantize->error_limiter = table;
1120 
1121 #define STEPSIZE ((MAXJSAMPLE+1)/16)
1122   /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1123   out = 0;
1124   for (in = 0; in < STEPSIZE; in++, out++) {
1125     table[in] = out; table[-in] = -out;
1126   }
1127   /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1128   for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1129     table[in] = out; table[-in] = -out;
1130   }
1131   /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1132   for (; in <= MAXJSAMPLE; in++) {
1133     table[in] = out; table[-in] = -out;
1134   }
1135 #undef STEPSIZE
1136 }
1137 
1138 
1139 /*
1140  * Finish up at the end of each pass.
1141  */
1142 
1143 METHODDEF(void)
1144 finish_pass1 (j_decompress_ptr cinfo)
1145 {
1146   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1147 
1148   /* Select the representative colors and fill in cinfo->colormap */
1149   cinfo->colormap = cquantize->sv_colormap;
1150   select_colors(cinfo, cquantize->desired);
1151   /* Force next pass to zero the color index table */
1152   cquantize->needs_zeroed = TRUE;
1153 }
1154 
1155 
1156 METHODDEF(void)
1157 finish_pass2 (j_decompress_ptr cinfo)
1158 {
1159   /* no work */
1160 }
1161 
1162 
1163 /*
1164  * Initialize for each processing pass.
1165  */
1166 
1167 METHODDEF(void)
1168 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
1169 {
1170   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1171   hist3d histogram = cquantize->histogram;
1172   int i;
1173 
1174   /* Only F-S dithering or no dithering is supported. */
1175   /* If user asks for ordered dither, give him F-S. */
1176   if (cinfo->dither_mode != JDITHER_NONE)
1177     cinfo->dither_mode = JDITHER_FS;
1178 
1179   if (is_pre_scan) {
1180     /* Set up method pointers */
1181     cquantize->pub.color_quantize = prescan_quantize;
1182     cquantize->pub.finish_pass = finish_pass1;
1183     cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1184   } else {
1185     /* Set up method pointers */
1186     if (cinfo->dither_mode == JDITHER_FS)
1187       cquantize->pub.color_quantize = pass2_fs_dither;
1188     else
1189       cquantize->pub.color_quantize = pass2_no_dither;
1190     cquantize->pub.finish_pass = finish_pass2;
1191 
1192     /* Make sure color count is acceptable */
1193     i = cinfo->actual_number_of_colors;
1194     if (i < 1)
1195       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1196     if (i > MAXNUMCOLORS)
1197       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1198 
1199     if (cinfo->dither_mode == JDITHER_FS) {
1200       size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1201                                    (3 * SIZEOF(FSERROR)));
1202       /* Allocate Floyd-Steinberg workspace if we didn't already. */
1203       if (cquantize->fserrors == NULL)
1204         cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1205           ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
1206       /* Initialize the propagated errors to zero. */
1207       FMEMZERO((void FAR *) cquantize->fserrors, arraysize);
1208       /* Make the error-limit table if we didn't already. */
1209       if (cquantize->error_limiter == NULL)
1210         init_error_limit(cinfo);
1211       cquantize->on_odd_row = FALSE;
1212     }
1213 
1214   }
1215   /* Zero the histogram or inverse color map, if necessary */
1216   if (cquantize->needs_zeroed) {
1217     for (i = 0; i < HIST_C0_ELEMS; i++) {
1218       FMEMZERO((void FAR *) histogram[i],
1219                HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1220     }
1221     cquantize->needs_zeroed = FALSE;
1222   }
1223 }
1224 
1225 
1226 /*
1227  * Switch to a new external colormap between output passes.
1228  */
1229 
1230 METHODDEF(void)
1231 new_color_map_2_quant (j_decompress_ptr cinfo)
1232 {
1233   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1234 
1235   /* Reset the inverse color map */
1236   cquantize->needs_zeroed = TRUE;
1237 }
1238 
1239 
1240 /*
1241  * Module initialization routine for 2-pass color quantization.
1242  */
1243 
1244 GLOBAL(void)
1245 jinit_2pass_quantizer (j_decompress_ptr cinfo)
1246 {
1247   my_cquantize_ptr cquantize;
1248   int i;
1249 
1250   cquantize = (my_cquantize_ptr)
1251     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1252                                 SIZEOF(my_cquantizer));
1253   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1254   cquantize->pub.start_pass = start_pass_2_quant;
1255   cquantize->pub.new_color_map = new_color_map_2_quant;
1256   cquantize->fserrors = NULL;        /* flag optional arrays not allocated */
1257   cquantize->error_limiter = NULL;
1258 
1259   /* Make sure jdmaster didn't give me a case I can't handle */
1260   if (cinfo->out_color_components != 3)
1261     ERREXIT(cinfo, JERR_NOTIMPL);
1262 
1263   /* Allocate the histogram/inverse colormap storage */
1264   cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
1265     ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
1266   for (i = 0; i < HIST_C0_ELEMS; i++) {
1267     cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
1268       ((j_common_ptr) cinfo, JPOOL_IMAGE,
1269        HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1270   }
1271   cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1272 
1273   /* Allocate storage for the completed colormap, if required.
1274    * We do this now since it is FAR storage and may affect
1275    * the memory manager's space calculations.
1276    */
1277   if (cinfo->enable_2pass_quant) {
1278     /* Make sure color count is acceptable */
1279     int desired = cinfo->desired_number_of_colors;
1280     /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1281     if (desired < 8)
1282       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1283     /* Make sure colormap indexes can be represented by JSAMPLEs */
1284     if (desired > MAXNUMCOLORS)
1285       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1286     cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
1287       ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
1288     cquantize->desired = desired;
1289   } else
1290     cquantize->sv_colormap = NULL;
1291 
1292   /* Only F-S dithering or no dithering is supported. */
1293   /* If user asks for ordered dither, give him F-S. */
1294   if (cinfo->dither_mode != JDITHER_NONE)
1295     cinfo->dither_mode = JDITHER_FS;
1296 
1297   /* Allocate Floyd-Steinberg workspace if necessary.
1298    * This isn't really needed until pass 2, but again it is FAR storage.
1299    * Although we will cope with a later change in dither_mode,
1300    * we do not promise to honor max_memory_to_use if dither_mode changes.
1301    */
1302   if (cinfo->dither_mode == JDITHER_FS) {
1303     cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1304       ((j_common_ptr) cinfo, JPOOL_IMAGE,
1305        (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
1306     /* Might as well create the error-limiting table too. */
1307     init_error_limit(cinfo);
1308   }
1309 }
1310 
1311 #endif /* QUANT_2PASS_SUPPORTED */