1 /*
   2  * Copyright (c) 1994, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.io.ObjectStreamField;
  29 import java.io.UnsupportedEncodingException;
  30 import java.nio.charset.Charset;
  31 import java.util.ArrayList;
  32 import java.util.Arrays;
  33 import java.util.Comparator;
  34 import java.util.Formatter;
  35 import java.util.Locale;
  36 import java.util.Objects;
  37 import java.util.Spliterator;
  38 import java.util.StringJoiner;
  39 import java.util.function.IntConsumer;
  40 import java.util.regex.Matcher;
  41 import java.util.regex.Pattern;
  42 import java.util.regex.PatternSyntaxException;
  43 import java.util.stream.IntStream;
  44 import java.util.stream.StreamSupport;
  45 import jdk.internal.HotSpotIntrinsicCandidate;
  46 
  47 /**
  48  * The {@code String} class represents character strings. All
  49  * string literals in Java programs, such as {@code "abc"}, are
  50  * implemented as instances of this class.
  51  * <p>
  52  * Strings are constant; their values cannot be changed after they
  53  * are created. String buffers support mutable strings.
  54  * Because String objects are immutable they can be shared. For example:
  55  * <blockquote><pre>
  56  *     String str = "abc";
  57  * </pre></blockquote><p>
  58  * is equivalent to:
  59  * <blockquote><pre>
  60  *     char data[] = {'a', 'b', 'c'};
  61  *     String str = new String(data);
  62  * </pre></blockquote><p>
  63  * Here are some more examples of how strings can be used:
  64  * <blockquote><pre>
  65  *     System.out.println("abc");
  66  *     String cde = "cde";
  67  *     System.out.println("abc" + cde);
  68  *     String c = "abc".substring(2,3);
  69  *     String d = cde.substring(1, 2);
  70  * </pre></blockquote>
  71  * <p>
  72  * The class {@code String} includes methods for examining
  73  * individual characters of the sequence, for comparing strings, for
  74  * searching strings, for extracting substrings, and for creating a
  75  * copy of a string with all characters translated to uppercase or to
  76  * lowercase. Case mapping is based on the Unicode Standard version
  77  * specified by the {@link java.lang.Character Character} class.
  78  * <p>
  79  * The Java language provides special support for the string
  80  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
  81  * other objects to strings. String concatenation is implemented
  82  * through the {@code StringBuilder}(or {@code StringBuffer})
  83  * class and its {@code append} method.
  84  * String conversions are implemented through the method
  85  * {@code toString}, defined by {@code Object} and
  86  * inherited by all classes in Java. For additional information on
  87  * string concatenation and conversion, see Gosling, Joy, and Steele,
  88  * <i>The Java Language Specification</i>.
  89  *
  90  * <p> Unless otherwise noted, passing a {@code null} argument to a constructor
  91  * or method in this class will cause a {@link NullPointerException} to be
  92  * thrown.
  93  *
  94  * <p>A {@code String} represents a string in the UTF-16 format
  95  * in which <em>supplementary characters</em> are represented by <em>surrogate
  96  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
  97  * Character Representations</a> in the {@code Character} class for
  98  * more information).
  99  * Index values refer to {@code char} code units, so a supplementary
 100  * character uses two positions in a {@code String}.
 101  * <p>The {@code String} class provides methods for dealing with
 102  * Unicode code points (i.e., characters), in addition to those for
 103  * dealing with Unicode code units (i.e., {@code char} values).
 104  *
 105  * <p>Unless otherwise noted, methods for comparing Strings do not take locale
 106  * into account.  The {@link java.text.Collator} class provides methods for
 107  * finer-grain, locale-sensitive String comparison.
 108  * 
 109  * @author  Lee Boynton
 110  * @author  Arthur van Hoff
 111  * @author  Martin Buchholz
 112  * @author  Ulf Zibis
 113  * @see     java.lang.Object#toString()
 114  * @see     java.lang.StringBuffer
 115  * @see     java.lang.StringBuilder
 116  * @see     java.nio.charset.Charset
 117  * @since   1.0
 118  */
 119 
 120 public final class String
 121     implements java.io.Serializable, Comparable<String>, CharSequence {
 122     /** The value is used for character storage. */
 123     private final char value[];
 124 
 125     /** Cache the hash code for the string */
 126     private int hash; // Default to 0
 127 
 128     /** use serialVersionUID from JDK 1.0.2 for interoperability */
 129     private static final long serialVersionUID = -6849794470754667710L;
 130 
 131     /**
 132      * Class String is special cased within the Serialization Stream Protocol.
 133      *
 134      * A String instance is written into an ObjectOutputStream according to
 135      * <a href="{@docRoot}/../platform/serialization/spec/output.html">
 136      * Object Serialization Specification, Section 6.2, "Stream Elements"</a>
 137      */
 138     private static final ObjectStreamField[] serialPersistentFields =
 139         new ObjectStreamField[0];
 140 
 141     /**
 142      * Initializes a newly created {@code String} object so that it represents
 143      * an empty character sequence.  Note that use of this constructor is
 144      * unnecessary since Strings are immutable.
 145      */
 146     public String() {
 147         this.value = "".value;
 148     }
 149 
 150     /**
 151      * Initializes a newly created {@code String} object so that it represents
 152      * the same sequence of characters as the argument; in other words, the
 153      * newly created string is a copy of the argument string. Unless an
 154      * explicit copy of {@code original} is needed, use of this constructor is
 155      * unnecessary since Strings are immutable.
 156      *
 157      * @param  original
 158      *         A {@code String}
 159      */
 160     @HotSpotIntrinsicCandidate
 161     public String(String original) {
 162         this.value = original.value;
 163         this.hash = original.hash;
 164     }
 165 
 166     /**
 167      * Allocates a new {@code String} so that it represents the sequence of
 168      * characters currently contained in the character array argument. The
 169      * contents of the character array are copied; subsequent modification of
 170      * the character array does not affect the newly created string.
 171      *
 172      * @param  value
 173      *         The initial value of the string
 174      */
 175     public String(char value[]) {
 176         this.value = Arrays.copyOf(value, value.length);
 177     }
 178 
 179     /**
 180      * Allocates a new {@code String} that contains characters from a subarray
 181      * of the character array argument. The {@code offset} argument is the
 182      * index of the first character of the subarray and the {@code count}
 183      * argument specifies the length of the subarray. The contents of the
 184      * subarray are copied; subsequent modification of the character array does
 185      * not affect the newly created string.
 186      *
 187      * @param  value
 188      *         Array that is the source of characters
 189      *
 190      * @param  offset
 191      *         The initial offset
 192      *
 193      * @param  count
 194      *         The length
 195      *
 196      * @throws  IndexOutOfBoundsException
 197      *          If {@code offset} is negative, {@code count} is negative, or
 198      *          {@code offset} is greater than {@code value.length - count}
 199      */
 200     public String(char value[], int offset, int count) {
 201         if (offset < 0) {
 202             throw new StringIndexOutOfBoundsException(offset);
 203         }
 204         if (count <= 0) {
 205             if (count < 0) {
 206                 throw new StringIndexOutOfBoundsException(count);
 207             }
 208             if (offset <= value.length) {
 209                 this.value = "".value;
 210                 return;
 211             }
 212         }
 213         // Note: offset or count might be near -1>>>1.
 214         if (offset > value.length - count) {
 215             throw new StringIndexOutOfBoundsException(offset + count);
 216         }
 217         this.value = Arrays.copyOfRange(value, offset, offset + count);
 218     }
 219 
 220     /**
 221      * Allocates a new {@code String} that contains characters from a subarray
 222      * of the <a href="Character.html#unicode">Unicode code point</a> array
 223      * argument.  The {@code offset} argument is the index of the first code
 224      * point of the subarray and the {@code count} argument specifies the
 225      * length of the subarray.  The contents of the subarray are converted to
 226      * {@code char}s; subsequent modification of the {@code int} array does not
 227      * affect the newly created string.
 228      *
 229      * @param  codePoints
 230      *         Array that is the source of Unicode code points
 231      *
 232      * @param  offset
 233      *         The initial offset
 234      *
 235      * @param  count
 236      *         The length
 237      *
 238      * @throws  IllegalArgumentException
 239      *          If any invalid Unicode code point is found in {@code
 240      *          codePoints}
 241      *
 242      * @throws  IndexOutOfBoundsException
 243      *          If {@code offset} is negative, {@code count} is negative, or
 244      *          {@code offset} is greater than {@code codePoints.length - count}
 245      *
 246      * @since  1.5
 247      */
 248     public String(int[] codePoints, int offset, int count) {
 249         if (offset < 0) {
 250             throw new StringIndexOutOfBoundsException(offset);
 251         }
 252         if (count <= 0) {
 253             if (count < 0) {
 254                 throw new StringIndexOutOfBoundsException(count);
 255             }
 256             if (offset <= codePoints.length) {
 257                 this.value = "".value;
 258                 return;
 259             }
 260         }
 261         // Note: offset or count might be near -1>>>1.
 262         if (offset > codePoints.length - count) {
 263             throw new StringIndexOutOfBoundsException(offset + count);
 264         }
 265 
 266         final int end = offset + count;
 267 
 268         // Pass 1: Compute precise size of char[]
 269         int n = count;
 270         for (int i = offset; i < end; i++) {
 271             int c = codePoints[i];
 272             if (Character.isBmpCodePoint(c))
 273                 continue;
 274             else if (Character.isValidCodePoint(c))
 275                 n++;
 276             else throw new IllegalArgumentException(Integer.toString(c));
 277         }
 278 
 279         // Pass 2: Allocate and fill in char[]
 280         final char[] v = new char[n];
 281 
 282         for (int i = offset, j = 0; i < end; i++, j++) {
 283             int c = codePoints[i];
 284             if (Character.isBmpCodePoint(c))
 285                 v[j] = (char)c;
 286             else
 287                 Character.toSurrogates(c, v, j++);
 288         }
 289 
 290         this.value = v;
 291     }
 292 
 293     /**
 294      * Allocates a new {@code String} constructed from a subarray of an array
 295      * of 8-bit integer values.
 296      *
 297      * <p> The {@code offset} argument is the index of the first byte of the
 298      * subarray, and the {@code count} argument specifies the length of the
 299      * subarray.
 300      *
 301      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
 302      * specified in the method above.
 303      *
 304      * @deprecated This method does not properly convert bytes into characters.
 305      * As of JDK&nbsp;1.1, the preferred way to do this is via the
 306      * {@code String} constructors that take a {@link
 307      * java.nio.charset.Charset}, charset name, or that use the platform's
 308      * default charset.
 309      *
 310      * @param  ascii
 311      *         The bytes to be converted to characters
 312      *
 313      * @param  hibyte
 314      *         The top 8 bits of each 16-bit Unicode code unit
 315      *
 316      * @param  offset
 317      *         The initial offset
 318      * @param  count
 319      *         The length
 320      *
 321      * @throws  IndexOutOfBoundsException
 322      *          If {@code offset} is negative, {@code count} is negative, or
 323      *          {@code offset} is greater than {@code ascii.length - count}
 324      *
 325      * @see  #String(byte[], int)
 326      * @see  #String(byte[], int, int, java.lang.String)
 327      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 328      * @see  #String(byte[], int, int)
 329      * @see  #String(byte[], java.lang.String)
 330      * @see  #String(byte[], java.nio.charset.Charset)
 331      * @see  #String(byte[])
 332      */
 333     @Deprecated
 334     public String(byte ascii[], int hibyte, int offset, int count) {
 335         checkBounds(ascii, offset, count);
 336         char[] value = new char[count];
 337 
 338         if (hibyte == 0) {
 339             for (int i = count; i-- > 0;) {
 340                 value[i] = (char)(ascii[i + offset] & 0xff);
 341             }
 342         } else {
 343             hibyte <<= 8;
 344             for (int i = count; i-- > 0;) {
 345                 value[i] = (char)(hibyte | (ascii[i + offset] & 0xff));
 346             }
 347         }
 348         this.value = value;
 349     }
 350 
 351     /**
 352      * Allocates a new {@code String} containing characters constructed from
 353      * an array of 8-bit integer values. Each character <i>c</i>in the
 354      * resulting string is constructed from the corresponding component
 355      * <i>b</i> in the byte array such that:
 356      *
 357      * <blockquote><pre>
 358      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
 359      *                         | (<b><i>b</i></b> &amp; 0xff))
 360      * </pre></blockquote>
 361      *
 362      * @deprecated  This method does not properly convert bytes into
 363      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 364      * {@code String} constructors that take a {@link
 365      * java.nio.charset.Charset}, charset name, or that use the platform's
 366      * default charset.
 367      *
 368      * @param  ascii
 369      *         The bytes to be converted to characters
 370      *
 371      * @param  hibyte
 372      *         The top 8 bits of each 16-bit Unicode code unit
 373      *
 374      * @see  #String(byte[], int, int, java.lang.String)
 375      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 376      * @see  #String(byte[], int, int)
 377      * @see  #String(byte[], java.lang.String)
 378      * @see  #String(byte[], java.nio.charset.Charset)
 379      * @see  #String(byte[])
 380      */
 381     @Deprecated
 382     public String(byte ascii[], int hibyte) {
 383         this(ascii, hibyte, 0, ascii.length);
 384     }
 385 
 386     /* Common private utility method used to bounds check the byte array
 387      * and requested offset & length values used by the String(byte[],..)
 388      * constructors.
 389      */
 390     private static void checkBounds(byte[] bytes, int offset, int length) {
 391         if (length < 0)
 392             throw new StringIndexOutOfBoundsException(length);
 393         if (offset < 0)
 394             throw new StringIndexOutOfBoundsException(offset);
 395         if (offset > bytes.length - length)
 396             throw new StringIndexOutOfBoundsException(offset + length);
 397     }
 398 
 399     /**
 400      * Constructs a new {@code String} by decoding the specified subarray of
 401      * bytes using the specified charset.  The length of the new {@code String}
 402      * is a function of the charset, and hence may not be equal to the length
 403      * of the subarray.
 404      *
 405      * <p> The behavior of this constructor when the given bytes are not valid
 406      * in the given charset is unspecified.  The {@link
 407      * java.nio.charset.CharsetDecoder} class should be used when more control
 408      * over the decoding process is required.
 409      *
 410      * @param  bytes
 411      *         The bytes to be decoded into characters
 412      *
 413      * @param  offset
 414      *         The index of the first byte to decode
 415      *
 416      * @param  length
 417      *         The number of bytes to decode
 418 
 419      * @param  charsetName
 420      *         The name of a supported {@linkplain java.nio.charset.Charset
 421      *         charset}
 422      *
 423      * @throws  UnsupportedEncodingException
 424      *          If the named charset is not supported
 425      *
 426      * @throws  IndexOutOfBoundsException
 427      *          If {@code offset} is negative, {@code length} is negative, or
 428      *          {@code offset} is greater than {@code bytes.length - length}
 429      *
 430      * @since  1.1
 431      */
 432     public String(byte bytes[], int offset, int length, String charsetName)
 433             throws UnsupportedEncodingException {
 434         if (charsetName == null)
 435             throw new NullPointerException("charsetName");
 436         checkBounds(bytes, offset, length);
 437         this.value = StringCoding.decode(charsetName, bytes, offset, length);
 438     }
 439 
 440     /**
 441      * Constructs a new {@code String} by decoding the specified subarray of
 442      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 443      * The length of the new {@code String} is a function of the charset, and
 444      * hence may not be equal to the length of the subarray.
 445      *
 446      * <p> This method always replaces malformed-input and unmappable-character
 447      * sequences with this charset's default replacement string.  The {@link
 448      * java.nio.charset.CharsetDecoder} class should be used when more control
 449      * over the decoding process is required.
 450      *
 451      * @param  bytes
 452      *         The bytes to be decoded into characters
 453      *
 454      * @param  offset
 455      *         The index of the first byte to decode
 456      *
 457      * @param  length
 458      *         The number of bytes to decode
 459      *
 460      * @param  charset
 461      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 462      *         decode the {@code bytes}
 463      *
 464      * @throws  IndexOutOfBoundsException
 465      *          If {@code offset} is negative, {@code length} is negative, or
 466      *          {@code offset} is greater than {@code bytes.length - length}
 467      *
 468      * @since  1.6
 469      */
 470     public String(byte bytes[], int offset, int length, Charset charset) {
 471         if (charset == null)
 472             throw new NullPointerException("charset");
 473         checkBounds(bytes, offset, length);
 474         this.value = StringCoding.decode(charset, bytes, offset, length);
 475     }
 476 
 477     /**
 478      * Constructs a new {@code String} by decoding the specified array of bytes
 479      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
 480      * length of the new {@code String} is a function of the charset, and hence
 481      * may not be equal to the length of the byte array.
 482      *
 483      * <p> The behavior of this constructor when the given bytes are not valid
 484      * in the given charset is unspecified.  The {@link
 485      * java.nio.charset.CharsetDecoder} class should be used when more control
 486      * over the decoding process is required.
 487      *
 488      * @param  bytes
 489      *         The bytes to be decoded into characters
 490      *
 491      * @param  charsetName
 492      *         The name of a supported {@linkplain java.nio.charset.Charset
 493      *         charset}
 494      *
 495      * @throws  UnsupportedEncodingException
 496      *          If the named charset is not supported
 497      *
 498      * @since  1.1
 499      */
 500     public String(byte bytes[], String charsetName)
 501             throws UnsupportedEncodingException {
 502         this(bytes, 0, bytes.length, charsetName);
 503     }
 504 
 505     /**
 506      * Constructs a new {@code String} by decoding the specified array of
 507      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 508      * The length of the new {@code String} is a function of the charset, and
 509      * hence may not be equal to the length of the byte array.
 510      *
 511      * <p> This method always replaces malformed-input and unmappable-character
 512      * sequences with this charset's default replacement string.  The {@link
 513      * java.nio.charset.CharsetDecoder} class should be used when more control
 514      * over the decoding process is required.
 515      *
 516      * @param  bytes
 517      *         The bytes to be decoded into characters
 518      *
 519      * @param  charset
 520      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 521      *         decode the {@code bytes}
 522      *
 523      * @since  1.6
 524      */
 525     public String(byte bytes[], Charset charset) {
 526         this(bytes, 0, bytes.length, charset);
 527     }
 528 
 529     /**
 530      * Constructs a new {@code String} by decoding the specified subarray of
 531      * bytes using the platform's default charset.  The length of the new
 532      * {@code String} is a function of the charset, and hence may not be equal
 533      * to the length of the subarray.
 534      *
 535      * <p> The behavior of this constructor when the given bytes are not valid
 536      * in the default charset is unspecified.  The {@link
 537      * java.nio.charset.CharsetDecoder} class should be used when more control
 538      * over the decoding process is required.
 539      *
 540      * @param  bytes
 541      *         The bytes to be decoded into characters
 542      *
 543      * @param  offset
 544      *         The index of the first byte to decode
 545      *
 546      * @param  length
 547      *         The number of bytes to decode
 548      *
 549      * @throws  IndexOutOfBoundsException
 550      *          If {@code offset} is negative, {@code length} is negative, or
 551      *          {@code offset} is greater than {@code bytes.length - length}
 552      *
 553      * @since  1.1
 554      */
 555     public String(byte bytes[], int offset, int length) {
 556         checkBounds(bytes, offset, length);
 557         this.value = StringCoding.decode(bytes, offset, length);
 558     }
 559 
 560     /**
 561      * Constructs a new {@code String} by decoding the specified array of bytes
 562      * using the platform's default charset.  The length of the new {@code
 563      * String} is a function of the charset, and hence may not be equal to the
 564      * length of the byte array.
 565      *
 566      * <p> The behavior of this constructor when the given bytes are not valid
 567      * in the default charset is unspecified.  The {@link
 568      * java.nio.charset.CharsetDecoder} class should be used when more control
 569      * over the decoding process is required.
 570      *
 571      * @param  bytes
 572      *         The bytes to be decoded into characters
 573      *
 574      * @since  1.1
 575      */
 576     public String(byte[] bytes) {
 577         this(bytes, 0, bytes.length);
 578     }
 579 
 580     /**
 581      * Allocates a new string that contains the sequence of characters
 582      * currently contained in the string buffer argument. The contents of the
 583      * string buffer are copied; subsequent modification of the string buffer
 584      * does not affect the newly created string.
 585      *
 586      * @param  buffer
 587      *         A {@code StringBuffer}
 588      */
 589     public String(StringBuffer buffer) {
 590         synchronized(buffer) {
 591             this.value = Arrays.copyOf(buffer.getValue(), buffer.length());
 592         }
 593     }
 594 
 595     /**
 596      * Allocates a new string that contains the sequence of characters
 597      * currently contained in the string builder argument. The contents of the
 598      * string builder are copied; subsequent modification of the string builder
 599      * does not affect the newly created string.
 600      *
 601      * <p> This constructor is provided to ease migration to {@code
 602      * StringBuilder}. Obtaining a string from a string builder via the {@code
 603      * toString} method is likely to run faster and is generally preferred.
 604      *
 605      * @param   builder
 606      *          A {@code StringBuilder}
 607      *
 608      * @since  1.5
 609      */
 610     public String(StringBuilder builder) {
 611         this.value = Arrays.copyOf(builder.getValue(), builder.length());
 612     }
 613 
 614     /*
 615     * Package private constructor which shares value array for speed.
 616     * this constructor is always expected to be called with share==true.
 617     * a separate constructor is needed because we already have a public
 618     * String(char[]) constructor that makes a copy of the given char[].
 619     */
 620     String(char[] value, boolean share) {
 621         // assert share : "unshared not supported";
 622         this.value = value;
 623     }
 624 
 625     /**
 626      * Returns the length of this string.
 627      * The length is equal to the number of <a href="Character.html#unicode">Unicode
 628      * code units</a> in the string.
 629      *
 630      * @return  the length of the sequence of characters represented by this
 631      *          object.
 632      */
 633     public int length() {
 634         return value.length;
 635     }
 636 
 637     /**
 638      * Returns {@code true} if, and only if, {@link #length()} is {@code 0}.
 639      *
 640      * @return {@code true} if {@link #length()} is {@code 0}, otherwise
 641      * {@code false}
 642      *
 643      * @since 1.6
 644      */
 645     public boolean isEmpty() {
 646         return value.length == 0;
 647     }
 648 
 649     /**
 650      * Returns the {@code char} value at the
 651      * specified index. An index ranges from {@code 0} to
 652      * {@code length() - 1}. The first {@code char} value of the sequence
 653      * is at index {@code 0}, the next at index {@code 1},
 654      * and so on, as for array indexing.
 655      *
 656      * <p>If the {@code char} value specified by the index is a
 657      * <a href="Character.html#unicode">surrogate</a>, the surrogate
 658      * value is returned.
 659      *
 660      * @param      index   the index of the {@code char} value.
 661      * @return     the {@code char} value at the specified index of this string.
 662      *             The first {@code char} value is at index {@code 0}.
 663      * @exception  IndexOutOfBoundsException  if the {@code index}
 664      *             argument is negative or not less than the length of this
 665      *             string.
 666      */
 667     public char charAt(int index) {
 668         if ((index < 0) || (index >= value.length)) {
 669             throw new StringIndexOutOfBoundsException(index);
 670         }
 671         return value[index];
 672     }
 673 
 674     /**
 675      * Returns the character (Unicode code point) at the specified
 676      * index. The index refers to {@code char} values
 677      * (Unicode code units) and ranges from {@code 0} to
 678      * {@link #length()}{@code  - 1}.
 679      *
 680      * <p> If the {@code char} value specified at the given index
 681      * is in the high-surrogate range, the following index is less
 682      * than the length of this {@code String}, and the
 683      * {@code char} value at the following index is in the
 684      * low-surrogate range, then the supplementary code point
 685      * corresponding to this surrogate pair is returned. Otherwise,
 686      * the {@code char} value at the given index is returned.
 687      *
 688      * @param      index the index to the {@code char} values
 689      * @return     the code point value of the character at the
 690      *             {@code index}
 691      * @exception  IndexOutOfBoundsException  if the {@code index}
 692      *             argument is negative or not less than the length of this
 693      *             string.
 694      * @since      1.5
 695      */
 696     public int codePointAt(int index) {
 697         if ((index < 0) || (index >= value.length)) {
 698             throw new StringIndexOutOfBoundsException(index);
 699         }
 700         return Character.codePointAtImpl(value, index, value.length);
 701     }
 702 
 703     /**
 704      * Returns the character (Unicode code point) before the specified
 705      * index. The index refers to {@code char} values
 706      * (Unicode code units) and ranges from {@code 1} to {@link
 707      * CharSequence#length() length}.
 708      *
 709      * <p> If the {@code char} value at {@code (index - 1)}
 710      * is in the low-surrogate range, {@code (index - 2)} is not
 711      * negative, and the {@code char} value at {@code (index -
 712      * 2)} is in the high-surrogate range, then the
 713      * supplementary code point value of the surrogate pair is
 714      * returned. If the {@code char} value at {@code index -
 715      * 1} is an unpaired low-surrogate or a high-surrogate, the
 716      * surrogate value is returned.
 717      *
 718      * @param     index the index following the code point that should be returned
 719      * @return    the Unicode code point value before the given index.
 720      * @exception IndexOutOfBoundsException if the {@code index}
 721      *            argument is less than 1 or greater than the length
 722      *            of this string.
 723      * @since     1.5
 724      */
 725     public int codePointBefore(int index) {
 726         int i = index - 1;
 727         if ((i < 0) || (i >= value.length)) {
 728             throw new StringIndexOutOfBoundsException(index);
 729         }
 730         return Character.codePointBeforeImpl(value, index, 0);
 731     }
 732 
 733     /**
 734      * Returns the number of Unicode code points in the specified text
 735      * range of this {@code String}. The text range begins at the
 736      * specified {@code beginIndex} and extends to the
 737      * {@code char} at index {@code endIndex - 1}. Thus the
 738      * length (in {@code char}s) of the text range is
 739      * {@code endIndex-beginIndex}. Unpaired surrogates within
 740      * the text range count as one code point each.
 741      *
 742      * @param beginIndex the index to the first {@code char} of
 743      * the text range.
 744      * @param endIndex the index after the last {@code char} of
 745      * the text range.
 746      * @return the number of Unicode code points in the specified text
 747      * range
 748      * @exception IndexOutOfBoundsException if the
 749      * {@code beginIndex} is negative, or {@code endIndex}
 750      * is larger than the length of this {@code String}, or
 751      * {@code beginIndex} is larger than {@code endIndex}.
 752      * @since  1.5
 753      */
 754     public int codePointCount(int beginIndex, int endIndex) {
 755         if (beginIndex < 0 || endIndex > value.length || beginIndex > endIndex) {
 756             throw new IndexOutOfBoundsException();
 757         }
 758         return Character.codePointCountImpl(value, beginIndex, endIndex - beginIndex);
 759     }
 760 
 761     /**
 762      * Returns the index within this {@code String} that is
 763      * offset from the given {@code index} by
 764      * {@code codePointOffset} code points. Unpaired surrogates
 765      * within the text range given by {@code index} and
 766      * {@code codePointOffset} count as one code point each.
 767      *
 768      * @param index the index to be offset
 769      * @param codePointOffset the offset in code points
 770      * @return the index within this {@code String}
 771      * @exception IndexOutOfBoundsException if {@code index}
 772      *   is negative or larger then the length of this
 773      *   {@code String}, or if {@code codePointOffset} is positive
 774      *   and the substring starting with {@code index} has fewer
 775      *   than {@code codePointOffset} code points,
 776      *   or if {@code codePointOffset} is negative and the substring
 777      *   before {@code index} has fewer than the absolute value
 778      *   of {@code codePointOffset} code points.
 779      * @since 1.5
 780      */
 781     public int offsetByCodePoints(int index, int codePointOffset) {
 782         if (index < 0 || index > value.length) {
 783             throw new IndexOutOfBoundsException();
 784         }
 785         return Character.offsetByCodePointsImpl(value, 0, value.length,
 786                 index, codePointOffset);
 787     }
 788 
 789     /**
 790      * Copy characters from this string into dst starting at dstBegin.
 791      * This method doesn't perform any range checking.
 792      */
 793     void getChars(char dst[], int dstBegin) {
 794         System.arraycopy(value, 0, dst, dstBegin, value.length);
 795     }
 796 
 797     /**
 798      * Copies characters from this string into the destination character
 799      * array.
 800      * <p>
 801      * The first character to be copied is at index {@code srcBegin};
 802      * the last character to be copied is at index {@code srcEnd-1}
 803      * (thus the total number of characters to be copied is
 804      * {@code srcEnd-srcBegin}). The characters are copied into the
 805      * subarray of {@code dst} starting at index {@code dstBegin}
 806      * and ending at index:
 807      * <blockquote><pre>
 808      *     dstBegin + (srcEnd-srcBegin) - 1
 809      * </pre></blockquote>
 810      *
 811      * @param      srcBegin   index of the first character in the string
 812      *                        to copy.
 813      * @param      srcEnd     index after the last character in the string
 814      *                        to copy.
 815      * @param      dst        the destination array.
 816      * @param      dstBegin   the start offset in the destination array.
 817      * @exception IndexOutOfBoundsException If any of the following
 818      *            is true:
 819      *            <ul><li>{@code srcBegin} is negative.
 820      *            <li>{@code srcBegin} is greater than {@code srcEnd}
 821      *            <li>{@code srcEnd} is greater than the length of this
 822      *                string
 823      *            <li>{@code dstBegin} is negative
 824      *            <li>{@code dstBegin+(srcEnd-srcBegin)} is larger than
 825      *                {@code dst.length}</ul>
 826      */
 827     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
 828         if (srcBegin < 0) {
 829             throw new StringIndexOutOfBoundsException(srcBegin);
 830         }
 831         if (srcEnd > value.length) {
 832             throw new StringIndexOutOfBoundsException(srcEnd);
 833         }
 834         if (srcBegin > srcEnd) {
 835             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
 836         }
 837         System.arraycopy(value, srcBegin, dst, dstBegin, srcEnd - srcBegin);
 838     }
 839 
 840     /**
 841      * Copies characters from this string into the destination byte array. Each
 842      * byte receives the 8 low-order bits of the corresponding character. The
 843      * eight high-order bits of each character are not copied and do not
 844      * participate in the transfer in any way.
 845      *
 846      * <p> The first character to be copied is at index {@code srcBegin}; the
 847      * last character to be copied is at index {@code srcEnd-1}.  The total
 848      * number of characters to be copied is {@code srcEnd-srcBegin}. The
 849      * characters, converted to bytes, are copied into the subarray of {@code
 850      * dst} starting at index {@code dstBegin} and ending at index:
 851      *
 852      * <blockquote><pre>
 853      *     dstBegin + (srcEnd-srcBegin) - 1
 854      * </pre></blockquote>
 855      *
 856      * @deprecated  This method does not properly convert characters into
 857      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 858      * {@link #getBytes()} method, which uses the platform's default charset.
 859      *
 860      * @param  srcBegin
 861      *         Index of the first character in the string to copy
 862      *
 863      * @param  srcEnd
 864      *         Index after the last character in the string to copy
 865      *
 866      * @param  dst
 867      *         The destination array
 868      *
 869      * @param  dstBegin
 870      *         The start offset in the destination array
 871      *
 872      * @throws  IndexOutOfBoundsException
 873      *          If any of the following is true:
 874      *          <ul>
 875      *            <li> {@code srcBegin} is negative
 876      *            <li> {@code srcBegin} is greater than {@code srcEnd}
 877      *            <li> {@code srcEnd} is greater than the length of this String
 878      *            <li> {@code dstBegin} is negative
 879      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
 880      *                 dst.length}
 881      *          </ul>
 882      */
 883     @Deprecated
 884     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
 885         if (srcBegin < 0) {
 886             throw new StringIndexOutOfBoundsException(srcBegin);
 887         }
 888         if (srcEnd > value.length) {
 889             throw new StringIndexOutOfBoundsException(srcEnd);
 890         }
 891         if (srcBegin > srcEnd) {
 892             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
 893         }
 894         Objects.requireNonNull(dst);
 895 
 896         int j = dstBegin;
 897         int n = srcEnd;
 898         int i = srcBegin;
 899         char[] val = value;   /* avoid getfield opcode */
 900 
 901         while (i < n) {
 902             dst[j++] = (byte)val[i++];
 903         }
 904     }
 905 
 906     /**
 907      * Encodes this {@code String} into a sequence of bytes using the named
 908      * charset, storing the result into a new byte array.
 909      *
 910      * <p> The behavior of this method when this string cannot be encoded in
 911      * the given charset is unspecified.  The {@link
 912      * java.nio.charset.CharsetEncoder} class should be used when more control
 913      * over the encoding process is required.
 914      *
 915      * @param  charsetName
 916      *         The name of a supported {@linkplain java.nio.charset.Charset
 917      *         charset}
 918      *
 919      * @return  The resultant byte array
 920      *
 921      * @throws  UnsupportedEncodingException
 922      *          If the named charset is not supported
 923      *
 924      * @since  1.1
 925      */
 926     public byte[] getBytes(String charsetName)
 927             throws UnsupportedEncodingException {
 928         if (charsetName == null) throw new NullPointerException();
 929         return StringCoding.encode(charsetName, value, 0, value.length);
 930     }
 931 
 932     /**
 933      * Encodes this {@code String} into a sequence of bytes using the given
 934      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
 935      * new byte array.
 936      *
 937      * <p> This method always replaces malformed-input and unmappable-character
 938      * sequences with this charset's default replacement byte array.  The
 939      * {@link java.nio.charset.CharsetEncoder} class should be used when more
 940      * control over the encoding process is required.
 941      *
 942      * @param  charset
 943      *         The {@linkplain java.nio.charset.Charset} to be used to encode
 944      *         the {@code String}
 945      *
 946      * @return  The resultant byte array
 947      *
 948      * @since  1.6
 949      */
 950     public byte[] getBytes(Charset charset) {
 951         if (charset == null) throw new NullPointerException();
 952         return StringCoding.encode(charset, value, 0, value.length);
 953     }
 954 
 955     /**
 956      * Encodes this {@code String} into a sequence of bytes using the
 957      * platform's default charset, storing the result into a new byte array.
 958      *
 959      * <p> The behavior of this method when this string cannot be encoded in
 960      * the default charset is unspecified.  The {@link
 961      * java.nio.charset.CharsetEncoder} class should be used when more control
 962      * over the encoding process is required.
 963      *
 964      * @return  The resultant byte array
 965      *
 966      * @since      1.1
 967      */
 968     public byte[] getBytes() {
 969         return StringCoding.encode(value, 0, value.length);
 970     }
 971 
 972     /**
 973      * Compares this string to the specified object.  The result is {@code
 974      * true} if and only if the argument is not {@code null} and is a {@code
 975      * String} object that represents the same sequence of characters as this
 976      * object.
 977      *
 978      * <p>For finer-grained String comparison, refer to
 979      * {@link java.text.Collator}.
 980      * 
 981      * @param  anObject
 982      *         The object to compare this {@code String} against
 983      *
 984      * @return  {@code true} if the given object represents a {@code String}
 985      *          equivalent to this string, {@code false} otherwise
 986      *
 987      * @see  #compareTo(String)
 988      * @see  #equalsIgnoreCase(String)
 989      */
 990     @HotSpotIntrinsicCandidate
 991     public boolean equals(Object anObject) {
 992         if (this == anObject) {
 993             return true;
 994         }
 995         if (anObject instanceof String) {
 996             char[] v1 = value;
 997             char[] v2 = ((String)anObject).value;
 998             int n = v1.length;
 999             if (n == v2.length) {
1000                 int i = 0;
1001                 while (n-- != 0) {
1002                     if (v1[i] != v2[i])
1003                         return false;
1004                     i++;
1005                 }
1006                 return true;
1007             }
1008         }
1009         return false;
1010     }
1011 
1012     /**
1013      * Compares this string to the specified {@code StringBuffer}.  The result
1014      * is {@code true} if and only if this {@code String} represents the same
1015      * sequence of characters as the specified {@code StringBuffer}. This method
1016      * synchronizes on the {@code StringBuffer}.
1017      *
1018      * <p>For finer-grained String comparison, refer to
1019      * {@link java.text.Collator}.
1020      *
1021      * @param  sb
1022      *         The {@code StringBuffer} to compare this {@code String} against
1023      *
1024      * @return  {@code true} if this {@code String} represents the same
1025      *          sequence of characters as the specified {@code StringBuffer},
1026      *          {@code false} otherwise
1027      *
1028      * @since  1.4
1029      */
1030     public boolean contentEquals(StringBuffer sb) {
1031         return contentEquals((CharSequence)sb);
1032     }
1033 
1034     private boolean nonSyncContentEquals(AbstractStringBuilder sb) {
1035         char[] v1 = value;
1036         char[] v2 = sb.getValue();
1037         int n = v1.length;
1038         if (n != sb.length()) {
1039             return false;
1040         }
1041         for (int i = 0; i < n; i++) {
1042             if (v1[i] != v2[i]) {
1043                 return false;
1044             }
1045         }
1046         return true;
1047     }
1048 
1049     /**
1050      * Compares this string to the specified {@code CharSequence}.  The
1051      * result is {@code true} if and only if this {@code String} represents the
1052      * same sequence of char values as the specified sequence. Note that if the
1053      * {@code CharSequence} is a {@code StringBuffer} then the method
1054      * synchronizes on it.
1055      *
1056      * <p>For finer-grained String comparison, refer to
1057      * {@link java.text.Collator}.
1058      *
1059      * @param  cs
1060      *         The sequence to compare this {@code String} against
1061      *
1062      * @return  {@code true} if this {@code String} represents the same
1063      *          sequence of char values as the specified sequence, {@code
1064      *          false} otherwise
1065      *
1066      * @since  1.5
1067      */
1068     public boolean contentEquals(CharSequence cs) {
1069         // Argument is a StringBuffer, StringBuilder
1070         if (cs instanceof AbstractStringBuilder) {
1071             if (cs instanceof StringBuffer) {
1072                 synchronized(cs) {
1073                    return nonSyncContentEquals((AbstractStringBuilder)cs);
1074                 }
1075             } else {
1076                 return nonSyncContentEquals((AbstractStringBuilder)cs);
1077             }
1078         }
1079         // Argument is a String
1080         if (cs instanceof String) {
1081             return equals(cs);
1082         }
1083         // Argument is a generic CharSequence
1084         char[] v1 = value;
1085         int n = v1.length;
1086         if (n != cs.length()) {
1087             return false;
1088         }
1089         for (int i = 0; i < n; i++) {
1090             if (v1[i] != cs.charAt(i)) {
1091                 return false;
1092             }
1093         }
1094         return true;
1095     }
1096 
1097     /**
1098      * Compares this {@code String} to another {@code String}, ignoring case
1099      * considerations.  Two strings are considered equal ignoring case if they
1100      * are of the same length and corresponding characters in the two strings
1101      * are equal ignoring case.
1102      *
1103      * <p> Two characters {@code c1} and {@code c2} are considered the same
1104      * ignoring case if at least one of the following is true:
1105      * <ul>
1106      *   <li> The two characters are the same (as compared by the
1107      *        {@code ==} operator)
1108      *   <li> Calling {@code Character.toLowerCase(Character.toUpperCase(char))}
1109      *        on each character produces the same result
1110      * </ul>
1111      * 
1112      * <p>Note that this method does <em>not</em> take locale into account, and
1113      * will result in unsatisfactory results for certain locales.  The
1114      * {@link java.text.Collator} class provides locale-sensitive comparison.
1115      * 
1116      * @param  anotherString
1117      *         The {@code String} to compare this {@code String} against
1118      *
1119      * @return  {@code true} if the argument is not {@code null} and it
1120      *          represents an equivalent {@code String} ignoring case; {@code
1121      *          false} otherwise
1122      *
1123      * @see  #equals(Object)
1124      */
1125     public boolean equalsIgnoreCase(String anotherString) {
1126         return (this == anotherString) ? true
1127                 : (anotherString != null)
1128                 && (anotherString.value.length == value.length)
1129                 && regionMatches(true, 0, anotherString, 0, value.length);
1130     }
1131 
1132     /**
1133      * Compares two strings lexicographically.
1134      * The comparison is based on the Unicode value of each character in
1135      * the strings. The character sequence represented by this
1136      * {@code String} object is compared lexicographically to the
1137      * character sequence represented by the argument string. The result is
1138      * a negative integer if this {@code String} object
1139      * lexicographically precedes the argument string. The result is a
1140      * positive integer if this {@code String} object lexicographically
1141      * follows the argument string. The result is zero if the strings
1142      * are equal; {@code compareTo} returns {@code 0} exactly when
1143      * the {@link #equals(Object)} method would return {@code true}.
1144      * <p>
1145      * This is the definition of lexicographic ordering. If two strings are
1146      * different, then either they have different characters at some index
1147      * that is a valid index for both strings, or their lengths are different,
1148      * or both. If they have different characters at one or more index
1149      * positions, let <i>k</i> be the smallest such index; then the string
1150      * whose character at position <i>k</i> has the smaller value, as
1151      * determined by using the {@code <} operator, lexicographically precedes the
1152      * other string. In this case, {@code compareTo} returns the
1153      * difference of the two character values at position {@code k} in
1154      * the two string -- that is, the value:
1155      * <blockquote><pre>
1156      * this.charAt(k)-anotherString.charAt(k)
1157      * </pre></blockquote>
1158      * If there is no index position at which they differ, then the shorter
1159      * string lexicographically precedes the longer string. In this case,
1160      * {@code compareTo} returns the difference of the lengths of the
1161      * strings -- that is, the value:
1162      * <blockquote><pre>
1163      * this.length()-anotherString.length()
1164      * </pre></blockquote>
1165      *
1166      * <p>For finer-grained String comparison, refer to
1167      * {@link java.text.Collator}.
1168      * 
1169      * @param   anotherString   the {@code String} to be compared.
1170      * @return  the value {@code 0} if the argument string is equal to
1171      *          this string; a value less than {@code 0} if this string
1172      *          is lexicographically less than the string argument; and a
1173      *          value greater than {@code 0} if this string is
1174      *          lexicographically greater than the string argument.
1175      */
1176     @HotSpotIntrinsicCandidate
1177     public int compareTo(String anotherString) {
1178         char[] v1 = value;
1179         char[] v2 = anotherString.value;
1180         int len1 = v1.length;
1181         int len2 = v2.length;
1182         int lim = Math.min(len1, len2);
1183 
1184         for (int k = 0; k < lim; k++) {
1185             char c1 = v1[k];
1186             char c2 = v2[k];
1187             if (c1 != c2) {
1188                 return c1 - c2;
1189             }
1190         }
1191         return len1 - len2;
1192     }
1193 
1194     /**
1195      * A Comparator that orders {@code String} objects as by
1196      * {@code compareToIgnoreCase}. This comparator is serializable.
1197      * <p>
1198      * Note that this Comparator does <em>not</em> take locale into account,
1199      * and will result in an unsatisfactory ordering for certain locales.
1200      * The {@link java.text.Collator} class provides locale-sensitive comparison.
1201      *
1202      * @see     java.text.Collator
1203      * @since   1.2
1204      */
1205     public static final Comparator<String> CASE_INSENSITIVE_ORDER
1206                                          = new CaseInsensitiveComparator();
1207     private static class CaseInsensitiveComparator
1208             implements Comparator<String>, java.io.Serializable {
1209         // use serialVersionUID from JDK 1.2.2 for interoperability
1210         private static final long serialVersionUID = 8575799808933029326L;
1211 
1212         public int compare(String s1, String s2) {
1213             int n1 = s1.length();
1214             int n2 = s2.length();
1215             int min = Math.min(n1, n2);
1216             for (int i = 0; i < min; i++) {
1217                 char c1 = s1.charAt(i);
1218                 char c2 = s2.charAt(i);
1219                 if (c1 != c2) {
1220                     c1 = Character.toUpperCase(c1);
1221                     c2 = Character.toUpperCase(c2);
1222                     if (c1 != c2) {
1223                         c1 = Character.toLowerCase(c1);
1224                         c2 = Character.toLowerCase(c2);
1225                         if (c1 != c2) {
1226                             // No overflow because of numeric promotion
1227                             return c1 - c2;
1228                         }
1229                     }
1230                 }
1231             }
1232             return n1 - n2;
1233         }
1234 
1235         /** Replaces the de-serialized object. */
1236         private Object readResolve() { return CASE_INSENSITIVE_ORDER; }
1237     }
1238 
1239     /**
1240      * Compares two strings lexicographically, ignoring case
1241      * differences. This method returns an integer whose sign is that of
1242      * calling {@code compareTo} with normalized versions of the strings
1243      * where case differences have been eliminated by calling
1244      * {@code Character.toLowerCase(Character.toUpperCase(character))} on
1245      * each character.
1246      * <p>
1247      * Note that this method does <em>not</em> take locale into account,
1248      * and will result in an unsatisfactory ordering for certain locales.
1249      * The {@link java.text.Collator} class provides locale-sensitive comparison.
1250      *
1251      * @param   str   the {@code String} to be compared.
1252      * @return  a negative integer, zero, or a positive integer as the
1253      *          specified String is greater than, equal to, or less
1254      *          than this String, ignoring case considerations.
1255      * @see     java.text.Collator
1256      * @since   1.2
1257      */
1258     public int compareToIgnoreCase(String str) {
1259         return CASE_INSENSITIVE_ORDER.compare(this, str);
1260     }
1261 
1262     /**
1263      * Tests if two string regions are equal.
1264      * <p>
1265      * A substring of this {@code String} object is compared to a substring
1266      * of the argument other. The result is true if these substrings
1267      * represent identical character sequences. The substring of this
1268      * {@code String} object to be compared begins at index {@code toffset}
1269      * and has length {@code len}. The substring of other to be compared
1270      * begins at index {@code ooffset} and has length {@code len}. The
1271      * result is {@code false} if and only if at least one of the following
1272      * is true:
1273      * <ul><li>{@code toffset} is negative.
1274      * <li>{@code ooffset} is negative.
1275      * <li>{@code toffset+len} is greater than the length of this
1276      * {@code String} object.
1277      * <li>{@code ooffset+len} is greater than the length of the other
1278      * argument.
1279      * <li>There is some nonnegative integer <i>k</i> less than {@code len}
1280      * such that:
1281      * {@code this.charAt(toffset + }<i>k</i>{@code ) != other.charAt(ooffset + }
1282      * <i>k</i>{@code )}
1283      * </ul>
1284      *
1285      * <p>Note that this method does <em>not</em> take locale into account.  The
1286      * {@link java.text.Collator} class provides locale-sensitive comparison.
1287      * 
1288      * @param   toffset   the starting offset of the subregion in this string.
1289      * @param   other     the string argument.
1290      * @param   ooffset   the starting offset of the subregion in the string
1291      *                    argument.
1292      * @param   len       the number of characters to compare.
1293      * @return  {@code true} if the specified subregion of this string
1294      *          exactly matches the specified subregion of the string argument;
1295      *          {@code false} otherwise.
1296      */
1297     public boolean regionMatches(int toffset, String other, int ooffset,
1298             int len) {
1299         char[] ta = value;
1300         int to = toffset;
1301         char[] pa = other.value;
1302         int po = ooffset;
1303         // Note: toffset, ooffset, or len might be near -1>>>1.
1304         if ((ooffset < 0) || (toffset < 0)
1305                 || (toffset > (long)ta.length - len)
1306                 || (ooffset > (long)pa.length - len)) {
1307             return false;
1308         }
1309         while (len-- > 0) {
1310             if (ta[to++] != pa[po++]) {
1311                 return false;
1312             }
1313         }
1314         return true;
1315     }
1316 
1317     /**
1318      * Tests if two string regions are equal.
1319      * <p>
1320      * A substring of this {@code String} object is compared to a substring
1321      * of the argument {@code other}. The result is {@code true} if these
1322      * substrings represent character sequences that are the same, ignoring
1323      * case if and only if {@code ignoreCase} is true. The substring of
1324      * this {@code String} object to be compared begins at index
1325      * {@code toffset} and has length {@code len}. The substring of
1326      * {@code other} to be compared begins at index {@code ooffset} and
1327      * has length {@code len}. The result is {@code false} if and only if
1328      * at least one of the following is true:
1329      * <ul><li>{@code toffset} is negative.
1330      * <li>{@code ooffset} is negative.
1331      * <li>{@code toffset+len} is greater than the length of this
1332      * {@code String} object.
1333      * <li>{@code ooffset+len} is greater than the length of the other
1334      * argument.
1335      * <li>{@code ignoreCase} is {@code false} and there is some nonnegative
1336      * integer <i>k</i> less than {@code len} such that:
1337      * <blockquote><pre>
1338      * this.charAt(toffset+k) != other.charAt(ooffset+k)
1339      * </pre></blockquote>
1340      * <li>{@code ignoreCase} is {@code true} and there is some nonnegative
1341      * integer <i>k</i> less than {@code len} such that:
1342      * <blockquote><pre>
1343      * Character.toLowerCase(Character.toUpperCase(this.charAt(toffset+k))) !=
1344      Character.toLowerCase(Character.toUpperCase(other.charAt(ooffset+k)))
1345      * </pre></blockquote>
1346      * </ul>
1347      * 
1348      * <p>Note that this method does <em>not</em> take locale into account,
1349      * and will result in unsatisfactory results for certain locales when
1350      * {@code ignoreCase} is {@code true}.  The {@link java.text.Collator} class
1351      * provides locale-sensitive comparison.
1352      * 
1353      * @param   ignoreCase   if {@code true}, ignore case when comparing
1354      *                       characters.
1355      * @param   toffset      the starting offset of the subregion in this
1356      *                       string.
1357      * @param   other        the string argument.
1358      * @param   ooffset      the starting offset of the subregion in the string
1359      *                       argument.
1360      * @param   len          the number of characters to compare.
1361      * @return  {@code true} if the specified subregion of this string
1362      *          matches the specified subregion of the string argument;
1363      *          {@code false} otherwise. Whether the matching is exact
1364      *          or case insensitive depends on the {@code ignoreCase}
1365      *          argument.
1366      */
1367     public boolean regionMatches(boolean ignoreCase, int toffset,
1368             String other, int ooffset, int len) {
1369         char[] ta = value;
1370         int to = toffset;
1371         char[] pa = other.value;
1372         int po = ooffset;
1373         // Note: toffset, ooffset, or len might be near -1>>>1.
1374         if ((ooffset < 0) || (toffset < 0)
1375                 || (toffset > (long)ta.length - len)
1376                 || (ooffset > (long)pa.length - len)) {
1377             return false;
1378         }
1379         while (len-- > 0) {
1380             char c1 = ta[to++];
1381             char c2 = pa[po++];
1382             if (c1 == c2) {
1383                 continue;
1384             }
1385             if (ignoreCase) {
1386                 // If characters don't match but case may be ignored,
1387                 // try converting both characters to uppercase.
1388                 // If the results match, then the comparison scan should
1389                 // continue.
1390                 char u1 = Character.toUpperCase(c1);
1391                 char u2 = Character.toUpperCase(c2);
1392                 if (u1 == u2) {
1393                     continue;
1394                 }
1395                 // Unfortunately, conversion to uppercase does not work properly
1396                 // for the Georgian alphabet, which has strange rules about case
1397                 // conversion.  So we need to make one last check before
1398                 // exiting.
1399                 if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
1400                     continue;
1401                 }
1402             }
1403             return false;
1404         }
1405         return true;
1406     }
1407 
1408     /**
1409      * Tests if the substring of this string beginning at the
1410      * specified index starts with the specified prefix.
1411      *
1412      * @param   prefix    the prefix.
1413      * @param   toffset   where to begin looking in this string.
1414      * @return  {@code true} if the character sequence represented by the
1415      *          argument is a prefix of the substring of this object starting
1416      *          at index {@code toffset}; {@code false} otherwise.
1417      *          The result is {@code false} if {@code toffset} is
1418      *          negative or greater than the length of this
1419      *          {@code String} object; otherwise the result is the same
1420      *          as the result of the expression
1421      *          <pre>
1422      *          this.substring(toffset).startsWith(prefix)
1423      *          </pre>
1424      */
1425     public boolean startsWith(String prefix, int toffset) {
1426         char[] ta = value;
1427         int to = toffset;
1428         char[] pa = prefix.value;
1429         int po = 0;
1430         int pc = pa.length;
1431         // Note: toffset might be near -1>>>1.
1432         if ((toffset < 0) || (toffset > ta.length - pc)) {
1433             return false;
1434         }
1435         while (--pc >= 0) {
1436             if (ta[to++] != pa[po++]) {
1437                 return false;
1438             }
1439         }
1440         return true;
1441     }
1442 
1443     /**
1444      * Tests if this string starts with the specified prefix.
1445      *
1446      * @param   prefix   the prefix.
1447      * @return  {@code true} if the character sequence represented by the
1448      *          argument is a prefix of the character sequence represented by
1449      *          this string; {@code false} otherwise.
1450      *          Note also that {@code true} will be returned if the
1451      *          argument is an empty string or is equal to this
1452      *          {@code String} object as determined by the
1453      *          {@link #equals(Object)} method.
1454      * @since   1.0
1455      */
1456     public boolean startsWith(String prefix) {
1457         return startsWith(prefix, 0);
1458     }
1459 
1460     /**
1461      * Tests if this string ends with the specified suffix.
1462      *
1463      * @param   suffix   the suffix.
1464      * @return  {@code true} if the character sequence represented by the
1465      *          argument is a suffix of the character sequence represented by
1466      *          this object; {@code false} otherwise. Note that the
1467      *          result will be {@code true} if the argument is the
1468      *          empty string or is equal to this {@code String} object
1469      *          as determined by the {@link #equals(Object)} method.
1470      */
1471     public boolean endsWith(String suffix) {
1472         return startsWith(suffix, value.length - suffix.value.length);
1473     }
1474 
1475     /**
1476      * Returns a hash code for this string. The hash code for a
1477      * {@code String} object is computed as
1478      * <blockquote><pre>
1479      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
1480      * </pre></blockquote>
1481      * using {@code int} arithmetic, where {@code s[i]} is the
1482      * <i>i</i>th character of the string, {@code n} is the length of
1483      * the string, and {@code ^} indicates exponentiation.
1484      * (The hash value of the empty string is zero.)
1485      *
1486      * @return  a hash code value for this object.
1487      */
1488     public int hashCode() {
1489         int h = hash;
1490         if (h == 0) {
1491             for (char v : value) {
1492                 h = 31 * h + v;
1493             }
1494             if (h != 0) {
1495                 hash = h;
1496             }
1497         }
1498         return h;
1499     }
1500 
1501     /**
1502      * Returns the index within this string of the first occurrence of
1503      * the specified character. If a character with value
1504      * {@code ch} occurs in the character sequence represented by
1505      * this {@code String} object, then the index (in Unicode
1506      * code units) of the first such occurrence is returned. For
1507      * values of {@code ch} in the range from 0 to 0xFFFF
1508      * (inclusive), this is the smallest value <i>k</i> such that:
1509      * <blockquote><pre>
1510      * this.charAt(<i>k</i>) == ch
1511      * </pre></blockquote>
1512      * is true. For other values of {@code ch}, it is the
1513      * smallest value <i>k</i> such that:
1514      * <blockquote><pre>
1515      * this.codePointAt(<i>k</i>) == ch
1516      * </pre></blockquote>
1517      * is true. In either case, if no such character occurs in this
1518      * string, then {@code -1} is returned.
1519      *
1520      * @param   ch   a character (Unicode code point).
1521      * @return  the index of the first occurrence of the character in the
1522      *          character sequence represented by this object, or
1523      *          {@code -1} if the character does not occur.
1524      */
1525     public int indexOf(int ch) {
1526         return indexOf(ch, 0);
1527     }
1528 
1529     /**
1530      * Returns the index within this string of the first occurrence of the
1531      * specified character, starting the search at the specified index.
1532      * <p>
1533      * If a character with value {@code ch} occurs in the
1534      * character sequence represented by this {@code String}
1535      * object at an index no smaller than {@code fromIndex}, then
1536      * the index of the first such occurrence is returned. For values
1537      * of {@code ch} in the range from 0 to 0xFFFF (inclusive),
1538      * this is the smallest value <i>k</i> such that:
1539      * <blockquote><pre>
1540      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1541      * </pre></blockquote>
1542      * is true. For other values of {@code ch}, it is the
1543      * smallest value <i>k</i> such that:
1544      * <blockquote><pre>
1545      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1546      * </pre></blockquote>
1547      * is true. In either case, if no such character occurs in this
1548      * string at or after position {@code fromIndex}, then
1549      * {@code -1} is returned.
1550      *
1551      * <p>
1552      * There is no restriction on the value of {@code fromIndex}. If it
1553      * is negative, it has the same effect as if it were zero: this entire
1554      * string may be searched. If it is greater than the length of this
1555      * string, it has the same effect as if it were equal to the length of
1556      * this string: {@code -1} is returned.
1557      *
1558      * <p>All indices are specified in {@code char} values
1559      * (Unicode code units).
1560      *
1561      * @param   ch          a character (Unicode code point).
1562      * @param   fromIndex   the index to start the search from.
1563      * @return  the index of the first occurrence of the character in the
1564      *          character sequence represented by this object that is greater
1565      *          than or equal to {@code fromIndex}, or {@code -1}
1566      *          if the character does not occur.
1567      */
1568     public int indexOf(int ch, int fromIndex) {
1569         final int max = value.length;
1570         if (fromIndex < 0) {
1571             fromIndex = 0;
1572         } else if (fromIndex >= max) {
1573             // Note: fromIndex might be near -1>>>1.
1574             return -1;
1575         }
1576 
1577         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1578             // handle most cases here (ch is a BMP code point or a
1579             // negative value (invalid code point))
1580             final char[] value = this.value;
1581             for (int i = fromIndex; i < max; i++) {
1582                 if (value[i] == ch) {
1583                     return i;
1584                 }
1585             }
1586             return -1;
1587         } else {
1588             return indexOfSupplementary(ch, fromIndex);
1589         }
1590     }
1591 
1592     /**
1593      * Handles (rare) calls of indexOf with a supplementary character.
1594      */
1595     private int indexOfSupplementary(int ch, int fromIndex) {
1596         if (Character.isValidCodePoint(ch)) {
1597             final char[] value = this.value;
1598             final char hi = Character.highSurrogate(ch);
1599             final char lo = Character.lowSurrogate(ch);
1600             final int max = value.length - 1;
1601             for (int i = fromIndex; i < max; i++) {
1602                 if (value[i] == hi && value[i + 1] == lo) {
1603                     return i;
1604                 }
1605             }
1606         }
1607         return -1;
1608     }
1609 
1610     /**
1611      * Returns the index within this string of the last occurrence of
1612      * the specified character. For values of {@code ch} in the
1613      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
1614      * units) returned is the largest value <i>k</i> such that:
1615      * <blockquote><pre>
1616      * this.charAt(<i>k</i>) == ch
1617      * </pre></blockquote>
1618      * is true. For other values of {@code ch}, it is the
1619      * largest value <i>k</i> such that:
1620      * <blockquote><pre>
1621      * this.codePointAt(<i>k</i>) == ch
1622      * </pre></blockquote>
1623      * is true.  In either case, if no such character occurs in this
1624      * string, then {@code -1} is returned.  The
1625      * {@code String} is searched backwards starting at the last
1626      * character.
1627      *
1628      * @param   ch   a character (Unicode code point).
1629      * @return  the index of the last occurrence of the character in the
1630      *          character sequence represented by this object, or
1631      *          {@code -1} if the character does not occur.
1632      */
1633     public int lastIndexOf(int ch) {
1634         return lastIndexOf(ch, value.length - 1);
1635     }
1636 
1637     /**
1638      * Returns the index within this string of the last occurrence of
1639      * the specified character, searching backward starting at the
1640      * specified index. For values of {@code ch} in the range
1641      * from 0 to 0xFFFF (inclusive), the index returned is the largest
1642      * value <i>k</i> such that:
1643      * <blockquote><pre>
1644      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1645      * </pre></blockquote>
1646      * is true. For other values of {@code ch}, it is the
1647      * largest value <i>k</i> such that:
1648      * <blockquote><pre>
1649      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1650      * </pre></blockquote>
1651      * is true. In either case, if no such character occurs in this
1652      * string at or before position {@code fromIndex}, then
1653      * {@code -1} is returned.
1654      *
1655      * <p>All indices are specified in {@code char} values
1656      * (Unicode code units).
1657      *
1658      * @param   ch          a character (Unicode code point).
1659      * @param   fromIndex   the index to start the search from. There is no
1660      *          restriction on the value of {@code fromIndex}. If it is
1661      *          greater than or equal to the length of this string, it has
1662      *          the same effect as if it were equal to one less than the
1663      *          length of this string: this entire string may be searched.
1664      *          If it is negative, it has the same effect as if it were -1:
1665      *          -1 is returned.
1666      * @return  the index of the last occurrence of the character in the
1667      *          character sequence represented by this object that is less
1668      *          than or equal to {@code fromIndex}, or {@code -1}
1669      *          if the character does not occur before that point.
1670      */
1671     public int lastIndexOf(int ch, int fromIndex) {
1672         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1673             // handle most cases here (ch is a BMP code point or a
1674             // negative value (invalid code point))
1675             final char[] value = this.value;
1676             int i = Math.min(fromIndex, value.length - 1);
1677             for (; i >= 0; i--) {
1678                 if (value[i] == ch) {
1679                     return i;
1680                 }
1681             }
1682             return -1;
1683         } else {
1684             return lastIndexOfSupplementary(ch, fromIndex);
1685         }
1686     }
1687 
1688     /**
1689      * Handles (rare) calls of lastIndexOf with a supplementary character.
1690      */
1691     private int lastIndexOfSupplementary(int ch, int fromIndex) {
1692         if (Character.isValidCodePoint(ch)) {
1693             final char[] value = this.value;
1694             char hi = Character.highSurrogate(ch);
1695             char lo = Character.lowSurrogate(ch);
1696             int i = Math.min(fromIndex, value.length - 2);
1697             for (; i >= 0; i--) {
1698                 if (value[i] == hi && value[i + 1] == lo) {
1699                     return i;
1700                 }
1701             }
1702         }
1703         return -1;
1704     }
1705 
1706     /**
1707      * Returns the index within this string of the first occurrence of the
1708      * specified substring.
1709      *
1710      * <p>The returned index is the smallest value {@code k} for which:
1711      * <pre>{@code
1712      * this.startsWith(str, k)
1713      * }</pre>
1714      * If no such value of {@code k} exists, then {@code -1} is returned.
1715      *
1716      * @param   str   the substring to search for.
1717      * @return  the index of the first occurrence of the specified substring,
1718      *          or {@code -1} if there is no such occurrence.
1719      */
1720     @HotSpotIntrinsicCandidate
1721     public int indexOf(String str) {
1722         return indexOf(str, 0);
1723     }
1724 
1725     /**
1726      * Returns the index within this string of the first occurrence of the
1727      * specified substring, starting at the specified index.
1728      *
1729      * <p>The returned index is the smallest value {@code k} for which:
1730      * <pre>{@code
1731      *     k >= Math.min(fromIndex, this.length()) &&
1732      *                   this.startsWith(str, k)
1733      * }</pre>
1734      * If no such value of {@code k} exists, then {@code -1} is returned.
1735      *
1736      * @param   str         the substring to search for.
1737      * @param   fromIndex   the index from which to start the search.
1738      * @return  the index of the first occurrence of the specified substring,
1739      *          starting at the specified index,
1740      *          or {@code -1} if there is no such occurrence.
1741      */
1742     public int indexOf(String str, int fromIndex) {
1743         return indexOf(value, 0, value.length,
1744                 str.value, 0, str.value.length, fromIndex);
1745     }
1746 
1747     /**
1748      * Code shared by String and AbstractStringBuilder to do searches. The
1749      * source is the character array being searched, and the target
1750      * is the string being searched for.
1751      *
1752      * @param   source       the characters being searched.
1753      * @param   sourceOffset offset of the source string.
1754      * @param   sourceCount  count of the source string.
1755      * @param   target       the characters being searched for.
1756      * @param   fromIndex    the index to begin searching from.
1757      */
1758     static int indexOf(char[] source, int sourceOffset, int sourceCount,
1759             String target, int fromIndex) {
1760         return indexOf(source, sourceOffset, sourceCount,
1761                        target.value, 0, target.value.length,
1762                        fromIndex);
1763     }
1764 
1765     /**
1766      * Code shared by String and StringBuffer to do searches. The
1767      * source is the character array being searched, and the target
1768      * is the string being searched for.
1769      *
1770      * @param   source       the characters being searched.
1771      * @param   sourceOffset offset of the source string.
1772      * @param   sourceCount  count of the source string.
1773      * @param   target       the characters being searched for.
1774      * @param   targetOffset offset of the target string.
1775      * @param   targetCount  count of the target string.
1776      * @param   fromIndex    the index to begin searching from.
1777      */
1778     static int indexOf(char[] source, int sourceOffset, int sourceCount,
1779             char[] target, int targetOffset, int targetCount,
1780             int fromIndex) {
1781         if (fromIndex >= sourceCount) {
1782             return (targetCount == 0 ? sourceCount : -1);
1783         }
1784         if (fromIndex < 0) {
1785             fromIndex = 0;
1786         }
1787         if (targetCount == 0) {
1788             return fromIndex;
1789         }
1790 
1791         char first = target[targetOffset];
1792         int max = sourceOffset + (sourceCount - targetCount);
1793 
1794         for (int i = sourceOffset + fromIndex; i <= max; i++) {
1795             /* Look for first character. */
1796             if (source[i] != first) {
1797                 while (++i <= max && source[i] != first);
1798             }
1799 
1800             /* Found first character, now look at the rest of v2 */
1801             if (i <= max) {
1802                 int j = i + 1;
1803                 int end = j + targetCount - 1;
1804                 for (int k = targetOffset + 1; j < end && source[j]
1805                         == target[k]; j++, k++);
1806 
1807                 if (j == end) {
1808                     /* Found whole string. */
1809                     return i - sourceOffset;
1810                 }
1811             }
1812         }
1813         return -1;
1814     }
1815 
1816     /**
1817      * Returns the index within this string of the last occurrence of the
1818      * specified substring.  The last occurrence of the empty string ""
1819      * is considered to occur at the index value {@code this.length()}.
1820      *
1821      * <p>The returned index is the largest value {@code k} for which:
1822      * <pre>{@code
1823      * this.startsWith(str, k)
1824      * }</pre>
1825      * If no such value of {@code k} exists, then {@code -1} is returned.
1826      *
1827      * @param   str   the substring to search for.
1828      * @return  the index of the last occurrence of the specified substring,
1829      *          or {@code -1} if there is no such occurrence.
1830      */
1831     public int lastIndexOf(String str) {
1832         return lastIndexOf(str, value.length);
1833     }
1834 
1835     /**
1836      * Returns the index within this string of the last occurrence of the
1837      * specified substring, searching backward starting at the specified index.
1838      *
1839      * <p>The returned index is the largest value {@code k} for which:
1840      * <pre>{@code
1841      *     k <= Math.min(fromIndex, this.length()) &&
1842      *                   this.startsWith(str, k)
1843      * }</pre>
1844      * If no such value of {@code k} exists, then {@code -1} is returned.
1845      *
1846      * @param   str         the substring to search for.
1847      * @param   fromIndex   the index to start the search from.
1848      * @return  the index of the last occurrence of the specified substring,
1849      *          searching backward from the specified index,
1850      *          or {@code -1} if there is no such occurrence.
1851      */
1852     public int lastIndexOf(String str, int fromIndex) {
1853         return lastIndexOf(value, 0, value.length,
1854                 str.value, 0, str.value.length, fromIndex);
1855     }
1856 
1857     /**
1858      * Code shared by String and AbstractStringBuilder to do searches. The
1859      * source is the character array being searched, and the target
1860      * is the string being searched for.
1861      *
1862      * @param   source       the characters being searched.
1863      * @param   sourceOffset offset of the source string.
1864      * @param   sourceCount  count of the source string.
1865      * @param   target       the characters being searched for.
1866      * @param   fromIndex    the index to begin searching from.
1867      */
1868     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
1869             String target, int fromIndex) {
1870         return lastIndexOf(source, sourceOffset, sourceCount,
1871                        target.value, 0, target.value.length,
1872                        fromIndex);
1873     }
1874 
1875     /**
1876      * Code shared by String and StringBuffer to do searches. The
1877      * source is the character array being searched, and the target
1878      * is the string being searched for.
1879      *
1880      * @param   source       the characters being searched.
1881      * @param   sourceOffset offset of the source string.
1882      * @param   sourceCount  count of the source string.
1883      * @param   target       the characters being searched for.
1884      * @param   targetOffset offset of the target string.
1885      * @param   targetCount  count of the target string.
1886      * @param   fromIndex    the index to begin searching from.
1887      */
1888     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
1889             char[] target, int targetOffset, int targetCount,
1890             int fromIndex) {
1891         /*
1892          * Check arguments; return immediately where possible. For
1893          * consistency, don't check for null str.
1894          */
1895         int rightIndex = sourceCount - targetCount;
1896         if (fromIndex < 0) {
1897             return -1;
1898         }
1899         if (fromIndex > rightIndex) {
1900             fromIndex = rightIndex;
1901         }
1902         /* Empty string always matches. */
1903         if (targetCount == 0) {
1904             return fromIndex;
1905         }
1906 
1907         int strLastIndex = targetOffset + targetCount - 1;
1908         char strLastChar = target[strLastIndex];
1909         int min = sourceOffset + targetCount - 1;
1910         int i = min + fromIndex;
1911 
1912     startSearchForLastChar:
1913         while (true) {
1914             while (i >= min && source[i] != strLastChar) {
1915                 i--;
1916             }
1917             if (i < min) {
1918                 return -1;
1919             }
1920             int j = i - 1;
1921             int start = j - (targetCount - 1);
1922             int k = strLastIndex - 1;
1923 
1924             while (j > start) {
1925                 if (source[j--] != target[k--]) {
1926                     i--;
1927                     continue startSearchForLastChar;
1928                 }
1929             }
1930             return start - sourceOffset + 1;
1931         }
1932     }
1933 
1934     /**
1935      * Returns a string that is a substring of this string. The
1936      * substring begins with the character at the specified index and
1937      * extends to the end of this string. <p>
1938      * Examples:
1939      * <blockquote><pre>
1940      * "unhappy".substring(2) returns "happy"
1941      * "Harbison".substring(3) returns "bison"
1942      * "emptiness".substring(9) returns "" (an empty string)
1943      * </pre></blockquote>
1944      *
1945      * @param      beginIndex   the beginning index, inclusive.
1946      * @return     the specified substring.
1947      * @exception  IndexOutOfBoundsException  if
1948      *             {@code beginIndex} is negative or larger than the
1949      *             length of this {@code String} object.
1950      */
1951     public String substring(int beginIndex) {
1952         if (beginIndex <= 0) {
1953             if (beginIndex < 0) {
1954                 throw new StringIndexOutOfBoundsException(beginIndex);
1955             }
1956             return this;
1957         }
1958         int subLen = value.length - beginIndex;
1959         if (subLen < 0) {
1960             throw new StringIndexOutOfBoundsException(subLen);
1961         }
1962         return new String(value, beginIndex, subLen);
1963     }
1964 
1965     /**
1966      * Returns a string that is a substring of this string. The
1967      * substring begins at the specified {@code beginIndex} and
1968      * extends to the character at index {@code endIndex - 1}.
1969      * Thus the length of the substring is {@code endIndex-beginIndex}.
1970      * <p>
1971      * Examples:
1972      * <blockquote><pre>
1973      * "hamburger".substring(4, 8) returns "urge"
1974      * "smiles".substring(1, 5) returns "mile"
1975      * </pre></blockquote>
1976      *
1977      * @param      beginIndex   the beginning index, inclusive.
1978      * @param      endIndex     the ending index, exclusive.
1979      * @return     the specified substring.
1980      * @exception  IndexOutOfBoundsException  if the
1981      *             {@code beginIndex} is negative, or
1982      *             {@code endIndex} is larger than the length of
1983      *             this {@code String} object, or
1984      *             {@code beginIndex} is larger than
1985      *             {@code endIndex}.
1986      */
1987     public String substring(int beginIndex, int endIndex) {
1988         if (beginIndex <= 0) {
1989             if (beginIndex < 0) {
1990                 throw new StringIndexOutOfBoundsException(beginIndex);
1991             }
1992             if (endIndex == value.length) {
1993                 return this;
1994             }
1995         }
1996         if (endIndex > value.length) {
1997             throw new StringIndexOutOfBoundsException(endIndex);
1998         }
1999         int subLen = endIndex - beginIndex;
2000         if (subLen < 0) {
2001             throw new StringIndexOutOfBoundsException(subLen);
2002         }
2003         return new String(value, beginIndex, subLen);
2004     }
2005 
2006     /**
2007      * Returns a character sequence that is a subsequence of this sequence.
2008      *
2009      * <p> An invocation of this method of the form
2010      *
2011      * <blockquote><pre>
2012      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
2013      *
2014      * behaves in exactly the same way as the invocation
2015      *
2016      * <blockquote><pre>
2017      * str.substring(begin,&nbsp;end)</pre></blockquote>
2018      *
2019      * @apiNote
2020      * This method is defined so that the {@code String} class can implement
2021      * the {@link CharSequence} interface.
2022      *
2023      * @param   beginIndex   the begin index, inclusive.
2024      * @param   endIndex     the end index, exclusive.
2025      * @return  the specified subsequence.
2026      *
2027      * @throws  IndexOutOfBoundsException
2028      *          if {@code beginIndex} or {@code endIndex} is negative,
2029      *          if {@code endIndex} is greater than {@code length()},
2030      *          or if {@code beginIndex} is greater than {@code endIndex}
2031      *
2032      * @since 1.4
2033      * @spec JSR-51
2034      */
2035     public CharSequence subSequence(int beginIndex, int endIndex) {
2036         return this.substring(beginIndex, endIndex);
2037     }
2038 
2039     /**
2040      * Concatenates the specified string to the end of this string.
2041      * <p>
2042      * If the length of the argument string is {@code 0}, then this
2043      * {@code String} object is returned. Otherwise, a
2044      * {@code String} object is returned that represents a character
2045      * sequence that is the concatenation of the character sequence
2046      * represented by this {@code String} object and the character
2047      * sequence represented by the argument string.<p>
2048      * Examples:
2049      * <blockquote><pre>
2050      * "cares".concat("s") returns "caress"
2051      * "to".concat("get").concat("her") returns "together"
2052      * </pre></blockquote>
2053      *
2054      * @param   str   the {@code String} that is concatenated to the end
2055      *                of this {@code String}.
2056      * @return  a string that represents the concatenation of this object's
2057      *          characters followed by the string argument's characters.
2058      */
2059     public String concat(String str) {
2060         int otherLen = str.length();
2061         if (otherLen == 0) {
2062             return this;
2063         }
2064         int len = value.length;
2065         char[] buf = Arrays.copyOf(value, len + otherLen);
2066         str.getChars(buf, len);
2067         return new String(buf, true);
2068     }
2069 
2070     /**
2071      * Returns a string resulting from replacing all occurrences of
2072      * {@code oldChar} in this string with {@code newChar}.
2073      * <p>
2074      * If the character {@code oldChar} does not occur in the
2075      * character sequence represented by this {@code String} object,
2076      * then a reference to this {@code String} object is returned.
2077      * Otherwise, a {@code String} object is returned that
2078      * represents a character sequence identical to the character sequence
2079      * represented by this {@code String} object, except that every
2080      * occurrence of {@code oldChar} is replaced by an occurrence
2081      * of {@code newChar}.
2082      * <p>
2083      * Examples:
2084      * <blockquote><pre>
2085      * "mesquite in your cellar".replace('e', 'o')
2086      *         returns "mosquito in your collar"
2087      * "the war of baronets".replace('r', 'y')
2088      *         returns "the way of bayonets"
2089      * "sparring with a purple porpoise".replace('p', 't')
2090      *         returns "starring with a turtle tortoise"
2091      * "JonL".replace('q', 'x') returns "JonL" (no change)
2092      * </pre></blockquote>
2093      *
2094      * @param   oldChar   the old character.
2095      * @param   newChar   the new character.
2096      * @return  a string derived from this string by replacing every
2097      *          occurrence of {@code oldChar} with {@code newChar}.
2098      */
2099     public String replace(char oldChar, char newChar) {
2100         if (oldChar != newChar) {
2101             char[] val = value; /* avoid getfield opcode */
2102             int len = val.length;
2103             int i = -1;
2104 
2105             while (++i < len) {
2106                 if (val[i] == oldChar) {
2107                     break;
2108                 }
2109             }
2110             if (i < len) {
2111                 char[] buf = new char[len];
2112                 for (int j = 0; j < i; j++) {
2113                     buf[j] = val[j];
2114                 }
2115                 while (i < len) {
2116                     char c = val[i];
2117                     buf[i] = (c == oldChar) ? newChar : c;
2118                     i++;
2119                 }
2120                 return new String(buf, true);
2121             }
2122         }
2123         return this;
2124     }
2125 
2126     /**
2127      * Tells whether or not this string matches the given <a
2128      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2129      *
2130      * <p> An invocation of this method of the form
2131      * <i>str</i>{@code .matches(}<i>regex</i>{@code )} yields exactly the
2132      * same result as the expression
2133      *
2134      * <blockquote>
2135      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#matches(String,CharSequence)
2136      * matches(<i>regex</i>, <i>str</i>)}
2137      * </blockquote>
2138      *
2139      * @param   regex
2140      *          the regular expression to which this string is to be matched
2141      *
2142      * @return  {@code true} if, and only if, this string matches the
2143      *          given regular expression
2144      *
2145      * @throws  PatternSyntaxException
2146      *          if the regular expression's syntax is invalid
2147      *
2148      * @see java.util.regex.Pattern
2149      *
2150      * @since 1.4
2151      * @spec JSR-51
2152      */
2153     public boolean matches(String regex) {
2154         return Pattern.matches(regex, this);
2155     }
2156 
2157     /**
2158      * Returns true if and only if this string contains the specified
2159      * sequence of char values.
2160      *
2161      * @param s the sequence to search for
2162      * @return true if this string contains {@code s}, false otherwise
2163      * @since 1.5
2164      */
2165     public boolean contains(CharSequence s) {
2166         return indexOf(s.toString()) >= 0;
2167     }
2168 
2169     /**
2170      * Replaces the first substring of this string that matches the given <a
2171      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2172      * given replacement.
2173      *
2174      * <p> An invocation of this method of the form
2175      * <i>str</i>{@code .replaceFirst(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2176      * yields exactly the same result as the expression
2177      *
2178      * <blockquote>
2179      * <code>
2180      * {@link java.util.regex.Pattern}.{@link
2181      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2182      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2183      * java.util.regex.Matcher#replaceFirst replaceFirst}(<i>repl</i>)
2184      * </code>
2185      * </blockquote>
2186      *
2187      *<p>
2188      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2189      * replacement string may cause the results to be different than if it were
2190      * being treated as a literal replacement string; see
2191      * {@link java.util.regex.Matcher#replaceFirst}.
2192      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2193      * meaning of these characters, if desired.
2194      *
2195      * @param   regex
2196      *          the regular expression to which this string is to be matched
2197      * @param   replacement
2198      *          the string to be substituted for the first match
2199      *
2200      * @return  The resulting {@code String}
2201      *
2202      * @throws  PatternSyntaxException
2203      *          if the regular expression's syntax is invalid
2204      *
2205      * @see java.util.regex.Pattern
2206      *
2207      * @since 1.4
2208      * @spec JSR-51
2209      */
2210     public String replaceFirst(String regex, String replacement) {
2211         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
2212     }
2213 
2214     /**
2215      * Replaces each substring of this string that matches the given <a
2216      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2217      * given replacement.
2218      *
2219      * <p> An invocation of this method of the form
2220      * <i>str</i>{@code .replaceAll(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2221      * yields exactly the same result as the expression
2222      *
2223      * <blockquote>
2224      * <code>
2225      * {@link java.util.regex.Pattern}.{@link
2226      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2227      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2228      * java.util.regex.Matcher#replaceAll replaceAll}(<i>repl</i>)
2229      * </code>
2230      * </blockquote>
2231      *
2232      *<p>
2233      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2234      * replacement string may cause the results to be different than if it were
2235      * being treated as a literal replacement string; see
2236      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
2237      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2238      * meaning of these characters, if desired.
2239      *
2240      * @param   regex
2241      *          the regular expression to which this string is to be matched
2242      * @param   replacement
2243      *          the string to be substituted for each match
2244      *
2245      * @return  The resulting {@code String}
2246      *
2247      * @throws  PatternSyntaxException
2248      *          if the regular expression's syntax is invalid
2249      *
2250      * @see java.util.regex.Pattern
2251      *
2252      * @since 1.4
2253      * @spec JSR-51
2254      */
2255     public String replaceAll(String regex, String replacement) {
2256         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
2257     }
2258 
2259     /**
2260      * Replaces each substring of this string that matches the literal target
2261      * sequence with the specified literal replacement sequence. The
2262      * replacement proceeds from the beginning of the string to the end, for
2263      * example, replacing "aa" with "b" in the string "aaa" will result in
2264      * "ba" rather than "ab".
2265      *
2266      * @param  target The sequence of char values to be replaced
2267      * @param  replacement The replacement sequence of char values
2268      * @return  The resulting string
2269      * @since 1.5
2270      */
2271     public String replace(CharSequence target, CharSequence replacement) {
2272         String starget = target.toString();
2273         String srepl = replacement.toString();
2274         int j = indexOf(starget);
2275         if (j < 0) {
2276             return this;
2277         }
2278         int targLen = starget.length();
2279         int targLen1 = Math.max(targLen, 1);
2280         final char[] value = this.value;
2281         final char[] replValue = srepl.value;
2282         int newLenHint = value.length - targLen + replValue.length;
2283         if (newLenHint < 0) {
2284             throw new OutOfMemoryError();
2285         }
2286         StringBuilder sb = new StringBuilder(newLenHint);
2287         int i = 0;
2288         do {
2289             sb.append(value, i, j - i)
2290                     .append(replValue);
2291             i = j + targLen;
2292         } while (j < value.length && (j = indexOf(starget, j + targLen1)) > 0);
2293 
2294         return sb.append(value, i, value.length - i).toString();
2295     }
2296 
2297     /**
2298      * Splits this string around matches of the given
2299      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
2300      *
2301      * <p> The array returned by this method contains each substring of this
2302      * string that is terminated by another substring that matches the given
2303      * expression or is terminated by the end of the string.  The substrings in
2304      * the array are in the order in which they occur in this string.  If the
2305      * expression does not match any part of the input then the resulting array
2306      * has just one element, namely this string.
2307      *
2308      * <p> When there is a positive-width match at the beginning of this
2309      * string then an empty leading substring is included at the beginning
2310      * of the resulting array. A zero-width match at the beginning however
2311      * never produces such empty leading substring.
2312      *
2313      * <p> The {@code limit} parameter controls the number of times the
2314      * pattern is applied and therefore affects the length of the resulting
2315      * array.  If the limit <i>n</i> is greater than zero then the pattern
2316      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
2317      * length will be no greater than <i>n</i>, and the array's last entry
2318      * will contain all input beyond the last matched delimiter.  If <i>n</i>
2319      * is non-positive then the pattern will be applied as many times as
2320      * possible and the array can have any length.  If <i>n</i> is zero then
2321      * the pattern will be applied as many times as possible, the array can
2322      * have any length, and trailing empty strings will be discarded.
2323      *
2324      * <p> The string {@code "boo:and:foo"}, for example, yields the
2325      * following results with these parameters:
2326      *
2327      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split example showing regex, limit, and result">
2328      * <tr>
2329      *     <th>Regex</th>
2330      *     <th>Limit</th>
2331      *     <th>Result</th>
2332      * </tr>
2333      * <tr><td align=center>:</td>
2334      *     <td align=center>2</td>
2335      *     <td>{@code { "boo", "and:foo" }}</td></tr>
2336      * <tr><td align=center>:</td>
2337      *     <td align=center>5</td>
2338      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2339      * <tr><td align=center>:</td>
2340      *     <td align=center>-2</td>
2341      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2342      * <tr><td align=center>o</td>
2343      *     <td align=center>5</td>
2344      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2345      * <tr><td align=center>o</td>
2346      *     <td align=center>-2</td>
2347      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2348      * <tr><td align=center>o</td>
2349      *     <td align=center>0</td>
2350      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2351      * </table></blockquote>
2352      *
2353      * <p> An invocation of this method of the form
2354      * <i>str.</i>{@code split(}<i>regex</i>{@code ,}&nbsp;<i>n</i>{@code )}
2355      * yields the same result as the expression
2356      *
2357      * <blockquote>
2358      * <code>
2359      * {@link java.util.regex.Pattern}.{@link
2360      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2361      * java.util.regex.Pattern#split(java.lang.CharSequence,int) split}(<i>str</i>,&nbsp;<i>n</i>)
2362      * </code>
2363      * </blockquote>
2364      *
2365      *
2366      * @param  regex
2367      *         the delimiting regular expression
2368      *
2369      * @param  limit
2370      *         the result threshold, as described above
2371      *
2372      * @return  the array of strings computed by splitting this string
2373      *          around matches of the given regular expression
2374      *
2375      * @throws  PatternSyntaxException
2376      *          if the regular expression's syntax is invalid
2377      *
2378      * @see java.util.regex.Pattern
2379      *
2380      * @since 1.4
2381      * @spec JSR-51
2382      */
2383     public String[] split(String regex, int limit) {
2384         /* fastpath if the regex is a
2385          (1)one-char String and this character is not one of the
2386             RegEx's meta characters ".$|()[{^?*+\\", or
2387          (2)two-char String and the first char is the backslash and
2388             the second is not the ascii digit or ascii letter.
2389          */
2390         char ch = 0;
2391         if (((regex.value.length == 1 &&
2392              ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
2393              (regex.length() == 2 &&
2394               regex.charAt(0) == '\\' &&
2395               (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
2396               ((ch-'a')|('z'-ch)) < 0 &&
2397               ((ch-'A')|('Z'-ch)) < 0)) &&
2398             (ch < Character.MIN_HIGH_SURROGATE ||
2399              ch > Character.MAX_LOW_SURROGATE))
2400         {
2401             int off = 0;
2402             int next = 0;
2403             boolean limited = limit > 0;
2404             ArrayList<String> list = new ArrayList<>();
2405             while ((next = indexOf(ch, off)) != -1) {
2406                 if (!limited || list.size() < limit - 1) {
2407                     list.add(substring(off, next));
2408                     off = next + 1;
2409                 } else {    // last one
2410                     //assert (list.size() == limit - 1);
2411                     list.add(substring(off, value.length));
2412                     off = value.length;
2413                     break;
2414                 }
2415             }
2416             // If no match was found, return this
2417             if (off == 0)
2418                 return new String[]{this};
2419 
2420             // Add remaining segment
2421             if (!limited || list.size() < limit)
2422                 list.add(substring(off, value.length));
2423 
2424             // Construct result
2425             int resultSize = list.size();
2426             if (limit == 0) {
2427                 while (resultSize > 0 && list.get(resultSize - 1).length() == 0) {
2428                     resultSize--;
2429                 }
2430             }
2431             String[] result = new String[resultSize];
2432             return list.subList(0, resultSize).toArray(result);
2433         }
2434         return Pattern.compile(regex).split(this, limit);
2435     }
2436 
2437     /**
2438      * Splits this string around matches of the given <a
2439      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2440      *
2441      * <p> This method works as if by invoking the two-argument {@link
2442      * #split(String, int) split} method with the given expression and a limit
2443      * argument of zero.  Trailing empty strings are therefore not included in
2444      * the resulting array.
2445      *
2446      * <p> The string {@code "boo:and:foo"}, for example, yields the following
2447      * results with these expressions:
2448      *
2449      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split examples showing regex and result">
2450      * <tr>
2451      *  <th>Regex</th>
2452      *  <th>Result</th>
2453      * </tr>
2454      * <tr><td align=center>:</td>
2455      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2456      * <tr><td align=center>o</td>
2457      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2458      * </table></blockquote>
2459      *
2460      *
2461      * @param  regex
2462      *         the delimiting regular expression
2463      *
2464      * @return  the array of strings computed by splitting this string
2465      *          around matches of the given regular expression
2466      *
2467      * @throws  PatternSyntaxException
2468      *          if the regular expression's syntax is invalid
2469      *
2470      * @see java.util.regex.Pattern
2471      *
2472      * @since 1.4
2473      * @spec JSR-51
2474      */
2475     public String[] split(String regex) {
2476         return split(regex, 0);
2477     }
2478 
2479     /**
2480      * Returns a new String composed of copies of the
2481      * {@code CharSequence elements} joined together with a copy of
2482      * the specified {@code delimiter}.
2483      *
2484      * <blockquote>For example,
2485      * <pre>{@code
2486      *     String message = String.join("-", "Java", "is", "cool");
2487      *     // message returned is: "Java-is-cool"
2488      * }</pre></blockquote>
2489      *
2490      * Note that if an element is null, then {@code "null"} is added.
2491      *
2492      * @param  delimiter the delimiter that separates each element
2493      * @param  elements the elements to join together.
2494      *
2495      * @return a new {@code String} that is composed of the {@code elements}
2496      *         separated by the {@code delimiter}
2497      *
2498      * @throws NullPointerException If {@code delimiter} or {@code elements}
2499      *         is {@code null}
2500      *
2501      * @see java.util.StringJoiner
2502      * @since 1.8
2503      */
2504     public static String join(CharSequence delimiter, CharSequence... elements) {
2505         Objects.requireNonNull(delimiter);
2506         Objects.requireNonNull(elements);
2507         // Number of elements not likely worth Arrays.stream overhead.
2508         StringJoiner joiner = new StringJoiner(delimiter);
2509         for (CharSequence cs: elements) {
2510             joiner.add(cs);
2511         }
2512         return joiner.toString();
2513     }
2514 
2515     /**
2516      * Returns a new {@code String} composed of copies of the
2517      * {@code CharSequence elements} joined together with a copy of the
2518      * specified {@code delimiter}.
2519      *
2520      * <blockquote>For example,
2521      * <pre>{@code
2522      *     List<String> strings = new LinkedList<>();
2523      *     strings.add("Java");strings.add("is");
2524      *     strings.add("cool");
2525      *     String message = String.join(" ", strings);
2526      *     //message returned is: "Java is cool"
2527      *
2528      *     Set<String> strings = new LinkedHashSet<>();
2529      *     strings.add("Java"); strings.add("is");
2530      *     strings.add("very"); strings.add("cool");
2531      *     String message = String.join("-", strings);
2532      *     //message returned is: "Java-is-very-cool"
2533      * }</pre></blockquote>
2534      *
2535      * Note that if an individual element is {@code null}, then {@code "null"} is added.
2536      *
2537      * @param  delimiter a sequence of characters that is used to separate each
2538      *         of the {@code elements} in the resulting {@code String}
2539      * @param  elements an {@code Iterable} that will have its {@code elements}
2540      *         joined together.
2541      *
2542      * @return a new {@code String} that is composed from the {@code elements}
2543      *         argument
2544      *
2545      * @throws NullPointerException If {@code delimiter} or {@code elements}
2546      *         is {@code null}
2547      *
2548      * @see    #join(CharSequence,CharSequence...)
2549      * @see    java.util.StringJoiner
2550      * @since 1.8
2551      */
2552     public static String join(CharSequence delimiter,
2553             Iterable<? extends CharSequence> elements) {
2554         Objects.requireNonNull(delimiter);
2555         Objects.requireNonNull(elements);
2556         StringJoiner joiner = new StringJoiner(delimiter);
2557         for (CharSequence cs: elements) {
2558             joiner.add(cs);
2559         }
2560         return joiner.toString();
2561     }
2562 
2563     /**
2564      * Converts all of the characters in this {@code String} to lower
2565      * case using the rules of the given {@code Locale}.  Case mapping is based
2566      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2567      * class. Since case mappings are not always 1:1 char mappings, the resulting
2568      * {@code String} may be a different length than the original {@code String}.
2569      * <p>
2570      * Examples of lowercase  mappings are in the following table:
2571      * <table border="1" summary="Lowercase mapping examples showing language code of locale, upper case, lower case, and description">
2572      * <tr>
2573      *   <th>Language Code of Locale</th>
2574      *   <th>Upper Case</th>
2575      *   <th>Lower Case</th>
2576      *   <th>Description</th>
2577      * </tr>
2578      * <tr>
2579      *   <td>tr (Turkish)</td>
2580      *   <td>\u0130</td>
2581      *   <td>\u0069</td>
2582      *   <td>capital letter I with dot above -&gt; small letter i</td>
2583      * </tr>
2584      * <tr>
2585      *   <td>tr (Turkish)</td>
2586      *   <td>\u0049</td>
2587      *   <td>\u0131</td>
2588      *   <td>capital letter I -&gt; small letter dotless i </td>
2589      * </tr>
2590      * <tr>
2591      *   <td>(all)</td>
2592      *   <td>French Fries</td>
2593      *   <td>french fries</td>
2594      *   <td>lowercased all chars in String</td>
2595      * </tr>
2596      * <tr>
2597      *   <td>(all)</td>
2598      *   <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi">
2599      *       <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil">
2600      *       <img src="doc-files/capsigma.gif" alt="capsigma"></td>
2601      *   <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi">
2602      *       <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon">
2603      *       <img src="doc-files/sigma1.gif" alt="sigma"></td>
2604      *   <td>lowercased all chars in String</td>
2605      * </tr>
2606      * </table>
2607      *
2608      * @param locale use the case transformation rules for this locale
2609      * @return the {@code String}, converted to lowercase.
2610      * @see     java.lang.String#toLowerCase()
2611      * @see     java.lang.String#toUpperCase()
2612      * @see     java.lang.String#toUpperCase(Locale)
2613      * @since   1.1
2614      */
2615     public String toLowerCase(Locale locale) {
2616         if (locale == null) {
2617             throw new NullPointerException();
2618         }
2619         int first;
2620         boolean hasSurr = false;
2621         final int len = value.length;
2622 
2623         // Now check if there are any characters that need to be changed, or are surrogate
2624         for (first = 0 ; first < len; first++) {
2625             int cp = (int)value[first];
2626             if (Character.isSurrogate((char)cp)) {
2627                 hasSurr = true;
2628                 break;
2629             }
2630             if (cp != Character.toLowerCase(cp)) {  // no need to check Character.ERROR
2631                 break;
2632             }
2633         }
2634         if (first == len)
2635             return this;
2636         char[] result = new char[len];
2637         System.arraycopy(value, 0, result, 0, first);  // Just copy the first few
2638                                                        // lowerCase characters.
2639         String lang = locale.getLanguage();
2640         if (lang == "tr" || lang == "az" || lang == "lt") {
2641             return toLowerCaseEx(result, first, locale, true);
2642         }
2643         if (hasSurr) {
2644             return toLowerCaseEx(result, first, locale, false);
2645         }
2646         for (int i = first; i < len; i++) {
2647             int cp = (int)value[i];
2648             if (cp == '\u03A3' ||                       // GREEK CAPITAL LETTER SIGMA
2649                 Character.isSurrogate((char)cp)) {
2650                 return toLowerCaseEx(result, i, locale, false);
2651             }
2652             if (cp == '\u0130') {                       // LATIN CAPITAL LETTER I WITH DOT ABOVE
2653                 return toLowerCaseEx(result, i, locale, true);
2654             }
2655             cp = Character.toLowerCase(cp);
2656             if (!Character.isBmpCodePoint(cp)) {
2657                 return toLowerCaseEx(result, i, locale, false);
2658             }
2659             result[i] = (char)cp;
2660         }
2661         return new String(result, true);
2662     }
2663 
2664     private String toLowerCaseEx(char[] result, int first, Locale locale, boolean localeDependent) {
2665         int resultOffset = first;
2666         int srcCount;
2667         for (int i = first; i < value.length; i += srcCount) {
2668             int srcChar = (int)value[i];
2669             int lowerChar;
2670             char[] lowerCharArray;
2671             srcCount = 1;
2672             if (Character.isSurrogate((char)srcChar)) {
2673                 srcChar = codePointAt(i);
2674                 srcCount = Character.charCount(srcChar);
2675             }
2676             if (localeDependent || srcChar == '\u03A3') { // GREEK CAPITAL LETTER SIGMA
2677                 lowerChar = ConditionalSpecialCasing.toLowerCaseEx(this, i, locale);
2678             } else {
2679                 lowerChar = Character.toLowerCase(srcChar);
2680             }
2681             if (Character.isBmpCodePoint(lowerChar)) {    // Character.ERROR is not a bmp
2682                 result[resultOffset++] = (char)lowerChar;
2683             } else {
2684                 if (lowerChar == Character.ERROR) {
2685                     lowerCharArray = ConditionalSpecialCasing.toLowerCaseCharArray(this, i, locale);
2686                 } else if (srcCount == 2) {
2687                     resultOffset += Character.toChars(lowerChar, result, resultOffset);
2688                     continue;
2689                 } else {
2690                     lowerCharArray = Character.toChars(lowerChar);
2691                 }
2692                 /* Grow result if needed */
2693                 int mapLen = lowerCharArray.length;
2694                 if (mapLen > srcCount) {
2695                     char[] result2 = new char[result.length + mapLen - srcCount];
2696                     System.arraycopy(result, 0, result2, 0, resultOffset);
2697                     result = result2;
2698                 }
2699                 for (int x = 0; x < mapLen; ++x) {
2700                     result[resultOffset++] = lowerCharArray[x];
2701                 }
2702             }
2703         }
2704         return new String(result, 0, resultOffset);
2705     }
2706 
2707     /**
2708      * Converts all of the characters in this {@code String} to lower
2709      * case using the rules of the default locale. This is equivalent to calling
2710      * {@code toLowerCase(Locale.getDefault())}.
2711      * <p>
2712      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2713      * results if used for strings that are intended to be interpreted locale
2714      * independently.
2715      * Examples are programming language identifiers, protocol keys, and HTML
2716      * tags.
2717      * For instance, {@code "TITLE".toLowerCase()} in a Turkish locale
2718      * returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the
2719      * LATIN SMALL LETTER DOTLESS I character.
2720      * To obtain correct results for locale insensitive strings, use
2721      * {@code toLowerCase(Locale.ROOT)}.
2722      *
2723      * @return  the {@code String}, converted to lowercase.
2724      * @see     java.lang.String#toLowerCase(Locale)
2725      */
2726     public String toLowerCase() {
2727         return toLowerCase(Locale.getDefault());
2728     }
2729 
2730     /**
2731      * Converts all of the characters in this {@code String} to upper
2732      * case using the rules of the given {@code Locale}. Case mapping is based
2733      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2734      * class. Since case mappings are not always 1:1 char mappings, the resulting
2735      * {@code String} may be a different length than the original {@code String}.
2736      * <p>
2737      * Examples of locale-sensitive and 1:M case mappings are in the following table.
2738      *
2739      * <table border="1" summary="Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.">
2740      * <tr>
2741      *   <th>Language Code of Locale</th>
2742      *   <th>Lower Case</th>
2743      *   <th>Upper Case</th>
2744      *   <th>Description</th>
2745      * </tr>
2746      * <tr>
2747      *   <td>tr (Turkish)</td>
2748      *   <td>\u0069</td>
2749      *   <td>\u0130</td>
2750      *   <td>small letter i -&gt; capital letter I with dot above</td>
2751      * </tr>
2752      * <tr>
2753      *   <td>tr (Turkish)</td>
2754      *   <td>\u0131</td>
2755      *   <td>\u0049</td>
2756      *   <td>small letter dotless i -&gt; capital letter I</td>
2757      * </tr>
2758      * <tr>
2759      *   <td>(all)</td>
2760      *   <td>\u00df</td>
2761      *   <td>\u0053 \u0053</td>
2762      *   <td>small letter sharp s -&gt; two letters: SS</td>
2763      * </tr>
2764      * <tr>
2765      *   <td>(all)</td>
2766      *   <td>Fahrvergn&uuml;gen</td>
2767      *   <td>FAHRVERGN&Uuml;GEN</td>
2768      *   <td></td>
2769      * </tr>
2770      * </table>
2771      * @param locale use the case transformation rules for this locale
2772      * @return the {@code String}, converted to uppercase.
2773      * @see     java.lang.String#toUpperCase()
2774      * @see     java.lang.String#toLowerCase()
2775      * @see     java.lang.String#toLowerCase(Locale)
2776      * @since   1.1
2777      */
2778     public String toUpperCase(Locale locale) {
2779         if (locale == null) {
2780             throw new NullPointerException();
2781         }
2782         int first;
2783         boolean hasSurr = false;
2784         final int len = value.length;
2785 
2786         // Now check if there are any characters that need to be changed, or are surrogate
2787         for (first = 0 ; first < len; first++ ) {
2788             int cp = (int)value[first];
2789             if (Character.isSurrogate((char)cp)) {
2790                 hasSurr = true;
2791                 break;
2792             }
2793             if (cp != Character.toUpperCaseEx(cp)) {   // no need to check Character.ERROR
2794                 break;
2795             }
2796         }
2797         if (first == len) {
2798             return this;
2799         }
2800         char[] result = new char[len];
2801         System.arraycopy(value, 0, result, 0, first);  // Just copy the first few
2802                                                        // upperCase characters.
2803         String lang = locale.getLanguage();
2804         if (lang == "tr" || lang == "az" || lang == "lt") {
2805             return toUpperCaseEx(result, first, locale, true);
2806         }
2807         if (hasSurr) {
2808             return toUpperCaseEx(result, first, locale, false);
2809         }
2810         for (int i = first; i < len; i++) {
2811             int cp = (int)value[i];
2812             if (Character.isSurrogate((char)cp)) {
2813                 return toUpperCaseEx(result, i, locale, false);
2814             }
2815             cp = Character.toUpperCaseEx(cp);
2816             if (!Character.isBmpCodePoint(cp)) {    // Character.ERROR is not bmp
2817                 return toUpperCaseEx(result, i, locale, false);
2818             }
2819             result[i] = (char)cp;
2820         }
2821         return new String(result, true);
2822     }
2823 
2824     private String toUpperCaseEx(char[] result, int first, Locale locale,
2825                                  boolean localeDependent) {
2826         int resultOffset = first;
2827         int srcCount;
2828         for (int i = first; i < value.length; i += srcCount) {
2829             int srcChar = (int)value[i];
2830             int upperChar;
2831             char[] upperCharArray;
2832             srcCount = 1;
2833             if (Character.isSurrogate((char)srcChar)) {
2834                 srcChar = codePointAt(i);
2835                 srcCount = Character.charCount(srcChar);
2836             }
2837             if (localeDependent) {
2838                 upperChar = ConditionalSpecialCasing.toUpperCaseEx(this, i, locale);
2839             } else {
2840                 upperChar = Character.toUpperCaseEx(srcChar);
2841             }
2842             if (Character.isBmpCodePoint(upperChar)) {
2843                 result[resultOffset++] = (char)upperChar;
2844             } else {
2845                 if (upperChar == Character.ERROR) {
2846                     if (localeDependent) {
2847                         upperCharArray =
2848                             ConditionalSpecialCasing.toUpperCaseCharArray(this, i, locale);
2849                     } else {
2850                         upperCharArray = Character.toUpperCaseCharArray(srcChar);
2851                     }
2852                 } else if (srcCount == 2) {
2853                     resultOffset += Character.toChars(upperChar, result, resultOffset);
2854                     continue;
2855                 } else {
2856                     upperCharArray = Character.toChars(upperChar);
2857                 }
2858                 /* Grow result if needed */
2859                 int mapLen = upperCharArray.length;
2860                 if (mapLen > srcCount) {
2861                     char[] result2 = new char[result.length + mapLen - srcCount];
2862                     System.arraycopy(result, 0, result2, 0, resultOffset);
2863                     result = result2;
2864                  }
2865                  for (int x = 0; x < mapLen; ++x) {
2866                     result[resultOffset++] = upperCharArray[x];
2867                  }
2868             }
2869         }
2870         return new String(result, 0, resultOffset);
2871     }
2872 
2873     /**
2874      * Converts all of the characters in this {@code String} to upper
2875      * case using the rules of the default locale. This method is equivalent to
2876      * {@code toUpperCase(Locale.getDefault())}.
2877      * <p>
2878      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2879      * results if used for strings that are intended to be interpreted locale
2880      * independently.
2881      * Examples are programming language identifiers, protocol keys, and HTML
2882      * tags.
2883      * For instance, {@code "title".toUpperCase()} in a Turkish locale
2884      * returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the
2885      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
2886      * To obtain correct results for locale insensitive strings, use
2887      * {@code toUpperCase(Locale.ROOT)}.
2888      *
2889      * @return  the {@code String}, converted to uppercase.
2890      * @see     java.lang.String#toUpperCase(Locale)
2891      */
2892     public String toUpperCase() {
2893         return toUpperCase(Locale.getDefault());
2894     }
2895 
2896     /**
2897      * Returns a string whose value is this string, with any leading and trailing
2898      * whitespace removed.
2899      * <p>
2900      * If this {@code String} object represents an empty character
2901      * sequence, or the first and last characters of character sequence
2902      * represented by this {@code String} object both have codes
2903      * greater than {@code '\u005Cu0020'} (the space character), then a
2904      * reference to this {@code String} object is returned.
2905      * <p>
2906      * Otherwise, if there is no character with a code greater than
2907      * {@code '\u005Cu0020'} in the string, then a
2908      * {@code String} object representing an empty string is
2909      * returned.
2910      * <p>
2911      * Otherwise, let <i>k</i> be the index of the first character in the
2912      * string whose code is greater than {@code '\u005Cu0020'}, and let
2913      * <i>m</i> be the index of the last character in the string whose code
2914      * is greater than {@code '\u005Cu0020'}. A {@code String}
2915      * object is returned, representing the substring of this string that
2916      * begins with the character at index <i>k</i> and ends with the
2917      * character at index <i>m</i>-that is, the result of
2918      * {@code this.substring(k, m + 1)}.
2919      * <p>
2920      * This method may be used to trim whitespace (as defined above) from
2921      * the beginning and end of a string.
2922      *
2923      * @return  A string whose value is this string, with any leading and trailing white
2924      *          space removed, or this string if it has no leading or
2925      *          trailing white space.
2926      */
2927     public String trim() {
2928         char[] val = value;    /* avoid getfield opcode */
2929         int end = val.length;
2930         int beg = 0;
2931 
2932         while ((beg < end) && (val[beg] <= ' ')) {
2933             beg++;
2934         }
2935         while ((beg < end) && (val[end - 1] <= ' ')) {
2936             end--;
2937         }
2938         return substring(beg, end);
2939     }
2940 
2941     /**
2942      * This object (which is already a string!) is itself returned.
2943      *
2944      * @return  the string itself.
2945      */
2946     public String toString() {
2947         return this;
2948     }
2949 
2950     static class IntCharArraySpliterator implements Spliterator.OfInt {
2951         private final char[] array;
2952         private int index;        // current index, modified on advance/split
2953         private final int fence;  // one past last index
2954         private final int cs;
2955 
2956         IntCharArraySpliterator(char[] array, int acs) {
2957             this(array, 0, array.length, acs);
2958         }
2959 
2960         IntCharArraySpliterator(char[] array, int origin, int fence, int acs) {
2961             this.array = array;
2962             this.index = origin;
2963             this.fence = fence;
2964             this.cs = acs | Spliterator.ORDERED | Spliterator.SIZED
2965                       | Spliterator.SUBSIZED;
2966         }
2967 
2968         @Override
2969         public OfInt trySplit() {
2970             int lo = index, mid = (lo + fence) >>> 1;
2971             return (lo >= mid)
2972                    ? null
2973                    : new IntCharArraySpliterator(array, lo, index = mid, cs);
2974         }
2975 
2976         @Override
2977         public void forEachRemaining(IntConsumer action) {
2978             char[] a; int i, hi; // hoist accesses and checks from loop
2979             if (action == null)
2980                 throw new NullPointerException();
2981             if ((a = array).length >= (hi = fence) &&
2982                 (i = index) >= 0 && i < (index = hi)) {
2983                 do { action.accept(a[i]); } while (++i < hi);
2984             }
2985         }
2986 
2987         @Override
2988         public boolean tryAdvance(IntConsumer action) {
2989             if (action == null)
2990                 throw new NullPointerException();
2991             if (index >= 0 && index < fence) {
2992                 action.accept(array[index++]);
2993                 return true;
2994             }
2995             return false;
2996         }
2997 
2998         @Override
2999         public long estimateSize() { return (long)(fence - index); }
3000 
3001         @Override
3002         public int characteristics() {
3003             return cs;
3004         }
3005     }
3006 
3007     /**
3008      * Returns a stream of {@code int} zero-extending the {@code char} values
3009      * from this sequence.  Any char which maps to a <a
3010      * href="{@docRoot}/java/lang/Character.html#unicode">surrogate code
3011      * point</a> is passed through uninterpreted.
3012      *
3013      * @return an IntStream of char values from this sequence
3014      * @since 1.9
3015      */
3016     @Override
3017     public IntStream chars() {
3018         return StreamSupport.intStream(
3019                 new IntCharArraySpliterator(value, Spliterator.IMMUTABLE), false);
3020     }
3021 
3022     static class CodePointsSpliterator implements Spliterator.OfInt {
3023         private final char[] array;
3024         private int index;        // current index, modified on advance/split
3025         private final int fence;  // one past last index
3026         private final int cs;
3027 
3028         CodePointsSpliterator(char[] array, int acs) {
3029             this(array, 0, array.length, acs);
3030         }
3031 
3032         CodePointsSpliterator(char[] array, int origin, int fence, int acs) {
3033             this.array = array;
3034             this.index = origin;
3035             this.fence = fence;
3036             this.cs = acs | Spliterator.ORDERED;
3037         }
3038 
3039         @Override
3040         public OfInt trySplit() {
3041             int lo = index, mid = (lo + fence) >>> 1;
3042             if (lo >= mid)
3043                 return null;
3044 
3045             int midOneLess;
3046             // If the mid-point intersects a surrogate pair
3047             if (Character.isLowSurrogate(array[mid]) &&
3048                 Character.isHighSurrogate(array[midOneLess = (mid -1)])) {
3049                 // If there is only one pair it cannot be split
3050                 if (lo >= midOneLess)
3051                     return null;
3052                 // Shift the mid-point to align with the surrogate pair
3053                 return new CodePointsSpliterator(array, lo, index = midOneLess, cs);
3054             }
3055             return new CodePointsSpliterator(array, lo, index = mid, cs);
3056         }
3057 
3058         @Override
3059         public void forEachRemaining(IntConsumer action) {
3060             char[] a; int i, hi; // hoist accesses and checks from loop
3061             if (action == null)
3062                 throw new NullPointerException();
3063             if ((a = array).length >= (hi = fence) &&
3064                 (i = index) >= 0 && i < (index = hi)) {
3065                 do {
3066                     i = advance(a, i, hi, action);
3067                 } while (i < hi);
3068             }
3069         }
3070 
3071         @Override
3072         public boolean tryAdvance(IntConsumer action) {
3073             if (action == null)
3074                 throw new NullPointerException();
3075             if (index >= 0 && index < fence) {
3076                 index = advance(array, index, fence, action);
3077                 return true;
3078             }
3079             return false;
3080         }
3081 
3082         // Advance one code point from the index, i, and return the next
3083         // index to advance from
3084         private static int advance(char[] a, int i, int hi, IntConsumer action) {
3085             char c1 = a[i++];
3086             int cp = c1;
3087             if (Character.isHighSurrogate(c1) && i < hi) {
3088                 char c2 = a[i];
3089                 if (Character.isLowSurrogate(c2)) {
3090                     i++;
3091                     cp = Character.toCodePoint(c1, c2);
3092                 }
3093             }
3094             action.accept(cp);
3095             return i;
3096         }
3097 
3098         @Override
3099         public long estimateSize() { return (long)(fence - index); }
3100 
3101         @Override
3102         public int characteristics() {
3103             return cs;
3104         }
3105     }
3106 
3107     /**
3108      * Returns a stream of code point values from this sequence.  Any surrogate
3109      * pairs encountered in the sequence are combined as if by {@linkplain
3110      * Character#toCodePoint Character.toCodePoint} and the result is passed
3111      * to the stream. Any other code units, including ordinary BMP characters,
3112      * unpaired surrogates, and undefined code units, are zero-extended to
3113      * {@code int} values which are then passed to the stream.
3114      *
3115      * @return an IntStream of Unicode code points from this sequence
3116      * @since 1.9
3117      */
3118     @Override
3119     public IntStream codePoints() {
3120         return StreamSupport.intStream(
3121                 new CodePointsSpliterator(value, Spliterator.IMMUTABLE), false);
3122     }
3123 
3124     /**
3125      * Converts this string to a new character array.
3126      *
3127      * @return  a newly allocated character array whose length is the length
3128      *          of this string and whose contents are initialized to contain
3129      *          the character sequence represented by this string.
3130      */
3131     public char[] toCharArray() {
3132         // Cannot use Arrays.copyOf because of class initialization order issues
3133         char[] result = new char[value.length];
3134         System.arraycopy(value, 0, result, 0, value.length);
3135         return result;
3136     }
3137 
3138     /**
3139      * Returns a formatted string using the specified format string and
3140      * arguments.
3141      *
3142      * <p> The locale always used is the one returned by {@link
3143      * java.util.Locale#getDefault() Locale.getDefault()}.
3144      *
3145      * @param  format
3146      *         A <a href="../util/Formatter.html#syntax">format string</a>
3147      *
3148      * @param  args
3149      *         Arguments referenced by the format specifiers in the format
3150      *         string.  If there are more arguments than format specifiers, the
3151      *         extra arguments are ignored.  The number of arguments is
3152      *         variable and may be zero.  The maximum number of arguments is
3153      *         limited by the maximum dimension of a Java array as defined by
3154      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
3155      *         The behaviour on a
3156      *         {@code null} argument depends on the <a
3157      *         href="../util/Formatter.html#syntax">conversion</a>.
3158      *
3159      * @throws  java.util.IllegalFormatException
3160      *          If a format string contains an illegal syntax, a format
3161      *          specifier that is incompatible with the given arguments,
3162      *          insufficient arguments given the format string, or other
3163      *          illegal conditions.  For specification of all possible
3164      *          formatting errors, see the <a
3165      *          href="../util/Formatter.html#detail">Details</a> section of the
3166      *          formatter class specification.
3167      *
3168      * @return  A formatted string
3169      *
3170      * @see  java.util.Formatter
3171      * @since  1.5
3172      */
3173     public static String format(String format, Object... args) {
3174         return new Formatter().format(format, args).toString();
3175     }
3176 
3177     /**
3178      * Returns a formatted string using the specified locale, format string,
3179      * and arguments.
3180      *
3181      * @param  l
3182      *         The {@linkplain java.util.Locale locale} to apply during
3183      *         formatting.  If {@code l} is {@code null} then no localization
3184      *         is applied.
3185      *
3186      * @param  format
3187      *         A <a href="../util/Formatter.html#syntax">format string</a>
3188      *
3189      * @param  args
3190      *         Arguments referenced by the format specifiers in the format
3191      *         string.  If there are more arguments than format specifiers, the
3192      *         extra arguments are ignored.  The number of arguments is
3193      *         variable and may be zero.  The maximum number of arguments is
3194      *         limited by the maximum dimension of a Java array as defined by
3195      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
3196      *         The behaviour on a
3197      *         {@code null} argument depends on the
3198      *         <a href="../util/Formatter.html#syntax">conversion</a>.
3199      *
3200      * @throws  java.util.IllegalFormatException
3201      *          If a format string contains an illegal syntax, a format
3202      *          specifier that is incompatible with the given arguments,
3203      *          insufficient arguments given the format string, or other
3204      *          illegal conditions.  For specification of all possible
3205      *          formatting errors, see the <a
3206      *          href="../util/Formatter.html#detail">Details</a> section of the
3207      *          formatter class specification
3208      *
3209      * @return  A formatted string
3210      *
3211      * @see  java.util.Formatter
3212      * @since  1.5
3213      */
3214     public static String format(Locale l, String format, Object... args) {
3215         return new Formatter(l).format(format, args).toString();
3216     }
3217 
3218     /**
3219      * Returns the string representation of the {@code Object} argument.
3220      *
3221      * @param   obj   an {@code Object}.
3222      * @return  if the argument is {@code null}, then a string equal to
3223      *          {@code "null"}; otherwise, the value of
3224      *          {@code obj.toString()} is returned.
3225      * @see     java.lang.Object#toString()
3226      */
3227     public static String valueOf(Object obj) {
3228         return (obj == null) ? "null" : obj.toString();
3229     }
3230 
3231     /**
3232      * Returns the string representation of the {@code char} array
3233      * argument. The contents of the character array are copied; subsequent
3234      * modification of the character array does not affect the returned
3235      * string.
3236      *
3237      * @param   data     the character array.
3238      * @return  a {@code String} that contains the characters of the
3239      *          character array.
3240      */
3241     public static String valueOf(char data[]) {
3242         return new String(data);
3243     }
3244 
3245     /**
3246      * Returns the string representation of a specific subarray of the
3247      * {@code char} array argument.
3248      * <p>
3249      * The {@code offset} argument is the index of the first
3250      * character of the subarray. The {@code count} argument
3251      * specifies the length of the subarray. The contents of the subarray
3252      * are copied; subsequent modification of the character array does not
3253      * affect the returned string.
3254      *
3255      * @param   data     the character array.
3256      * @param   offset   initial offset of the subarray.
3257      * @param   count    length of the subarray.
3258      * @return  a {@code String} that contains the characters of the
3259      *          specified subarray of the character array.
3260      * @exception IndexOutOfBoundsException if {@code offset} is
3261      *          negative, or {@code count} is negative, or
3262      *          {@code offset+count} is larger than
3263      *          {@code data.length}.
3264      */
3265     public static String valueOf(char data[], int offset, int count) {
3266         return new String(data, offset, count);
3267     }
3268 
3269     /**
3270      * Equivalent to {@link #valueOf(char[], int, int)}.
3271      *
3272      * @param   data     the character array.
3273      * @param   offset   initial offset of the subarray.
3274      * @param   count    length of the subarray.
3275      * @return  a {@code String} that contains the characters of the
3276      *          specified subarray of the character array.
3277      * @exception IndexOutOfBoundsException if {@code offset} is
3278      *          negative, or {@code count} is negative, or
3279      *          {@code offset+count} is larger than
3280      *          {@code data.length}.
3281      */
3282     public static String copyValueOf(char data[], int offset, int count) {
3283         return new String(data, offset, count);
3284     }
3285 
3286     /**
3287      * Equivalent to {@link #valueOf(char[])}.
3288      *
3289      * @param   data   the character array.
3290      * @return  a {@code String} that contains the characters of the
3291      *          character array.
3292      */
3293     public static String copyValueOf(char data[]) {
3294         return new String(data);
3295     }
3296 
3297     /**
3298      * Returns the string representation of the {@code boolean} argument.
3299      *
3300      * @param   b   a {@code boolean}.
3301      * @return  if the argument is {@code true}, a string equal to
3302      *          {@code "true"} is returned; otherwise, a string equal to
3303      *          {@code "false"} is returned.
3304      */
3305     public static String valueOf(boolean b) {
3306         return b ? "true" : "false";
3307     }
3308 
3309     /**
3310      * Returns the string representation of the {@code char}
3311      * argument.
3312      *
3313      * @param   c   a {@code char}.
3314      * @return  a string of length {@code 1} containing
3315      *          as its single character the argument {@code c}.
3316      */
3317     public static String valueOf(char c) {
3318         return new String(new char[]{c}, true);
3319     }
3320 
3321     /**
3322      * Returns the string representation of the {@code int} argument.
3323      * <p>
3324      * The representation is exactly the one returned by the
3325      * {@code Integer.toString} method of one argument.
3326      *
3327      * @param   i   an {@code int}.
3328      * @return  a string representation of the {@code int} argument.
3329      * @see     java.lang.Integer#toString(int, int)
3330      */
3331     public static String valueOf(int i) {
3332         return Integer.toString(i);
3333     }
3334 
3335     /**
3336      * Returns the string representation of the {@code long} argument.
3337      * <p>
3338      * The representation is exactly the one returned by the
3339      * {@code Long.toString} method of one argument.
3340      *
3341      * @param   l   a {@code long}.
3342      * @return  a string representation of the {@code long} argument.
3343      * @see     java.lang.Long#toString(long)
3344      */
3345     public static String valueOf(long l) {
3346         return Long.toString(l);
3347     }
3348 
3349     /**
3350      * Returns the string representation of the {@code float} argument.
3351      * <p>
3352      * The representation is exactly the one returned by the
3353      * {@code Float.toString} method of one argument.
3354      *
3355      * @param   f   a {@code float}.
3356      * @return  a string representation of the {@code float} argument.
3357      * @see     java.lang.Float#toString(float)
3358      */
3359     public static String valueOf(float f) {
3360         return Float.toString(f);
3361     }
3362 
3363     /**
3364      * Returns the string representation of the {@code double} argument.
3365      * <p>
3366      * The representation is exactly the one returned by the
3367      * {@code Double.toString} method of one argument.
3368      *
3369      * @param   d   a {@code double}.
3370      * @return  a  string representation of the {@code double} argument.
3371      * @see     java.lang.Double#toString(double)
3372      */
3373     public static String valueOf(double d) {
3374         return Double.toString(d);
3375     }
3376 
3377     /**
3378      * Returns a canonical representation for the string object.
3379      * <p>
3380      * A pool of strings, initially empty, is maintained privately by the
3381      * class {@code String}.
3382      * <p>
3383      * When the intern method is invoked, if the pool already contains a
3384      * string equal to this {@code String} object as determined by
3385      * the {@link #equals(Object)} method, then the string from the pool is
3386      * returned. Otherwise, this {@code String} object is added to the
3387      * pool and a reference to this {@code String} object is returned.
3388      * <p>
3389      * It follows that for any two strings {@code s} and {@code t},
3390      * {@code s.intern() == t.intern()} is {@code true}
3391      * if and only if {@code s.equals(t)} is {@code true}.
3392      * <p>
3393      * All literal strings and string-valued constant expressions are
3394      * interned. String literals are defined in section 3.10.5 of the
3395      * <cite>The Java&trade; Language Specification</cite>.
3396      *
3397      * @return  a string that has the same contents as this string, but is
3398      *          guaranteed to be from a pool of unique strings.
3399      */
3400     public native String intern();
3401 }