1 /*
   2  * Copyright (c) 2008, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.access.SharedSecrets;
  29 import jdk.internal.module.IllegalAccessLogger;
  30 import jdk.internal.org.objectweb.asm.ClassReader;
  31 import jdk.internal.reflect.CallerSensitive;
  32 import jdk.internal.reflect.Reflection;
  33 import jdk.internal.vm.annotation.ForceInline;
  34 import sun.invoke.util.ValueConversions;
  35 import sun.invoke.util.VerifyAccess;
  36 import sun.invoke.util.Wrapper;
  37 import sun.reflect.misc.ReflectUtil;
  38 import sun.security.util.SecurityConstants;
  39 
  40 import java.lang.invoke.LambdaForm.BasicType;
  41 import java.lang.reflect.Constructor;
  42 import java.lang.reflect.Field;
  43 import java.lang.reflect.Member;
  44 import java.lang.reflect.Method;
  45 import java.lang.reflect.Modifier;
  46 import java.lang.reflect.ReflectPermission;
  47 import java.nio.ByteOrder;
  48 import java.security.AccessController;
  49 import java.security.PrivilegedAction;
  50 import java.security.ProtectionDomain;
  51 import java.util.ArrayList;
  52 import java.util.Arrays;
  53 import java.util.BitSet;
  54 import java.util.Iterator;
  55 import java.util.List;
  56 import java.util.Objects;
  57 import java.util.Set;
  58 import java.util.concurrent.ConcurrentHashMap;
  59 import java.util.stream.Collectors;
  60 import java.util.stream.Stream;
  61 
  62 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
  63 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  64 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  65 import static java.lang.invoke.MethodType.methodType;
  66 
  67 /**
  68  * This class consists exclusively of static methods that operate on or return
  69  * method handles. They fall into several categories:
  70  * <ul>
  71  * <li>Lookup methods which help create method handles for methods and fields.
  72  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  73  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  74  * </ul>
  75  * A lookup, combinator, or factory method will fail and throw an
  76  * {@code IllegalArgumentException} if the created method handle's type
  77  * would have <a href="MethodHandle.html#maxarity">too many parameters</a>.
  78  *
  79  * @author John Rose, JSR 292 EG
  80  * @since 1.7
  81  */
  82 public class MethodHandles {
  83 
  84     private MethodHandles() { }  // do not instantiate
  85 
  86     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  87 
  88     // See IMPL_LOOKUP below.
  89 
  90     //// Method handle creation from ordinary methods.
  91 
  92     /**
  93      * Returns a {@link Lookup lookup object} with
  94      * full capabilities to emulate all supported bytecode behaviors of the caller.
  95      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
  96      * Factory methods on the lookup object can create
  97      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  98      * for any member that the caller has access to via bytecodes,
  99      * including protected and private fields and methods.
 100      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
 101      * Do not store it in place where untrusted code can access it.
 102      * <p>
 103      * This method is caller sensitive, which means that it may return different
 104      * values to different callers.
 105      * @return a lookup object for the caller of this method, with private access
 106      */
 107     @CallerSensitive
 108     @ForceInline // to ensure Reflection.getCallerClass optimization
 109     public static Lookup lookup() {
 110         return new Lookup(Reflection.getCallerClass());
 111     }
 112 
 113     /**
 114      * This reflected$lookup method is the alternate implementation of
 115      * the lookup method when being invoked by reflection.
 116      */
 117     @CallerSensitive
 118     private static Lookup reflected$lookup() {
 119         Class<?> caller = Reflection.getCallerClass();
 120         if (caller.getClassLoader() == null) {
 121             throw newIllegalArgumentException("illegal lookupClass: "+caller);
 122         }
 123         return new Lookup(caller);
 124     }
 125 
 126     /**
 127      * Returns a {@link Lookup lookup object} which is trusted minimally.
 128      * The lookup has the {@code UNCONDITIONAL} mode.
 129      * It can only be used to create method handles to public members of
 130      * public classes in packages that are exported unconditionally.
 131      * <p>
 132      * As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class}
 133      * of this lookup object will be {@link java.lang.Object}.
 134      *
 135      * @apiNote The use of Object is conventional, and because the lookup modes are
 136      * limited, there is no special access provided to the internals of Object, its package
 137      * or its module.  This public lookup object or other lookup object with
 138      * {@code UNCONDITIONAL} mode assumes readability. Consequently, the lookup class
 139      * is not used to determine the lookup context.
 140      *
 141      * <p style="font-size:smaller;">
 142      * <em>Discussion:</em>
 143      * The lookup class can be changed to any other class {@code C} using an expression of the form
 144      * {@link Lookup#in publicLookup().in(C.class)}.
 145      * A public lookup object is always subject to
 146      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 147      * Also, it cannot access
 148      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 149      * @return a lookup object which is trusted minimally
 150      *
 151      * @revised 9
 152      * @spec JPMS
 153      */
 154     public static Lookup publicLookup() {
 155         return Lookup.PUBLIC_LOOKUP;
 156     }
 157 
 158     /**
 159      * Returns a {@link Lookup lookup} object on a target class to emulate all supported
 160      * bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc"> private access</a>.
 161      * The returned lookup object can provide access to classes in modules and packages,
 162      * and members of those classes, outside the normal rules of Java access control,
 163      * instead conforming to the more permissive rules for modular <em>deep reflection</em>.
 164      * <p>
 165      * A caller, specified as a {@code Lookup} object, in module {@code M1} is
 166      * allowed to do deep reflection on module {@code M2} and package of the target class
 167      * if and only if all of the following conditions are {@code true}:
 168      * <ul>
 169      * <li>If there is a security manager, its {@code checkPermission} method is
 170      * called to check {@code ReflectPermission("suppressAccessChecks")} and
 171      * that must return normally.
 172      * <li>The caller lookup object must have the {@link Lookup#MODULE MODULE} lookup mode.
 173      * (This is because otherwise there would be no way to ensure the original lookup
 174      * creator was a member of any particular module, and so any subsequent checks
 175      * for readability and qualified exports would become ineffective.)
 176      * <li>The caller lookup object must have {@link Lookup#PRIVATE PRIVATE} access.
 177      * (This is because an application intending to share intra-module access
 178      * using {@link Lookup#MODULE MODULE} alone will inadvertently also share
 179      * deep reflection to its own module.)
 180      * <li>The target class must be a proper class, not a primitive or array class.
 181      * (Thus, {@code M2} is well-defined.)
 182      * <li>If the caller module {@code M1} differs from
 183      * the target module {@code M2} then both of the following must be true:
 184      *   <ul>
 185      *     <li>{@code M1} {@link Module#canRead reads} {@code M2}.</li>
 186      *     <li>{@code M2} {@link Module#isOpen(String,Module) opens} the package
 187      *         containing the target class to at least {@code M1}.</li>
 188      *   </ul>
 189      * </ul>
 190      * <p>
 191      * If any of the above checks is violated, this method fails with an
 192      * exception.
 193      * <p>
 194      * Otherwise, if {@code M1} and {@code M2} are the same module, this method
 195      * returns a {@code Lookup} on {@code targetClass} with full capabilities and
 196      * {@code null} previous lookup class.
 197      * <p>
 198      * Otherwise, {@code M1} and {@code M2} are two different modules.  This method
 199      * returns a {@code Lookup} on {@code targetClass} that records
 200      * the lookup class of the caller as the new previous lookup class and
 201      * drops {@code MODULE} access from the full capabilities mode.
 202      *
 203      * @param targetClass the target class
 204      * @param caller the caller lookup object
 205      * @return a lookup object for the target class, with private access
 206      * @throws IllegalArgumentException if {@code targetClass} is a primitive type or array class
 207      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
 208      * @throws SecurityException if denied by the security manager
 209      * @throws IllegalAccessException if any of the other access checks specified above fails
 210      * @since 9
 211      * @spec JPMS
 212      * @see Lookup#dropLookupMode
 213      * @see <a href="MethodHandles.Lookup.html#cross-module-lookup">Cross-module lookups</a>
 214      */
 215     public static Lookup privateLookupIn(Class<?> targetClass, Lookup caller) throws IllegalAccessException {
 216         SecurityManager sm = System.getSecurityManager();
 217         if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
 218         if (targetClass.isPrimitive())
 219             throw new IllegalArgumentException(targetClass + " is a primitive class");
 220         if (targetClass.isArray())
 221             throw new IllegalArgumentException(targetClass + " is an array class");
 222         // Ensure that we can reason accurately about private and module access.
 223         if ((caller.lookupModes() & Lookup.PRIVATE) == 0)
 224             throw new IllegalAccessException("caller does not have PRIVATE lookup mode");
 225         if ((caller.lookupModes() & Lookup.MODULE) == 0)
 226             throw new IllegalAccessException("caller does not have MODULE lookup mode");
 227 
 228         // previous lookup class is never set if it has MODULE access
 229         assert caller.previousLookupClass() == null;
 230 
 231         Class<?> callerClass = caller.lookupClass();
 232         Module callerModule = callerClass.getModule();  // M1
 233         Module targetModule = targetClass.getModule();  // M2
 234         Class<?> newPreviousClass = null;
 235         int newModes = Lookup.FULL_POWER_MODES;
 236 
 237         if (targetModule != callerModule) {
 238             if (!callerModule.canRead(targetModule))
 239                 throw new IllegalAccessException(callerModule + " does not read " + targetModule);
 240             if (targetModule.isNamed()) {
 241                 String pn = targetClass.getPackageName();
 242                 assert !pn.isEmpty() : "unnamed package cannot be in named module";
 243                 if (!targetModule.isOpen(pn, callerModule))
 244                     throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
 245             }
 246 
 247             // M2 != M1, set previous lookup class to M1 and drop MODULE access
 248             newPreviousClass = callerClass;
 249             newModes &= ~Lookup.MODULE;
 250         }
 251 
 252         if (!callerModule.isNamed() && targetModule.isNamed()) {
 253             IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger();
 254             if (logger != null) {
 255                 logger.logIfOpenedForIllegalAccess(caller, targetClass);
 256             }
 257         }
 258         return Lookup.newLookup(targetClass, newPreviousClass, newModes);
 259     }
 260 
 261     /**
 262      * Performs an unchecked "crack" of a
 263      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 264      * The result is as if the user had obtained a lookup object capable enough
 265      * to crack the target method handle, called
 266      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 267      * on the target to obtain its symbolic reference, and then called
 268      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 269      * to resolve the symbolic reference to a member.
 270      * <p>
 271      * If there is a security manager, its {@code checkPermission} method
 272      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 273      * @param <T> the desired type of the result, either {@link Member} or a subtype
 274      * @param target a direct method handle to crack into symbolic reference components
 275      * @param expected a class object representing the desired result type {@code T}
 276      * @return a reference to the method, constructor, or field object
 277      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
 278      * @exception NullPointerException if either argument is {@code null}
 279      * @exception IllegalArgumentException if the target is not a direct method handle
 280      * @exception ClassCastException if the member is not of the expected type
 281      * @since 1.8
 282      */
 283     public static <T extends Member> T
 284     reflectAs(Class<T> expected, MethodHandle target) {
 285         SecurityManager smgr = System.getSecurityManager();
 286         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 287         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 288         return lookup.revealDirect(target).reflectAs(expected, lookup);
 289     }
 290     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 291     private static final java.security.Permission ACCESS_PERMISSION =
 292         new ReflectPermission("suppressAccessChecks");
 293 
 294     /**
 295      * A <em>lookup object</em> is a factory for creating method handles,
 296      * when the creation requires access checking.
 297      * Method handles do not perform
 298      * access checks when they are called, but rather when they are created.
 299      * Therefore, method handle access
 300      * restrictions must be enforced when a method handle is created.
 301      * The caller class against which those restrictions are enforced
 302      * is known as the {@linkplain #lookupClass() lookup class}.
 303      * <p>
 304      * A lookup class which needs to create method handles will call
 305      * {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself.
 306      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 307      * determined, and securely stored in the {@code Lookup} object.
 308      * The lookup class (or its delegates) may then use factory methods
 309      * on the {@code Lookup} object to create method handles for access-checked members.
 310      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 311      * even private ones.
 312      *
 313      * <h2><a id="lookups"></a>Lookup Factory Methods</h2>
 314      * The factory methods on a {@code Lookup} object correspond to all major
 315      * use cases for methods, constructors, and fields.
 316      * Each method handle created by a factory method is the functional
 317      * equivalent of a particular <em>bytecode behavior</em>.
 318      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
 319      * Here is a summary of the correspondence between these factory methods and
 320      * the behavior of the resulting method handles:
 321      * <table class="striped">
 322      * <caption style="display:none">lookup method behaviors</caption>
 323      * <thead>
 324      * <tr>
 325      *     <th scope="col"><a id="equiv"></a>lookup expression</th>
 326      *     <th scope="col">member</th>
 327      *     <th scope="col">bytecode behavior</th>
 328      * </tr>
 329      * </thead>
 330      * <tbody>
 331      * <tr>
 332      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th>
 333      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 334      * </tr>
 335      * <tr>
 336      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th>
 337      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (FT) C.f;}</td>
 338      * </tr>
 339      * <tr>
 340      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th>
 341      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 342      * </tr>
 343      * <tr>
 344      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th>
 345      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 346      * </tr>
 347      * <tr>
 348      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th>
 349      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 350      * </tr>
 351      * <tr>
 352      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th>
 353      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 354      * </tr>
 355      * <tr>
 356      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th>
 357      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 358      * </tr>
 359      * <tr>
 360      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th>
 361      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 362      * </tr>
 363      * <tr>
 364      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th>
 365      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 366      * </tr>
 367      * <tr>
 368      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th>
 369      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 370      * </tr>
 371      * <tr>
 372      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
 373      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 374      * </tr>
 375      * <tr>
 376      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th>
 377      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 378      * </tr>
 379      * <tr>
 380      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSpecial lookup.unreflectSpecial(aMethod,this.class)}</th>
 381      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 382      * </tr>
 383      * <tr>
 384      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th>
 385      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 386      * </tr>
 387      * </tbody>
 388      * </table>
 389      *
 390      * Here, the type {@code C} is the class or interface being searched for a member,
 391      * documented as a parameter named {@code refc} in the lookup methods.
 392      * The method type {@code MT} is composed from the return type {@code T}
 393      * and the sequence of argument types {@code A*}.
 394      * The constructor also has a sequence of argument types {@code A*} and
 395      * is deemed to return the newly-created object of type {@code C}.
 396      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 397      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 398      * if it is present, it is always the leading argument to the method handle invocation.
 399      * (In the case of some {@code protected} members, {@code this} may be
 400      * restricted in type to the lookup class; see below.)
 401      * The name {@code arg} stands for all the other method handle arguments.
 402      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 403      * stands for a null reference if the accessed method or field is static,
 404      * and {@code this} otherwise.
 405      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 406      * for reflective objects corresponding to the given members declared in type {@code C}.
 407      * <p>
 408      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 409      * as if by {@code ldc CONSTANT_Class}.
 410      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 411      * <p>
 412      * In cases where the given member is of variable arity (i.e., a method or constructor)
 413      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 414      * In all other cases, the returned method handle will be of fixed arity.
 415      * <p style="font-size:smaller;">
 416      * <em>Discussion:</em>
 417      * The equivalence between looked-up method handles and underlying
 418      * class members and bytecode behaviors
 419      * can break down in a few ways:
 420      * <ul style="font-size:smaller;">
 421      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 422      * the lookup can still succeed, even when there is no equivalent
 423      * Java expression or bytecoded constant.
 424      * <li>Likewise, if {@code T} or {@code MT}
 425      * is not symbolically accessible from the lookup class's loader,
 426      * the lookup can still succeed.
 427      * For example, lookups for {@code MethodHandle.invokeExact} and
 428      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 429      * <li>If there is a security manager installed, it can forbid the lookup
 430      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 431      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 432      * constant is not subject to security manager checks.
 433      * <li>If the looked-up method has a
 434      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 435      * the method handle creation may fail with an
 436      * {@code IllegalArgumentException}, due to the method handle type having
 437      * <a href="MethodHandle.html#maxarity">too many parameters.</a>
 438      * </ul>
 439      *
 440      * <h2><a id="access"></a>Access checking</h2>
 441      * Access checks are applied in the factory methods of {@code Lookup},
 442      * when a method handle is created.
 443      * This is a key difference from the Core Reflection API, since
 444      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 445      * performs access checking against every caller, on every call.
 446      * <p>
 447      * All access checks start from a {@code Lookup} object, which
 448      * compares its recorded lookup class against all requests to
 449      * create method handles.
 450      * A single {@code Lookup} object can be used to create any number
 451      * of access-checked method handles, all checked against a single
 452      * lookup class.
 453      * <p>
 454      * A {@code Lookup} object can be shared with other trusted code,
 455      * such as a metaobject protocol.
 456      * A shared {@code Lookup} object delegates the capability
 457      * to create method handles on private members of the lookup class.
 458      * Even if privileged code uses the {@code Lookup} object,
 459      * the access checking is confined to the privileges of the
 460      * original lookup class.
 461      * <p>
 462      * A lookup can fail, because
 463      * the containing class is not accessible to the lookup class, or
 464      * because the desired class member is missing, or because the
 465      * desired class member is not accessible to the lookup class, or
 466      * because the lookup object is not trusted enough to access the member.
 467      * In the case of a field setter function on a {@code final} field,
 468      * finality enforcement is treated as a kind of access control,
 469      * and the lookup will fail, except in special cases of
 470      * {@link Lookup#unreflectSetter Lookup.unreflectSetter}.
 471      * In any of these cases, a {@code ReflectiveOperationException} will be
 472      * thrown from the attempted lookup.  The exact class will be one of
 473      * the following:
 474      * <ul>
 475      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 476      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 477      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 478      * </ul>
 479      * <p>
 480      * In general, the conditions under which a method handle may be
 481      * looked up for a method {@code M} are no more restrictive than the conditions
 482      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 483      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 484      * a method handle lookup will generally raise a corresponding
 485      * checked exception, such as {@code NoSuchMethodException}.
 486      * And the effect of invoking the method handle resulting from the lookup
 487      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 488      * to executing the compiled, verified, and resolved call to {@code M}.
 489      * The same point is true of fields and constructors.
 490      * <p style="font-size:smaller;">
 491      * <em>Discussion:</em>
 492      * Access checks only apply to named and reflected methods,
 493      * constructors, and fields.
 494      * Other method handle creation methods, such as
 495      * {@link MethodHandle#asType MethodHandle.asType},
 496      * do not require any access checks, and are used
 497      * independently of any {@code Lookup} object.
 498      * <p>
 499      * If the desired member is {@code protected}, the usual JVM rules apply,
 500      * including the requirement that the lookup class must either be in the
 501      * same package as the desired member, or must inherit that member.
 502      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
 503      * In addition, if the desired member is a non-static field or method
 504      * in a different package, the resulting method handle may only be applied
 505      * to objects of the lookup class or one of its subclasses.
 506      * This requirement is enforced by narrowing the type of the leading
 507      * {@code this} parameter from {@code C}
 508      * (which will necessarily be a superclass of the lookup class)
 509      * to the lookup class itself.
 510      * <p>
 511      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 512      * that the receiver argument must match both the resolved method <em>and</em>
 513      * the current class.  Again, this requirement is enforced by narrowing the
 514      * type of the leading parameter to the resulting method handle.
 515      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
 516      * <p>
 517      * The JVM represents constructors and static initializer blocks as internal methods
 518      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 519      * The internal syntax of invocation instructions allows them to refer to such internal
 520      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 521      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 522      * <p>
 523      * If the relationship between nested types is expressed directly through the
 524      * {@code NestHost} and {@code NestMembers} attributes
 525      * (see the Java Virtual Machine Specification, sections 4.7.28 and 4.7.29),
 526      * then the associated {@code Lookup} object provides direct access to
 527      * the lookup class and all of its nestmates
 528      * (see {@link java.lang.Class#getNestHost Class.getNestHost}).
 529      * Otherwise, access between nested classes is obtained by the Java compiler creating
 530      * a wrapper method to access a private method of another class in the same nest.
 531      * For example, a nested class {@code C.D}
 532      * can access private members within other related classes such as
 533      * {@code C}, {@code C.D.E}, or {@code C.B},
 534      * but the Java compiler may need to generate wrapper methods in
 535      * those related classes.  In such cases, a {@code Lookup} object on
 536      * {@code C.E} would be unable to access those private members.
 537      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 538      * which can transform a lookup on {@code C.E} into one on any of those other
 539      * classes, without special elevation of privilege.
 540      * <p>
 541      * The accesses permitted to a given lookup object may be limited,
 542      * according to its set of {@link #lookupModes lookupModes},
 543      * to a subset of members normally accessible to the lookup class.
 544      * For example, the {@link MethodHandles#publicLookup publicLookup}
 545      * method produces a lookup object which is only allowed to access
 546      * public members in public classes of exported packages.
 547      * The caller sensitive method {@link MethodHandles#lookup lookup}
 548      * produces a lookup object with full capabilities relative to
 549      * its caller class, to emulate all supported bytecode behaviors.
 550      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 551      * with fewer access modes than the original lookup object.
 552      *
 553      * <p style="font-size:smaller;">
 554      * <a id="privacc"></a>
 555      * <em>Discussion of private access:</em>
 556      * We say that a lookup has <em>private access</em>
 557      * if its {@linkplain #lookupModes lookup modes}
 558      * include the possibility of accessing {@code private} members
 559      * (which includes the private members of nestmates).
 560      * As documented in the relevant methods elsewhere,
 561      * only lookups with private access possess the following capabilities:
 562      * <ul style="font-size:smaller;">
 563      * <li>access private fields, methods, and constructors of the lookup class and its nestmates
 564      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 565      *     such as {@code Class.forName}
 566      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 567      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 568      *     for classes accessible to the lookup class
 569      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 570      *     within the same package member
 571      * </ul>
 572      * <p style="font-size:smaller;">
 573      * Each of these permissions is a consequence of the fact that a lookup object
 574      * with private access can be securely traced back to an originating class,
 575      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 576      * can be reliably determined and emulated by method handles.
 577      *
 578      * <h2><a id="cross-module-lookup"></a>Cross-module lookups</h2>
 579      * When a lookup class in one module {@code M1} accesses a class in another module
 580      * {@code M2}, extra access checking is performed beyond the access mode bits.
 581      * A {@code Lookup} with {@link #PUBLIC} mode and a lookup class in {@code M1}
 582      * can access public types in {@code M2} when {@code M2} is readable to {@code M1}
 583      * and when the type is in a package of {@code M2} that is exported to
 584      * at least {@code M1}.
 585      * <p>
 586      * A {@code Lookup} on {@code C} can also <em>teleport</em> to a target class
 587      * via {@link #in(Class) Lookup.in} and {@link MethodHandles#privateLookupIn(Class, Lookup)
 588      * MethodHandles.privateLookupIn} methods.
 589      * Teleporting across modules will always record the original lookup class as
 590      * the <em>{@linkplain #previousLookupClass() previous lookup class}</em>
 591      * and drops {@link Lookup#MODULE MODULE} access.
 592      * If the target class is in the same module as the lookup class {@code C},
 593      * then the target class becomes the new lookup class
 594      * and there is no change to the previous lookup class.
 595      * If the target class is in a different module from {@code M1} ({@code C}'s module),
 596      * {@code C} becomes the new previous lookup class
 597      * and the target class becomes the new lookup class.
 598      * In that case, if there was already a previous lookup class in {@code M0},
 599      * and it differs from {@code M1} and {@code M2}, then the resulting lookup
 600      * drops all privileges.
 601      * For example,
 602      * <blockquote><pre>
 603      * {@code
 604      * Lookup lookup = MethodHandles.lookup();   // in class C
 605      * Lookup lookup2 = lookup.in(D.class);
 606      * MethodHandle mh = lookup2.findStatic(E.class, "m", MT);
 607      * }</pre></blockquote>
 608      * <p>
 609      * The {@link #lookup()} factory method produces a {@code Lookup} object
 610      * with {@code null} previous lookup class.
 611      * {@link Lookup#in lookup.in(D.class)} transforms the {@code lookup} on class {@code C}
 612      * to class {@code D} without elevation of privileges.
 613      * If {@code C} and {@code D} are in the same module,
 614      * {@code lookup2} records {@code D} as the new lookup class and keeps the
 615      * same previous lookup class as the original {@code lookup}, or
 616      * {@code null} if not present.
 617      * <p>
 618      * When a {@code Lookup} teleports from a class
 619      * in one nest to another nest, {@code PRIVATE} access is dropped.
 620      * When a {@code Lookup} teleports from a class in one package to
 621      * another package, {@code PACKAGE} access is dropped.
 622      * When a {@code Lookup} teleports from a class in one module to another module,
 623      * {@code MODULE} access is dropped.
 624      * Teleporting across modules drops the ability to access non-exported classes
 625      * in both the module of the new lookup class and the module of the old lookup class
 626      * and the resulting {@code Lookup} remains only {@code PUBLIC} access.
 627      * A {@code Lookup} can teleport back and forth to a class in the module of
 628      * the lookup class and the module of the previous class lookup.
 629      * Teleporting across modules can only decrease access but cannot increase it.
 630      * Teleporting to some third module drops all accesses.
 631      * <p>
 632      * In the above example, if {@code C} and {@code D} are in different modules,
 633      * {@code lookup2} records {@code D} as its lookup class and
 634      * {@code C} as its previous lookup class and {@code lookup2} has only
 635      * {@code PUBLIC} access. {@code lookup2} can teleport to other class in
 636      * {@code C}'s module and {@code D}'s module.
 637      * If class {@code E} is in a third module, {@code lookup2.in(E.class)} creates
 638      * a {@code Lookup} on {@code E} with no access and {@code lookup2}'s lookup
 639      * class {@code D} is recorded as its previous lookup class.
 640      * <p>
 641      * Teleporting across modules restricts access to the public types that
 642      * both the lookup class and the previous lookup class can equally access
 643      * (see below).
 644      * <p>
 645      * {@link MethodHandles#privateLookupIn(Class, Lookup) MethodHandles.privateLookupIn(T.class, lookup)}
 646      * can be used to teleport a {@code lookup} from class {@code C} to class {@code T}
 647      * and create a new {@code Lookup} with <a href="#privcc">private access</a>
 648      * if the lookup class is allowed to do <em>deep reflection</em> on {@code T}.
 649      * The {@code lookup} must have {@link #MODULE} and {@link #PRIVATE} access
 650      * to call {@code privateLookupIn}.
 651      * A {@code lookup} on {@code C} in module {@code M1} is allowed to do deep reflection
 652      * on all classes in {@code M1}.  If {@code T} is in {@code M1}, {@code privateLookupIn}
 653      * produces a new {@code Lookup} on {@code T} with full capabilities.
 654      * A {@code lookup} on {@code C} is also allowed
 655      * to do deep reflection on {@code T} in another module {@code M2} if
 656      * {@code M1} reads {@code M2} and {@code M2} {@link Module#isOpen(String,Module) opens}
 657      * the package containing {@code T} to at least {@code M1}.
 658      * {@code T} becomes the new lookup class and {@code C} becomes the new previous
 659      * lookup class and {@code MODULE} access is dropped from the resulting {@code Lookup}.
 660      * The resulting {@code Lookup} can be used to do member lookup or teleport
 661      * to another lookup class by calling {@link #in Lookup::in}.  But
 662      * it cannot be used to obtain another private {@code Lookup} by calling
 663      * {@link MethodHandles#privateLookupIn(Class, Lookup) privateLookupIn}
 664      * because it has no {@code MODULE} access.
 665      *
 666      * <h2><a id="module-access-check"></a>Cross-module access checks</h2>
 667      *
 668      * A {@code Lookup} with {@link #PUBLIC} or with {@link #UNCONDITIONAL} mode
 669      * allows cross-module access. The access checking is performed with respect
 670      * to both the lookup class and the previous lookup class if present.
 671      * <p>
 672      * A {@code Lookup} with {@link #UNCONDITIONAL} mode can access public type
 673      * in all modules when the type is in a package that is {@linkplain Module#isExported(String)
 674      * exported unconditionally}.
 675      * <p>
 676      * If a {@code Lookup} on {@code LC} in {@code M1} has no previous lookup class,
 677      * the lookup with {@link #PUBLIC} mode can access all public types in modules
 678      * that are readable to {@code M1} and the type is in a package that is exported
 679      * at least to {@code M1}.
 680      * <p>
 681      * If a {@code Lookup} on {@code LC} in {@code M1} has a previous lookup class
 682      * {@code PLC} on {@code M0}, the lookup with {@link #PUBLIC} mode can access
 683      * the intersection of all public types that are accessible to {@code M1}
 684      * with all public types that are accessible to {@code M0}. {@code M0}
 685      * reads {@code M1} and hence the set of accessible types includes:
 686      *
 687      * <table class="striped">
 688      * <caption style="display:none">
 689      * Public types in the following packages are accessible to the
 690      * lookup class and the previous lookup class.
 691      * </caption>
 692      * <thead>
 693      * <tr>
 694      * <th scope="col">Equally accessible types to {@code M0} and {@code M1}</th>
 695      * </tr>
 696      * </thead>
 697      * <tbody>
 698      * <tr>
 699      * <th scope="row" style="text-align:left">unconditional-exported packages from {@code M1}</th>
 700      * </tr>
 701      * <tr>
 702      * <th scope="row" style="text-align:left">unconditional-exported packages from {@code M0} if {@code M1} reads {@code M0}</th>
 703      * </tr>
 704      * <tr>
 705      * <th scope="row" style="text-align:left">unconditional-exported packages from a third module {@code M2}
 706      * if both {@code M0} and {@code M1} read {@code M2}</th>
 707      * </tr>
 708      * <tr>
 709      * <th scope="row" style="text-align:left">qualified-exported packages from {@code M1} to {@code M0}</th>
 710      * </tr>
 711      * <tr>
 712      * <th scope="row" style="text-align:left">qualified-exported packages from {@code M0} to {@code M1}
 713      * if {@code M1} reads {@code M0}</th>
 714      * </tr>
 715      * <tr>
 716      * <th scope="row" style="text-align:left">qualified-exported packages from a third module {@code M2} to
 717      * both {@code M0} and {@code M1} if both {@code M0} and {@code M1} read {@code M2}</th>
 718      * </tr>
 719      * </tbody>
 720      * </table>
 721      *
 722      * <h2><a id="access-modes"></a>Access modes</h2>
 723      *
 724      * The table below shows the access modes of a {@code Lookup} produced by
 725      * any of the following factory or transformation methods:
 726      * <ul>
 727      * <li>{@link #lookup() MethodHandles.lookup()}</li>
 728      * <li>{@link #publicLookup() MethodHandles.publicLookup()}</li>
 729      * <li>{@link #privateLookupIn(Class, Lookup) MethodHandles.privateLookupIn}</li>
 730      * <li>{@link Lookup#in}</li>
 731      * <li>{@link Lookup#dropLookupMode(int)}</li>
 732      * </ul>
 733      *
 734      * <table class="striped">
 735      * <caption style="display:none">
 736      * Access mode summary
 737      * </caption>
 738      * <thead>
 739      * <tr>
 740      * <th scope="col">Lookup object</th>
 741      * <th style="text-align:center">protected</th>
 742      * <th style="text-align:center">private</th>
 743      * <th style="text-align:center">package</th>
 744      * <th style="text-align:center">module</th>
 745      * <th style="text-align:center">public</th>
 746      * </tr>
 747      * </thead>
 748      * <tbody>
 749      * <tr>
 750      * <th scope="row" style="text-align:left">{@code CL = MethodHandles.lookup()} in {@code C}</th>
 751      * <td style="text-align:center">PRO</td>
 752      * <td style="text-align:center">PRI</td>
 753      * <td style="text-align:center">PAC</td>
 754      * <td style="text-align:center">MOD</td>
 755      * <td style="text-align:center">1R</td>
 756      * </tr>
 757      * <tr>
 758      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same package</th>
 759      * <td></td>
 760      * <td></td>
 761      * <td style="text-align:center">PAC</td>
 762      * <td style="text-align:center">MOD</td>
 763      * <td style="text-align:center">1R</td>
 764      * </tr>
 765      * <tr>
 766      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same module</th>
 767      * <td></td>
 768      * <td></td>
 769      * <td></td>
 770      * <td style="text-align:center">MOD</td>
 771      * <td style="text-align:center">1R</td>
 772      * </tr>
 773      * <tr>
 774      * <th scope="row" style="text-align:left">{@code CL.in(D)} different module</th>
 775      * <td></td>
 776      * <td></td>
 777      * <td></td>
 778      * <td></td>
 779      * <td style="text-align:center">2R</td>
 780      * </tr>
 781      * <tr>
 782      * <td>{@code CL.in(D).in(C)} hop back to module</td>
 783      * <td></td>
 784      * <td></td>
 785      * <td></td>
 786      * <td></td>
 787      * <td style="text-align:center">2R</td>
 788      * </tr>
 789      * <tr>
 790      * <td>{@code PRI1 = privateLookupIn(C1,CL)}</td>
 791      * <td style="text-align:center">PRO</td>
 792      * <td style="text-align:center">PRI</td>
 793      * <td style="text-align:center">PAC</td>
 794      * <td style="text-align:center">MOD</td>
 795      * <td style="text-align:center">1R</td>
 796      * </tr>
 797      * <tr>
 798      * <td>{@code PRI1a = privateLookupIn(C,PRI1)}</td>
 799      * <td style="text-align:center">PRO</td>
 800      * <td style="text-align:center">PRI</td>
 801      * <td style="text-align:center">PAC</td>
 802      * <td style="text-align:center">MOD</td>
 803      * <td style="text-align:center">1R</td>
 804      * </tr>
 805      * <tr>
 806      * <td>{@code PRI1.in(C1)} same package</td>
 807      * <td></td>
 808      * <td></td>
 809      * <td style="text-align:center">PAC</td>
 810      * <td style="text-align:center">MOD</td>
 811      * <td style="text-align:center">1R</td>
 812      * </tr>
 813      * <tr>
 814      * <td>{@code PRI1.in(C1)} different package</td>
 815      * <td></td>
 816      * <td></td>
 817      * <td></td>
 818      * <td style="text-align:center">MOD</td>
 819      * <td style="text-align:center">1R</td>
 820      * </tr>
 821      * <tr>
 822      * <td>{@code PRI1.in(D)} different module</td>
 823      * <td></td>
 824      * <td></td>
 825      * <td></td>
 826      * <td></td>
 827      * <td style="text-align:center">2R</td>
 828      * </tr>
 829      * <tr>
 830      * <td>{@code PRI1.dropLookupMode(PROTECTED)}</td>
 831      * <td></td>
 832      * <td style="text-align:center">PRI</td>
 833      * <td style="text-align:center">PAC</td>
 834      * <td style="text-align:center">MOD</td>
 835      * <td style="text-align:center">1R</td>
 836      * </tr>
 837      * <tr>
 838      * <td>{@code PRI1.dropLookupMode(PRIVATE)}</td>
 839      * <td></td>
 840      * <td></td>
 841      * <td style="text-align:center">PAC</td>
 842      * <td style="text-align:center">MOD</td>
 843      * <td style="text-align:center">1R</td>
 844      * </tr>
 845      * <tr>
 846      * <td>{@code PRI1.dropLookupMode(PACKAGE)}</td>
 847      * <td></td>
 848      * <td></td>
 849      * <td></td>
 850      * <td style="text-align:center">MOD</td>
 851      * <td style="text-align:center">1R</td>
 852      * </tr>
 853      * <tr>
 854      * <td>{@code PRI1.dropLookupMode(MODULE)}</td>
 855      * <td></td>
 856      * <td></td>
 857      * <td></td>
 858      * <td></td>
 859      * <td style="text-align:center">1R</td>
 860      * </tr>
 861      * <tr>
 862      * <td>{@code PRI1.dropLookupMode(PUBLIC)}</td>
 863      * <td></td>
 864      * <td></td>
 865      * <td></td>
 866      * <td></td>
 867      * <td style="text-align:center">none</td>
 868      * <tr>
 869      * <td>{@code PRI2 = privateLookupIn(D,CL)}</td>
 870      * <td style="text-align:center">PRO</td>
 871      * <td style="text-align:center">PRI</td>
 872      * <td style="text-align:center">PAC</td>
 873      * <td></td>
 874      * <td style="text-align:center">2R</td>
 875      * </tr>
 876      * <tr>
 877      * <td>{@code privateLookupIn(D,PRI1)}</td>
 878      * <td style="text-align:center">PRO</td>
 879      * <td style="text-align:center">PRI</td>
 880      * <td style="text-align:center">PAC</td>
 881      * <td></td>
 882      * <td style="text-align:center">2R</td>
 883      * </tr>
 884      * <tr>
 885      * <td>{@code privateLookupIn(C,PRI2)} fails</td>
 886      * <td></td>
 887      * <td></td>
 888      * <td></td>
 889      * <td></td>
 890      * <td style="text-align:center">IAE</td>
 891      * </tr>
 892      * <tr>
 893      * <td>{@code PRI2.in(D2)} same package</td>
 894      * <td></td>
 895      * <td></td>
 896      * <td style="text-align:center">PAC</td>
 897      * <td></td>
 898      * <td style="text-align:center">2R</td>
 899      * </tr>
 900      * <tr>
 901      * <td>{@code PRI2.in(D2)} different package</td>
 902      * <td></td>
 903      * <td></td>
 904      * <td></td>
 905      * <td></td>
 906      * <td style="text-align:center">2R</td>
 907      * </tr>
 908      * <tr>
 909      * <td>{@code PRI2.in(C1)} hop back to module</td>
 910      * <td></td>
 911      * <td></td>
 912      * <td></td>
 913      * <td></td>
 914      * <td style="text-align:center">2R</td>
 915      * </tr>
 916      * <tr>
 917      * <td>{@code PRI2.in(E)} hop to third module</td>
 918      * <td></td>
 919      * <td></td>
 920      * <td></td>
 921      * <td></td>
 922      * <td style="text-align:center">none</td>
 923      * </tr>
 924      * <tr>
 925      * <td>{@code PRI2.dropLookupMode(PROTECTED)}</td>
 926      * <td></td>
 927      * <td style="text-align:center">PRI</td>
 928      * <td style="text-align:center">PAC</td>
 929      * <td></td>
 930      * <td style="text-align:center">2R</td>
 931      * </tr>
 932      * <tr>
 933      * <td>{@code PRI2.dropLookupMode(PRIVATE)}</td>
 934      * <td></td>
 935      * <td></td>
 936      * <td style="text-align:center">PAC</td>
 937      * <td></td>
 938      * <td style="text-align:center">2R</td>
 939      * </tr>
 940      * <tr>
 941      * <td>{@code PRI2.dropLookupMode(PACKAGE)}</td>
 942      * <td></td>
 943      * <td></td>
 944      * <td></td>
 945      * <td></td>
 946      * <td style="text-align:center">2R</td>
 947      * </tr>
 948      * <tr>
 949      * <td>{@code PRI2.dropLookupMode(MODULE)}</td>
 950      * <td></td>
 951      * <td></td>
 952      * <td></td>
 953      * <td></td>
 954      * <td style="text-align:center">2R</td>
 955      * </tr>
 956      * <tr>
 957      * <td>{@code PRI2.dropLookupMode(PUBLIC)}</td>
 958      * <td></td>
 959      * <td></td>
 960      * <td></td>
 961      * <td></td>
 962      * <td style="text-align:center">none</td>
 963      * </tr>
 964      * <tr>
 965      * <td>{@code CL.dropLookupMode(PROTECTED)}</td>
 966      * <td></td>
 967      * <td style="text-align:center">PRI</td>
 968      * <td style="text-align:center">PAC</td>
 969      * <td style="text-align:center">MOD</td>
 970      * <td style="text-align:center">1R</td>
 971      * </tr>
 972      * <tr>
 973      * <td>{@code CL.dropLookupMode(PRIVATE)}</td>
 974      * <td></td>
 975      * <td></td>
 976      * <td style="text-align:center">PAC</td>
 977      * <td style="text-align:center">MOD</td>
 978      * <td style="text-align:center">1R</td>
 979      * </tr>
 980      * <tr>
 981      * <td>{@code CL.dropLookupMode(PACKAGE)}</td>
 982      * <td></td>
 983      * <td></td>
 984      * <td></td>
 985      * <td style="text-align:center">MOD</td>
 986      * <td style="text-align:center">1R</td>
 987      * </tr>
 988      * <tr>
 989      * <td>{@code CL.dropLookupMode(MODULE)}</td>
 990      * <td></td>
 991      * <td></td>
 992      * <td></td>
 993      * <td></td>
 994      * <td style="text-align:center">1R</td>
 995      * </tr>
 996      * <tr>
 997      * <td>{@code CL.dropLookupMode(PUBLIC)}</td>
 998      * <td></td>
 999      * <td></td>
1000      * <td></td>
1001      * <td></td>
1002      * <td style="text-align:center">none</td>
1003      * </tr>
1004      * <tr>
1005      * <td>{@code PUB = publicLookup()}</td>
1006      * <td></td>
1007      * <td></td>
1008      * <td></td>
1009      * <td></td>
1010      * <td style="text-align:center">U</td>
1011      * </tr>
1012      * <tr>
1013      * <td>{@code PUB.in(D)} different module</td>
1014      * <td></td>
1015      * <td></td>
1016      * <td></td>
1017      * <td></td>
1018      * <td style="text-align:center">U</td>
1019      * </tr>
1020      * <tr>
1021      * <td>{@code PUB.in(D).in(E)} third module</td>
1022      * <td></td>
1023      * <td></td>
1024      * <td></td>
1025      * <td></td>
1026      * <td style="text-align:center">U</td>
1027      * </tr>
1028      * <tr>
1029      * <td>{@code PUB.dropLookupMode(UNCONDITIONAL)}</td>
1030      * <td></td>
1031      * <td></td>
1032      * <td></td>
1033      * <td></td>
1034      * <td style="text-align:center">none</td>
1035      * </tr>
1036      * <tr>
1037      * <td>{@code privateLookupIn(C1,PUB)} fails</td>
1038      * <td></td>
1039      * <td></td>
1040      * <td></td>
1041      * <td></td>
1042      * <td style="text-align:center">IAE</td>
1043      * </tr>
1044      * <tr>
1045      * <td>{@code ANY.in(X)}, for inaccessible <code>X</code></td>
1046      * <td></td>
1047      * <td></td>
1048      * <td></td>
1049      * <td></td>
1050      * <td style="text-align:center">none</td>
1051      * </tr>
1052      * </tbody>
1053      * </table>
1054      *
1055      * <p>
1056      * Notes:
1057      * <ul>
1058      * <li>Class {@code C} and class {@code C1} are in module {@code M1},
1059      *     but {@code D} and {@code D2} are in module {@code M2}, and {@code E}
1060      *     is in module {@code M3}. {@code X} stands for class which is inaccessible
1061      *     to the lookup. {@code ANY} stands for any of the example lookups.</li>
1062      * <li>{@code PRO} indicates {@link #PROTECTED} bit set,
1063      *     {@code PRI} indicates {@link #PRIVATE} bit set,
1064      *     {@code PAC} indicates {@link #PACKAGE} bit set,
1065      *     {@code MOD} indicates {@link #MODULE} bit set,
1066      *     {@code 1R} and {@code 2R} indicate {@link #PUBLIC} bit set,
1067      *     {@code U} indicates {@link #UNCONDITIONAL} bit set,
1068      *     {@code IAE} indicates {@code IllegalAccessException} thrown.</li>
1069      * <li>Public access comes in three kinds:
1070      * <ul>
1071      * <li>unconditional ({@code U}): the lookup assumes readability.
1072      *     The lookup has {@code null} previous lookup class.
1073      * <li>one-module-reads ({@code 1R}): the module access checking is
1074      *     performed with respect to the lookup class.  The lookup has {@code null}
1075      *     previous lookup class.
1076      * <li>two-module-reads ({@code 2R}): the module access checking is
1077      *     performed with respect to the lookup class and the previous lookup class.
1078      *     The lookup has a non-null previous lookup class which is in a
1079      *     different module from the current lookup class.
1080      * </ul>
1081      * <li>Any attempt to reach a third module loses all access.</li>
1082      * <li>If a target class {@code X} is not accessible to {@code Lookup::in}
1083      * all access modes are dropped.</li>
1084      * </ul>
1085      *
1086      * <h2><a id="secmgr"></a>Security manager interactions</h2>
1087      * Although bytecode instructions can only refer to classes in
1088      * a related class loader, this API can search for methods in any
1089      * class, as long as a reference to its {@code Class} object is
1090      * available.  Such cross-loader references are also possible with the
1091      * Core Reflection API, and are impossible to bytecode instructions
1092      * such as {@code invokestatic} or {@code getfield}.
1093      * There is a {@linkplain java.lang.SecurityManager security manager API}
1094      * to allow applications to check such cross-loader references.
1095      * These checks apply to both the {@code MethodHandles.Lookup} API
1096      * and the Core Reflection API
1097      * (as found on {@link java.lang.Class Class}).
1098      * <p>
1099      * If a security manager is present, member and class lookups are subject to
1100      * additional checks.
1101      * From one to three calls are made to the security manager.
1102      * Any of these calls can refuse access by throwing a
1103      * {@link java.lang.SecurityException SecurityException}.
1104      * Define {@code smgr} as the security manager,
1105      * {@code lookc} as the lookup class of the current lookup object,
1106      * {@code refc} as the containing class in which the member
1107      * is being sought, and {@code defc} as the class in which the
1108      * member is actually defined.
1109      * (If a class or other type is being accessed,
1110      * the {@code refc} and {@code defc} values are the class itself.)
1111      * The value {@code lookc} is defined as <em>not present</em>
1112      * if the current lookup object does not have
1113      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
1114      * The calls are made according to the following rules:
1115      * <ul>
1116      * <li><b>Step 1:</b>
1117      *     If {@code lookc} is not present, or if its class loader is not
1118      *     the same as or an ancestor of the class loader of {@code refc},
1119      *     then {@link SecurityManager#checkPackageAccess
1120      *     smgr.checkPackageAccess(refcPkg)} is called,
1121      *     where {@code refcPkg} is the package of {@code refc}.
1122      * <li><b>Step 2a:</b>
1123      *     If the retrieved member is not public and
1124      *     {@code lookc} is not present, then
1125      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1126      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
1127      * <li><b>Step 2b:</b>
1128      *     If the retrieved class has a {@code null} class loader,
1129      *     and {@code lookc} is not present, then
1130      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1131      *     with {@code RuntimePermission("getClassLoader")} is called.
1132      * <li><b>Step 3:</b>
1133      *     If the retrieved member is not public,
1134      *     and if {@code lookc} is not present,
1135      *     and if {@code defc} and {@code refc} are different,
1136      *     then {@link SecurityManager#checkPackageAccess
1137      *     smgr.checkPackageAccess(defcPkg)} is called,
1138      *     where {@code defcPkg} is the package of {@code defc}.
1139      * </ul>
1140      * Security checks are performed after other access checks have passed.
1141      * Therefore, the above rules presuppose a member or class that is public,
1142      * or else that is being accessed from a lookup class that has
1143      * rights to access the member or class.
1144      *
1145      * <h2><a id="callsens"></a>Caller sensitive methods</h2>
1146      * A small number of Java methods have a special property called caller sensitivity.
1147      * A <em>caller-sensitive</em> method can behave differently depending on the
1148      * identity of its immediate caller.
1149      * <p>
1150      * If a method handle for a caller-sensitive method is requested,
1151      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
1152      * but they take account of the lookup class in a special way.
1153      * The resulting method handle behaves as if it were called
1154      * from an instruction contained in the lookup class,
1155      * so that the caller-sensitive method detects the lookup class.
1156      * (By contrast, the invoker of the method handle is disregarded.)
1157      * Thus, in the case of caller-sensitive methods,
1158      * different lookup classes may give rise to
1159      * differently behaving method handles.
1160      * <p>
1161      * In cases where the lookup object is
1162      * {@link MethodHandles#publicLookup() publicLookup()},
1163      * or some other lookup object without
1164      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
1165      * the lookup class is disregarded.
1166      * In such cases, no caller-sensitive method handle can be created,
1167      * access is forbidden, and the lookup fails with an
1168      * {@code IllegalAccessException}.
1169      * <p style="font-size:smaller;">
1170      * <em>Discussion:</em>
1171      * For example, the caller-sensitive method
1172      * {@link java.lang.Class#forName(String) Class.forName(x)}
1173      * can return varying classes or throw varying exceptions,
1174      * depending on the class loader of the class that calls it.
1175      * A public lookup of {@code Class.forName} will fail, because
1176      * there is no reasonable way to determine its bytecode behavior.
1177      * <p style="font-size:smaller;">
1178      * If an application caches method handles for broad sharing,
1179      * it should use {@code publicLookup()} to create them.
1180      * If there is a lookup of {@code Class.forName}, it will fail,
1181      * and the application must take appropriate action in that case.
1182      * It may be that a later lookup, perhaps during the invocation of a
1183      * bootstrap method, can incorporate the specific identity
1184      * of the caller, making the method accessible.
1185      * <p style="font-size:smaller;">
1186      * The function {@code MethodHandles.lookup} is caller sensitive
1187      * so that there can be a secure foundation for lookups.
1188      * Nearly all other methods in the JSR 292 API rely on lookup
1189      * objects to check access requests.
1190      *
1191      * @revised 9
1192      */
1193     public static final
1194     class Lookup {
1195         /** The class on behalf of whom the lookup is being performed. */
1196         private final Class<?> lookupClass;
1197 
1198         /** previous lookup class */
1199         private final Class<?> prevLookupClass;
1200 
1201         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
1202         private final int allowedModes;
1203 
1204         static {
1205             Reflection.registerFieldsToFilter(Lookup.class, Set.of("lookupClass", "allowedModes"));
1206         }
1207 
1208         /** A single-bit mask representing {@code public} access,
1209          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1210          *  The value, {@code 0x01}, happens to be the same as the value of the
1211          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
1212          *  <p>
1213          *  A {@code Lookup} with this lookup mode performs cross-module access check
1214          *  with respect to the {@linkplain #lookupClass() lookup class} and
1215          *  {@linkplain #previousLookupClass() previous lookup class} if present.
1216          */
1217         public static final int PUBLIC = Modifier.PUBLIC;
1218 
1219         /** A single-bit mask representing {@code private} access,
1220          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1221          *  The value, {@code 0x02}, happens to be the same as the value of the
1222          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
1223          */
1224         public static final int PRIVATE = Modifier.PRIVATE;
1225 
1226         /** A single-bit mask representing {@code protected} access,
1227          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1228          *  The value, {@code 0x04}, happens to be the same as the value of the
1229          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
1230          */
1231         public static final int PROTECTED = Modifier.PROTECTED;
1232 
1233         /** A single-bit mask representing {@code package} access (default access),
1234          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1235          *  The value is {@code 0x08}, which does not correspond meaningfully to
1236          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1237          */
1238         public static final int PACKAGE = Modifier.STATIC;
1239 
1240         /** A single-bit mask representing {@code module} access,
1241          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1242          *  The value is {@code 0x10}, which does not correspond meaningfully to
1243          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1244          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
1245          *  with this lookup mode can access all public types in the module of the
1246          *  lookup class and public types in packages exported by other modules
1247          *  to the module of the lookup class.
1248          *  <p>
1249          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1250          *  previous lookup class} is always {@code null}.
1251          *
1252          *  @since 9
1253          *  @spec JPMS
1254          */
1255         public static final int MODULE = PACKAGE << 1;
1256 
1257         /** A single-bit mask representing {@code unconditional} access
1258          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1259          *  The value is {@code 0x20}, which does not correspond meaningfully to
1260          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1261          *  A {@code Lookup} with this lookup mode assumes {@linkplain
1262          *  java.lang.Module#canRead(java.lang.Module) readability}.
1263          *  This lookup mode can access all public members of public types
1264          *  of all modules when the type is in a package that is {@link
1265          *  java.lang.Module#isExported(String) exported unconditionally}.
1266          *
1267          *  <p>
1268          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1269          *  previous lookup class} is always {@code null}.
1270          *
1271          *  @since 9
1272          *  @spec JPMS
1273          *  @see #publicLookup()
1274          */
1275         public static final int UNCONDITIONAL = PACKAGE << 2;
1276 
1277         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL);
1278         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);
1279         private static final int TRUSTED   = -1;
1280 
1281         /*
1282          * Adjust PUBLIC => PUBLIC|MODULE|UNCONDITIONAL
1283          * Adjust 0 => PACKAGE
1284          */
1285         private static int fixmods(int mods) {
1286             mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL);
1287             if (Modifier.isPublic(mods))
1288                 mods |= UNCONDITIONAL;
1289             return (mods != 0) ? mods : PACKAGE;
1290         }
1291 
1292         /** Tells which class is performing the lookup.  It is this class against
1293          *  which checks are performed for visibility and access permissions.
1294          *  <p>
1295          *  If this lookup object has a {@linkplain #previousLookupClass() previous lookup class},
1296          *  access checks are performed against both the lookup class and the previous lookup class.
1297          *  <p>
1298          *  The class implies a maximum level of access permission,
1299          *  but the permissions may be additionally limited by the bitmask
1300          *  {@link #lookupModes lookupModes}, which controls whether non-public members
1301          *  can be accessed.
1302          *  @return the lookup class, on behalf of which this lookup object finds members
1303          *  @see <a href="#cross-module-lookup">Cross-module lookups</a>
1304          */
1305         public Class<?> lookupClass() {
1306             return lookupClass;
1307         }
1308 
1309         /** Reports a lookup class in another module that this lookup object
1310          * was previously teleported from, or {@code null}.
1311          * <p>
1312          * A {@code Lookup} object produced by the factory methods, such as the
1313          * {@link #lookup() lookup()} and {@link #publicLookup() publicLookup()} method,
1314          * has {@code null} previous lookup class.
1315          * A {@code Lookup} object has a non-null previous lookup class
1316          * when this lookup was teleported from an old lookup class
1317          * in one module to a new lookup class in another module.
1318          *
1319          * @return the lookup class in another module that this lookup object was
1320          *         previously teleported from, or {@code null}
1321          * @since 14
1322          * @see #in(Class)
1323          * @see MethodHandles#privateLookupIn(Class, Lookup)
1324          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1325          */
1326         public Class<?> previousLookupClass() {
1327             return prevLookupClass;
1328         }
1329 
1330         // This is just for calling out to MethodHandleImpl.
1331         private Class<?> lookupClassOrNull() {
1332             if (allowedModes == TRUSTED) {
1333                 return null;
1334             }
1335             if (allowedModes == UNCONDITIONAL) {
1336                 // use Object as the caller to pass to VM doing resolution
1337                 return Object.class;
1338             }
1339             return lookupClass;
1340         }
1341 
1342         /** Tells which access-protection classes of members this lookup object can produce.
1343          *  The result is a bit-mask of the bits
1344          *  {@linkplain #PUBLIC PUBLIC (0x01)},
1345          *  {@linkplain #PRIVATE PRIVATE (0x02)},
1346          *  {@linkplain #PROTECTED PROTECTED (0x04)},
1347          *  {@linkplain #PACKAGE PACKAGE (0x08)},
1348          *  {@linkplain #MODULE MODULE (0x10)},
1349          *  and {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}.
1350          *  <p>
1351          *  A freshly-created lookup object
1352          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
1353          *  all possible bits set, except {@code UNCONDITIONAL}.
1354          *  A lookup object on a new lookup class
1355          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
1356          *  may have some mode bits set to zero.
1357          *  Mode bits can also be
1358          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
1359          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
1360          *  The purpose of this is to restrict access via the new lookup object,
1361          *  so that it can access only names which can be reached by the original
1362          *  lookup object, and also by the new lookup class.
1363          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
1364          *  @see #in
1365          *  @see #dropLookupMode
1366          *
1367          *  @revised 9
1368          *  @spec JPMS
1369          */
1370         public int lookupModes() {
1371             return allowedModes & ALL_MODES;
1372         }
1373 
1374         /** Embody the current class (the lookupClass) as a lookup class
1375          * for method handle creation.
1376          * Must be called by from a method in this package,
1377          * which in turn is called by a method not in this package.
1378          */
1379         Lookup(Class<?> lookupClass) {
1380             this(lookupClass, null, FULL_POWER_MODES);
1381             // make sure we haven't accidentally picked up a privileged class:
1382             checkUnprivilegedlookupClass(lookupClass);
1383         }
1384 
1385         private Lookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1386             assert prevLookupClass == null || ((allowedModes & MODULE) == 0
1387                     && prevLookupClass.getModule() != lookupClass.getModule());
1388 
1389             this.lookupClass = lookupClass;
1390             this.prevLookupClass = prevLookupClass;
1391             this.allowedModes = allowedModes;
1392         }
1393 
1394         private static Lookup newLookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1395             // make sure we haven't accidentally picked up a privileged class:
1396             checkUnprivilegedlookupClass(lookupClass);
1397             return new Lookup(lookupClass, prevLookupClass, allowedModes);
1398         }
1399 
1400         /**
1401          * Creates a lookup on the specified new lookup class.
1402          * The resulting object will report the specified
1403          * class as its own {@link #lookupClass() lookupClass}.
1404          *
1405          * <p>
1406          * However, the resulting {@code Lookup} object is guaranteed
1407          * to have no more access capabilities than the original.
1408          * In particular, access capabilities can be lost as follows:<ul>
1409          * <li>If the new lookup class is in a different module from the old one,
1410          * i.e. {@link #MODULE MODULE} access is lost.
1411          * <li>If the new lookup class is in a different package
1412          * than the old one, protected and default (package) members will not be accessible,
1413          * i.e. {@link #PROTECTED PROTECTED} and {@link #PACKAGE PACKAGE} access are lost.
1414          * <li>If the new lookup class is not within the same package member
1415          * as the old one, private members will not be accessible, and protected members
1416          * will not be accessible by virtue of inheritance,
1417          * i.e. {@link #PRIVATE PRIVATE} access is lost.
1418          * (Protected members may continue to be accessible because of package sharing.)
1419          * <li>If the new lookup class is not
1420          * {@linkplain #accessClass(Class) accessible} to this lookup,
1421          * then no members, not even public members, will be accessible
1422          * i.e. all access modes are lost.
1423          * <li>If the new lookup class, the old lookup class and the previous lookup class
1424          * are all in different modules i.e. teleporting to a third module,
1425          * all access modes are lost.
1426          * </ul>
1427          * <p>
1428          * The new previous lookup class is chosen as follows:
1429          * <ul>
1430          * <li>If the new lookup object has {@link #UNCONDITIONAL UNCONDITIONAL} bit,
1431          * the new previous lookup class is {@code null}.
1432          * <li>If the new lookup class is in the same module as the old lookup class,
1433          * the new previous lookup class is the old previous lookup class.
1434          * <li>If the new lookup class is in a different module from the old lookup class,
1435          * the new previous lookup class is the the old lookup class.
1436          *</ul>
1437          * <p>
1438          * The resulting lookup's capabilities for loading classes
1439          * (used during {@link #findClass} invocations)
1440          * are determined by the lookup class' loader,
1441          * which may change due to this operation.
1442          * <p>
1443          * @param requestedLookupClass the desired lookup class for the new lookup object
1444          * @return a lookup object which reports the desired lookup class, or the same object
1445          * if there is no change
1446          * @throws NullPointerException if the argument is null
1447          *
1448          * @revised 9
1449          * @spec JPMS
1450          * @see #accessClass(Class)
1451          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1452          */
1453         public Lookup in(Class<?> requestedLookupClass) {
1454             Objects.requireNonNull(requestedLookupClass);
1455             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
1456                 return new Lookup(requestedLookupClass, null, FULL_POWER_MODES);
1457             if (requestedLookupClass == this.lookupClass)
1458                 return this;  // keep same capabilities
1459             int newModes = (allowedModes & FULL_POWER_MODES);
1460             Module fromModule = this.lookupClass.getModule();
1461             Module targetModule = requestedLookupClass.getModule();
1462             Class<?> plc = this.previousLookupClass();
1463             if ((this.allowedModes & UNCONDITIONAL) != 0) {
1464                 assert plc == null;
1465                 newModes = UNCONDITIONAL;
1466             } else if (fromModule != targetModule) {
1467                 if (plc != null && !VerifyAccess.isSameModule(plc, requestedLookupClass)) {
1468                     // allow hopping back and forth between fromModule and plc's module
1469                     // but not the third module
1470                     newModes = 0;
1471                 }
1472                 // drop MODULE access
1473                 newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
1474                 // teleport from this lookup class
1475                 plc = this.lookupClass;
1476             }
1477             if ((newModes & PACKAGE) != 0
1478                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
1479                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
1480             }
1481             // Allow nestmate lookups to be created without special privilege:
1482             if ((newModes & PRIVATE) != 0
1483                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
1484                 newModes &= ~(PRIVATE|PROTECTED);
1485             }
1486             if ((newModes & (PUBLIC|UNCONDITIONAL)) != 0
1487                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, this.prevLookupClass, allowedModes)) {
1488                 // The requested class it not accessible from the lookup class.
1489                 // No permissions.
1490                 newModes = 0;
1491             }
1492             return newLookup(requestedLookupClass, plc, newModes);
1493         }
1494 
1495         /**
1496          * Creates a lookup on the same lookup class which this lookup object
1497          * finds members, but with a lookup mode that has lost the given lookup mode.
1498          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
1499          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED} or {@link #PRIVATE PRIVATE}.
1500          * {@link #PROTECTED PROTECTED} is always
1501          * dropped and so the resulting lookup mode will never have this access capability.
1502          * When dropping {@code PACKAGE} then the resulting lookup will not have {@code PACKAGE}
1503          * or {@code PRIVATE} access. When dropping {@code MODULE} then the resulting lookup will
1504          * not have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. If {@code PUBLIC}
1505          * is dropped then the resulting lookup has no access. If {@code UNCONDITIONAL}
1506          * is dropped then the resulting lookup has no access.
1507          *
1508          * @apiNote
1509          * A lookup with {@code PACKAGE} but not {@code PRIVATE} mode can safely
1510          * delegate non-public access within the package of the lookup class without
1511          * conferring private access.  A lookup with {@code MODULE} but not
1512          * {@code PACKAGE} mode can safely delegate {@code PUBLIC} access within
1513          * the module of the lookup class without conferring package access.
1514          * A lookup with a {@linkplain #previousLookupClass() previous lookup class}
1515          * (and {@code PUBLIC} but not {@code MODULE} mode) can safely delegate access
1516          * to public classes accessible to both the module of the lookup class
1517          * and the module of the previous lookup class.
1518          *
1519          * @param modeToDrop the lookup mode to drop
1520          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
1521          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
1522          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL}
1523          * @see MethodHandles#privateLookupIn
1524          * @since 9
1525          */
1526         public Lookup dropLookupMode(int modeToDrop) {
1527             int oldModes = lookupModes();
1528             int newModes = oldModes & ~(modeToDrop | PROTECTED);
1529             switch (modeToDrop) {
1530                 case PUBLIC: newModes &= ~(FULL_POWER_MODES); break;
1531                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
1532                 case PACKAGE: newModes &= ~(PRIVATE); break;
1533                 case PROTECTED:
1534                 case PRIVATE:
1535                 case UNCONDITIONAL: break;
1536                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
1537             }
1538             if (newModes == oldModes) return this;  // return self if no change
1539             return newLookup(lookupClass(), previousLookupClass(), newModes);
1540         }
1541 
1542         /**
1543          * Defines a class to the same class loader and in the same runtime package and
1544          * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's
1545          * {@linkplain #lookupClass() lookup class}.
1546          *
1547          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include
1548          * {@link #PACKAGE PACKAGE} access as default (package) members will be
1549          * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate
1550          * that the lookup object was created by a caller in the runtime package (or derived
1551          * from a lookup originally created by suitably privileged code to a target class in
1552          * the runtime package). </p>
1553          *
1554          * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined
1555          * by the <em>The Java Virtual Machine Specification</em>) with a class name in the
1556          * same package as the lookup class. </p>
1557          *
1558          * <p> This method does not run the class initializer. The class initializer may
1559          * run at a later time, as detailed in section 12.4 of the <em>The Java Language
1560          * Specification</em>. </p>
1561          *
1562          * <p> If there is a security manager, its {@code checkPermission} method is first called
1563          * to check {@code RuntimePermission("defineClass")}. </p>
1564          *
1565          * @param bytes the class bytes
1566          * @return the {@code Class} object for the class
1567          * @throws IllegalArgumentException the bytes are for a class in a different package
1568          * to the lookup class
1569          * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access
1570          * @throws LinkageError if the class is malformed ({@code ClassFormatError}), cannot be
1571          * verified ({@code VerifyError}), is already defined, or another linkage error occurs
1572          * @throws SecurityException if denied by the security manager
1573          * @throws NullPointerException if {@code bytes} is {@code null}
1574          * @since 9
1575          * @spec JPMS
1576          * @see Lookup#privateLookupIn
1577          * @see Lookup#dropLookupMode
1578          * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
1579          */
1580         public Class<?> defineClass(byte[] bytes) throws IllegalAccessException {
1581             SecurityManager sm = System.getSecurityManager();
1582             if (sm != null)
1583                 sm.checkPermission(new RuntimePermission("defineClass"));
1584             if ((lookupModes() & PACKAGE) == 0)
1585                 throw new IllegalAccessException("Lookup does not have PACKAGE access");
1586             assert (lookupModes() & (MODULE|PUBLIC)) != 0;
1587 
1588             // parse class bytes to get class name (in internal form)
1589             bytes = bytes.clone();
1590             String name;
1591             try {
1592                 ClassReader reader = new ClassReader(bytes);
1593                 name = reader.getClassName();
1594             } catch (RuntimeException e) {
1595                 // ASM exceptions are poorly specified
1596                 ClassFormatError cfe = new ClassFormatError();
1597                 cfe.initCause(e);
1598                 throw cfe;
1599             }
1600 
1601             // get package and class name in binary form
1602             String cn, pn;
1603             int index = name.lastIndexOf('/');
1604             if (index == -1) {
1605                 cn = name;
1606                 pn = "";
1607             } else {
1608                 cn = name.replace('/', '.');
1609                 pn = cn.substring(0, index);
1610             }
1611             if (!pn.equals(lookupClass.getPackageName())) {
1612                 throw new IllegalArgumentException("Class not in same package as lookup class");
1613             }
1614 
1615             // invoke the class loader's defineClass method
1616             ClassLoader loader = lookupClass.getClassLoader();
1617             ProtectionDomain pd = (loader != null) ? lookupClassProtectionDomain() : null;
1618             String source = "__Lookup_defineClass__";
1619             Class<?> clazz = SharedSecrets.getJavaLangAccess().defineClass(loader, cn, bytes, pd, source);
1620             return clazz;
1621         }
1622 
1623         private ProtectionDomain lookupClassProtectionDomain() {
1624             ProtectionDomain pd = cachedProtectionDomain;
1625             if (pd == null) {
1626                 cachedProtectionDomain = pd = protectionDomain(lookupClass);
1627             }
1628             return pd;
1629         }
1630 
1631         private ProtectionDomain protectionDomain(Class<?> clazz) {
1632             PrivilegedAction<ProtectionDomain> pa = clazz::getProtectionDomain;
1633             return AccessController.doPrivileged(pa);
1634         }
1635 
1636         // cached protection domain
1637         private volatile ProtectionDomain cachedProtectionDomain;
1638 
1639 
1640         // Make sure outer class is initialized first.
1641         static { IMPL_NAMES.getClass(); }
1642 
1643         /** Package-private version of lookup which is trusted. */
1644         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, null, TRUSTED);
1645 
1646         /** Version of lookup which is trusted minimally.
1647          *  It can only be used to create method handles to publicly accessible
1648          *  members in packages that are exported unconditionally.
1649          */
1650         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, null, UNCONDITIONAL);
1651 
1652         private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
1653             String name = lookupClass.getName();
1654             if (name.startsWith("java.lang.invoke."))
1655                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
1656         }
1657 
1658         /**
1659          * Displays the name of the class from which lookups are to be made.
1660          * followed with "/" and the name of the {@linkplain #previousLookupClass()
1661          * previous lookup class} if present.
1662          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
1663          * If there are restrictions on the access permitted to this lookup,
1664          * this is indicated by adding a suffix to the class name, consisting
1665          * of a slash and a keyword.  The keyword represents the strongest
1666          * allowed access, and is chosen as follows:
1667          * <ul>
1668          * <li>If no access is allowed, the suffix is "/noaccess".
1669          * <li>If only unconditional access is allowed, the suffix is "/publicLookup".
1670          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
1671          * <li>If only public and module access are allowed, the suffix is "/module".
1672          * <li>If public and package access are allowed, the suffix is "/package".
1673          * <li>If public, package, and private access are allowed, the suffix is "/private".
1674          * </ul>
1675          * If none of the above cases apply, it is the case that full access
1676          * (public, module, package, private, and protected) is allowed.
1677          * In this case, no suffix is added.
1678          * This is true only of an object obtained originally from
1679          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
1680          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
1681          * always have restricted access, and will display a suffix.
1682          * <p>
1683          * (It may seem strange that protected access should be
1684          * stronger than private access.  Viewed independently from
1685          * package access, protected access is the first to be lost,
1686          * because it requires a direct subclass relationship between
1687          * caller and callee.)
1688          * @see #in
1689          *
1690          * @revised 9
1691          * @spec JPMS
1692          */
1693         @Override
1694         public String toString() {
1695             String cname = lookupClass.getName();
1696             if (prevLookupClass != null)
1697                 cname += "/" + prevLookupClass.getName();
1698             switch (allowedModes) {
1699             case 0:  // no privileges
1700                 return cname + "/noaccess";
1701             case UNCONDITIONAL:
1702                 return cname + "/publicLookup";
1703             case PUBLIC:
1704                 return cname + "/public";
1705             case PUBLIC|MODULE:
1706                 return cname + "/module";
1707             case PUBLIC|PACKAGE:
1708             case PUBLIC|MODULE|PACKAGE:
1709                 return cname + "/package";
1710             case FULL_POWER_MODES & (~PROTECTED):
1711             case FULL_POWER_MODES & ~(PROTECTED|MODULE):
1712                     return cname + "/private";
1713             case FULL_POWER_MODES:
1714             case FULL_POWER_MODES & (~MODULE):
1715                 return cname;
1716             case TRUSTED:
1717                 return "/trusted";  // internal only; not exported
1718             default:  // Should not happen, but it's a bitfield...
1719                 cname = cname + "/" + Integer.toHexString(allowedModes);
1720                 assert(false) : cname;
1721                 return cname;
1722             }
1723         }
1724 
1725         /**
1726          * Produces a method handle for a static method.
1727          * The type of the method handle will be that of the method.
1728          * (Since static methods do not take receivers, there is no
1729          * additional receiver argument inserted into the method handle type,
1730          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
1731          * The method and all its argument types must be accessible to the lookup object.
1732          * <p>
1733          * The returned method handle will have
1734          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1735          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1736          * <p>
1737          * If the returned method handle is invoked, the method's class will
1738          * be initialized, if it has not already been initialized.
1739          * <p><b>Example:</b>
1740          * <blockquote><pre>{@code
1741 import static java.lang.invoke.MethodHandles.*;
1742 import static java.lang.invoke.MethodType.*;
1743 ...
1744 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
1745   "asList", methodType(List.class, Object[].class));
1746 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
1747          * }</pre></blockquote>
1748          * @param refc the class from which the method is accessed
1749          * @param name the name of the method
1750          * @param type the type of the method
1751          * @return the desired method handle
1752          * @throws NoSuchMethodException if the method does not exist
1753          * @throws IllegalAccessException if access checking fails,
1754          *                                or if the method is not {@code static},
1755          *                                or if the method's variable arity modifier bit
1756          *                                is set and {@code asVarargsCollector} fails
1757          * @exception SecurityException if a security manager is present and it
1758          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1759          * @throws NullPointerException if any argument is null
1760          */
1761         public
1762         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1763             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
1764             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
1765         }
1766 
1767         /**
1768          * Produces a method handle for a virtual method.
1769          * The type of the method handle will be that of the method,
1770          * with the receiver type (usually {@code refc}) prepended.
1771          * The method and all its argument types must be accessible to the lookup object.
1772          * <p>
1773          * When called, the handle will treat the first argument as a receiver
1774          * and, for non-private methods, dispatch on the receiver's type to determine which method
1775          * implementation to enter.
1776          * For private methods the named method in {@code refc} will be invoked on the receiver.
1777          * (The dispatching action is identical with that performed by an
1778          * {@code invokevirtual} or {@code invokeinterface} instruction.)
1779          * <p>
1780          * The first argument will be of type {@code refc} if the lookup
1781          * class has full privileges to access the member.  Otherwise
1782          * the member must be {@code protected} and the first argument
1783          * will be restricted in type to the lookup class.
1784          * <p>
1785          * The returned method handle will have
1786          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1787          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1788          * <p>
1789          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
1790          * instructions and method handles produced by {@code findVirtual},
1791          * if the class is {@code MethodHandle} and the name string is
1792          * {@code invokeExact} or {@code invoke}, the resulting
1793          * method handle is equivalent to one produced by
1794          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
1795          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
1796          * with the same {@code type} argument.
1797          * <p>
1798          * If the class is {@code VarHandle} and the name string corresponds to
1799          * the name of a signature-polymorphic access mode method, the resulting
1800          * method handle is equivalent to one produced by
1801          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
1802          * the access mode corresponding to the name string and with the same
1803          * {@code type} arguments.
1804          * <p>
1805          * <b>Example:</b>
1806          * <blockquote><pre>{@code
1807 import static java.lang.invoke.MethodHandles.*;
1808 import static java.lang.invoke.MethodType.*;
1809 ...
1810 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
1811   "concat", methodType(String.class, String.class));
1812 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
1813   "hashCode", methodType(int.class));
1814 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
1815   "hashCode", methodType(int.class));
1816 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
1817 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
1818 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
1819 // interface method:
1820 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
1821   "subSequence", methodType(CharSequence.class, int.class, int.class));
1822 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
1823 // constructor "internal method" must be accessed differently:
1824 MethodType MT_newString = methodType(void.class); //()V for new String()
1825 try { assertEquals("impossible", lookup()
1826         .findVirtual(String.class, "<init>", MT_newString));
1827  } catch (NoSuchMethodException ex) { } // OK
1828 MethodHandle MH_newString = publicLookup()
1829   .findConstructor(String.class, MT_newString);
1830 assertEquals("", (String) MH_newString.invokeExact());
1831          * }</pre></blockquote>
1832          *
1833          * @param refc the class or interface from which the method is accessed
1834          * @param name the name of the method
1835          * @param type the type of the method, with the receiver argument omitted
1836          * @return the desired method handle
1837          * @throws NoSuchMethodException if the method does not exist
1838          * @throws IllegalAccessException if access checking fails,
1839          *                                or if the method is {@code static},
1840          *                                or if the method's variable arity modifier bit
1841          *                                is set and {@code asVarargsCollector} fails
1842          * @exception SecurityException if a security manager is present and it
1843          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1844          * @throws NullPointerException if any argument is null
1845          */
1846         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1847             if (refc == MethodHandle.class) {
1848                 MethodHandle mh = findVirtualForMH(name, type);
1849                 if (mh != null)  return mh;
1850             } else if (refc == VarHandle.class) {
1851                 MethodHandle mh = findVirtualForVH(name, type);
1852                 if (mh != null)  return mh;
1853             }
1854             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
1855             MemberName method = resolveOrFail(refKind, refc, name, type);
1856             return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
1857         }
1858         private MethodHandle findVirtualForMH(String name, MethodType type) {
1859             // these names require special lookups because of the implicit MethodType argument
1860             if ("invoke".equals(name))
1861                 return invoker(type);
1862             if ("invokeExact".equals(name))
1863                 return exactInvoker(type);
1864             assert(!MemberName.isMethodHandleInvokeName(name));
1865             return null;
1866         }
1867         private MethodHandle findVirtualForVH(String name, MethodType type) {
1868             try {
1869                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
1870             } catch (IllegalArgumentException e) {
1871                 return null;
1872             }
1873         }
1874 
1875         /**
1876          * Produces a method handle which creates an object and initializes it, using
1877          * the constructor of the specified type.
1878          * The parameter types of the method handle will be those of the constructor,
1879          * while the return type will be a reference to the constructor's class.
1880          * The constructor and all its argument types must be accessible to the lookup object.
1881          * <p>
1882          * The requested type must have a return type of {@code void}.
1883          * (This is consistent with the JVM's treatment of constructor type descriptors.)
1884          * <p>
1885          * The returned method handle will have
1886          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1887          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1888          * <p>
1889          * If the returned method handle is invoked, the constructor's class will
1890          * be initialized, if it has not already been initialized.
1891          * <p><b>Example:</b>
1892          * <blockquote><pre>{@code
1893 import static java.lang.invoke.MethodHandles.*;
1894 import static java.lang.invoke.MethodType.*;
1895 ...
1896 MethodHandle MH_newArrayList = publicLookup().findConstructor(
1897   ArrayList.class, methodType(void.class, Collection.class));
1898 Collection orig = Arrays.asList("x", "y");
1899 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
1900 assert(orig != copy);
1901 assertEquals(orig, copy);
1902 // a variable-arity constructor:
1903 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
1904   ProcessBuilder.class, methodType(void.class, String[].class));
1905 ProcessBuilder pb = (ProcessBuilder)
1906   MH_newProcessBuilder.invoke("x", "y", "z");
1907 assertEquals("[x, y, z]", pb.command().toString());
1908          * }</pre></blockquote>
1909          * @param refc the class or interface from which the method is accessed
1910          * @param type the type of the method, with the receiver argument omitted, and a void return type
1911          * @return the desired method handle
1912          * @throws NoSuchMethodException if the constructor does not exist
1913          * @throws IllegalAccessException if access checking fails
1914          *                                or if the method's variable arity modifier bit
1915          *                                is set and {@code asVarargsCollector} fails
1916          * @exception SecurityException if a security manager is present and it
1917          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1918          * @throws NullPointerException if any argument is null
1919          */
1920         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1921             if (refc.isArray()) {
1922                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
1923             }
1924             String name = "<init>";
1925             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
1926             return getDirectConstructor(refc, ctor);
1927         }
1928 
1929         /**
1930          * Looks up a class by name from the lookup context defined by this {@code Lookup} object.
1931          * This method attempts to locate, load, and link the class.  The static
1932          * initializer of the class is not run.
1933          * <p>
1934          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, its class
1935          * loader, and the {@linkplain #lookupModes() lookup modes}. In particular, the method first attempts to
1936          * load the requested class, and then determines whether the class is accessible to this lookup object.
1937          * <p>
1938          * Note that this method throws errors related to loading and linking as
1939          * specified in Sections 12.2 and 12.3 of <em>The Java Language
1940          * Specification</em>.
1941          *
1942          * @param targetName the fully qualified name of the class to be looked up.
1943          * @return the requested class.
1944          * @exception SecurityException if a security manager is present and it
1945          *            <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1946          * @throws LinkageError if the linkage fails
1947          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
1948          * @throws IllegalAccessException if the class is not accessible, using the allowed access
1949          * modes.
1950          * @exception SecurityException if a security manager is present and it
1951          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1952          * @since 9
1953          */
1954         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
1955             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
1956             return accessClass(targetClass);
1957         }
1958 
1959         /**
1960          * Determines if a class can be accessed from the lookup context defined by
1961          * this {@code Lookup} object. The static initializer of the class is not run.
1962          * <p>
1963          * If the {@code targetClass} is in the same module as the lookup class,
1964          * the lookup class is {@code LC} in module {@code M1} and
1965          * the previous lookup class is in module {@code M0} or
1966          * {@code null} if not present,
1967          * {@code targetClass} is accessible if and only if one of the following is true:
1968          * <ul>
1969          * <li>If this lookup has {@link #PRIVATE} access, {@code targetClass} is
1970          *     {@code LC} or other class in the same nest of {@code LC}.</li>
1971          * <li>If this lookup has {@link #PACKAGE} access, {@code targetClass} is
1972          *     in the same runtime package of {@code LC}.</li>
1973          * <li>If this lookup has {@link #MODULE} access, {@code targetClass} is
1974          *     a public type in {@code M1}.</li>
1975          * <li>If this lookup has {@link #PUBLIC} access, {@code targetClass} is
1976          *     a public type in a package exported by {@code M1} to at least  {@code M0}
1977          *     if the previous lookup class is present; otherwise, {@code targetClass}
1978          *     is a public type in a package exported by {@code M1} unconditionally.</li>
1979          * </ul>
1980          *
1981          * <p>
1982          * Otherwise, if this lookup has {@link #UNCONDITIONAL} access, this lookup
1983          * can access public types in all modules when the type is in a package
1984          * that is exported unconditionally.
1985          * <p>
1986          * Otherwise, the target class is in a different module from {@code lookupClass},
1987          * and if this lookup does not have {@code PUBLIC} access, {@code lookupClass}
1988          * is inaccessible.
1989          * <p>
1990          * Otherwise, if this lookup has no {@linkplain #previousLookupClass() previous lookup class},
1991          * {@code M1} is the module containing {@code lookupClass} and
1992          * {@code M2} is the module containing {@code targetClass},
1993          * then {@code targetClass} is accessible if and only if
1994          * <ul>
1995          * <li>{@code M1} reads {@code M2}, and
1996          * <li>{@code targetClass} is public and in a package exported by
1997          *     {@code M2} at least to {@code M1}.
1998          * </ul>
1999          * <p>
2000          * Otherwise, if this lookup has a {@linkplain #previousLookupClass() previous lookup class},
2001          * {@code M1} and {@code M2} are as before, and {@code M0} is the module
2002          * containing the previous lookup class, then {@code targetClass} is accessible
2003          * if and only if one of the following is true:
2004          * <ul>
2005          * <li>{@code targetClass} is in {@code M0} and {@code M1}
2006          *     {@linkplain Module#reads reads} {@code M0} and the type is
2007          *     in a package that is exported to at least {@code M1}.
2008          * <li>{@code targetClass} is in {@code M1} and {@code M0}
2009          *     {@linkplain Module#reads reads} {@code M1} and the type is
2010          *     in a package that is exported to at least {@code M0}.
2011          * <li>{@code targetClass} is in a third module {@code M2} and both {@code M0}
2012          *     and {@code M1} reads {@code M2} and the type is in a package
2013          *     that is exported to at least both {@code M0} and {@code M2}.
2014          * </ul>
2015          * <p>
2016          * Otherwise, {@code targetClass} is not accessible.
2017          *
2018          * @param targetClass the class to be access-checked
2019          * @return the class that has been access-checked
2020          * @throws IllegalAccessException if the class is not accessible from the lookup class
2021          * and previous lookup class, if present, using the allowed access modes.
2022          * @exception SecurityException if a security manager is present and it
2023          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2024          * @since 9
2025          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
2026          */
2027         public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
2028             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, prevLookupClass, allowedModes)) {
2029                 throw new MemberName(targetClass).makeAccessException("access violation", this);
2030             }
2031             checkSecurityManager(targetClass, null);
2032             return targetClass;
2033         }
2034 
2035         /**
2036          * Produces an early-bound method handle for a virtual method.
2037          * It will bypass checks for overriding methods on the receiver,
2038          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
2039          * instruction from within the explicitly specified {@code specialCaller}.
2040          * The type of the method handle will be that of the method,
2041          * with a suitably restricted receiver type prepended.
2042          * (The receiver type will be {@code specialCaller} or a subtype.)
2043          * The method and all its argument types must be accessible
2044          * to the lookup object.
2045          * <p>
2046          * Before method resolution,
2047          * if the explicitly specified caller class is not identical with the
2048          * lookup class, or if this lookup object does not have
2049          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
2050          * privileges, the access fails.
2051          * <p>
2052          * The returned method handle will have
2053          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2054          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2055          * <p style="font-size:smaller;">
2056          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
2057          * even though the {@code invokespecial} instruction can refer to them
2058          * in special circumstances.  Use {@link #findConstructor findConstructor}
2059          * to access instance initialization methods in a safe manner.)</em>
2060          * <p><b>Example:</b>
2061          * <blockquote><pre>{@code
2062 import static java.lang.invoke.MethodHandles.*;
2063 import static java.lang.invoke.MethodType.*;
2064 ...
2065 static class Listie extends ArrayList {
2066   public String toString() { return "[wee Listie]"; }
2067   static Lookup lookup() { return MethodHandles.lookup(); }
2068 }
2069 ...
2070 // no access to constructor via invokeSpecial:
2071 MethodHandle MH_newListie = Listie.lookup()
2072   .findConstructor(Listie.class, methodType(void.class));
2073 Listie l = (Listie) MH_newListie.invokeExact();
2074 try { assertEquals("impossible", Listie.lookup().findSpecial(
2075         Listie.class, "<init>", methodType(void.class), Listie.class));
2076  } catch (NoSuchMethodException ex) { } // OK
2077 // access to super and self methods via invokeSpecial:
2078 MethodHandle MH_super = Listie.lookup().findSpecial(
2079   ArrayList.class, "toString" , methodType(String.class), Listie.class);
2080 MethodHandle MH_this = Listie.lookup().findSpecial(
2081   Listie.class, "toString" , methodType(String.class), Listie.class);
2082 MethodHandle MH_duper = Listie.lookup().findSpecial(
2083   Object.class, "toString" , methodType(String.class), Listie.class);
2084 assertEquals("[]", (String) MH_super.invokeExact(l));
2085 assertEquals(""+l, (String) MH_this.invokeExact(l));
2086 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
2087 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
2088         String.class, "toString", methodType(String.class), Listie.class));
2089  } catch (IllegalAccessException ex) { } // OK
2090 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
2091 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
2092          * }</pre></blockquote>
2093          *
2094          * @param refc the class or interface from which the method is accessed
2095          * @param name the name of the method (which must not be "&lt;init&gt;")
2096          * @param type the type of the method, with the receiver argument omitted
2097          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
2098          * @return the desired method handle
2099          * @throws NoSuchMethodException if the method does not exist
2100          * @throws IllegalAccessException if access checking fails,
2101          *                                or if the method is {@code static},
2102          *                                or if the method's variable arity modifier bit
2103          *                                is set and {@code asVarargsCollector} fails
2104          * @exception SecurityException if a security manager is present and it
2105          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2106          * @throws NullPointerException if any argument is null
2107          */
2108         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
2109                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
2110             checkSpecialCaller(specialCaller, refc);
2111             Lookup specialLookup = this.in(specialCaller);
2112             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
2113             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
2114         }
2115 
2116         /**
2117          * Produces a method handle giving read access to a non-static field.
2118          * The type of the method handle will have a return type of the field's
2119          * value type.
2120          * The method handle's single argument will be the instance containing
2121          * the field.
2122          * Access checking is performed immediately on behalf of the lookup class.
2123          * @param refc the class or interface from which the method is accessed
2124          * @param name the field's name
2125          * @param type the field's type
2126          * @return a method handle which can load values from the field
2127          * @throws NoSuchFieldException if the field does not exist
2128          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2129          * @exception SecurityException if a security manager is present and it
2130          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2131          * @throws NullPointerException if any argument is null
2132          * @see #findVarHandle(Class, String, Class)
2133          */
2134         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2135             MemberName field = resolveOrFail(REF_getField, refc, name, type);
2136             return getDirectField(REF_getField, refc, field);
2137         }
2138 
2139         /**
2140          * Produces a method handle giving write access to a non-static field.
2141          * The type of the method handle will have a void return type.
2142          * The method handle will take two arguments, the instance containing
2143          * the field, and the value to be stored.
2144          * The second argument will be of the field's value type.
2145          * Access checking is performed immediately on behalf of the lookup class.
2146          * @param refc the class or interface from which the method is accessed
2147          * @param name the field's name
2148          * @param type the field's type
2149          * @return a method handle which can store values into the field
2150          * @throws NoSuchFieldException if the field does not exist
2151          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2152          *                                or {@code final}
2153          * @exception SecurityException if a security manager is present and it
2154          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2155          * @throws NullPointerException if any argument is null
2156          * @see #findVarHandle(Class, String, Class)
2157          */
2158         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2159             MemberName field = resolveOrFail(REF_putField, refc, name, type);
2160             return getDirectField(REF_putField, refc, field);
2161         }
2162 
2163         /**
2164          * Produces a VarHandle giving access to a non-static field {@code name}
2165          * of type {@code type} declared in a class of type {@code recv}.
2166          * The VarHandle's variable type is {@code type} and it has one
2167          * coordinate type, {@code recv}.
2168          * <p>
2169          * Access checking is performed immediately on behalf of the lookup
2170          * class.
2171          * <p>
2172          * Certain access modes of the returned VarHandle are unsupported under
2173          * the following conditions:
2174          * <ul>
2175          * <li>if the field is declared {@code final}, then the write, atomic
2176          *     update, numeric atomic update, and bitwise atomic update access
2177          *     modes are unsupported.
2178          * <li>if the field type is anything other than {@code byte},
2179          *     {@code short}, {@code char}, {@code int}, {@code long},
2180          *     {@code float}, or {@code double} then numeric atomic update
2181          *     access modes are unsupported.
2182          * <li>if the field type is anything other than {@code boolean},
2183          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2184          *     {@code long} then bitwise atomic update access modes are
2185          *     unsupported.
2186          * </ul>
2187          * <p>
2188          * If the field is declared {@code volatile} then the returned VarHandle
2189          * will override access to the field (effectively ignore the
2190          * {@code volatile} declaration) in accordance to its specified
2191          * access modes.
2192          * <p>
2193          * If the field type is {@code float} or {@code double} then numeric
2194          * and atomic update access modes compare values using their bitwise
2195          * representation (see {@link Float#floatToRawIntBits} and
2196          * {@link Double#doubleToRawLongBits}, respectively).
2197          * @apiNote
2198          * Bitwise comparison of {@code float} values or {@code double} values,
2199          * as performed by the numeric and atomic update access modes, differ
2200          * from the primitive {@code ==} operator and the {@link Float#equals}
2201          * and {@link Double#equals} methods, specifically with respect to
2202          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2203          * Care should be taken when performing a compare and set or a compare
2204          * and exchange operation with such values since the operation may
2205          * unexpectedly fail.
2206          * There are many possible NaN values that are considered to be
2207          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2208          * provided by Java can distinguish between them.  Operation failure can
2209          * occur if the expected or witness value is a NaN value and it is
2210          * transformed (perhaps in a platform specific manner) into another NaN
2211          * value, and thus has a different bitwise representation (see
2212          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2213          * details).
2214          * The values {@code -0.0} and {@code +0.0} have different bitwise
2215          * representations but are considered equal when using the primitive
2216          * {@code ==} operator.  Operation failure can occur if, for example, a
2217          * numeric algorithm computes an expected value to be say {@code -0.0}
2218          * and previously computed the witness value to be say {@code +0.0}.
2219          * @param recv the receiver class, of type {@code R}, that declares the
2220          * non-static field
2221          * @param name the field's name
2222          * @param type the field's type, of type {@code T}
2223          * @return a VarHandle giving access to non-static fields.
2224          * @throws NoSuchFieldException if the field does not exist
2225          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2226          * @exception SecurityException if a security manager is present and it
2227          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2228          * @throws NullPointerException if any argument is null
2229          * @since 9
2230          */
2231         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2232             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
2233             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
2234             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
2235         }
2236 
2237         /**
2238          * Produces a method handle giving read access to a static field.
2239          * The type of the method handle will have a return type of the field's
2240          * value type.
2241          * The method handle will take no arguments.
2242          * Access checking is performed immediately on behalf of the lookup class.
2243          * <p>
2244          * If the returned method handle is invoked, the field's class will
2245          * be initialized, if it has not already been initialized.
2246          * @param refc the class or interface from which the method is accessed
2247          * @param name the field's name
2248          * @param type the field's type
2249          * @return a method handle which can load values from the field
2250          * @throws NoSuchFieldException if the field does not exist
2251          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2252          * @exception SecurityException if a security manager is present and it
2253          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2254          * @throws NullPointerException if any argument is null
2255          */
2256         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2257             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
2258             return getDirectField(REF_getStatic, refc, field);
2259         }
2260 
2261         /**
2262          * Produces a method handle giving write access to a static field.
2263          * The type of the method handle will have a void return type.
2264          * The method handle will take a single
2265          * argument, of the field's value type, the value to be stored.
2266          * Access checking is performed immediately on behalf of the lookup class.
2267          * <p>
2268          * If the returned method handle is invoked, the field's class will
2269          * be initialized, if it has not already been initialized.
2270          * @param refc the class or interface from which the method is accessed
2271          * @param name the field's name
2272          * @param type the field's type
2273          * @return a method handle which can store values into the field
2274          * @throws NoSuchFieldException if the field does not exist
2275          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2276          *                                or is {@code final}
2277          * @exception SecurityException if a security manager is present and it
2278          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2279          * @throws NullPointerException if any argument is null
2280          */
2281         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2282             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
2283             return getDirectField(REF_putStatic, refc, field);
2284         }
2285 
2286         /**
2287          * Produces a VarHandle giving access to a static field {@code name} of
2288          * type {@code type} declared in a class of type {@code decl}.
2289          * The VarHandle's variable type is {@code type} and it has no
2290          * coordinate types.
2291          * <p>
2292          * Access checking is performed immediately on behalf of the lookup
2293          * class.
2294          * <p>
2295          * If the returned VarHandle is operated on, the declaring class will be
2296          * initialized, if it has not already been initialized.
2297          * <p>
2298          * Certain access modes of the returned VarHandle are unsupported under
2299          * the following conditions:
2300          * <ul>
2301          * <li>if the field is declared {@code final}, then the write, atomic
2302          *     update, numeric atomic update, and bitwise atomic update access
2303          *     modes are unsupported.
2304          * <li>if the field type is anything other than {@code byte},
2305          *     {@code short}, {@code char}, {@code int}, {@code long},
2306          *     {@code float}, or {@code double}, then numeric atomic update
2307          *     access modes are unsupported.
2308          * <li>if the field type is anything other than {@code boolean},
2309          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2310          *     {@code long} then bitwise atomic update access modes are
2311          *     unsupported.
2312          * </ul>
2313          * <p>
2314          * If the field is declared {@code volatile} then the returned VarHandle
2315          * will override access to the field (effectively ignore the
2316          * {@code volatile} declaration) in accordance to its specified
2317          * access modes.
2318          * <p>
2319          * If the field type is {@code float} or {@code double} then numeric
2320          * and atomic update access modes compare values using their bitwise
2321          * representation (see {@link Float#floatToRawIntBits} and
2322          * {@link Double#doubleToRawLongBits}, respectively).
2323          * @apiNote
2324          * Bitwise comparison of {@code float} values or {@code double} values,
2325          * as performed by the numeric and atomic update access modes, differ
2326          * from the primitive {@code ==} operator and the {@link Float#equals}
2327          * and {@link Double#equals} methods, specifically with respect to
2328          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2329          * Care should be taken when performing a compare and set or a compare
2330          * and exchange operation with such values since the operation may
2331          * unexpectedly fail.
2332          * There are many possible NaN values that are considered to be
2333          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2334          * provided by Java can distinguish between them.  Operation failure can
2335          * occur if the expected or witness value is a NaN value and it is
2336          * transformed (perhaps in a platform specific manner) into another NaN
2337          * value, and thus has a different bitwise representation (see
2338          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2339          * details).
2340          * The values {@code -0.0} and {@code +0.0} have different bitwise
2341          * representations but are considered equal when using the primitive
2342          * {@code ==} operator.  Operation failure can occur if, for example, a
2343          * numeric algorithm computes an expected value to be say {@code -0.0}
2344          * and previously computed the witness value to be say {@code +0.0}.
2345          * @param decl the class that declares the static field
2346          * @param name the field's name
2347          * @param type the field's type, of type {@code T}
2348          * @return a VarHandle giving access to a static field
2349          * @throws NoSuchFieldException if the field does not exist
2350          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2351          * @exception SecurityException if a security manager is present and it
2352          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2353          * @throws NullPointerException if any argument is null
2354          * @since 9
2355          */
2356         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2357             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
2358             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
2359             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
2360         }
2361 
2362         /**
2363          * Produces an early-bound method handle for a non-static method.
2364          * The receiver must have a supertype {@code defc} in which a method
2365          * of the given name and type is accessible to the lookup class.
2366          * The method and all its argument types must be accessible to the lookup object.
2367          * The type of the method handle will be that of the method,
2368          * without any insertion of an additional receiver parameter.
2369          * The given receiver will be bound into the method handle,
2370          * so that every call to the method handle will invoke the
2371          * requested method on the given receiver.
2372          * <p>
2373          * The returned method handle will have
2374          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2375          * the method's variable arity modifier bit ({@code 0x0080}) is set
2376          * <em>and</em> the trailing array argument is not the only argument.
2377          * (If the trailing array argument is the only argument,
2378          * the given receiver value will be bound to it.)
2379          * <p>
2380          * This is almost equivalent to the following code, with some differences noted below:
2381          * <blockquote><pre>{@code
2382 import static java.lang.invoke.MethodHandles.*;
2383 import static java.lang.invoke.MethodType.*;
2384 ...
2385 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
2386 MethodHandle mh1 = mh0.bindTo(receiver);
2387 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
2388 return mh1;
2389          * }</pre></blockquote>
2390          * where {@code defc} is either {@code receiver.getClass()} or a super
2391          * type of that class, in which the requested method is accessible
2392          * to the lookup class.
2393          * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity.
2394          * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would
2395          * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and
2396          * the receiver is restricted by {@code findVirtual} to the lookup class.)
2397          * @param receiver the object from which the method is accessed
2398          * @param name the name of the method
2399          * @param type the type of the method, with the receiver argument omitted
2400          * @return the desired method handle
2401          * @throws NoSuchMethodException if the method does not exist
2402          * @throws IllegalAccessException if access checking fails
2403          *                                or if the method's variable arity modifier bit
2404          *                                is set and {@code asVarargsCollector} fails
2405          * @exception SecurityException if a security manager is present and it
2406          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2407          * @throws NullPointerException if any argument is null
2408          * @see MethodHandle#bindTo
2409          * @see #findVirtual
2410          */
2411         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2412             Class<? extends Object> refc = receiver.getClass(); // may get NPE
2413             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
2414             MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerClass(method));
2415             if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) {
2416                 throw new IllegalAccessException("The restricted defining class " +
2417                                                  mh.type().leadingReferenceParameter().getName() +
2418                                                  " is not assignable from receiver class " +
2419                                                  receiver.getClass().getName());
2420             }
2421             return mh.bindArgumentL(0, receiver).setVarargs(method);
2422         }
2423 
2424         /**
2425          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
2426          * to <i>m</i>, if the lookup class has permission.
2427          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
2428          * If <i>m</i> is virtual, overriding is respected on every call.
2429          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
2430          * The type of the method handle will be that of the method,
2431          * with the receiver type prepended (but only if it is non-static).
2432          * If the method's {@code accessible} flag is not set,
2433          * access checking is performed immediately on behalf of the lookup class.
2434          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
2435          * <p>
2436          * The returned method handle will have
2437          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2438          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2439          * <p>
2440          * If <i>m</i> is static, and
2441          * if the returned method handle is invoked, the method's class will
2442          * be initialized, if it has not already been initialized.
2443          * @param m the reflected method
2444          * @return a method handle which can invoke the reflected method
2445          * @throws IllegalAccessException if access checking fails
2446          *                                or if the method's variable arity modifier bit
2447          *                                is set and {@code asVarargsCollector} fails
2448          * @throws NullPointerException if the argument is null
2449          */
2450         public MethodHandle unreflect(Method m) throws IllegalAccessException {
2451             if (m.getDeclaringClass() == MethodHandle.class) {
2452                 MethodHandle mh = unreflectForMH(m);
2453                 if (mh != null)  return mh;
2454             }
2455             if (m.getDeclaringClass() == VarHandle.class) {
2456                 MethodHandle mh = unreflectForVH(m);
2457                 if (mh != null)  return mh;
2458             }
2459             MemberName method = new MemberName(m);
2460             byte refKind = method.getReferenceKind();
2461             if (refKind == REF_invokeSpecial)
2462                 refKind = REF_invokeVirtual;
2463             assert(method.isMethod());
2464             @SuppressWarnings("deprecation")
2465             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
2466             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
2467         }
2468         private MethodHandle unreflectForMH(Method m) {
2469             // these names require special lookups because they throw UnsupportedOperationException
2470             if (MemberName.isMethodHandleInvokeName(m.getName()))
2471                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
2472             return null;
2473         }
2474         private MethodHandle unreflectForVH(Method m) {
2475             // these names require special lookups because they throw UnsupportedOperationException
2476             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
2477                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
2478             return null;
2479         }
2480 
2481         /**
2482          * Produces a method handle for a reflected method.
2483          * It will bypass checks for overriding methods on the receiver,
2484          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
2485          * instruction from within the explicitly specified {@code specialCaller}.
2486          * The type of the method handle will be that of the method,
2487          * with a suitably restricted receiver type prepended.
2488          * (The receiver type will be {@code specialCaller} or a subtype.)
2489          * If the method's {@code accessible} flag is not set,
2490          * access checking is performed immediately on behalf of the lookup class,
2491          * as if {@code invokespecial} instruction were being linked.
2492          * <p>
2493          * Before method resolution,
2494          * if the explicitly specified caller class is not identical with the
2495          * lookup class, or if this lookup object does not have
2496          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
2497          * privileges, the access fails.
2498          * <p>
2499          * The returned method handle will have
2500          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2501          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2502          * @param m the reflected method
2503          * @param specialCaller the class nominally calling the method
2504          * @return a method handle which can invoke the reflected method
2505          * @throws IllegalAccessException if access checking fails,
2506          *                                or if the method is {@code static},
2507          *                                or if the method's variable arity modifier bit
2508          *                                is set and {@code asVarargsCollector} fails
2509          * @throws NullPointerException if any argument is null
2510          */
2511         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
2512             checkSpecialCaller(specialCaller, m.getDeclaringClass());
2513             Lookup specialLookup = this.in(specialCaller);
2514             MemberName method = new MemberName(m, true);
2515             assert(method.isMethod());
2516             // ignore m.isAccessible:  this is a new kind of access
2517             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
2518         }
2519 
2520         /**
2521          * Produces a method handle for a reflected constructor.
2522          * The type of the method handle will be that of the constructor,
2523          * with the return type changed to the declaring class.
2524          * The method handle will perform a {@code newInstance} operation,
2525          * creating a new instance of the constructor's class on the
2526          * arguments passed to the method handle.
2527          * <p>
2528          * If the constructor's {@code accessible} flag is not set,
2529          * access checking is performed immediately on behalf of the lookup class.
2530          * <p>
2531          * The returned method handle will have
2532          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2533          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
2534          * <p>
2535          * If the returned method handle is invoked, the constructor's class will
2536          * be initialized, if it has not already been initialized.
2537          * @param c the reflected constructor
2538          * @return a method handle which can invoke the reflected constructor
2539          * @throws IllegalAccessException if access checking fails
2540          *                                or if the method's variable arity modifier bit
2541          *                                is set and {@code asVarargsCollector} fails
2542          * @throws NullPointerException if the argument is null
2543          */
2544         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
2545             MemberName ctor = new MemberName(c);
2546             assert(ctor.isConstructor());
2547             @SuppressWarnings("deprecation")
2548             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
2549             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
2550         }
2551 
2552         /**
2553          * Produces a method handle giving read access to a reflected field.
2554          * The type of the method handle will have a return type of the field's
2555          * value type.
2556          * If the field is {@code static}, the method handle will take no arguments.
2557          * Otherwise, its single argument will be the instance containing
2558          * the field.
2559          * If the {@code Field} object's {@code accessible} flag is not set,
2560          * access checking is performed immediately on behalf of the lookup class.
2561          * <p>
2562          * If the field is static, and
2563          * if the returned method handle is invoked, the field's class will
2564          * be initialized, if it has not already been initialized.
2565          * @param f the reflected field
2566          * @return a method handle which can load values from the reflected field
2567          * @throws IllegalAccessException if access checking fails
2568          * @throws NullPointerException if the argument is null
2569          */
2570         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
2571             return unreflectField(f, false);
2572         }
2573 
2574         /**
2575          * Produces a method handle giving write access to a reflected field.
2576          * The type of the method handle will have a void return type.
2577          * If the field is {@code static}, the method handle will take a single
2578          * argument, of the field's value type, the value to be stored.
2579          * Otherwise, the two arguments will be the instance containing
2580          * the field, and the value to be stored.
2581          * If the {@code Field} object's {@code accessible} flag is not set,
2582          * access checking is performed immediately on behalf of the lookup class.
2583          * <p>
2584          * If the field is {@code final}, write access will not be
2585          * allowed and access checking will fail, except under certain
2586          * narrow circumstances documented for {@link Field#set Field.set}.
2587          * A method handle is returned only if a corresponding call to
2588          * the {@code Field} object's {@code set} method could return
2589          * normally.  In particular, fields which are both {@code static}
2590          * and {@code final} may never be set.
2591          * <p>
2592          * If the field is {@code static}, and
2593          * if the returned method handle is invoked, the field's class will
2594          * be initialized, if it has not already been initialized.
2595          * @param f the reflected field
2596          * @return a method handle which can store values into the reflected field
2597          * @throws IllegalAccessException if access checking fails,
2598          *         or if the field is {@code final} and write access
2599          *         is not enabled on the {@code Field} object
2600          * @throws NullPointerException if the argument is null
2601          */
2602         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
2603             return unreflectField(f, true);
2604         }
2605 
2606         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
2607             MemberName field = new MemberName(f, isSetter);
2608             if (isSetter && field.isStatic() && field.isFinal())
2609                 throw field.makeAccessException("static final field has no write access", this);
2610             assert(isSetter
2611                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
2612                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
2613             @SuppressWarnings("deprecation")
2614             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
2615             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
2616         }
2617 
2618         /**
2619          * Produces a VarHandle giving access to a reflected field {@code f}
2620          * of type {@code T} declared in a class of type {@code R}.
2621          * The VarHandle's variable type is {@code T}.
2622          * If the field is non-static the VarHandle has one coordinate type,
2623          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
2624          * coordinate types.
2625          * <p>
2626          * Access checking is performed immediately on behalf of the lookup
2627          * class, regardless of the value of the field's {@code accessible}
2628          * flag.
2629          * <p>
2630          * If the field is static, and if the returned VarHandle is operated
2631          * on, the field's declaring class will be initialized, if it has not
2632          * already been initialized.
2633          * <p>
2634          * Certain access modes of the returned VarHandle are unsupported under
2635          * the following conditions:
2636          * <ul>
2637          * <li>if the field is declared {@code final}, then the write, atomic
2638          *     update, numeric atomic update, and bitwise atomic update access
2639          *     modes are unsupported.
2640          * <li>if the field type is anything other than {@code byte},
2641          *     {@code short}, {@code char}, {@code int}, {@code long},
2642          *     {@code float}, or {@code double} then numeric atomic update
2643          *     access modes are unsupported.
2644          * <li>if the field type is anything other than {@code boolean},
2645          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2646          *     {@code long} then bitwise atomic update access modes are
2647          *     unsupported.
2648          * </ul>
2649          * <p>
2650          * If the field is declared {@code volatile} then the returned VarHandle
2651          * will override access to the field (effectively ignore the
2652          * {@code volatile} declaration) in accordance to its specified
2653          * access modes.
2654          * <p>
2655          * If the field type is {@code float} or {@code double} then numeric
2656          * and atomic update access modes compare values using their bitwise
2657          * representation (see {@link Float#floatToRawIntBits} and
2658          * {@link Double#doubleToRawLongBits}, respectively).
2659          * @apiNote
2660          * Bitwise comparison of {@code float} values or {@code double} values,
2661          * as performed by the numeric and atomic update access modes, differ
2662          * from the primitive {@code ==} operator and the {@link Float#equals}
2663          * and {@link Double#equals} methods, specifically with respect to
2664          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2665          * Care should be taken when performing a compare and set or a compare
2666          * and exchange operation with such values since the operation may
2667          * unexpectedly fail.
2668          * There are many possible NaN values that are considered to be
2669          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2670          * provided by Java can distinguish between them.  Operation failure can
2671          * occur if the expected or witness value is a NaN value and it is
2672          * transformed (perhaps in a platform specific manner) into another NaN
2673          * value, and thus has a different bitwise representation (see
2674          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2675          * details).
2676          * The values {@code -0.0} and {@code +0.0} have different bitwise
2677          * representations but are considered equal when using the primitive
2678          * {@code ==} operator.  Operation failure can occur if, for example, a
2679          * numeric algorithm computes an expected value to be say {@code -0.0}
2680          * and previously computed the witness value to be say {@code +0.0}.
2681          * @param f the reflected field, with a field of type {@code T}, and
2682          * a declaring class of type {@code R}
2683          * @return a VarHandle giving access to non-static fields or a static
2684          * field
2685          * @throws IllegalAccessException if access checking fails
2686          * @throws NullPointerException if the argument is null
2687          * @since 9
2688          */
2689         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
2690             MemberName getField = new MemberName(f, false);
2691             MemberName putField = new MemberName(f, true);
2692             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
2693                                                       f.getDeclaringClass(), getField, putField);
2694         }
2695 
2696         /**
2697          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
2698          * created by this lookup object or a similar one.
2699          * Security and access checks are performed to ensure that this lookup object
2700          * is capable of reproducing the target method handle.
2701          * This means that the cracking may fail if target is a direct method handle
2702          * but was created by an unrelated lookup object.
2703          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
2704          * and was created by a lookup object for a different class.
2705          * @param target a direct method handle to crack into symbolic reference components
2706          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
2707          * @exception SecurityException if a security manager is present and it
2708          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2709          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
2710          * @exception NullPointerException if the target is {@code null}
2711          * @see MethodHandleInfo
2712          * @since 1.8
2713          */
2714         public MethodHandleInfo revealDirect(MethodHandle target) {
2715             MemberName member = target.internalMemberName();
2716             if (member == null || (!member.isResolved() &&
2717                                    !member.isMethodHandleInvoke() &&
2718                                    !member.isVarHandleMethodInvoke()))
2719                 throw newIllegalArgumentException("not a direct method handle");
2720             Class<?> defc = member.getDeclaringClass();
2721             byte refKind = member.getReferenceKind();
2722             assert(MethodHandleNatives.refKindIsValid(refKind));
2723             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
2724                 // Devirtualized method invocation is usually formally virtual.
2725                 // To avoid creating extra MemberName objects for this common case,
2726                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
2727                 refKind = REF_invokeVirtual;
2728             if (refKind == REF_invokeVirtual && defc.isInterface())
2729                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
2730                 refKind = REF_invokeInterface;
2731             // Check SM permissions and member access before cracking.
2732             try {
2733                 checkAccess(refKind, defc, member);
2734                 checkSecurityManager(defc, member);
2735             } catch (IllegalAccessException ex) {
2736                 throw new IllegalArgumentException(ex);
2737             }
2738             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
2739                 Class<?> callerClass = target.internalCallerClass();
2740                 if (!hasPrivateAccess() || callerClass != lookupClass())
2741                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
2742             }
2743             // Produce the handle to the results.
2744             return new InfoFromMemberName(this, member, refKind);
2745         }
2746 
2747         /// Helper methods, all package-private.
2748 
2749         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2750             checkSymbolicClass(refc);  // do this before attempting to resolve
2751             Objects.requireNonNull(name);
2752             Objects.requireNonNull(type);
2753             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2754                                             NoSuchFieldException.class);
2755         }
2756 
2757         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2758             checkSymbolicClass(refc);  // do this before attempting to resolve
2759             Objects.requireNonNull(name);
2760             Objects.requireNonNull(type);
2761             checkMethodName(refKind, name);  // NPE check on name
2762             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2763                                             NoSuchMethodException.class);
2764         }
2765 
2766         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
2767             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
2768             Objects.requireNonNull(member.getName());
2769             Objects.requireNonNull(member.getType());
2770             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
2771                                             ReflectiveOperationException.class);
2772         }
2773 
2774         MemberName resolveOrNull(byte refKind, MemberName member) {
2775             // do this before attempting to resolve
2776             if (!isClassAccessible(member.getDeclaringClass())) {
2777                 return null;
2778             }
2779             Objects.requireNonNull(member.getName());
2780             Objects.requireNonNull(member.getType());
2781             return IMPL_NAMES.resolveOrNull(refKind, member, lookupClassOrNull());
2782         }
2783 
2784         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
2785             if (!isClassAccessible(refc)) {
2786                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
2787             }
2788         }
2789 
2790         boolean isClassAccessible(Class<?> refc) {
2791             Objects.requireNonNull(refc);
2792             Class<?> caller = lookupClassOrNull();
2793             return caller == null || VerifyAccess.isClassAccessible(refc, caller, prevLookupClass, allowedModes);
2794         }
2795 
2796         /** Check name for an illegal leading "&lt;" character. */
2797         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
2798             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
2799                 throw new NoSuchMethodException("illegal method name: "+name);
2800         }
2801 
2802 
2803         /**
2804          * Find my trustable caller class if m is a caller sensitive method.
2805          * If this lookup object has private access, then the caller class is the lookupClass.
2806          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
2807          */
2808         Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
2809             Class<?> callerClass = null;
2810             if (MethodHandleNatives.isCallerSensitive(m)) {
2811                 // Only lookups with private access are allowed to resolve caller-sensitive methods
2812                 if (hasPrivateAccess()) {
2813                     callerClass = lookupClass;
2814                 } else {
2815                     throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
2816                 }
2817             }
2818             return callerClass;
2819         }
2820 
2821         /**
2822          * Returns {@code true} if this lookup has {@code PRIVATE} access.
2823          * @return {@code true} if this lookup has {@code PRIVATE} access.
2824          * @since 9
2825          */
2826         public boolean hasPrivateAccess() {
2827             return (allowedModes & PRIVATE) != 0;
2828         }
2829 
2830         /**
2831          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
2832          * Determines a trustable caller class to compare with refc, the symbolic reference class.
2833          * If this lookup object has private access, then the caller class is the lookupClass.
2834          */
2835         void checkSecurityManager(Class<?> refc, MemberName m) {
2836             SecurityManager smgr = System.getSecurityManager();
2837             if (smgr == null)  return;
2838             if (allowedModes == TRUSTED)  return;
2839 
2840             // Step 1:
2841             boolean fullPowerLookup = hasPrivateAccess();
2842             if (!fullPowerLookup ||
2843                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
2844                 ReflectUtil.checkPackageAccess(refc);
2845             }
2846 
2847             if (m == null) {  // findClass or accessClass
2848                 // Step 2b:
2849                 if (!fullPowerLookup) {
2850                     smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
2851                 }
2852                 return;
2853             }
2854 
2855             // Step 2a:
2856             if (m.isPublic()) return;
2857             if (!fullPowerLookup) {
2858                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
2859             }
2860 
2861             // Step 3:
2862             Class<?> defc = m.getDeclaringClass();
2863             if (!fullPowerLookup && defc != refc) {
2864                 ReflectUtil.checkPackageAccess(defc);
2865             }
2866         }
2867 
2868         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2869             boolean wantStatic = (refKind == REF_invokeStatic);
2870             String message;
2871             if (m.isConstructor())
2872                 message = "expected a method, not a constructor";
2873             else if (!m.isMethod())
2874                 message = "expected a method";
2875             else if (wantStatic != m.isStatic())
2876                 message = wantStatic ? "expected a static method" : "expected a non-static method";
2877             else
2878                 { checkAccess(refKind, refc, m); return; }
2879             throw m.makeAccessException(message, this);
2880         }
2881 
2882         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2883             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
2884             String message;
2885             if (wantStatic != m.isStatic())
2886                 message = wantStatic ? "expected a static field" : "expected a non-static field";
2887             else
2888                 { checkAccess(refKind, refc, m); return; }
2889             throw m.makeAccessException(message, this);
2890         }
2891 
2892         /** Check public/protected/private bits on the symbolic reference class and its member. */
2893         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2894             assert(m.referenceKindIsConsistentWith(refKind) &&
2895                    MethodHandleNatives.refKindIsValid(refKind) &&
2896                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
2897             int allowedModes = this.allowedModes;
2898             if (allowedModes == TRUSTED)  return;
2899             int mods = m.getModifiers();
2900             if (Modifier.isProtected(mods) &&
2901                     refKind == REF_invokeVirtual &&
2902                     m.getDeclaringClass() == Object.class &&
2903                     m.getName().equals("clone") &&
2904                     refc.isArray()) {
2905                 // The JVM does this hack also.
2906                 // (See ClassVerifier::verify_invoke_instructions
2907                 // and LinkResolver::check_method_accessability.)
2908                 // Because the JVM does not allow separate methods on array types,
2909                 // there is no separate method for int[].clone.
2910                 // All arrays simply inherit Object.clone.
2911                 // But for access checking logic, we make Object.clone
2912                 // (normally protected) appear to be public.
2913                 // Later on, when the DirectMethodHandle is created,
2914                 // its leading argument will be restricted to the
2915                 // requested array type.
2916                 // N.B. The return type is not adjusted, because
2917                 // that is *not* the bytecode behavior.
2918                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
2919             }
2920             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
2921                 // cannot "new" a protected ctor in a different package
2922                 mods ^= Modifier.PROTECTED;
2923             }
2924             if (Modifier.isFinal(mods) &&
2925                     MethodHandleNatives.refKindIsSetter(refKind))
2926                 throw m.makeAccessException("unexpected set of a final field", this);
2927             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
2928             if ((requestedModes & allowedModes) != 0) {
2929                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
2930                                                     mods, lookupClass(), previousLookupClass(), allowedModes))
2931                     return;
2932             } else {
2933                 // Protected members can also be checked as if they were package-private.
2934                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
2935                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
2936                     return;
2937             }
2938             throw m.makeAccessException(accessFailedMessage(refc, m), this);
2939         }
2940 
2941         String accessFailedMessage(Class<?> refc, MemberName m) {
2942             Class<?> defc = m.getDeclaringClass();
2943             int mods = m.getModifiers();
2944             // check the class first:
2945             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
2946                                (defc == refc ||
2947                                 Modifier.isPublic(refc.getModifiers())));
2948             if (!classOK && (allowedModes & PACKAGE) != 0) {
2949                 // ignore previous lookup class to check if default package access
2950                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), null, FULL_POWER_MODES) &&
2951                            (defc == refc ||
2952                             VerifyAccess.isClassAccessible(refc, lookupClass(), null, FULL_POWER_MODES)));
2953             }
2954             if (!classOK)
2955                 return "class is not public";
2956             if (Modifier.isPublic(mods))
2957                 return "access to public member failed";  // (how?, module not readable?)
2958             if (Modifier.isPrivate(mods))
2959                 return "member is private";
2960             if (Modifier.isProtected(mods))
2961                 return "member is protected";
2962             return "member is private to package";
2963         }
2964 
2965         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
2966             int allowedModes = this.allowedModes;
2967             if (allowedModes == TRUSTED)  return;
2968             if (!hasPrivateAccess()
2969                 || (specialCaller != lookupClass()
2970                        // ensure non-abstract methods in superinterfaces can be special-invoked
2971                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))))
2972                 throw new MemberName(specialCaller).
2973                     makeAccessException("no private access for invokespecial", this);
2974         }
2975 
2976         private boolean restrictProtectedReceiver(MemberName method) {
2977             // The accessing class only has the right to use a protected member
2978             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
2979             if (!method.isProtected() || method.isStatic()
2980                 || allowedModes == TRUSTED
2981                 || method.getDeclaringClass() == lookupClass()
2982                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass()))
2983                 return false;
2984             return true;
2985         }
2986         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
2987             assert(!method.isStatic());
2988             // receiver type of mh is too wide; narrow to caller
2989             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
2990                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
2991             }
2992             MethodType rawType = mh.type();
2993             if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow
2994             MethodType narrowType = rawType.changeParameterType(0, caller);
2995             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
2996             assert(mh.viewAsTypeChecks(narrowType, true));
2997             return mh.copyWith(narrowType, mh.form);
2998         }
2999 
3000         /** Check access and get the requested method. */
3001         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
3002             final boolean doRestrict    = true;
3003             final boolean checkSecurity = true;
3004             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, boundCallerClass);
3005         }
3006         /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */
3007         private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
3008             final boolean doRestrict    = false;
3009             final boolean checkSecurity = true;
3010             return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, boundCallerClass);
3011         }
3012         /** Check access and get the requested method, eliding security manager checks. */
3013         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
3014             final boolean doRestrict    = true;
3015             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3016             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, boundCallerClass);
3017         }
3018         /** Common code for all methods; do not call directly except from immediately above. */
3019         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
3020                                                    boolean checkSecurity,
3021                                                    boolean doRestrict, Class<?> boundCallerClass) throws IllegalAccessException {
3022 
3023             checkMethod(refKind, refc, method);
3024             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3025             if (checkSecurity)
3026                 checkSecurityManager(refc, method);
3027             assert(!method.isMethodHandleInvoke());
3028 
3029             if (refKind == REF_invokeSpecial &&
3030                 refc != lookupClass() &&
3031                 !refc.isInterface() &&
3032                 refc != lookupClass().getSuperclass() &&
3033                 refc.isAssignableFrom(lookupClass())) {
3034                 assert(!method.getName().equals("<init>"));  // not this code path
3035 
3036                 // Per JVMS 6.5, desc. of invokespecial instruction:
3037                 // If the method is in a superclass of the LC,
3038                 // and if our original search was above LC.super,
3039                 // repeat the search (symbolic lookup) from LC.super
3040                 // and continue with the direct superclass of that class,
3041                 // and so forth, until a match is found or no further superclasses exist.
3042                 // FIXME: MemberName.resolve should handle this instead.
3043                 Class<?> refcAsSuper = lookupClass();
3044                 MemberName m2;
3045                 do {
3046                     refcAsSuper = refcAsSuper.getSuperclass();
3047                     m2 = new MemberName(refcAsSuper,
3048                                         method.getName(),
3049                                         method.getMethodType(),
3050                                         REF_invokeSpecial);
3051                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
3052                 } while (m2 == null &&         // no method is found yet
3053                          refc != refcAsSuper); // search up to refc
3054                 if (m2 == null)  throw new InternalError(method.toString());
3055                 method = m2;
3056                 refc = refcAsSuper;
3057                 // redo basic checks
3058                 checkMethod(refKind, refc, method);
3059             }
3060 
3061             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method, lookupClass());
3062             MethodHandle mh = dmh;
3063             // Optionally narrow the receiver argument to lookupClass using restrictReceiver.
3064             if ((doRestrict && refKind == REF_invokeSpecial) ||
3065                     (MethodHandleNatives.refKindHasReceiver(refKind) && restrictProtectedReceiver(method))) {
3066                 mh = restrictReceiver(method, dmh, lookupClass());
3067             }
3068             mh = maybeBindCaller(method, mh, boundCallerClass);
3069             mh = mh.setVarargs(method);
3070             return mh;
3071         }
3072         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
3073                                              Class<?> boundCallerClass)
3074                                              throws IllegalAccessException {
3075             if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
3076                 return mh;
3077             Class<?> hostClass = lookupClass;
3078             if (!hasPrivateAccess())  // caller must have private access
3079                 hostClass = boundCallerClass;  // boundCallerClass came from a security manager style stack walk
3080             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
3081             // Note: caller will apply varargs after this step happens.
3082             return cbmh;
3083         }
3084         /** Check access and get the requested field. */
3085         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
3086             final boolean checkSecurity = true;
3087             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
3088         }
3089         /** Check access and get the requested field, eliding security manager checks. */
3090         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
3091             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3092             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
3093         }
3094         /** Common code for all fields; do not call directly except from immediately above. */
3095         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
3096                                                   boolean checkSecurity) throws IllegalAccessException {
3097             checkField(refKind, refc, field);
3098             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3099             if (checkSecurity)
3100                 checkSecurityManager(refc, field);
3101             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
3102             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
3103                                     restrictProtectedReceiver(field));
3104             if (doRestrict)
3105                 return restrictReceiver(field, dmh, lookupClass());
3106             return dmh;
3107         }
3108         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
3109                                             Class<?> refc, MemberName getField, MemberName putField)
3110                 throws IllegalAccessException {
3111             final boolean checkSecurity = true;
3112             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
3113         }
3114         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
3115                                                              Class<?> refc, MemberName getField, MemberName putField)
3116                 throws IllegalAccessException {
3117             final boolean checkSecurity = false;
3118             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
3119         }
3120         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
3121                                                   Class<?> refc, MemberName getField, MemberName putField,
3122                                                   boolean checkSecurity) throws IllegalAccessException {
3123             assert getField.isStatic() == putField.isStatic();
3124             assert getField.isGetter() && putField.isSetter();
3125             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
3126             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
3127 
3128             checkField(getRefKind, refc, getField);
3129             if (checkSecurity)
3130                 checkSecurityManager(refc, getField);
3131 
3132             if (!putField.isFinal()) {
3133                 // A VarHandle does not support updates to final fields, any
3134                 // such VarHandle to a final field will be read-only and
3135                 // therefore the following write-based accessibility checks are
3136                 // only required for non-final fields
3137                 checkField(putRefKind, refc, putField);
3138                 if (checkSecurity)
3139                     checkSecurityManager(refc, putField);
3140             }
3141 
3142             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
3143                                   restrictProtectedReceiver(getField));
3144             if (doRestrict) {
3145                 assert !getField.isStatic();
3146                 // receiver type of VarHandle is too wide; narrow to caller
3147                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
3148                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
3149                 }
3150                 refc = lookupClass();
3151             }
3152             return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED);
3153         }
3154         /** Check access and get the requested constructor. */
3155         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
3156             final boolean checkSecurity = true;
3157             return getDirectConstructorCommon(refc, ctor, checkSecurity);
3158         }
3159         /** Check access and get the requested constructor, eliding security manager checks. */
3160         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
3161             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3162             return getDirectConstructorCommon(refc, ctor, checkSecurity);
3163         }
3164         /** Common code for all constructors; do not call directly except from immediately above. */
3165         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
3166                                                   boolean checkSecurity) throws IllegalAccessException {
3167             assert(ctor.isConstructor());
3168             checkAccess(REF_newInvokeSpecial, refc, ctor);
3169             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3170             if (checkSecurity)
3171                 checkSecurityManager(refc, ctor);
3172             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
3173             return DirectMethodHandle.make(ctor).setVarargs(ctor);
3174         }
3175 
3176         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
3177          */
3178         /*non-public*/
3179         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
3180             if (!(type instanceof Class || type instanceof MethodType))
3181                 throw new InternalError("unresolved MemberName");
3182             MemberName member = new MemberName(refKind, defc, name, type);
3183             MethodHandle mh = LOOKASIDE_TABLE.get(member);
3184             if (mh != null) {
3185                 checkSymbolicClass(defc);
3186                 return mh;
3187             }
3188             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
3189                 // Treat MethodHandle.invoke and invokeExact specially.
3190                 mh = findVirtualForMH(member.getName(), member.getMethodType());
3191                 if (mh != null) {
3192                     return mh;
3193                 }
3194             } else if (defc == VarHandle.class && refKind == REF_invokeVirtual) {
3195                 // Treat signature-polymorphic methods on VarHandle specially.
3196                 mh = findVirtualForVH(member.getName(), member.getMethodType());
3197                 if (mh != null) {
3198                     return mh;
3199                 }
3200             }
3201             MemberName resolved = resolveOrFail(refKind, member);
3202             mh = getDirectMethodForConstant(refKind, defc, resolved);
3203             if (mh instanceof DirectMethodHandle
3204                     && canBeCached(refKind, defc, resolved)) {
3205                 MemberName key = mh.internalMemberName();
3206                 if (key != null) {
3207                     key = key.asNormalOriginal();
3208                 }
3209                 if (member.equals(key)) {  // better safe than sorry
3210                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
3211                 }
3212             }
3213             return mh;
3214         }
3215         private
3216         boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
3217             if (refKind == REF_invokeSpecial) {
3218                 return false;
3219             }
3220             if (!Modifier.isPublic(defc.getModifiers()) ||
3221                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
3222                     !member.isPublic() ||
3223                     member.isCallerSensitive()) {
3224                 return false;
3225             }
3226             ClassLoader loader = defc.getClassLoader();
3227             if (loader != null) {
3228                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
3229                 boolean found = false;
3230                 while (sysl != null) {
3231                     if (loader == sysl) { found = true; break; }
3232                     sysl = sysl.getParent();
3233                 }
3234                 if (!found) {
3235                     return false;
3236                 }
3237             }
3238             try {
3239                 MemberName resolved2 = publicLookup().resolveOrNull(refKind,
3240                     new MemberName(refKind, defc, member.getName(), member.getType()));
3241                 if (resolved2 == null) {
3242                     return false;
3243                 }
3244                 checkSecurityManager(defc, resolved2);
3245             } catch (SecurityException ex) {
3246                 return false;
3247             }
3248             return true;
3249         }
3250         private
3251         MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
3252                 throws ReflectiveOperationException {
3253             if (MethodHandleNatives.refKindIsField(refKind)) {
3254                 return getDirectFieldNoSecurityManager(refKind, defc, member);
3255             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
3256                 return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
3257             } else if (refKind == REF_newInvokeSpecial) {
3258                 return getDirectConstructorNoSecurityManager(defc, member);
3259             }
3260             // oops
3261             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
3262         }
3263 
3264         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
3265     }
3266 
3267     /**
3268      * Produces a method handle constructing arrays of a desired type,
3269      * as if by the {@code anewarray} bytecode.
3270      * The return type of the method handle will be the array type.
3271      * The type of its sole argument will be {@code int}, which specifies the size of the array.
3272      *
3273      * <p> If the returned method handle is invoked with a negative
3274      * array size, a {@code NegativeArraySizeException} will be thrown.
3275      *
3276      * @param arrayClass an array type
3277      * @return a method handle which can create arrays of the given type
3278      * @throws NullPointerException if the argument is {@code null}
3279      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
3280      * @see java.lang.reflect.Array#newInstance(Class, int)
3281      * @jvms 6.5 {@code anewarray} Instruction
3282      * @since 9
3283      */
3284     public static
3285     MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
3286         if (!arrayClass.isArray()) {
3287             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
3288         }
3289         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
3290                 bindTo(arrayClass.getComponentType());
3291         return ani.asType(ani.type().changeReturnType(arrayClass));
3292     }
3293 
3294     /**
3295      * Produces a method handle returning the length of an array,
3296      * as if by the {@code arraylength} bytecode.
3297      * The type of the method handle will have {@code int} as return type,
3298      * and its sole argument will be the array type.
3299      *
3300      * <p> If the returned method handle is invoked with a {@code null}
3301      * array reference, a {@code NullPointerException} will be thrown.
3302      *
3303      * @param arrayClass an array type
3304      * @return a method handle which can retrieve the length of an array of the given array type
3305      * @throws NullPointerException if the argument is {@code null}
3306      * @throws IllegalArgumentException if arrayClass is not an array type
3307      * @jvms 6.5 {@code arraylength} Instruction
3308      * @since 9
3309      */
3310     public static
3311     MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
3312         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
3313     }
3314 
3315     /**
3316      * Produces a method handle giving read access to elements of an array,
3317      * as if by the {@code aaload} bytecode.
3318      * The type of the method handle will have a return type of the array's
3319      * element type.  Its first argument will be the array type,
3320      * and the second will be {@code int}.
3321      *
3322      * <p> When the returned method handle is invoked,
3323      * the array reference and array index are checked.
3324      * A {@code NullPointerException} will be thrown if the array reference
3325      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3326      * thrown if the index is negative or if it is greater than or equal to
3327      * the length of the array.
3328      *
3329      * @param arrayClass an array type
3330      * @return a method handle which can load values from the given array type
3331      * @throws NullPointerException if the argument is null
3332      * @throws  IllegalArgumentException if arrayClass is not an array type
3333      * @jvms 6.5 {@code aaload} Instruction
3334      */
3335     public static
3336     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
3337         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
3338     }
3339 
3340     /**
3341      * Produces a method handle giving write access to elements of an array,
3342      * as if by the {@code astore} bytecode.
3343      * The type of the method handle will have a void return type.
3344      * Its last argument will be the array's element type.
3345      * The first and second arguments will be the array type and int.
3346      *
3347      * <p> When the returned method handle is invoked,
3348      * the array reference and array index are checked.
3349      * A {@code NullPointerException} will be thrown if the array reference
3350      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3351      * thrown if the index is negative or if it is greater than or equal to
3352      * the length of the array.
3353      *
3354      * @param arrayClass the class of an array
3355      * @return a method handle which can store values into the array type
3356      * @throws NullPointerException if the argument is null
3357      * @throws IllegalArgumentException if arrayClass is not an array type
3358      * @jvms 6.5 {@code aastore} Instruction
3359      */
3360     public static
3361     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
3362         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
3363     }
3364 
3365     /**
3366      * Produces a VarHandle giving access to elements of an array of type
3367      * {@code arrayClass}.  The VarHandle's variable type is the component type
3368      * of {@code arrayClass} and the list of coordinate types is
3369      * {@code (arrayClass, int)}, where the {@code int} coordinate type
3370      * corresponds to an argument that is an index into an array.
3371      * <p>
3372      * Certain access modes of the returned VarHandle are unsupported under
3373      * the following conditions:
3374      * <ul>
3375      * <li>if the component type is anything other than {@code byte},
3376      *     {@code short}, {@code char}, {@code int}, {@code long},
3377      *     {@code float}, or {@code double} then numeric atomic update access
3378      *     modes are unsupported.
3379      * <li>if the field type is anything other than {@code boolean},
3380      *     {@code byte}, {@code short}, {@code char}, {@code int} or
3381      *     {@code long} then bitwise atomic update access modes are
3382      *     unsupported.
3383      * </ul>
3384      * <p>
3385      * If the component type is {@code float} or {@code double} then numeric
3386      * and atomic update access modes compare values using their bitwise
3387      * representation (see {@link Float#floatToRawIntBits} and
3388      * {@link Double#doubleToRawLongBits}, respectively).
3389      *
3390      * <p> When the returned {@code VarHandle} is invoked,
3391      * the array reference and array index are checked.
3392      * A {@code NullPointerException} will be thrown if the array reference
3393      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3394      * thrown if the index is negative or if it is greater than or equal to
3395      * the length of the array.
3396      *
3397      * @apiNote
3398      * Bitwise comparison of {@code float} values or {@code double} values,
3399      * as performed by the numeric and atomic update access modes, differ
3400      * from the primitive {@code ==} operator and the {@link Float#equals}
3401      * and {@link Double#equals} methods, specifically with respect to
3402      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3403      * Care should be taken when performing a compare and set or a compare
3404      * and exchange operation with such values since the operation may
3405      * unexpectedly fail.
3406      * There are many possible NaN values that are considered to be
3407      * {@code NaN} in Java, although no IEEE 754 floating-point operation
3408      * provided by Java can distinguish between them.  Operation failure can
3409      * occur if the expected or witness value is a NaN value and it is
3410      * transformed (perhaps in a platform specific manner) into another NaN
3411      * value, and thus has a different bitwise representation (see
3412      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3413      * details).
3414      * The values {@code -0.0} and {@code +0.0} have different bitwise
3415      * representations but are considered equal when using the primitive
3416      * {@code ==} operator.  Operation failure can occur if, for example, a
3417      * numeric algorithm computes an expected value to be say {@code -0.0}
3418      * and previously computed the witness value to be say {@code +0.0}.
3419      * @param arrayClass the class of an array, of type {@code T[]}
3420      * @return a VarHandle giving access to elements of an array
3421      * @throws NullPointerException if the arrayClass is null
3422      * @throws IllegalArgumentException if arrayClass is not an array type
3423      * @since 9
3424      */
3425     public static
3426     VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
3427         return VarHandles.makeArrayElementHandle(arrayClass);
3428     }
3429 
3430     /**
3431      * Produces a VarHandle giving access to elements of a {@code byte[]} array
3432      * viewed as if it were a different primitive array type, such as
3433      * {@code int[]} or {@code long[]}.
3434      * The VarHandle's variable type is the component type of
3435      * {@code viewArrayClass} and the list of coordinate types is
3436      * {@code (byte[], int)}, where the {@code int} coordinate type
3437      * corresponds to an argument that is an index into a {@code byte[]} array.
3438      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
3439      * array, composing bytes to or from a value of the component type of
3440      * {@code viewArrayClass} according to the given endianness.
3441      * <p>
3442      * The supported component types (variables types) are {@code short},
3443      * {@code char}, {@code int}, {@code long}, {@code float} and
3444      * {@code double}.
3445      * <p>
3446      * Access of bytes at a given index will result in an
3447      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
3448      * or greater than the {@code byte[]} array length minus the size (in bytes)
3449      * of {@code T}.
3450      * <p>
3451      * Access of bytes at an index may be aligned or misaligned for {@code T},
3452      * with respect to the underlying memory address, {@code A} say, associated
3453      * with the array and index.
3454      * If access is misaligned then access for anything other than the
3455      * {@code get} and {@code set} access modes will result in an
3456      * {@code IllegalStateException}.  In such cases atomic access is only
3457      * guaranteed with respect to the largest power of two that divides the GCD
3458      * of {@code A} and the size (in bytes) of {@code T}.
3459      * If access is aligned then following access modes are supported and are
3460      * guaranteed to support atomic access:
3461      * <ul>
3462      * <li>read write access modes for all {@code T}, with the exception of
3463      *     access modes {@code get} and {@code set} for {@code long} and
3464      *     {@code double} on 32-bit platforms.
3465      * <li>atomic update access modes for {@code int}, {@code long},
3466      *     {@code float} or {@code double}.
3467      *     (Future major platform releases of the JDK may support additional
3468      *     types for certain currently unsupported access modes.)
3469      * <li>numeric atomic update access modes for {@code int} and {@code long}.
3470      *     (Future major platform releases of the JDK may support additional
3471      *     numeric types for certain currently unsupported access modes.)
3472      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
3473      *     (Future major platform releases of the JDK may support additional
3474      *     numeric types for certain currently unsupported access modes.)
3475      * </ul>
3476      * <p>
3477      * Misaligned access, and therefore atomicity guarantees, may be determined
3478      * for {@code byte[]} arrays without operating on a specific array.  Given
3479      * an {@code index}, {@code T} and it's corresponding boxed type,
3480      * {@code T_BOX}, misalignment may be determined as follows:
3481      * <pre>{@code
3482      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
3483      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
3484      *     alignmentOffset(0, sizeOfT);
3485      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
3486      * boolean isMisaligned = misalignedAtIndex != 0;
3487      * }</pre>
3488      * <p>
3489      * If the variable type is {@code float} or {@code double} then atomic
3490      * update access modes compare values using their bitwise representation
3491      * (see {@link Float#floatToRawIntBits} and
3492      * {@link Double#doubleToRawLongBits}, respectively).
3493      * @param viewArrayClass the view array class, with a component type of
3494      * type {@code T}
3495      * @param byteOrder the endianness of the view array elements, as
3496      * stored in the underlying {@code byte} array
3497      * @return a VarHandle giving access to elements of a {@code byte[]} array
3498      * viewed as if elements corresponding to the components type of the view
3499      * array class
3500      * @throws NullPointerException if viewArrayClass or byteOrder is null
3501      * @throws IllegalArgumentException if viewArrayClass is not an array type
3502      * @throws UnsupportedOperationException if the component type of
3503      * viewArrayClass is not supported as a variable type
3504      * @since 9
3505      */
3506     public static
3507     VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
3508                                      ByteOrder byteOrder) throws IllegalArgumentException {
3509         Objects.requireNonNull(byteOrder);
3510         return VarHandles.byteArrayViewHandle(viewArrayClass,
3511                                               byteOrder == ByteOrder.BIG_ENDIAN);
3512     }
3513 
3514     /**
3515      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
3516      * viewed as if it were an array of elements of a different primitive
3517      * component type to that of {@code byte}, such as {@code int[]} or
3518      * {@code long[]}.
3519      * The VarHandle's variable type is the component type of
3520      * {@code viewArrayClass} and the list of coordinate types is
3521      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
3522      * corresponds to an argument that is an index into a {@code byte[]} array.
3523      * The returned VarHandle accesses bytes at an index in a
3524      * {@code ByteBuffer}, composing bytes to or from a value of the component
3525      * type of {@code viewArrayClass} according to the given endianness.
3526      * <p>
3527      * The supported component types (variables types) are {@code short},
3528      * {@code char}, {@code int}, {@code long}, {@code float} and
3529      * {@code double}.
3530      * <p>
3531      * Access will result in a {@code ReadOnlyBufferException} for anything
3532      * other than the read access modes if the {@code ByteBuffer} is read-only.
3533      * <p>
3534      * Access of bytes at a given index will result in an
3535      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
3536      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
3537      * {@code T}.
3538      * <p>
3539      * Access of bytes at an index may be aligned or misaligned for {@code T},
3540      * with respect to the underlying memory address, {@code A} say, associated
3541      * with the {@code ByteBuffer} and index.
3542      * If access is misaligned then access for anything other than the
3543      * {@code get} and {@code set} access modes will result in an
3544      * {@code IllegalStateException}.  In such cases atomic access is only
3545      * guaranteed with respect to the largest power of two that divides the GCD
3546      * of {@code A} and the size (in bytes) of {@code T}.
3547      * If access is aligned then following access modes are supported and are
3548      * guaranteed to support atomic access:
3549      * <ul>
3550      * <li>read write access modes for all {@code T}, with the exception of
3551      *     access modes {@code get} and {@code set} for {@code long} and
3552      *     {@code double} on 32-bit platforms.
3553      * <li>atomic update access modes for {@code int}, {@code long},
3554      *     {@code float} or {@code double}.
3555      *     (Future major platform releases of the JDK may support additional
3556      *     types for certain currently unsupported access modes.)
3557      * <li>numeric atomic update access modes for {@code int} and {@code long}.
3558      *     (Future major platform releases of the JDK may support additional
3559      *     numeric types for certain currently unsupported access modes.)
3560      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
3561      *     (Future major platform releases of the JDK may support additional
3562      *     numeric types for certain currently unsupported access modes.)
3563      * </ul>
3564      * <p>
3565      * Misaligned access, and therefore atomicity guarantees, may be determined
3566      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
3567      * {@code index}, {@code T} and it's corresponding boxed type,
3568      * {@code T_BOX}, as follows:
3569      * <pre>{@code
3570      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
3571      * ByteBuffer bb = ...
3572      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
3573      * boolean isMisaligned = misalignedAtIndex != 0;
3574      * }</pre>
3575      * <p>
3576      * If the variable type is {@code float} or {@code double} then atomic
3577      * update access modes compare values using their bitwise representation
3578      * (see {@link Float#floatToRawIntBits} and
3579      * {@link Double#doubleToRawLongBits}, respectively).
3580      * @param viewArrayClass the view array class, with a component type of
3581      * type {@code T}
3582      * @param byteOrder the endianness of the view array elements, as
3583      * stored in the underlying {@code ByteBuffer} (Note this overrides the
3584      * endianness of a {@code ByteBuffer})
3585      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
3586      * viewed as if elements corresponding to the components type of the view
3587      * array class
3588      * @throws NullPointerException if viewArrayClass or byteOrder is null
3589      * @throws IllegalArgumentException if viewArrayClass is not an array type
3590      * @throws UnsupportedOperationException if the component type of
3591      * viewArrayClass is not supported as a variable type
3592      * @since 9
3593      */
3594     public static
3595     VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
3596                                       ByteOrder byteOrder) throws IllegalArgumentException {
3597         Objects.requireNonNull(byteOrder);
3598         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
3599                                                    byteOrder == ByteOrder.BIG_ENDIAN);
3600     }
3601 
3602 
3603     /// method handle invocation (reflective style)
3604 
3605     /**
3606      * Produces a method handle which will invoke any method handle of the
3607      * given {@code type}, with a given number of trailing arguments replaced by
3608      * a single trailing {@code Object[]} array.
3609      * The resulting invoker will be a method handle with the following
3610      * arguments:
3611      * <ul>
3612      * <li>a single {@code MethodHandle} target
3613      * <li>zero or more leading values (counted by {@code leadingArgCount})
3614      * <li>an {@code Object[]} array containing trailing arguments
3615      * </ul>
3616      * <p>
3617      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
3618      * the indicated {@code type}.
3619      * That is, if the target is exactly of the given {@code type}, it will behave
3620      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
3621      * is used to convert the target to the required {@code type}.
3622      * <p>
3623      * The type of the returned invoker will not be the given {@code type}, but rather
3624      * will have all parameters except the first {@code leadingArgCount}
3625      * replaced by a single array of type {@code Object[]}, which will be
3626      * the final parameter.
3627      * <p>
3628      * Before invoking its target, the invoker will spread the final array, apply
3629      * reference casts as necessary, and unbox and widen primitive arguments.
3630      * If, when the invoker is called, the supplied array argument does
3631      * not have the correct number of elements, the invoker will throw
3632      * an {@link IllegalArgumentException} instead of invoking the target.
3633      * <p>
3634      * This method is equivalent to the following code (though it may be more efficient):
3635      * <blockquote><pre>{@code
3636 MethodHandle invoker = MethodHandles.invoker(type);
3637 int spreadArgCount = type.parameterCount() - leadingArgCount;
3638 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
3639 return invoker;
3640      * }</pre></blockquote>
3641      * This method throws no reflective or security exceptions.
3642      * @param type the desired target type
3643      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
3644      * @return a method handle suitable for invoking any method handle of the given type
3645      * @throws NullPointerException if {@code type} is null
3646      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
3647      *                  the range from 0 to {@code type.parameterCount()} inclusive,
3648      *                  or if the resulting method handle's type would have
3649      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3650      */
3651     public static
3652     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
3653         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
3654             throw newIllegalArgumentException("bad argument count", leadingArgCount);
3655         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
3656         return type.invokers().spreadInvoker(leadingArgCount);
3657     }
3658 
3659     /**
3660      * Produces a special <em>invoker method handle</em> which can be used to
3661      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
3662      * The resulting invoker will have a type which is
3663      * exactly equal to the desired type, except that it will accept
3664      * an additional leading argument of type {@code MethodHandle}.
3665      * <p>
3666      * This method is equivalent to the following code (though it may be more efficient):
3667      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
3668      *
3669      * <p style="font-size:smaller;">
3670      * <em>Discussion:</em>
3671      * Invoker method handles can be useful when working with variable method handles
3672      * of unknown types.
3673      * For example, to emulate an {@code invokeExact} call to a variable method
3674      * handle {@code M}, extract its type {@code T},
3675      * look up the invoker method {@code X} for {@code T},
3676      * and call the invoker method, as {@code X.invoke(T, A...)}.
3677      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
3678      * is unknown.)
3679      * If spreading, collecting, or other argument transformations are required,
3680      * they can be applied once to the invoker {@code X} and reused on many {@code M}
3681      * method handle values, as long as they are compatible with the type of {@code X}.
3682      * <p style="font-size:smaller;">
3683      * <em>(Note:  The invoker method is not available via the Core Reflection API.
3684      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
3685      * on the declared {@code invokeExact} or {@code invoke} method will raise an
3686      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
3687      * <p>
3688      * This method throws no reflective or security exceptions.
3689      * @param type the desired target type
3690      * @return a method handle suitable for invoking any method handle of the given type
3691      * @throws IllegalArgumentException if the resulting method handle's type would have
3692      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3693      */
3694     public static
3695     MethodHandle exactInvoker(MethodType type) {
3696         return type.invokers().exactInvoker();
3697     }
3698 
3699     /**
3700      * Produces a special <em>invoker method handle</em> which can be used to
3701      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
3702      * The resulting invoker will have a type which is
3703      * exactly equal to the desired type, except that it will accept
3704      * an additional leading argument of type {@code MethodHandle}.
3705      * <p>
3706      * Before invoking its target, if the target differs from the expected type,
3707      * the invoker will apply reference casts as
3708      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
3709      * Similarly, the return value will be converted as necessary.
3710      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
3711      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
3712      * <p>
3713      * This method is equivalent to the following code (though it may be more efficient):
3714      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
3715      * <p style="font-size:smaller;">
3716      * <em>Discussion:</em>
3717      * A {@linkplain MethodType#genericMethodType general method type} is one which
3718      * mentions only {@code Object} arguments and return values.
3719      * An invoker for such a type is capable of calling any method handle
3720      * of the same arity as the general type.
3721      * <p style="font-size:smaller;">
3722      * <em>(Note:  The invoker method is not available via the Core Reflection API.
3723      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
3724      * on the declared {@code invokeExact} or {@code invoke} method will raise an
3725      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
3726      * <p>
3727      * This method throws no reflective or security exceptions.
3728      * @param type the desired target type
3729      * @return a method handle suitable for invoking any method handle convertible to the given type
3730      * @throws IllegalArgumentException if the resulting method handle's type would have
3731      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3732      */
3733     public static
3734     MethodHandle invoker(MethodType type) {
3735         return type.invokers().genericInvoker();
3736     }
3737 
3738     /**
3739      * Produces a special <em>invoker method handle</em> which can be used to
3740      * invoke a signature-polymorphic access mode method on any VarHandle whose
3741      * associated access mode type is compatible with the given type.
3742      * The resulting invoker will have a type which is exactly equal to the
3743      * desired given type, except that it will accept an additional leading
3744      * argument of type {@code VarHandle}.
3745      *
3746      * @param accessMode the VarHandle access mode
3747      * @param type the desired target type
3748      * @return a method handle suitable for invoking an access mode method of
3749      *         any VarHandle whose access mode type is of the given type.
3750      * @since 9
3751      */
3752     static public
3753     MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3754         return type.invokers().varHandleMethodExactInvoker(accessMode);
3755     }
3756 
3757     /**
3758      * Produces a special <em>invoker method handle</em> which can be used to
3759      * invoke a signature-polymorphic access mode method on any VarHandle whose
3760      * associated access mode type is compatible with the given type.
3761      * The resulting invoker will have a type which is exactly equal to the
3762      * desired given type, except that it will accept an additional leading
3763      * argument of type {@code VarHandle}.
3764      * <p>
3765      * Before invoking its target, if the access mode type differs from the
3766      * desired given type, the invoker will apply reference casts as necessary
3767      * and box, unbox, or widen primitive values, as if by
3768      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
3769      * converted as necessary.
3770      * <p>
3771      * This method is equivalent to the following code (though it may be more
3772      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
3773      *
3774      * @param accessMode the VarHandle access mode
3775      * @param type the desired target type
3776      * @return a method handle suitable for invoking an access mode method of
3777      *         any VarHandle whose access mode type is convertible to the given
3778      *         type.
3779      * @since 9
3780      */
3781     static public
3782     MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3783         return type.invokers().varHandleMethodInvoker(accessMode);
3784     }
3785 
3786     static /*non-public*/
3787     MethodHandle basicInvoker(MethodType type) {
3788         return type.invokers().basicInvoker();
3789     }
3790 
3791      /// method handle modification (creation from other method handles)
3792 
3793     /**
3794      * Produces a method handle which adapts the type of the
3795      * given method handle to a new type by pairwise argument and return type conversion.
3796      * The original type and new type must have the same number of arguments.
3797      * The resulting method handle is guaranteed to report a type
3798      * which is equal to the desired new type.
3799      * <p>
3800      * If the original type and new type are equal, returns target.
3801      * <p>
3802      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
3803      * and some additional conversions are also applied if those conversions fail.
3804      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
3805      * if possible, before or instead of any conversions done by {@code asType}:
3806      * <ul>
3807      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
3808      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
3809      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
3810      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
3811      *     the boolean is converted to a byte value, 1 for true, 0 for false.
3812      *     (This treatment follows the usage of the bytecode verifier.)
3813      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
3814      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
3815      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
3816      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
3817      *     then a Java casting conversion (JLS 5.5) is applied.
3818      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
3819      *     widening and/or narrowing.)
3820      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
3821      *     conversion will be applied at runtime, possibly followed
3822      *     by a Java casting conversion (JLS 5.5) on the primitive value,
3823      *     possibly followed by a conversion from byte to boolean by testing
3824      *     the low-order bit.
3825      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
3826      *     and if the reference is null at runtime, a zero value is introduced.
3827      * </ul>
3828      * @param target the method handle to invoke after arguments are retyped
3829      * @param newType the expected type of the new method handle
3830      * @return a method handle which delegates to the target after performing
3831      *           any necessary argument conversions, and arranges for any
3832      *           necessary return value conversions
3833      * @throws NullPointerException if either argument is null
3834      * @throws WrongMethodTypeException if the conversion cannot be made
3835      * @see MethodHandle#asType
3836      */
3837     public static
3838     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
3839         explicitCastArgumentsChecks(target, newType);
3840         // use the asTypeCache when possible:
3841         MethodType oldType = target.type();
3842         if (oldType == newType)  return target;
3843         if (oldType.explicitCastEquivalentToAsType(newType)) {
3844             return target.asFixedArity().asType(newType);
3845         }
3846         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
3847     }
3848 
3849     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
3850         if (target.type().parameterCount() != newType.parameterCount()) {
3851             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
3852         }
3853     }
3854 
3855     /**
3856      * Produces a method handle which adapts the calling sequence of the
3857      * given method handle to a new type, by reordering the arguments.
3858      * The resulting method handle is guaranteed to report a type
3859      * which is equal to the desired new type.
3860      * <p>
3861      * The given array controls the reordering.
3862      * Call {@code #I} the number of incoming parameters (the value
3863      * {@code newType.parameterCount()}, and call {@code #O} the number
3864      * of outgoing parameters (the value {@code target.type().parameterCount()}).
3865      * Then the length of the reordering array must be {@code #O},
3866      * and each element must be a non-negative number less than {@code #I}.
3867      * For every {@code N} less than {@code #O}, the {@code N}-th
3868      * outgoing argument will be taken from the {@code I}-th incoming
3869      * argument, where {@code I} is {@code reorder[N]}.
3870      * <p>
3871      * No argument or return value conversions are applied.
3872      * The type of each incoming argument, as determined by {@code newType},
3873      * must be identical to the type of the corresponding outgoing parameter
3874      * or parameters in the target method handle.
3875      * The return type of {@code newType} must be identical to the return
3876      * type of the original target.
3877      * <p>
3878      * The reordering array need not specify an actual permutation.
3879      * An incoming argument will be duplicated if its index appears
3880      * more than once in the array, and an incoming argument will be dropped
3881      * if its index does not appear in the array.
3882      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
3883      * incoming arguments which are not mentioned in the reordering array
3884      * may be of any type, as determined only by {@code newType}.
3885      * <blockquote><pre>{@code
3886 import static java.lang.invoke.MethodHandles.*;
3887 import static java.lang.invoke.MethodType.*;
3888 ...
3889 MethodType intfn1 = methodType(int.class, int.class);
3890 MethodType intfn2 = methodType(int.class, int.class, int.class);
3891 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
3892 assert(sub.type().equals(intfn2));
3893 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
3894 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
3895 assert((int)rsub.invokeExact(1, 100) == 99);
3896 MethodHandle add = ... (int x, int y) -> (x+y) ...;
3897 assert(add.type().equals(intfn2));
3898 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
3899 assert(twice.type().equals(intfn1));
3900 assert((int)twice.invokeExact(21) == 42);
3901      * }</pre></blockquote>
3902      * <p>
3903      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3904      * variable-arity method handle}, even if the original target method handle was.
3905      * @param target the method handle to invoke after arguments are reordered
3906      * @param newType the expected type of the new method handle
3907      * @param reorder an index array which controls the reordering
3908      * @return a method handle which delegates to the target after it
3909      *           drops unused arguments and moves and/or duplicates the other arguments
3910      * @throws NullPointerException if any argument is null
3911      * @throws IllegalArgumentException if the index array length is not equal to
3912      *                  the arity of the target, or if any index array element
3913      *                  not a valid index for a parameter of {@code newType},
3914      *                  or if two corresponding parameter types in
3915      *                  {@code target.type()} and {@code newType} are not identical,
3916      */
3917     public static
3918     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
3919         reorder = reorder.clone();  // get a private copy
3920         MethodType oldType = target.type();
3921         permuteArgumentChecks(reorder, newType, oldType);
3922         // first detect dropped arguments and handle them separately
3923         int[] originalReorder = reorder;
3924         BoundMethodHandle result = target.rebind();
3925         LambdaForm form = result.form;
3926         int newArity = newType.parameterCount();
3927         // Normalize the reordering into a real permutation,
3928         // by removing duplicates and adding dropped elements.
3929         // This somewhat improves lambda form caching, as well
3930         // as simplifying the transform by breaking it up into steps.
3931         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
3932             if (ddIdx > 0) {
3933                 // We found a duplicated entry at reorder[ddIdx].
3934                 // Example:  (x,y,z)->asList(x,y,z)
3935                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
3936                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
3937                 // The starred element corresponds to the argument
3938                 // deleted by the dupArgumentForm transform.
3939                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
3940                 boolean killFirst = false;
3941                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
3942                     // Set killFirst if the dup is larger than an intervening position.
3943                     // This will remove at least one inversion from the permutation.
3944                     if (dupVal > val) killFirst = true;
3945                 }
3946                 if (!killFirst) {
3947                     srcPos = dstPos;
3948                     dstPos = ddIdx;
3949                 }
3950                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
3951                 assert (reorder[srcPos] == reorder[dstPos]);
3952                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
3953                 // contract the reordering by removing the element at dstPos
3954                 int tailPos = dstPos + 1;
3955                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
3956                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
3957             } else {
3958                 int dropVal = ~ddIdx, insPos = 0;
3959                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
3960                     // Find first element of reorder larger than dropVal.
3961                     // This is where we will insert the dropVal.
3962                     insPos += 1;
3963                 }
3964                 Class<?> ptype = newType.parameterType(dropVal);
3965                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
3966                 oldType = oldType.insertParameterTypes(insPos, ptype);
3967                 // expand the reordering by inserting an element at insPos
3968                 int tailPos = insPos + 1;
3969                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
3970                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
3971                 reorder[insPos] = dropVal;
3972             }
3973             assert (permuteArgumentChecks(reorder, newType, oldType));
3974         }
3975         assert (reorder.length == newArity);  // a perfect permutation
3976         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
3977         form = form.editor().permuteArgumentsForm(1, reorder);
3978         if (newType == result.type() && form == result.internalForm())
3979             return result;
3980         return result.copyWith(newType, form);
3981     }
3982 
3983     /**
3984      * Return an indication of any duplicate or omission in reorder.
3985      * If the reorder contains a duplicate entry, return the index of the second occurrence.
3986      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
3987      * Otherwise, return zero.
3988      * If an element not in [0..newArity-1] is encountered, return reorder.length.
3989      */
3990     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
3991         final int BIT_LIMIT = 63;  // max number of bits in bit mask
3992         if (newArity < BIT_LIMIT) {
3993             long mask = 0;
3994             for (int i = 0; i < reorder.length; i++) {
3995                 int arg = reorder[i];
3996                 if (arg >= newArity) {
3997                     return reorder.length;
3998                 }
3999                 long bit = 1L << arg;
4000                 if ((mask & bit) != 0) {
4001                     return i;  // >0 indicates a dup
4002                 }
4003                 mask |= bit;
4004             }
4005             if (mask == (1L << newArity) - 1) {
4006                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
4007                 return 0;
4008             }
4009             // find first zero
4010             long zeroBit = Long.lowestOneBit(~mask);
4011             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
4012             assert(zeroPos <= newArity);
4013             if (zeroPos == newArity) {
4014                 return 0;
4015             }
4016             return ~zeroPos;
4017         } else {
4018             // same algorithm, different bit set
4019             BitSet mask = new BitSet(newArity);
4020             for (int i = 0; i < reorder.length; i++) {
4021                 int arg = reorder[i];
4022                 if (arg >= newArity) {
4023                     return reorder.length;
4024                 }
4025                 if (mask.get(arg)) {
4026                     return i;  // >0 indicates a dup
4027                 }
4028                 mask.set(arg);
4029             }
4030             int zeroPos = mask.nextClearBit(0);
4031             assert(zeroPos <= newArity);
4032             if (zeroPos == newArity) {
4033                 return 0;
4034             }
4035             return ~zeroPos;
4036         }
4037     }
4038 
4039     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
4040         if (newType.returnType() != oldType.returnType())
4041             throw newIllegalArgumentException("return types do not match",
4042                     oldType, newType);
4043         if (reorder.length == oldType.parameterCount()) {
4044             int limit = newType.parameterCount();
4045             boolean bad = false;
4046             for (int j = 0; j < reorder.length; j++) {
4047                 int i = reorder[j];
4048                 if (i < 0 || i >= limit) {
4049                     bad = true; break;
4050                 }
4051                 Class<?> src = newType.parameterType(i);
4052                 Class<?> dst = oldType.parameterType(j);
4053                 if (src != dst)
4054                     throw newIllegalArgumentException("parameter types do not match after reorder",
4055                             oldType, newType);
4056             }
4057             if (!bad)  return true;
4058         }
4059         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
4060     }
4061 
4062     /**
4063      * Produces a method handle of the requested return type which returns the given
4064      * constant value every time it is invoked.
4065      * <p>
4066      * Before the method handle is returned, the passed-in value is converted to the requested type.
4067      * If the requested type is primitive, widening primitive conversions are attempted,
4068      * else reference conversions are attempted.
4069      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
4070      * @param type the return type of the desired method handle
4071      * @param value the value to return
4072      * @return a method handle of the given return type and no arguments, which always returns the given value
4073      * @throws NullPointerException if the {@code type} argument is null
4074      * @throws ClassCastException if the value cannot be converted to the required return type
4075      * @throws IllegalArgumentException if the given type is {@code void.class}
4076      */
4077     public static
4078     MethodHandle constant(Class<?> type, Object value) {
4079         if (type.isPrimitive()) {
4080             if (type == void.class)
4081                 throw newIllegalArgumentException("void type");
4082             Wrapper w = Wrapper.forPrimitiveType(type);
4083             value = w.convert(value, type);
4084             if (w.zero().equals(value))
4085                 return zero(w, type);
4086             return insertArguments(identity(type), 0, value);
4087         } else {
4088             if (value == null)
4089                 return zero(Wrapper.OBJECT, type);
4090             return identity(type).bindTo(value);
4091         }
4092     }
4093 
4094     /**
4095      * Produces a method handle which returns its sole argument when invoked.
4096      * @param type the type of the sole parameter and return value of the desired method handle
4097      * @return a unary method handle which accepts and returns the given type
4098      * @throws NullPointerException if the argument is null
4099      * @throws IllegalArgumentException if the given type is {@code void.class}
4100      */
4101     public static
4102     MethodHandle identity(Class<?> type) {
4103         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
4104         int pos = btw.ordinal();
4105         MethodHandle ident = IDENTITY_MHS[pos];
4106         if (ident == null) {
4107             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
4108         }
4109         if (ident.type().returnType() == type)
4110             return ident;
4111         // something like identity(Foo.class); do not bother to intern these
4112         assert (btw == Wrapper.OBJECT);
4113         return makeIdentity(type);
4114     }
4115 
4116     /**
4117      * Produces a constant method handle of the requested return type which
4118      * returns the default value for that type every time it is invoked.
4119      * The resulting constant method handle will have no side effects.
4120      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
4121      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
4122      * since {@code explicitCastArguments} converts {@code null} to default values.
4123      * @param type the expected return type of the desired method handle
4124      * @return a constant method handle that takes no arguments
4125      *         and returns the default value of the given type (or void, if the type is void)
4126      * @throws NullPointerException if the argument is null
4127      * @see MethodHandles#constant
4128      * @see MethodHandles#empty
4129      * @see MethodHandles#explicitCastArguments
4130      * @since 9
4131      */
4132     public static MethodHandle zero(Class<?> type) {
4133         Objects.requireNonNull(type);
4134         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
4135     }
4136 
4137     private static MethodHandle identityOrVoid(Class<?> type) {
4138         return type == void.class ? zero(type) : identity(type);
4139     }
4140 
4141     /**
4142      * Produces a method handle of the requested type which ignores any arguments, does nothing,
4143      * and returns a suitable default depending on the return type.
4144      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
4145      * <p>The returned method handle is equivalent to
4146      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
4147      *
4148      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
4149      * {@code guardWithTest(pred, target, empty(target.type())}.
4150      * @param type the type of the desired method handle
4151      * @return a constant method handle of the given type, which returns a default value of the given return type
4152      * @throws NullPointerException if the argument is null
4153      * @see MethodHandles#zero
4154      * @see MethodHandles#constant
4155      * @since 9
4156      */
4157     public static  MethodHandle empty(MethodType type) {
4158         Objects.requireNonNull(type);
4159         return dropArguments(zero(type.returnType()), 0, type.parameterList());
4160     }
4161 
4162     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
4163     private static MethodHandle makeIdentity(Class<?> ptype) {
4164         MethodType mtype = methodType(ptype, ptype);
4165         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
4166         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
4167     }
4168 
4169     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
4170         int pos = btw.ordinal();
4171         MethodHandle zero = ZERO_MHS[pos];
4172         if (zero == null) {
4173             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
4174         }
4175         if (zero.type().returnType() == rtype)
4176             return zero;
4177         assert(btw == Wrapper.OBJECT);
4178         return makeZero(rtype);
4179     }
4180     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
4181     private static MethodHandle makeZero(Class<?> rtype) {
4182         MethodType mtype = methodType(rtype);
4183         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
4184         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
4185     }
4186 
4187     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
4188         // Simulate a CAS, to avoid racy duplication of results.
4189         MethodHandle prev = cache[pos];
4190         if (prev != null) return prev;
4191         return cache[pos] = value;
4192     }
4193 
4194     /**
4195      * Provides a target method handle with one or more <em>bound arguments</em>
4196      * in advance of the method handle's invocation.
4197      * The formal parameters to the target corresponding to the bound
4198      * arguments are called <em>bound parameters</em>.
4199      * Returns a new method handle which saves away the bound arguments.
4200      * When it is invoked, it receives arguments for any non-bound parameters,
4201      * binds the saved arguments to their corresponding parameters,
4202      * and calls the original target.
4203      * <p>
4204      * The type of the new method handle will drop the types for the bound
4205      * parameters from the original target type, since the new method handle
4206      * will no longer require those arguments to be supplied by its callers.
4207      * <p>
4208      * Each given argument object must match the corresponding bound parameter type.
4209      * If a bound parameter type is a primitive, the argument object
4210      * must be a wrapper, and will be unboxed to produce the primitive value.
4211      * <p>
4212      * The {@code pos} argument selects which parameters are to be bound.
4213      * It may range between zero and <i>N-L</i> (inclusively),
4214      * where <i>N</i> is the arity of the target method handle
4215      * and <i>L</i> is the length of the values array.
4216      * <p>
4217      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4218      * variable-arity method handle}, even if the original target method handle was.
4219      * @param target the method handle to invoke after the argument is inserted
4220      * @param pos where to insert the argument (zero for the first)
4221      * @param values the series of arguments to insert
4222      * @return a method handle which inserts an additional argument,
4223      *         before calling the original method handle
4224      * @throws NullPointerException if the target or the {@code values} array is null
4225      * @throws IllegalArgumentException if (@code pos) is less than {@code 0} or greater than
4226      *         {@code N - L} where {@code N} is the arity of the target method handle and {@code L}
4227      *         is the length of the values array.
4228      * @throws ClassCastException if an argument does not match the corresponding bound parameter
4229      *         type.
4230      * @see MethodHandle#bindTo
4231      */
4232     public static
4233     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
4234         int insCount = values.length;
4235         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
4236         if (insCount == 0)  return target;
4237         BoundMethodHandle result = target.rebind();
4238         for (int i = 0; i < insCount; i++) {
4239             Object value = values[i];
4240             Class<?> ptype = ptypes[pos+i];
4241             if (ptype.isPrimitive()) {
4242                 result = insertArgumentPrimitive(result, pos, ptype, value);
4243             } else {
4244                 value = ptype.cast(value);  // throw CCE if needed
4245                 result = result.bindArgumentL(pos, value);
4246             }
4247         }
4248         return result;
4249     }
4250 
4251     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
4252                                                              Class<?> ptype, Object value) {
4253         Wrapper w = Wrapper.forPrimitiveType(ptype);
4254         // perform unboxing and/or primitive conversion
4255         value = w.convert(value, ptype);
4256         switch (w) {
4257         case INT:     return result.bindArgumentI(pos, (int)value);
4258         case LONG:    return result.bindArgumentJ(pos, (long)value);
4259         case FLOAT:   return result.bindArgumentF(pos, (float)value);
4260         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
4261         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
4262         }
4263     }
4264 
4265     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
4266         MethodType oldType = target.type();
4267         int outargs = oldType.parameterCount();
4268         int inargs  = outargs - insCount;
4269         if (inargs < 0)
4270             throw newIllegalArgumentException("too many values to insert");
4271         if (pos < 0 || pos > inargs)
4272             throw newIllegalArgumentException("no argument type to append");
4273         return oldType.ptypes();
4274     }
4275 
4276     /**
4277      * Produces a method handle which will discard some dummy arguments
4278      * before calling some other specified <i>target</i> method handle.
4279      * The type of the new method handle will be the same as the target's type,
4280      * except it will also include the dummy argument types,
4281      * at some given position.
4282      * <p>
4283      * The {@code pos} argument may range between zero and <i>N</i>,
4284      * where <i>N</i> is the arity of the target.
4285      * If {@code pos} is zero, the dummy arguments will precede
4286      * the target's real arguments; if {@code pos} is <i>N</i>
4287      * they will come after.
4288      * <p>
4289      * <b>Example:</b>
4290      * <blockquote><pre>{@code
4291 import static java.lang.invoke.MethodHandles.*;
4292 import static java.lang.invoke.MethodType.*;
4293 ...
4294 MethodHandle cat = lookup().findVirtual(String.class,
4295   "concat", methodType(String.class, String.class));
4296 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4297 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
4298 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
4299 assertEquals(bigType, d0.type());
4300 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
4301      * }</pre></blockquote>
4302      * <p>
4303      * This method is also equivalent to the following code:
4304      * <blockquote><pre>
4305      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
4306      * </pre></blockquote>
4307      * @param target the method handle to invoke after the arguments are dropped
4308      * @param valueTypes the type(s) of the argument(s) to drop
4309      * @param pos position of first argument to drop (zero for the leftmost)
4310      * @return a method handle which drops arguments of the given types,
4311      *         before calling the original method handle
4312      * @throws NullPointerException if the target is null,
4313      *                              or if the {@code valueTypes} list or any of its elements is null
4314      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
4315      *                  or if {@code pos} is negative or greater than the arity of the target,
4316      *                  or if the new method handle's type would have too many parameters
4317      */
4318     public static
4319     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
4320         return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
4321     }
4322 
4323     private static List<Class<?>> copyTypes(Object[] array) {
4324         return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
4325     }
4326 
4327     private static
4328     MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
4329         MethodType oldType = target.type();  // get NPE
4330         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
4331         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
4332         if (dropped == 0)  return target;
4333         BoundMethodHandle result = target.rebind();
4334         LambdaForm lform = result.form;
4335         int insertFormArg = 1 + pos;
4336         for (Class<?> ptype : valueTypes) {
4337             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
4338         }
4339         result = result.copyWith(newType, lform);
4340         return result;
4341     }
4342 
4343     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
4344         int dropped = valueTypes.size();
4345         MethodType.checkSlotCount(dropped);
4346         int outargs = oldType.parameterCount();
4347         int inargs  = outargs + dropped;
4348         if (pos < 0 || pos > outargs)
4349             throw newIllegalArgumentException("no argument type to remove"
4350                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
4351                     );
4352         return dropped;
4353     }
4354 
4355     /**
4356      * Produces a method handle which will discard some dummy arguments
4357      * before calling some other specified <i>target</i> method handle.
4358      * The type of the new method handle will be the same as the target's type,
4359      * except it will also include the dummy argument types,
4360      * at some given position.
4361      * <p>
4362      * The {@code pos} argument may range between zero and <i>N</i>,
4363      * where <i>N</i> is the arity of the target.
4364      * If {@code pos} is zero, the dummy arguments will precede
4365      * the target's real arguments; if {@code pos} is <i>N</i>
4366      * they will come after.
4367      * @apiNote
4368      * <blockquote><pre>{@code
4369 import static java.lang.invoke.MethodHandles.*;
4370 import static java.lang.invoke.MethodType.*;
4371 ...
4372 MethodHandle cat = lookup().findVirtual(String.class,
4373   "concat", methodType(String.class, String.class));
4374 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4375 MethodHandle d0 = dropArguments(cat, 0, String.class);
4376 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
4377 MethodHandle d1 = dropArguments(cat, 1, String.class);
4378 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
4379 MethodHandle d2 = dropArguments(cat, 2, String.class);
4380 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
4381 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
4382 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
4383      * }</pre></blockquote>
4384      * <p>
4385      * This method is also equivalent to the following code:
4386      * <blockquote><pre>
4387      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
4388      * </pre></blockquote>
4389      * @param target the method handle to invoke after the arguments are dropped
4390      * @param valueTypes the type(s) of the argument(s) to drop
4391      * @param pos position of first argument to drop (zero for the leftmost)
4392      * @return a method handle which drops arguments of the given types,
4393      *         before calling the original method handle
4394      * @throws NullPointerException if the target is null,
4395      *                              or if the {@code valueTypes} array or any of its elements is null
4396      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
4397      *                  or if {@code pos} is negative or greater than the arity of the target,
4398      *                  or if the new method handle's type would have
4399      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
4400      */
4401     public static
4402     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
4403         return dropArguments0(target, pos, copyTypes(valueTypes));
4404     }
4405 
4406     // private version which allows caller some freedom with error handling
4407     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
4408                                       boolean nullOnFailure) {
4409         newTypes = copyTypes(newTypes.toArray());
4410         List<Class<?>> oldTypes = target.type().parameterList();
4411         int match = oldTypes.size();
4412         if (skip != 0) {
4413             if (skip < 0 || skip > match) {
4414                 throw newIllegalArgumentException("illegal skip", skip, target);
4415             }
4416             oldTypes = oldTypes.subList(skip, match);
4417             match -= skip;
4418         }
4419         List<Class<?>> addTypes = newTypes;
4420         int add = addTypes.size();
4421         if (pos != 0) {
4422             if (pos < 0 || pos > add) {
4423                 throw newIllegalArgumentException("illegal pos", pos, newTypes);
4424             }
4425             addTypes = addTypes.subList(pos, add);
4426             add -= pos;
4427             assert(addTypes.size() == add);
4428         }
4429         // Do not add types which already match the existing arguments.
4430         if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
4431             if (nullOnFailure) {
4432                 return null;
4433             }
4434             throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
4435         }
4436         addTypes = addTypes.subList(match, add);
4437         add -= match;
4438         assert(addTypes.size() == add);
4439         // newTypes:     (   P*[pos], M*[match], A*[add] )
4440         // target: ( S*[skip],        M*[match]  )
4441         MethodHandle adapter = target;
4442         if (add > 0) {
4443             adapter = dropArguments0(adapter, skip+ match, addTypes);
4444         }
4445         // adapter: (S*[skip],        M*[match], A*[add] )
4446         if (pos > 0) {
4447             adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
4448         }
4449         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
4450         return adapter;
4451     }
4452 
4453     /**
4454      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
4455      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
4456      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
4457      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
4458      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
4459      * {@link #dropArguments(MethodHandle, int, Class[])}.
4460      * <p>
4461      * The resulting handle will have the same return type as the target handle.
4462      * <p>
4463      * In more formal terms, assume these two type lists:<ul>
4464      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
4465      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
4466      * {@code newTypes}.
4467      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
4468      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
4469      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
4470      * sub-list.
4471      * </ul>
4472      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
4473      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
4474      * {@link #dropArguments(MethodHandle, int, Class[])}.
4475      *
4476      * @apiNote
4477      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
4478      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
4479      * <blockquote><pre>{@code
4480 import static java.lang.invoke.MethodHandles.*;
4481 import static java.lang.invoke.MethodType.*;
4482 ...
4483 ...
4484 MethodHandle h0 = constant(boolean.class, true);
4485 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
4486 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
4487 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
4488 if (h1.type().parameterCount() < h2.type().parameterCount())
4489     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
4490 else
4491     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
4492 MethodHandle h3 = guardWithTest(h0, h1, h2);
4493 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
4494      * }</pre></blockquote>
4495      * @param target the method handle to adapt
4496      * @param skip number of targets parameters to disregard (they will be unchanged)
4497      * @param newTypes the list of types to match {@code target}'s parameter type list to
4498      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
4499      * @return a possibly adapted method handle
4500      * @throws NullPointerException if either argument is null
4501      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
4502      *         or if {@code skip} is negative or greater than the arity of the target,
4503      *         or if {@code pos} is negative or greater than the newTypes list size,
4504      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
4505      *         {@code pos}.
4506      * @since 9
4507      */
4508     public static
4509     MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
4510         Objects.requireNonNull(target);
4511         Objects.requireNonNull(newTypes);
4512         return dropArgumentsToMatch(target, skip, newTypes, pos, false);
4513     }
4514 
4515     /**
4516      * Adapts a target method handle by pre-processing
4517      * one or more of its arguments, each with its own unary filter function,
4518      * and then calling the target with each pre-processed argument
4519      * replaced by the result of its corresponding filter function.
4520      * <p>
4521      * The pre-processing is performed by one or more method handles,
4522      * specified in the elements of the {@code filters} array.
4523      * The first element of the filter array corresponds to the {@code pos}
4524      * argument of the target, and so on in sequence.
4525      * The filter functions are invoked in left to right order.
4526      * <p>
4527      * Null arguments in the array are treated as identity functions,
4528      * and the corresponding arguments left unchanged.
4529      * (If there are no non-null elements in the array, the original target is returned.)
4530      * Each filter is applied to the corresponding argument of the adapter.
4531      * <p>
4532      * If a filter {@code F} applies to the {@code N}th argument of
4533      * the target, then {@code F} must be a method handle which
4534      * takes exactly one argument.  The type of {@code F}'s sole argument
4535      * replaces the corresponding argument type of the target
4536      * in the resulting adapted method handle.
4537      * The return type of {@code F} must be identical to the corresponding
4538      * parameter type of the target.
4539      * <p>
4540      * It is an error if there are elements of {@code filters}
4541      * (null or not)
4542      * which do not correspond to argument positions in the target.
4543      * <p><b>Example:</b>
4544      * <blockquote><pre>{@code
4545 import static java.lang.invoke.MethodHandles.*;
4546 import static java.lang.invoke.MethodType.*;
4547 ...
4548 MethodHandle cat = lookup().findVirtual(String.class,
4549   "concat", methodType(String.class, String.class));
4550 MethodHandle upcase = lookup().findVirtual(String.class,
4551   "toUpperCase", methodType(String.class));
4552 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4553 MethodHandle f0 = filterArguments(cat, 0, upcase);
4554 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
4555 MethodHandle f1 = filterArguments(cat, 1, upcase);
4556 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
4557 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
4558 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
4559      * }</pre></blockquote>
4560      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4561      * denotes the return type of both the {@code target} and resulting adapter.
4562      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
4563      * of the parameters and arguments that precede and follow the filter position
4564      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
4565      * values of the filtered parameters and arguments; they also represent the
4566      * return types of the {@code filter[i]} handles. The latter accept arguments
4567      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
4568      * the resulting adapter.
4569      * <blockquote><pre>{@code
4570      * T target(P... p, A[i]... a[i], B... b);
4571      * A[i] filter[i](V[i]);
4572      * T adapter(P... p, V[i]... v[i], B... b) {
4573      *   return target(p..., filter[i](v[i])..., b...);
4574      * }
4575      * }</pre></blockquote>
4576      * <p>
4577      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4578      * variable-arity method handle}, even if the original target method handle was.
4579      *
4580      * @param target the method handle to invoke after arguments are filtered
4581      * @param pos the position of the first argument to filter
4582      * @param filters method handles to call initially on filtered arguments
4583      * @return method handle which incorporates the specified argument filtering logic
4584      * @throws NullPointerException if the target is null
4585      *                              or if the {@code filters} array is null
4586      * @throws IllegalArgumentException if a non-null element of {@code filters}
4587      *          does not match a corresponding argument type of target as described above,
4588      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
4589      *          or if the resulting method handle's type would have
4590      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4591      */
4592     public static
4593     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
4594         // In method types arguments start at index 0, while the LF
4595         // editor have the MH receiver at position 0 - adjust appropriately.
4596         final int MH_RECEIVER_OFFSET = 1;
4597         filterArgumentsCheckArity(target, pos, filters);
4598         MethodHandle adapter = target;
4599 
4600         // keep track of currently matched filters, as to optimize repeated filters
4601         int index = 0;
4602         int[] positions = new int[filters.length];
4603         MethodHandle filter = null;
4604 
4605         // process filters in reverse order so that the invocation of
4606         // the resulting adapter will invoke the filters in left-to-right order
4607         for (int i = filters.length - 1; i >= 0; --i) {
4608             MethodHandle newFilter = filters[i];
4609             if (newFilter == null) continue;  // ignore null elements of filters
4610 
4611             // flush changes on update
4612             if (filter != newFilter) {
4613                 if (filter != null) {
4614                     if (index > 1) {
4615                         adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
4616                     } else {
4617                         adapter = filterArgument(adapter, positions[0] - 1, filter);
4618                     }
4619                 }
4620                 filter = newFilter;
4621                 index = 0;
4622             }
4623 
4624             filterArgumentChecks(target, pos + i, newFilter);
4625             positions[index++] = pos + i + MH_RECEIVER_OFFSET;
4626         }
4627         if (index > 1) {
4628             adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
4629         } else if (index == 1) {
4630             adapter = filterArgument(adapter, positions[0] - 1, filter);
4631         }
4632         return adapter;
4633     }
4634 
4635     private static MethodHandle filterRepeatedArgument(MethodHandle adapter, MethodHandle filter, int[] positions) {
4636         MethodType targetType = adapter.type();
4637         MethodType filterType = filter.type();
4638         BoundMethodHandle result = adapter.rebind();
4639         Class<?> newParamType = filterType.parameterType(0);
4640 
4641         Class<?>[] ptypes = targetType.ptypes().clone();
4642         for (int pos : positions) {
4643             ptypes[pos - 1] = newParamType;
4644         }
4645         MethodType newType = MethodType.makeImpl(targetType.rtype(), ptypes, true);
4646 
4647         LambdaForm lform = result.editor().filterRepeatedArgumentForm(BasicType.basicType(newParamType), positions);
4648         return result.copyWithExtendL(newType, lform, filter);
4649     }
4650 
4651     /*non-public*/ static
4652     MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
4653         filterArgumentChecks(target, pos, filter);
4654         MethodType targetType = target.type();
4655         MethodType filterType = filter.type();
4656         BoundMethodHandle result = target.rebind();
4657         Class<?> newParamType = filterType.parameterType(0);
4658         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
4659         MethodType newType = targetType.changeParameterType(pos, newParamType);
4660         result = result.copyWithExtendL(newType, lform, filter);
4661         return result;
4662     }
4663 
4664     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
4665         MethodType targetType = target.type();
4666         int maxPos = targetType.parameterCount();
4667         if (pos + filters.length > maxPos)
4668             throw newIllegalArgumentException("too many filters");
4669     }
4670 
4671     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
4672         MethodType targetType = target.type();
4673         MethodType filterType = filter.type();
4674         if (filterType.parameterCount() != 1
4675             || filterType.returnType() != targetType.parameterType(pos))
4676             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4677     }
4678 
4679     /**
4680      * Adapts a target method handle by pre-processing
4681      * a sub-sequence of its arguments with a filter (another method handle).
4682      * The pre-processed arguments are replaced by the result (if any) of the
4683      * filter function.
4684      * The target is then called on the modified (usually shortened) argument list.
4685      * <p>
4686      * If the filter returns a value, the target must accept that value as
4687      * its argument in position {@code pos}, preceded and/or followed by
4688      * any arguments not passed to the filter.
4689      * If the filter returns void, the target must accept all arguments
4690      * not passed to the filter.
4691      * No arguments are reordered, and a result returned from the filter
4692      * replaces (in order) the whole subsequence of arguments originally
4693      * passed to the adapter.
4694      * <p>
4695      * The argument types (if any) of the filter
4696      * replace zero or one argument types of the target, at position {@code pos},
4697      * in the resulting adapted method handle.
4698      * The return type of the filter (if any) must be identical to the
4699      * argument type of the target at position {@code pos}, and that target argument
4700      * is supplied by the return value of the filter.
4701      * <p>
4702      * In all cases, {@code pos} must be greater than or equal to zero, and
4703      * {@code pos} must also be less than or equal to the target's arity.
4704      * <p><b>Example:</b>
4705      * <blockquote><pre>{@code
4706 import static java.lang.invoke.MethodHandles.*;
4707 import static java.lang.invoke.MethodType.*;
4708 ...
4709 MethodHandle deepToString = publicLookup()
4710   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
4711 
4712 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
4713 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
4714 
4715 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
4716 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
4717 
4718 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
4719 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
4720 assertEquals("[top, [up, down], strange]",
4721              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
4722 
4723 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
4724 assertEquals("[top, [up, down], [strange]]",
4725              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
4726 
4727 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
4728 assertEquals("[top, [[up, down, strange], charm], bottom]",
4729              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
4730      * }</pre></blockquote>
4731      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4732      * represents the return type of the {@code target} and resulting adapter.
4733      * {@code V}/{@code v} stand for the return type and value of the
4734      * {@code filter}, which are also found in the signature and arguments of
4735      * the {@code target}, respectively, unless {@code V} is {@code void}.
4736      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
4737      * and values preceding and following the collection position, {@code pos},
4738      * in the {@code target}'s signature. They also turn up in the resulting
4739      * adapter's signature and arguments, where they surround
4740      * {@code B}/{@code b}, which represent the parameter types and arguments
4741      * to the {@code filter} (if any).
4742      * <blockquote><pre>{@code
4743      * T target(A...,V,C...);
4744      * V filter(B...);
4745      * T adapter(A... a,B... b,C... c) {
4746      *   V v = filter(b...);
4747      *   return target(a...,v,c...);
4748      * }
4749      * // and if the filter has no arguments:
4750      * T target2(A...,V,C...);
4751      * V filter2();
4752      * T adapter2(A... a,C... c) {
4753      *   V v = filter2();
4754      *   return target2(a...,v,c...);
4755      * }
4756      * // and if the filter has a void return:
4757      * T target3(A...,C...);
4758      * void filter3(B...);
4759      * T adapter3(A... a,B... b,C... c) {
4760      *   filter3(b...);
4761      *   return target3(a...,c...);
4762      * }
4763      * }</pre></blockquote>
4764      * <p>
4765      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
4766      * one which first "folds" the affected arguments, and then drops them, in separate
4767      * steps as follows:
4768      * <blockquote><pre>{@code
4769      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
4770      * mh = MethodHandles.foldArguments(mh, coll); //step 1
4771      * }</pre></blockquote>
4772      * If the target method handle consumes no arguments besides than the result
4773      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
4774      * is equivalent to {@code filterReturnValue(coll, mh)}.
4775      * If the filter method handle {@code coll} consumes one argument and produces
4776      * a non-void result, then {@code collectArguments(mh, N, coll)}
4777      * is equivalent to {@code filterArguments(mh, N, coll)}.
4778      * Other equivalences are possible but would require argument permutation.
4779      * <p>
4780      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4781      * variable-arity method handle}, even if the original target method handle was.
4782      *
4783      * @param target the method handle to invoke after filtering the subsequence of arguments
4784      * @param pos the position of the first adapter argument to pass to the filter,
4785      *            and/or the target argument which receives the result of the filter
4786      * @param filter method handle to call on the subsequence of arguments
4787      * @return method handle which incorporates the specified argument subsequence filtering logic
4788      * @throws NullPointerException if either argument is null
4789      * @throws IllegalArgumentException if the return type of {@code filter}
4790      *          is non-void and is not the same as the {@code pos} argument of the target,
4791      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
4792      *          or if the resulting method handle's type would have
4793      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4794      * @see MethodHandles#foldArguments
4795      * @see MethodHandles#filterArguments
4796      * @see MethodHandles#filterReturnValue
4797      */
4798     public static
4799     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
4800         MethodType newType = collectArgumentsChecks(target, pos, filter);
4801         MethodType collectorType = filter.type();
4802         BoundMethodHandle result = target.rebind();
4803         LambdaForm lform;
4804         if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) {
4805             lform = result.editor().collectArgumentArrayForm(1 + pos, filter);
4806             if (lform != null) {
4807                 return result.copyWith(newType, lform);
4808             }
4809         }
4810         lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
4811         return result.copyWithExtendL(newType, lform, filter);
4812     }
4813 
4814     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
4815         MethodType targetType = target.type();
4816         MethodType filterType = filter.type();
4817         Class<?> rtype = filterType.returnType();
4818         List<Class<?>> filterArgs = filterType.parameterList();
4819         if (rtype == void.class) {
4820             return targetType.insertParameterTypes(pos, filterArgs);
4821         }
4822         if (rtype != targetType.parameterType(pos)) {
4823             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4824         }
4825         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
4826     }
4827 
4828     /**
4829      * Adapts a target method handle by post-processing
4830      * its return value (if any) with a filter (another method handle).
4831      * The result of the filter is returned from the adapter.
4832      * <p>
4833      * If the target returns a value, the filter must accept that value as
4834      * its only argument.
4835      * If the target returns void, the filter must accept no arguments.
4836      * <p>
4837      * The return type of the filter
4838      * replaces the return type of the target
4839      * in the resulting adapted method handle.
4840      * The argument type of the filter (if any) must be identical to the
4841      * return type of the target.
4842      * <p><b>Example:</b>
4843      * <blockquote><pre>{@code
4844 import static java.lang.invoke.MethodHandles.*;
4845 import static java.lang.invoke.MethodType.*;
4846 ...
4847 MethodHandle cat = lookup().findVirtual(String.class,
4848   "concat", methodType(String.class, String.class));
4849 MethodHandle length = lookup().findVirtual(String.class,
4850   "length", methodType(int.class));
4851 System.out.println((String) cat.invokeExact("x", "y")); // xy
4852 MethodHandle f0 = filterReturnValue(cat, length);
4853 System.out.println((int) f0.invokeExact("x", "y")); // 2
4854      * }</pre></blockquote>
4855      * <p>Here is pseudocode for the resulting adapter. In the code,
4856      * {@code T}/{@code t} represent the result type and value of the
4857      * {@code target}; {@code V}, the result type of the {@code filter}; and
4858      * {@code A}/{@code a}, the types and values of the parameters and arguments
4859      * of the {@code target} as well as the resulting adapter.
4860      * <blockquote><pre>{@code
4861      * T target(A...);
4862      * V filter(T);
4863      * V adapter(A... a) {
4864      *   T t = target(a...);
4865      *   return filter(t);
4866      * }
4867      * // and if the target has a void return:
4868      * void target2(A...);
4869      * V filter2();
4870      * V adapter2(A... a) {
4871      *   target2(a...);
4872      *   return filter2();
4873      * }
4874      * // and if the filter has a void return:
4875      * T target3(A...);
4876      * void filter3(V);
4877      * void adapter3(A... a) {
4878      *   T t = target3(a...);
4879      *   filter3(t);
4880      * }
4881      * }</pre></blockquote>
4882      * <p>
4883      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4884      * variable-arity method handle}, even if the original target method handle was.
4885      * @param target the method handle to invoke before filtering the return value
4886      * @param filter method handle to call on the return value
4887      * @return method handle which incorporates the specified return value filtering logic
4888      * @throws NullPointerException if either argument is null
4889      * @throws IllegalArgumentException if the argument list of {@code filter}
4890      *          does not match the return type of target as described above
4891      */
4892     public static
4893     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
4894         MethodType targetType = target.type();
4895         MethodType filterType = filter.type();
4896         filterReturnValueChecks(targetType, filterType);
4897         BoundMethodHandle result = target.rebind();
4898         BasicType rtype = BasicType.basicType(filterType.returnType());
4899         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
4900         MethodType newType = targetType.changeReturnType(filterType.returnType());
4901         result = result.copyWithExtendL(newType, lform, filter);
4902         return result;
4903     }
4904 
4905     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
4906         Class<?> rtype = targetType.returnType();
4907         int filterValues = filterType.parameterCount();
4908         if (filterValues == 0
4909                 ? (rtype != void.class)
4910                 : (rtype != filterType.parameterType(0) || filterValues != 1))
4911             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4912     }
4913 
4914     /**
4915      * Adapts a target method handle by pre-processing
4916      * some of its arguments, and then calling the target with
4917      * the result of the pre-processing, inserted into the original
4918      * sequence of arguments.
4919      * <p>
4920      * The pre-processing is performed by {@code combiner}, a second method handle.
4921      * Of the arguments passed to the adapter, the first {@code N} arguments
4922      * are copied to the combiner, which is then called.
4923      * (Here, {@code N} is defined as the parameter count of the combiner.)
4924      * After this, control passes to the target, with any result
4925      * from the combiner inserted before the original {@code N} incoming
4926      * arguments.
4927      * <p>
4928      * If the combiner returns a value, the first parameter type of the target
4929      * must be identical with the return type of the combiner, and the next
4930      * {@code N} parameter types of the target must exactly match the parameters
4931      * of the combiner.
4932      * <p>
4933      * If the combiner has a void return, no result will be inserted,
4934      * and the first {@code N} parameter types of the target
4935      * must exactly match the parameters of the combiner.
4936      * <p>
4937      * The resulting adapter is the same type as the target, except that the
4938      * first parameter type is dropped,
4939      * if it corresponds to the result of the combiner.
4940      * <p>
4941      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
4942      * that either the combiner or the target does not wish to receive.
4943      * If some of the incoming arguments are destined only for the combiner,
4944      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
4945      * arguments will not need to be live on the stack on entry to the
4946      * target.)
4947      * <p><b>Example:</b>
4948      * <blockquote><pre>{@code
4949 import static java.lang.invoke.MethodHandles.*;
4950 import static java.lang.invoke.MethodType.*;
4951 ...
4952 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4953   "println", methodType(void.class, String.class))
4954     .bindTo(System.out);
4955 MethodHandle cat = lookup().findVirtual(String.class,
4956   "concat", methodType(String.class, String.class));
4957 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4958 MethodHandle catTrace = foldArguments(cat, trace);
4959 // also prints "boo":
4960 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4961      * }</pre></blockquote>
4962      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4963      * represents the result type of the {@code target} and resulting adapter.
4964      * {@code V}/{@code v} represent the type and value of the parameter and argument
4965      * of {@code target} that precedes the folding position; {@code V} also is
4966      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4967      * types and values of the {@code N} parameters and arguments at the folding
4968      * position. {@code B}/{@code b} represent the types and values of the
4969      * {@code target} parameters and arguments that follow the folded parameters
4970      * and arguments.
4971      * <blockquote><pre>{@code
4972      * // there are N arguments in A...
4973      * T target(V, A[N]..., B...);
4974      * V combiner(A...);
4975      * T adapter(A... a, B... b) {
4976      *   V v = combiner(a...);
4977      *   return target(v, a..., b...);
4978      * }
4979      * // and if the combiner has a void return:
4980      * T target2(A[N]..., B...);
4981      * void combiner2(A...);
4982      * T adapter2(A... a, B... b) {
4983      *   combiner2(a...);
4984      *   return target2(a..., b...);
4985      * }
4986      * }</pre></blockquote>
4987      * <p>
4988      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4989      * variable-arity method handle}, even if the original target method handle was.
4990      * @param target the method handle to invoke after arguments are combined
4991      * @param combiner method handle to call initially on the incoming arguments
4992      * @return method handle which incorporates the specified argument folding logic
4993      * @throws NullPointerException if either argument is null
4994      * @throws IllegalArgumentException if {@code combiner}'s return type
4995      *          is non-void and not the same as the first argument type of
4996      *          the target, or if the initial {@code N} argument types
4997      *          of the target
4998      *          (skipping one matching the {@code combiner}'s return type)
4999      *          are not identical with the argument types of {@code combiner}
5000      */
5001     public static
5002     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
5003         return foldArguments(target, 0, combiner);
5004     }
5005 
5006     /**
5007      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
5008      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
5009      * before the folded arguments.
5010      * <p>
5011      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
5012      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
5013      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
5014      * 0.
5015      *
5016      * @apiNote Example:
5017      * <blockquote><pre>{@code
5018     import static java.lang.invoke.MethodHandles.*;
5019     import static java.lang.invoke.MethodType.*;
5020     ...
5021     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
5022     "println", methodType(void.class, String.class))
5023     .bindTo(System.out);
5024     MethodHandle cat = lookup().findVirtual(String.class,
5025     "concat", methodType(String.class, String.class));
5026     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
5027     MethodHandle catTrace = foldArguments(cat, 1, trace);
5028     // also prints "jum":
5029     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
5030      * }</pre></blockquote>
5031      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5032      * represents the result type of the {@code target} and resulting adapter.
5033      * {@code V}/{@code v} represent the type and value of the parameter and argument
5034      * of {@code target} that precedes the folding position; {@code V} also is
5035      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
5036      * types and values of the {@code N} parameters and arguments at the folding
5037      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
5038      * and values of the {@code target} parameters and arguments that precede and
5039      * follow the folded parameters and arguments starting at {@code pos},
5040      * respectively.
5041      * <blockquote><pre>{@code
5042      * // there are N arguments in A...
5043      * T target(Z..., V, A[N]..., B...);
5044      * V combiner(A...);
5045      * T adapter(Z... z, A... a, B... b) {
5046      *   V v = combiner(a...);
5047      *   return target(z..., v, a..., b...);
5048      * }
5049      * // and if the combiner has a void return:
5050      * T target2(Z..., A[N]..., B...);
5051      * void combiner2(A...);
5052      * T adapter2(Z... z, A... a, B... b) {
5053      *   combiner2(a...);
5054      *   return target2(z..., a..., b...);
5055      * }
5056      * }</pre></blockquote>
5057      * <p>
5058      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5059      * variable-arity method handle}, even if the original target method handle was.
5060      *
5061      * @param target the method handle to invoke after arguments are combined
5062      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
5063      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5064      * @param combiner method handle to call initially on the incoming arguments
5065      * @return method handle which incorporates the specified argument folding logic
5066      * @throws NullPointerException if either argument is null
5067      * @throws IllegalArgumentException if either of the following two conditions holds:
5068      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
5069      *              {@code pos} of the target signature;
5070      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
5071      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
5072      *
5073      * @see #foldArguments(MethodHandle, MethodHandle)
5074      * @since 9
5075      */
5076     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
5077         MethodType targetType = target.type();
5078         MethodType combinerType = combiner.type();
5079         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
5080         BoundMethodHandle result = target.rebind();
5081         boolean dropResult = rtype == void.class;
5082         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
5083         MethodType newType = targetType;
5084         if (!dropResult) {
5085             newType = newType.dropParameterTypes(pos, pos + 1);
5086         }
5087         result = result.copyWithExtendL(newType, lform, combiner);
5088         return result;
5089     }
5090 
5091     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
5092         int foldArgs   = combinerType.parameterCount();
5093         Class<?> rtype = combinerType.returnType();
5094         int foldVals = rtype == void.class ? 0 : 1;
5095         int afterInsertPos = foldPos + foldVals;
5096         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
5097         if (ok) {
5098             for (int i = 0; i < foldArgs; i++) {
5099                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
5100                     ok = false;
5101                     break;
5102                 }
5103             }
5104         }
5105         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
5106             ok = false;
5107         if (!ok)
5108             throw misMatchedTypes("target and combiner types", targetType, combinerType);
5109         return rtype;
5110     }
5111 
5112     /**
5113      * Adapts a target method handle by pre-processing some of its arguments, then calling the target with the result
5114      * of the pre-processing replacing the argument at the given position.
5115      *
5116      * @param target the method handle to invoke after arguments are combined
5117      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
5118      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5119      * @param combiner method handle to call initially on the incoming arguments
5120      * @param argPositions indexes of the target to pick arguments sent to the combiner from
5121      * @return method handle which incorporates the specified argument folding logic
5122      * @throws NullPointerException if either argument is null
5123      * @throws IllegalArgumentException if either of the following two conditions holds:
5124      *          (1) {@code combiner}'s return type is not the same as the argument type at position
5125      *              {@code pos} of the target signature;
5126      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature are
5127      *              not identical with the argument types of {@code combiner}.
5128      */
5129     /*non-public*/ static MethodHandle filterArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5130         return argumentsWithCombiner(true, target, position, combiner, argPositions);
5131     }
5132 
5133     /**
5134      * Adapts a target method handle by pre-processing some of its arguments, calling the target with the result of
5135      * the pre-processing inserted into the original sequence of arguments at the given position.
5136      *
5137      * @param target the method handle to invoke after arguments are combined
5138      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
5139      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5140      * @param combiner method handle to call initially on the incoming arguments
5141      * @param argPositions indexes of the target to pick arguments sent to the combiner from
5142      * @return method handle which incorporates the specified argument folding logic
5143      * @throws NullPointerException if either argument is null
5144      * @throws IllegalArgumentException if either of the following two conditions holds:
5145      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
5146      *              {@code pos} of the target signature;
5147      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature
5148      *              (skipping {@code position} where the {@code combiner}'s return will be folded in) are not identical
5149      *              with the argument types of {@code combiner}.
5150      */
5151     /*non-public*/ static MethodHandle foldArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5152         return argumentsWithCombiner(false, target, position, combiner, argPositions);
5153     }
5154 
5155     private static MethodHandle argumentsWithCombiner(boolean filter, MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5156         MethodType targetType = target.type();
5157         MethodType combinerType = combiner.type();
5158         Class<?> rtype = argumentsWithCombinerChecks(position, filter, targetType, combinerType, argPositions);
5159         BoundMethodHandle result = target.rebind();
5160 
5161         MethodType newType = targetType;
5162         LambdaForm lform;
5163         if (filter) {
5164             lform = result.editor().filterArgumentsForm(1 + position, combinerType.basicType(), argPositions);
5165         } else {
5166             boolean dropResult = rtype == void.class;
5167             lform = result.editor().foldArgumentsForm(1 + position, dropResult, combinerType.basicType(), argPositions);
5168             if (!dropResult) {
5169                 newType = newType.dropParameterTypes(position, position + 1);
5170             }
5171         }
5172         result = result.copyWithExtendL(newType, lform, combiner);
5173         return result;
5174     }
5175 
5176     private static Class<?> argumentsWithCombinerChecks(int position, boolean filter, MethodType targetType, MethodType combinerType, int ... argPos) {
5177         int combinerArgs = combinerType.parameterCount();
5178         if (argPos.length != combinerArgs) {
5179             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
5180         }
5181         Class<?> rtype = combinerType.returnType();
5182 
5183         for (int i = 0; i < combinerArgs; i++) {
5184             int arg = argPos[i];
5185             if (arg < 0 || arg > targetType.parameterCount()) {
5186                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
5187             }
5188             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
5189                 throw newIllegalArgumentException("target argument type at position " + arg
5190                         + " must match combiner argument type at index " + i + ": " + targetType
5191                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
5192             }
5193         }
5194         if (filter && combinerType.returnType() != targetType.parameterType(position)) {
5195             throw misMatchedTypes("target and combiner types", targetType, combinerType);
5196         }
5197         return rtype;
5198     }
5199 
5200     /**
5201      * Makes a method handle which adapts a target method handle,
5202      * by guarding it with a test, a boolean-valued method handle.
5203      * If the guard fails, a fallback handle is called instead.
5204      * All three method handles must have the same corresponding
5205      * argument and return types, except that the return type
5206      * of the test must be boolean, and the test is allowed
5207      * to have fewer arguments than the other two method handles.
5208      * <p>
5209      * Here is pseudocode for the resulting adapter. In the code, {@code T}
5210      * represents the uniform result type of the three involved handles;
5211      * {@code A}/{@code a}, the types and values of the {@code target}
5212      * parameters and arguments that are consumed by the {@code test}; and
5213      * {@code B}/{@code b}, those types and values of the {@code target}
5214      * parameters and arguments that are not consumed by the {@code test}.
5215      * <blockquote><pre>{@code
5216      * boolean test(A...);
5217      * T target(A...,B...);
5218      * T fallback(A...,B...);
5219      * T adapter(A... a,B... b) {
5220      *   if (test(a...))
5221      *     return target(a..., b...);
5222      *   else
5223      *     return fallback(a..., b...);
5224      * }
5225      * }</pre></blockquote>
5226      * Note that the test arguments ({@code a...} in the pseudocode) cannot
5227      * be modified by execution of the test, and so are passed unchanged
5228      * from the caller to the target or fallback as appropriate.
5229      * @param test method handle used for test, must return boolean
5230      * @param target method handle to call if test passes
5231      * @param fallback method handle to call if test fails
5232      * @return method handle which incorporates the specified if/then/else logic
5233      * @throws NullPointerException if any argument is null
5234      * @throws IllegalArgumentException if {@code test} does not return boolean,
5235      *          or if all three method types do not match (with the return
5236      *          type of {@code test} changed to match that of the target).
5237      */
5238     public static
5239     MethodHandle guardWithTest(MethodHandle test,
5240                                MethodHandle target,
5241                                MethodHandle fallback) {
5242         MethodType gtype = test.type();
5243         MethodType ttype = target.type();
5244         MethodType ftype = fallback.type();
5245         if (!ttype.equals(ftype))
5246             throw misMatchedTypes("target and fallback types", ttype, ftype);
5247         if (gtype.returnType() != boolean.class)
5248             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
5249         List<Class<?>> targs = ttype.parameterList();
5250         test = dropArgumentsToMatch(test, 0, targs, 0, true);
5251         if (test == null) {
5252             throw misMatchedTypes("target and test types", ttype, gtype);
5253         }
5254         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
5255     }
5256 
5257     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
5258         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
5259     }
5260 
5261     /**
5262      * Makes a method handle which adapts a target method handle,
5263      * by running it inside an exception handler.
5264      * If the target returns normally, the adapter returns that value.
5265      * If an exception matching the specified type is thrown, the fallback
5266      * handle is called instead on the exception, plus the original arguments.
5267      * <p>
5268      * The target and handler must have the same corresponding
5269      * argument and return types, except that handler may omit trailing arguments
5270      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
5271      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
5272      * <p>
5273      * Here is pseudocode for the resulting adapter. In the code, {@code T}
5274      * represents the return type of the {@code target} and {@code handler},
5275      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
5276      * the types and values of arguments to the resulting handle consumed by
5277      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
5278      * resulting handle discarded by {@code handler}.
5279      * <blockquote><pre>{@code
5280      * T target(A..., B...);
5281      * T handler(ExType, A...);
5282      * T adapter(A... a, B... b) {
5283      *   try {
5284      *     return target(a..., b...);
5285      *   } catch (ExType ex) {
5286      *     return handler(ex, a...);
5287      *   }
5288      * }
5289      * }</pre></blockquote>
5290      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
5291      * be modified by execution of the target, and so are passed unchanged
5292      * from the caller to the handler, if the handler is invoked.
5293      * <p>
5294      * The target and handler must return the same type, even if the handler
5295      * always throws.  (This might happen, for instance, because the handler
5296      * is simulating a {@code finally} clause).
5297      * To create such a throwing handler, compose the handler creation logic
5298      * with {@link #throwException throwException},
5299      * in order to create a method handle of the correct return type.
5300      * @param target method handle to call
5301      * @param exType the type of exception which the handler will catch
5302      * @param handler method handle to call if a matching exception is thrown
5303      * @return method handle which incorporates the specified try/catch logic
5304      * @throws NullPointerException if any argument is null
5305      * @throws IllegalArgumentException if {@code handler} does not accept
5306      *          the given exception type, or if the method handle types do
5307      *          not match in their return types and their
5308      *          corresponding parameters
5309      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
5310      */
5311     public static
5312     MethodHandle catchException(MethodHandle target,
5313                                 Class<? extends Throwable> exType,
5314                                 MethodHandle handler) {
5315         MethodType ttype = target.type();
5316         MethodType htype = handler.type();
5317         if (!Throwable.class.isAssignableFrom(exType))
5318             throw new ClassCastException(exType.getName());
5319         if (htype.parameterCount() < 1 ||
5320             !htype.parameterType(0).isAssignableFrom(exType))
5321             throw newIllegalArgumentException("handler does not accept exception type "+exType);
5322         if (htype.returnType() != ttype.returnType())
5323             throw misMatchedTypes("target and handler return types", ttype, htype);
5324         handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
5325         if (handler == null) {
5326             throw misMatchedTypes("target and handler types", ttype, htype);
5327         }
5328         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
5329     }
5330 
5331     /**
5332      * Produces a method handle which will throw exceptions of the given {@code exType}.
5333      * The method handle will accept a single argument of {@code exType},
5334      * and immediately throw it as an exception.
5335      * The method type will nominally specify a return of {@code returnType}.
5336      * The return type may be anything convenient:  It doesn't matter to the
5337      * method handle's behavior, since it will never return normally.
5338      * @param returnType the return type of the desired method handle
5339      * @param exType the parameter type of the desired method handle
5340      * @return method handle which can throw the given exceptions
5341      * @throws NullPointerException if either argument is null
5342      */
5343     public static
5344     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
5345         if (!Throwable.class.isAssignableFrom(exType))
5346             throw new ClassCastException(exType.getName());
5347         return MethodHandleImpl.throwException(methodType(returnType, exType));
5348     }
5349 
5350     /**
5351      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
5352      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
5353      * delivers the loop's result, which is the return value of the resulting handle.
5354      * <p>
5355      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
5356      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
5357      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
5358      * terms of method handles, each clause will specify up to four independent actions:<ul>
5359      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
5360      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
5361      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
5362      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
5363      * </ul>
5364      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
5365      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
5366      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
5367      * <p>
5368      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
5369      * this case. See below for a detailed description.
5370      * <p>
5371      * <em>Parameters optional everywhere:</em>
5372      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
5373      * As an exception, the init functions cannot take any {@code v} parameters,
5374      * because those values are not yet computed when the init functions are executed.
5375      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
5376      * In fact, any clause function may take no arguments at all.
5377      * <p>
5378      * <em>Loop parameters:</em>
5379      * A clause function may take all the iteration variable values it is entitled to, in which case
5380      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
5381      * with their types and values notated as {@code (A...)} and {@code (a...)}.
5382      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
5383      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
5384      * init function is automatically a loop parameter {@code a}.)
5385      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
5386      * These loop parameters act as loop-invariant values visible across the whole loop.
5387      * <p>
5388      * <em>Parameters visible everywhere:</em>
5389      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
5390      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
5391      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
5392      * Most clause functions will not need all of this information, but they will be formally connected to it
5393      * as if by {@link #dropArguments}.
5394      * <a id="astar"></a>
5395      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
5396      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
5397      * In that notation, the general form of an init function parameter list
5398      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
5399      * <p>
5400      * <em>Checking clause structure:</em>
5401      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
5402      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
5403      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
5404      * met by the inputs to the loop combinator.
5405      * <p>
5406      * <em>Effectively identical sequences:</em>
5407      * <a id="effid"></a>
5408      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
5409      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
5410      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
5411      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
5412      * that longest list.
5413      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
5414      * and the same is true if more sequences of the form {@code (V... A*)} are added.
5415      * <p>
5416      * <em>Step 0: Determine clause structure.</em><ol type="a">
5417      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
5418      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
5419      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
5420      * four. Padding takes place by appending elements to the array.
5421      * <li>Clauses with all {@code null}s are disregarded.
5422      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
5423      * </ol>
5424      * <p>
5425      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
5426      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
5427      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
5428      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
5429      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
5430      * iteration variable type.
5431      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
5432      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
5433      * </ol>
5434      * <p>
5435      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
5436      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
5437      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
5438      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
5439      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
5440      * (These types will be checked in step 2, along with all the clause function types.)
5441      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
5442      * <li>All of the collected parameter lists must be effectively identical.
5443      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
5444      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
5445      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
5446      * the "internal parameter list".
5447      * </ul>
5448      * <p>
5449      * <em>Step 1C: Determine loop return type.</em><ol type="a">
5450      * <li>Examine fini function return types, disregarding omitted fini functions.
5451      * <li>If there are no fini functions, the loop return type is {@code void}.
5452      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
5453      * type.
5454      * </ol>
5455      * <p>
5456      * <em>Step 1D: Check other types.</em><ol type="a">
5457      * <li>There must be at least one non-omitted pred function.
5458      * <li>Every non-omitted pred function must have a {@code boolean} return type.
5459      * </ol>
5460      * <p>
5461      * <em>Step 2: Determine parameter lists.</em><ol type="a">
5462      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
5463      * <li>The parameter list for init functions will be adjusted to the external parameter list.
5464      * (Note that their parameter lists are already effectively identical to this list.)
5465      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
5466      * effectively identical to the internal parameter list {@code (V... A...)}.
5467      * </ol>
5468      * <p>
5469      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
5470      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
5471      * type.
5472      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
5473      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
5474      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
5475      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
5476      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
5477      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
5478      * loop return type.
5479      * </ol>
5480      * <p>
5481      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
5482      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
5483      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
5484      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
5485      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
5486      * pad out the end of the list.
5487      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}.
5488      * </ol>
5489      * <p>
5490      * <em>Final observations.</em><ol type="a">
5491      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
5492      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
5493      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
5494      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
5495      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
5496      * <li>Each pair of init and step functions agrees in their return type {@code V}.
5497      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
5498      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
5499      * </ol>
5500      * <p>
5501      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
5502      * <ul>
5503      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
5504      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
5505      * (Only one {@code Pn} has to be non-{@code null}.)
5506      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
5507      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
5508      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
5509      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
5510      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
5511      * the resulting loop handle's parameter types {@code (A...)}.
5512      * </ul>
5513      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
5514      * which is natural if most of the loop computation happens in the steps.  For some loops,
5515      * the burden of computation might be heaviest in the pred functions, and so the pred functions
5516      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
5517      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
5518      * where the init functions will need the extra parameters.  For such reasons, the rules for
5519      * determining these parameters are as symmetric as possible, across all clause parts.
5520      * In general, the loop parameters function as common invariant values across the whole
5521      * loop, while the iteration variables function as common variant values, or (if there is
5522      * no step function) as internal loop invariant temporaries.
5523      * <p>
5524      * <em>Loop execution.</em><ol type="a">
5525      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
5526      * every clause function. These locals are loop invariant.
5527      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
5528      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
5529      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
5530      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
5531      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
5532      * (in argument order).
5533      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
5534      * returns {@code false}.
5535      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
5536      * sequence {@code (v...)} of loop variables.
5537      * The updated value is immediately visible to all subsequent function calls.
5538      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
5539      * (of type {@code R}) is returned from the loop as a whole.
5540      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
5541      * except by throwing an exception.
5542      * </ol>
5543      * <p>
5544      * <em>Usage tips.</em>
5545      * <ul>
5546      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
5547      * sometimes a step function only needs to observe the current value of its own variable.
5548      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
5549      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
5550      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
5551      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
5552      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
5553      * <li>If some of the clause functions are virtual methods on an instance, the instance
5554      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
5555      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
5556      * will be the first iteration variable value, and it will be easy to use virtual
5557      * methods as clause parts, since all of them will take a leading instance reference matching that value.
5558      * </ul>
5559      * <p>
5560      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
5561      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
5562      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
5563      * <blockquote><pre>{@code
5564      * V... init...(A...);
5565      * boolean pred...(V..., A...);
5566      * V... step...(V..., A...);
5567      * R fini...(V..., A...);
5568      * R loop(A... a) {
5569      *   V... v... = init...(a...);
5570      *   for (;;) {
5571      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
5572      *       v = s(v..., a...);
5573      *       if (!p(v..., a...)) {
5574      *         return f(v..., a...);
5575      *       }
5576      *     }
5577      *   }
5578      * }
5579      * }</pre></blockquote>
5580      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
5581      * to their full length, even though individual clause functions may neglect to take them all.
5582      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}.
5583      *
5584      * @apiNote Example:
5585      * <blockquote><pre>{@code
5586      * // iterative implementation of the factorial function as a loop handle
5587      * static int one(int k) { return 1; }
5588      * static int inc(int i, int acc, int k) { return i + 1; }
5589      * static int mult(int i, int acc, int k) { return i * acc; }
5590      * static boolean pred(int i, int acc, int k) { return i < k; }
5591      * static int fin(int i, int acc, int k) { return acc; }
5592      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
5593      * // null initializer for counter, should initialize to 0
5594      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5595      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5596      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
5597      * assertEquals(120, loop.invoke(5));
5598      * }</pre></blockquote>
5599      * The same example, dropping arguments and using combinators:
5600      * <blockquote><pre>{@code
5601      * // simplified implementation of the factorial function as a loop handle
5602      * static int inc(int i) { return i + 1; } // drop acc, k
5603      * static int mult(int i, int acc) { return i * acc; } //drop k
5604      * static boolean cmp(int i, int k) { return i < k; }
5605      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
5606      * // null initializer for counter, should initialize to 0
5607      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
5608      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
5609      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
5610      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5611      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5612      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
5613      * assertEquals(720, loop.invoke(6));
5614      * }</pre></blockquote>
5615      * A similar example, using a helper object to hold a loop parameter:
5616      * <blockquote><pre>{@code
5617      * // instance-based implementation of the factorial function as a loop handle
5618      * static class FacLoop {
5619      *   final int k;
5620      *   FacLoop(int k) { this.k = k; }
5621      *   int inc(int i) { return i + 1; }
5622      *   int mult(int i, int acc) { return i * acc; }
5623      *   boolean pred(int i) { return i < k; }
5624      *   int fin(int i, int acc) { return acc; }
5625      * }
5626      * // assume MH_FacLoop is a handle to the constructor
5627      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
5628      * // null initializer for counter, should initialize to 0
5629      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
5630      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
5631      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5632      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5633      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
5634      * assertEquals(5040, loop.invoke(7));
5635      * }</pre></blockquote>
5636      *
5637      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
5638      *
5639      * @return a method handle embodying the looping behavior as defined by the arguments.
5640      *
5641      * @throws IllegalArgumentException in case any of the constraints described above is violated.
5642      *
5643      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
5644      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
5645      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
5646      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
5647      * @since 9
5648      */
5649     public static MethodHandle loop(MethodHandle[]... clauses) {
5650         // Step 0: determine clause structure.
5651         loopChecks0(clauses);
5652 
5653         List<MethodHandle> init = new ArrayList<>();
5654         List<MethodHandle> step = new ArrayList<>();
5655         List<MethodHandle> pred = new ArrayList<>();
5656         List<MethodHandle> fini = new ArrayList<>();
5657 
5658         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
5659             init.add(clause[0]); // all clauses have at least length 1
5660             step.add(clause.length <= 1 ? null : clause[1]);
5661             pred.add(clause.length <= 2 ? null : clause[2]);
5662             fini.add(clause.length <= 3 ? null : clause[3]);
5663         });
5664 
5665         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
5666         final int nclauses = init.size();
5667 
5668         // Step 1A: determine iteration variables (V...).
5669         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
5670         for (int i = 0; i < nclauses; ++i) {
5671             MethodHandle in = init.get(i);
5672             MethodHandle st = step.get(i);
5673             if (in == null && st == null) {
5674                 iterationVariableTypes.add(void.class);
5675             } else if (in != null && st != null) {
5676                 loopChecks1a(i, in, st);
5677                 iterationVariableTypes.add(in.type().returnType());
5678             } else {
5679                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
5680             }
5681         }
5682         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
5683                 collect(Collectors.toList());
5684 
5685         // Step 1B: determine loop parameters (A...).
5686         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
5687         loopChecks1b(init, commonSuffix);
5688 
5689         // Step 1C: determine loop return type.
5690         // Step 1D: check other types.
5691         // local variable required here; see JDK-8223553
5692         Stream<Class<?>> cstream = fini.stream().filter(Objects::nonNull).map(MethodHandle::type)
5693                 .map(MethodType::returnType);
5694         final Class<?> loopReturnType = cstream.findFirst().orElse(void.class);
5695         loopChecks1cd(pred, fini, loopReturnType);
5696 
5697         // Step 2: determine parameter lists.
5698         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
5699         commonParameterSequence.addAll(commonSuffix);
5700         loopChecks2(step, pred, fini, commonParameterSequence);
5701 
5702         // Step 3: fill in omitted functions.
5703         for (int i = 0; i < nclauses; ++i) {
5704             Class<?> t = iterationVariableTypes.get(i);
5705             if (init.get(i) == null) {
5706                 init.set(i, empty(methodType(t, commonSuffix)));
5707             }
5708             if (step.get(i) == null) {
5709                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
5710             }
5711             if (pred.get(i) == null) {
5712                 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
5713             }
5714             if (fini.get(i) == null) {
5715                 fini.set(i, empty(methodType(t, commonParameterSequence)));
5716             }
5717         }
5718 
5719         // Step 4: fill in missing parameter types.
5720         // Also convert all handles to fixed-arity handles.
5721         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
5722         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
5723         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
5724         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
5725 
5726         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
5727                 allMatch(pl -> pl.equals(commonSuffix));
5728         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
5729                 allMatch(pl -> pl.equals(commonParameterSequence));
5730 
5731         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
5732     }
5733 
5734     private static void loopChecks0(MethodHandle[][] clauses) {
5735         if (clauses == null || clauses.length == 0) {
5736             throw newIllegalArgumentException("null or no clauses passed");
5737         }
5738         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
5739             throw newIllegalArgumentException("null clauses are not allowed");
5740         }
5741         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
5742             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
5743         }
5744     }
5745 
5746     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
5747         if (in.type().returnType() != st.type().returnType()) {
5748             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
5749                     st.type().returnType());
5750         }
5751     }
5752 
5753     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
5754         final List<Class<?>> empty = List.of();
5755         final List<Class<?>> longest = mhs.filter(Objects::nonNull).
5756                 // take only those that can contribute to a common suffix because they are longer than the prefix
5757                         map(MethodHandle::type).
5758                         filter(t -> t.parameterCount() > skipSize).
5759                         map(MethodType::parameterList).
5760                         reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
5761         return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
5762     }
5763 
5764     private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
5765         final List<Class<?>> empty = List.of();
5766         return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
5767     }
5768 
5769     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
5770         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
5771         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
5772         return longestParameterList(Arrays.asList(longest1, longest2));
5773     }
5774 
5775     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
5776         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
5777                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
5778             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
5779                     " (common suffix: " + commonSuffix + ")");
5780         }
5781     }
5782 
5783     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
5784         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
5785                 anyMatch(t -> t != loopReturnType)) {
5786             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
5787                     loopReturnType + ")");
5788         }
5789 
5790         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
5791             throw newIllegalArgumentException("no predicate found", pred);
5792         }
5793         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
5794                 anyMatch(t -> t != boolean.class)) {
5795             throw newIllegalArgumentException("predicates must have boolean return type", pred);
5796         }
5797     }
5798 
5799     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
5800         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
5801                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
5802             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
5803                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
5804         }
5805     }
5806 
5807     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
5808         return hs.stream().map(h -> {
5809             int pc = h.type().parameterCount();
5810             int tpsize = targetParams.size();
5811             return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
5812         }).collect(Collectors.toList());
5813     }
5814 
5815     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
5816         return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
5817     }
5818 
5819     /**
5820      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
5821      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5822      * <p>
5823      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5824      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
5825      * evaluates to {@code true}).
5826      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
5827      * <p>
5828      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5829      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5830      * and updated with the value returned from its invocation. The result of loop execution will be
5831      * the final value of the additional loop-local variable (if present).
5832      * <p>
5833      * The following rules hold for these argument handles:<ul>
5834      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5835      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5836      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5837      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5838      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5839      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5840      * It will constrain the parameter lists of the other loop parts.
5841      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5842      * list {@code (A...)} is called the <em>external parameter list</em>.
5843      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5844      * additional state variable of the loop.
5845      * The body must both accept and return a value of this type {@code V}.
5846      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5847      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5848      * <a href="MethodHandles.html#effid">effectively identical</a>
5849      * to the external parameter list {@code (A...)}.
5850      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5851      * {@linkplain #empty default value}.
5852      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5853      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5854      * effectively identical to the internal parameter list.
5855      * </ul>
5856      * <p>
5857      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5858      * <li>The loop handle's result type is the result type {@code V} of the body.
5859      * <li>The loop handle's parameter types are the types {@code (A...)},
5860      * from the external parameter list.
5861      * </ul>
5862      * <p>
5863      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5864      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5865      * passed to the loop.
5866      * <blockquote><pre>{@code
5867      * V init(A...);
5868      * boolean pred(V, A...);
5869      * V body(V, A...);
5870      * V whileLoop(A... a...) {
5871      *   V v = init(a...);
5872      *   while (pred(v, a...)) {
5873      *     v = body(v, a...);
5874      *   }
5875      *   return v;
5876      * }
5877      * }</pre></blockquote>
5878      *
5879      * @apiNote Example:
5880      * <blockquote><pre>{@code
5881      * // implement the zip function for lists as a loop handle
5882      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
5883      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
5884      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
5885      *   zip.add(a.next());
5886      *   zip.add(b.next());
5887      *   return zip;
5888      * }
5889      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
5890      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
5891      * List<String> a = Arrays.asList("a", "b", "c", "d");
5892      * List<String> b = Arrays.asList("e", "f", "g", "h");
5893      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
5894      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
5895      * }</pre></blockquote>
5896      *
5897      *
5898      * @apiNote The implementation of this method can be expressed as follows:
5899      * <blockquote><pre>{@code
5900      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5901      *     MethodHandle fini = (body.type().returnType() == void.class
5902      *                         ? null : identity(body.type().returnType()));
5903      *     MethodHandle[]
5904      *         checkExit = { null, null, pred, fini },
5905      *         varBody   = { init, body };
5906      *     return loop(checkExit, varBody);
5907      * }
5908      * }</pre></blockquote>
5909      *
5910      * @param init optional initializer, providing the initial value of the loop variable.
5911      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5912      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5913      *             above for other constraints.
5914      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5915      *             See above for other constraints.
5916      *
5917      * @return a method handle implementing the {@code while} loop as described by the arguments.
5918      * @throws IllegalArgumentException if the rules for the arguments are violated.
5919      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5920      *
5921      * @see #loop(MethodHandle[][])
5922      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
5923      * @since 9
5924      */
5925     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5926         whileLoopChecks(init, pred, body);
5927         MethodHandle fini = identityOrVoid(body.type().returnType());
5928         MethodHandle[] checkExit = { null, null, pred, fini };
5929         MethodHandle[] varBody = { init, body };
5930         return loop(checkExit, varBody);
5931     }
5932 
5933     /**
5934      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
5935      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5936      * <p>
5937      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5938      * method will, in each iteration, first execute its body and then evaluate the predicate.
5939      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
5940      * <p>
5941      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5942      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5943      * and updated with the value returned from its invocation. The result of loop execution will be
5944      * the final value of the additional loop-local variable (if present).
5945      * <p>
5946      * The following rules hold for these argument handles:<ul>
5947      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5948      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5949      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5950      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5951      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5952      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5953      * It will constrain the parameter lists of the other loop parts.
5954      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5955      * list {@code (A...)} is called the <em>external parameter list</em>.
5956      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5957      * additional state variable of the loop.
5958      * The body must both accept and return a value of this type {@code V}.
5959      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5960      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5961      * <a href="MethodHandles.html#effid">effectively identical</a>
5962      * to the external parameter list {@code (A...)}.
5963      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5964      * {@linkplain #empty default value}.
5965      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5966      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5967      * effectively identical to the internal parameter list.
5968      * </ul>
5969      * <p>
5970      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5971      * <li>The loop handle's result type is the result type {@code V} of the body.
5972      * <li>The loop handle's parameter types are the types {@code (A...)},
5973      * from the external parameter list.
5974      * </ul>
5975      * <p>
5976      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5977      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5978      * passed to the loop.
5979      * <blockquote><pre>{@code
5980      * V init(A...);
5981      * boolean pred(V, A...);
5982      * V body(V, A...);
5983      * V doWhileLoop(A... a...) {
5984      *   V v = init(a...);
5985      *   do {
5986      *     v = body(v, a...);
5987      *   } while (pred(v, a...));
5988      *   return v;
5989      * }
5990      * }</pre></blockquote>
5991      *
5992      * @apiNote Example:
5993      * <blockquote><pre>{@code
5994      * // int i = 0; while (i < limit) { ++i; } return i; => limit
5995      * static int zero(int limit) { return 0; }
5996      * static int step(int i, int limit) { return i + 1; }
5997      * static boolean pred(int i, int limit) { return i < limit; }
5998      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
5999      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
6000      * assertEquals(23, loop.invoke(23));
6001      * }</pre></blockquote>
6002      *
6003      *
6004      * @apiNote The implementation of this method can be expressed as follows:
6005      * <blockquote><pre>{@code
6006      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
6007      *     MethodHandle fini = (body.type().returnType() == void.class
6008      *                         ? null : identity(body.type().returnType()));
6009      *     MethodHandle[] clause = { init, body, pred, fini };
6010      *     return loop(clause);
6011      * }
6012      * }</pre></blockquote>
6013      *
6014      * @param init optional initializer, providing the initial value of the loop variable.
6015      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6016      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
6017      *             See above for other constraints.
6018      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
6019      *             above for other constraints.
6020      *
6021      * @return a method handle implementing the {@code while} loop as described by the arguments.
6022      * @throws IllegalArgumentException if the rules for the arguments are violated.
6023      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
6024      *
6025      * @see #loop(MethodHandle[][])
6026      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
6027      * @since 9
6028      */
6029     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
6030         whileLoopChecks(init, pred, body);
6031         MethodHandle fini = identityOrVoid(body.type().returnType());
6032         MethodHandle[] clause = {init, body, pred, fini };
6033         return loop(clause);
6034     }
6035 
6036     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
6037         Objects.requireNonNull(pred);
6038         Objects.requireNonNull(body);
6039         MethodType bodyType = body.type();
6040         Class<?> returnType = bodyType.returnType();
6041         List<Class<?>> innerList = bodyType.parameterList();
6042         List<Class<?>> outerList = innerList;
6043         if (returnType == void.class) {
6044             // OK
6045         } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
6046             // leading V argument missing => error
6047             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6048             throw misMatchedTypes("body function", bodyType, expected);
6049         } else {
6050             outerList = innerList.subList(1, innerList.size());
6051         }
6052         MethodType predType = pred.type();
6053         if (predType.returnType() != boolean.class ||
6054                 !predType.effectivelyIdenticalParameters(0, innerList)) {
6055             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
6056         }
6057         if (init != null) {
6058             MethodType initType = init.type();
6059             if (initType.returnType() != returnType ||
6060                     !initType.effectivelyIdenticalParameters(0, outerList)) {
6061                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
6062             }
6063         }
6064     }
6065 
6066     /**
6067      * Constructs a loop that runs a given number of iterations.
6068      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6069      * <p>
6070      * The number of iterations is determined by the {@code iterations} handle evaluation result.
6071      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
6072      * It will be initialized to 0 and incremented by 1 in each iteration.
6073      * <p>
6074      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6075      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6076      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6077      * <p>
6078      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6079      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6080      * iteration variable.
6081      * The result of the loop handle execution will be the final {@code V} value of that variable
6082      * (or {@code void} if there is no {@code V} variable).
6083      * <p>
6084      * The following rules hold for the argument handles:<ul>
6085      * <li>The {@code iterations} handle must not be {@code null}, and must return
6086      * the type {@code int}, referred to here as {@code I} in parameter type lists.
6087      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6088      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
6089      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6090      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
6091      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
6092      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
6093      * of types called the <em>internal parameter list</em>.
6094      * It will constrain the parameter lists of the other loop parts.
6095      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
6096      * with no additional {@code A} types, then the internal parameter list is extended by
6097      * the argument types {@code A...} of the {@code iterations} handle.
6098      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
6099      * list {@code (A...)} is called the <em>external parameter list</em>.
6100      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6101      * additional state variable of the loop.
6102      * The body must both accept a leading parameter and return a value of this type {@code V}.
6103      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6104      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6105      * <a href="MethodHandles.html#effid">effectively identical</a>
6106      * to the external parameter list {@code (A...)}.
6107      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6108      * {@linkplain #empty default value}.
6109      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
6110      * effectively identical to the external parameter list {@code (A...)}.
6111      * </ul>
6112      * <p>
6113      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6114      * <li>The loop handle's result type is the result type {@code V} of the body.
6115      * <li>The loop handle's parameter types are the types {@code (A...)},
6116      * from the external parameter list.
6117      * </ul>
6118      * <p>
6119      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6120      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
6121      * arguments passed to the loop.
6122      * <blockquote><pre>{@code
6123      * int iterations(A...);
6124      * V init(A...);
6125      * V body(V, int, A...);
6126      * V countedLoop(A... a...) {
6127      *   int end = iterations(a...);
6128      *   V v = init(a...);
6129      *   for (int i = 0; i < end; ++i) {
6130      *     v = body(v, i, a...);
6131      *   }
6132      *   return v;
6133      * }
6134      * }</pre></blockquote>
6135      *
6136      * @apiNote Example with a fully conformant body method:
6137      * <blockquote><pre>{@code
6138      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
6139      * // => a variation on a well known theme
6140      * static String step(String v, int counter, String init) { return "na " + v; }
6141      * // assume MH_step is a handle to the method above
6142      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
6143      * MethodHandle start = MethodHandles.identity(String.class);
6144      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
6145      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
6146      * }</pre></blockquote>
6147      *
6148      * @apiNote Example with the simplest possible body method type,
6149      * and passing the number of iterations to the loop invocation:
6150      * <blockquote><pre>{@code
6151      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
6152      * // => a variation on a well known theme
6153      * static String step(String v, int counter ) { return "na " + v; }
6154      * // assume MH_step is a handle to the method above
6155      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
6156      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
6157      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
6158      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
6159      * }</pre></blockquote>
6160      *
6161      * @apiNote Example that treats the number of iterations, string to append to, and string to append
6162      * as loop parameters:
6163      * <blockquote><pre>{@code
6164      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
6165      * // => a variation on a well known theme
6166      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
6167      * // assume MH_step is a handle to the method above
6168      * MethodHandle count = MethodHandles.identity(int.class);
6169      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
6170      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
6171      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
6172      * }</pre></blockquote>
6173      *
6174      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
6175      * to enforce a loop type:
6176      * <blockquote><pre>{@code
6177      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
6178      * // => a variation on a well known theme
6179      * static String step(String v, int counter, String pre) { return pre + " " + v; }
6180      * // assume MH_step is a handle to the method above
6181      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
6182      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
6183      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
6184      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
6185      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
6186      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
6187      * }</pre></blockquote>
6188      *
6189      * @apiNote The implementation of this method can be expressed as follows:
6190      * <blockquote><pre>{@code
6191      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
6192      *     return countedLoop(empty(iterations.type()), iterations, init, body);
6193      * }
6194      * }</pre></blockquote>
6195      *
6196      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
6197      *                   result type must be {@code int}. See above for other constraints.
6198      * @param init optional initializer, providing the initial value of the loop variable.
6199      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6200      * @param body body of the loop, which may not be {@code null}.
6201      *             It controls the loop parameters and result type in the standard case (see above for details).
6202      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
6203      *             and may accept any number of additional types.
6204      *             See above for other constraints.
6205      *
6206      * @return a method handle representing the loop.
6207      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
6208      * @throws IllegalArgumentException if any argument violates the rules formulated above.
6209      *
6210      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
6211      * @since 9
6212      */
6213     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
6214         return countedLoop(empty(iterations.type()), iterations, init, body);
6215     }
6216 
6217     /**
6218      * Constructs a loop that counts over a range of numbers.
6219      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6220      * <p>
6221      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
6222      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
6223      * values of the loop counter.
6224      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
6225      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
6226      * <p>
6227      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6228      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6229      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6230      * <p>
6231      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6232      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6233      * iteration variable.
6234      * The result of the loop handle execution will be the final {@code V} value of that variable
6235      * (or {@code void} if there is no {@code V} variable).
6236      * <p>
6237      * The following rules hold for the argument handles:<ul>
6238      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
6239      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
6240      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6241      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
6242      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6243      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
6244      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
6245      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
6246      * of types called the <em>internal parameter list</em>.
6247      * It will constrain the parameter lists of the other loop parts.
6248      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
6249      * with no additional {@code A} types, then the internal parameter list is extended by
6250      * the argument types {@code A...} of the {@code end} handle.
6251      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
6252      * list {@code (A...)} is called the <em>external parameter list</em>.
6253      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6254      * additional state variable of the loop.
6255      * The body must both accept a leading parameter and return a value of this type {@code V}.
6256      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6257      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6258      * <a href="MethodHandles.html#effid">effectively identical</a>
6259      * to the external parameter list {@code (A...)}.
6260      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6261      * {@linkplain #empty default value}.
6262      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
6263      * effectively identical to the external parameter list {@code (A...)}.
6264      * <li>Likewise, the parameter list of {@code end} must be effectively identical
6265      * to the external parameter list.
6266      * </ul>
6267      * <p>
6268      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6269      * <li>The loop handle's result type is the result type {@code V} of the body.
6270      * <li>The loop handle's parameter types are the types {@code (A...)},
6271      * from the external parameter list.
6272      * </ul>
6273      * <p>
6274      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6275      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
6276      * arguments passed to the loop.
6277      * <blockquote><pre>{@code
6278      * int start(A...);
6279      * int end(A...);
6280      * V init(A...);
6281      * V body(V, int, A...);
6282      * V countedLoop(A... a...) {
6283      *   int e = end(a...);
6284      *   int s = start(a...);
6285      *   V v = init(a...);
6286      *   for (int i = s; i < e; ++i) {
6287      *     v = body(v, i, a...);
6288      *   }
6289      *   return v;
6290      * }
6291      * }</pre></blockquote>
6292      *
6293      * @apiNote The implementation of this method can be expressed as follows:
6294      * <blockquote><pre>{@code
6295      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6296      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
6297      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
6298      *     // the following semantics:
6299      *     // MH_increment: (int limit, int counter) -> counter + 1
6300      *     // MH_predicate: (int limit, int counter) -> counter < limit
6301      *     Class<?> counterType = start.type().returnType();  // int
6302      *     Class<?> returnType = body.type().returnType();
6303      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
6304      *     if (returnType != void.class) {  // ignore the V variable
6305      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
6306      *         pred = dropArguments(pred, 1, returnType);  // ditto
6307      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
6308      *     }
6309      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
6310      *     MethodHandle[]
6311      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
6312      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
6313      *         indexVar   = { start, incr };           // i = start(); i = i + 1
6314      *     return loop(loopLimit, bodyClause, indexVar);
6315      * }
6316      * }</pre></blockquote>
6317      *
6318      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
6319      *              See above for other constraints.
6320      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
6321      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
6322      * @param init optional initializer, providing the initial value of the loop variable.
6323      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6324      * @param body body of the loop, which may not be {@code null}.
6325      *             It controls the loop parameters and result type in the standard case (see above for details).
6326      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
6327      *             and may accept any number of additional types.
6328      *             See above for other constraints.
6329      *
6330      * @return a method handle representing the loop.
6331      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
6332      * @throws IllegalArgumentException if any argument violates the rules formulated above.
6333      *
6334      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
6335      * @since 9
6336      */
6337     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6338         countedLoopChecks(start, end, init, body);
6339         Class<?> counterType = start.type().returnType();  // int, but who's counting?
6340         Class<?> limitType   = end.type().returnType();    // yes, int again
6341         Class<?> returnType  = body.type().returnType();
6342         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
6343         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
6344         MethodHandle retv = null;
6345         if (returnType != void.class) {
6346             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
6347             pred = dropArguments(pred, 1, returnType);  // ditto
6348             retv = dropArguments(identity(returnType), 0, counterType);
6349         }
6350         body = dropArguments(body, 0, counterType);  // ignore the limit variable
6351         MethodHandle[]
6352             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
6353             bodyClause = { init, body },            // v = init(); v = body(v, i)
6354             indexVar   = { start, incr };           // i = start(); i = i + 1
6355         return loop(loopLimit, bodyClause, indexVar);
6356     }
6357 
6358     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6359         Objects.requireNonNull(start);
6360         Objects.requireNonNull(end);
6361         Objects.requireNonNull(body);
6362         Class<?> counterType = start.type().returnType();
6363         if (counterType != int.class) {
6364             MethodType expected = start.type().changeReturnType(int.class);
6365             throw misMatchedTypes("start function", start.type(), expected);
6366         } else if (end.type().returnType() != counterType) {
6367             MethodType expected = end.type().changeReturnType(counterType);
6368             throw misMatchedTypes("end function", end.type(), expected);
6369         }
6370         MethodType bodyType = body.type();
6371         Class<?> returnType = bodyType.returnType();
6372         List<Class<?>> innerList = bodyType.parameterList();
6373         // strip leading V value if present
6374         int vsize = (returnType == void.class ? 0 : 1);
6375         if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
6376             // argument list has no "V" => error
6377             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6378             throw misMatchedTypes("body function", bodyType, expected);
6379         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
6380             // missing I type => error
6381             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
6382             throw misMatchedTypes("body function", bodyType, expected);
6383         }
6384         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
6385         if (outerList.isEmpty()) {
6386             // special case; take lists from end handle
6387             outerList = end.type().parameterList();
6388             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
6389         }
6390         MethodType expected = methodType(counterType, outerList);
6391         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
6392             throw misMatchedTypes("start parameter types", start.type(), expected);
6393         }
6394         if (end.type() != start.type() &&
6395             !end.type().effectivelyIdenticalParameters(0, outerList)) {
6396             throw misMatchedTypes("end parameter types", end.type(), expected);
6397         }
6398         if (init != null) {
6399             MethodType initType = init.type();
6400             if (initType.returnType() != returnType ||
6401                 !initType.effectivelyIdenticalParameters(0, outerList)) {
6402                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
6403             }
6404         }
6405     }
6406 
6407     /**
6408      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
6409      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6410      * <p>
6411      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
6412      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
6413      * <p>
6414      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6415      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6416      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6417      * <p>
6418      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6419      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6420      * iteration variable.
6421      * The result of the loop handle execution will be the final {@code V} value of that variable
6422      * (or {@code void} if there is no {@code V} variable).
6423      * <p>
6424      * The following rules hold for the argument handles:<ul>
6425      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6426      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
6427      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6428      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
6429      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
6430      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
6431      * of types called the <em>internal parameter list</em>.
6432      * It will constrain the parameter lists of the other loop parts.
6433      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
6434      * with no additional {@code A} types, then the internal parameter list is extended by
6435      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
6436      * single type {@code Iterable} is added and constitutes the {@code A...} list.
6437      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
6438      * list {@code (A...)} is called the <em>external parameter list</em>.
6439      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6440      * additional state variable of the loop.
6441      * The body must both accept a leading parameter and return a value of this type {@code V}.
6442      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6443      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6444      * <a href="MethodHandles.html#effid">effectively identical</a>
6445      * to the external parameter list {@code (A...)}.
6446      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6447      * {@linkplain #empty default value}.
6448      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
6449      * type {@code java.util.Iterator} or a subtype thereof.
6450      * The iterator it produces when the loop is executed will be assumed
6451      * to yield values which can be converted to type {@code T}.
6452      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
6453      * effectively identical to the external parameter list {@code (A...)}.
6454      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
6455      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
6456      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
6457      * handle parameter is adjusted to accept the leading {@code A} type, as if by
6458      * the {@link MethodHandle#asType asType} conversion method.
6459      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
6460      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
6461      * </ul>
6462      * <p>
6463      * The type {@code T} may be either a primitive or reference.
6464      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
6465      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
6466      * as if by the {@link MethodHandle#asType asType} conversion method.
6467      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
6468      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
6469      * <p>
6470      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6471      * <li>The loop handle's result type is the result type {@code V} of the body.
6472      * <li>The loop handle's parameter types are the types {@code (A...)},
6473      * from the external parameter list.
6474      * </ul>
6475      * <p>
6476      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6477      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
6478      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
6479      * <blockquote><pre>{@code
6480      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
6481      * V init(A...);
6482      * V body(V,T,A...);
6483      * V iteratedLoop(A... a...) {
6484      *   Iterator<T> it = iterator(a...);
6485      *   V v = init(a...);
6486      *   while (it.hasNext()) {
6487      *     T t = it.next();
6488      *     v = body(v, t, a...);
6489      *   }
6490      *   return v;
6491      * }
6492      * }</pre></blockquote>
6493      *
6494      * @apiNote Example:
6495      * <blockquote><pre>{@code
6496      * // get an iterator from a list
6497      * static List<String> reverseStep(List<String> r, String e) {
6498      *   r.add(0, e);
6499      *   return r;
6500      * }
6501      * static List<String> newArrayList() { return new ArrayList<>(); }
6502      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
6503      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
6504      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
6505      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
6506      * assertEquals(reversedList, (List<String>) loop.invoke(list));
6507      * }</pre></blockquote>
6508      *
6509      * @apiNote The implementation of this method can be expressed approximately as follows:
6510      * <blockquote><pre>{@code
6511      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6512      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
6513      *     Class<?> returnType = body.type().returnType();
6514      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
6515      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
6516      *     MethodHandle retv = null, step = body, startIter = iterator;
6517      *     if (returnType != void.class) {
6518      *         // the simple thing first:  in (I V A...), drop the I to get V
6519      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
6520      *         // body type signature (V T A...), internal loop types (I V A...)
6521      *         step = swapArguments(body, 0, 1);  // swap V <-> T
6522      *     }
6523      *     if (startIter == null)  startIter = MH_getIter;
6524      *     MethodHandle[]
6525      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
6526      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
6527      *     return loop(iterVar, bodyClause);
6528      * }
6529      * }</pre></blockquote>
6530      *
6531      * @param iterator an optional handle to return the iterator to start the loop.
6532      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
6533      *                 See above for other constraints.
6534      * @param init optional initializer, providing the initial value of the loop variable.
6535      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6536      * @param body body of the loop, which may not be {@code null}.
6537      *             It controls the loop parameters and result type in the standard case (see above for details).
6538      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
6539      *             and may accept any number of additional types.
6540      *             See above for other constraints.
6541      *
6542      * @return a method handle embodying the iteration loop functionality.
6543      * @throws NullPointerException if the {@code body} handle is {@code null}.
6544      * @throws IllegalArgumentException if any argument violates the above requirements.
6545      *
6546      * @since 9
6547      */
6548     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6549         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
6550         Class<?> returnType = body.type().returnType();
6551         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
6552         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
6553         MethodHandle startIter;
6554         MethodHandle nextVal;
6555         {
6556             MethodType iteratorType;
6557             if (iterator == null) {
6558                 // derive argument type from body, if available, else use Iterable
6559                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
6560                 iteratorType = startIter.type().changeParameterType(0, iterableType);
6561             } else {
6562                 // force return type to the internal iterator class
6563                 iteratorType = iterator.type().changeReturnType(Iterator.class);
6564                 startIter = iterator;
6565             }
6566             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
6567             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
6568 
6569             // perform the asType transforms under an exception transformer, as per spec.:
6570             try {
6571                 startIter = startIter.asType(iteratorType);
6572                 nextVal = nextRaw.asType(nextValType);
6573             } catch (WrongMethodTypeException ex) {
6574                 throw new IllegalArgumentException(ex);
6575             }
6576         }
6577 
6578         MethodHandle retv = null, step = body;
6579         if (returnType != void.class) {
6580             // the simple thing first:  in (I V A...), drop the I to get V
6581             retv = dropArguments(identity(returnType), 0, Iterator.class);
6582             // body type signature (V T A...), internal loop types (I V A...)
6583             step = swapArguments(body, 0, 1);  // swap V <-> T
6584         }
6585 
6586         MethodHandle[]
6587             iterVar    = { startIter, null, hasNext, retv },
6588             bodyClause = { init, filterArgument(step, 0, nextVal) };
6589         return loop(iterVar, bodyClause);
6590     }
6591 
6592     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6593         Objects.requireNonNull(body);
6594         MethodType bodyType = body.type();
6595         Class<?> returnType = bodyType.returnType();
6596         List<Class<?>> internalParamList = bodyType.parameterList();
6597         // strip leading V value if present
6598         int vsize = (returnType == void.class ? 0 : 1);
6599         if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
6600             // argument list has no "V" => error
6601             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6602             throw misMatchedTypes("body function", bodyType, expected);
6603         } else if (internalParamList.size() <= vsize) {
6604             // missing T type => error
6605             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
6606             throw misMatchedTypes("body function", bodyType, expected);
6607         }
6608         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
6609         Class<?> iterableType = null;
6610         if (iterator != null) {
6611             // special case; if the body handle only declares V and T then
6612             // the external parameter list is obtained from iterator handle
6613             if (externalParamList.isEmpty()) {
6614                 externalParamList = iterator.type().parameterList();
6615             }
6616             MethodType itype = iterator.type();
6617             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
6618                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
6619             }
6620             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
6621                 MethodType expected = methodType(itype.returnType(), externalParamList);
6622                 throw misMatchedTypes("iterator parameters", itype, expected);
6623             }
6624         } else {
6625             if (externalParamList.isEmpty()) {
6626                 // special case; if the iterator handle is null and the body handle
6627                 // only declares V and T then the external parameter list consists
6628                 // of Iterable
6629                 externalParamList = Arrays.asList(Iterable.class);
6630                 iterableType = Iterable.class;
6631             } else {
6632                 // special case; if the iterator handle is null and the external
6633                 // parameter list is not empty then the first parameter must be
6634                 // assignable to Iterable
6635                 iterableType = externalParamList.get(0);
6636                 if (!Iterable.class.isAssignableFrom(iterableType)) {
6637                     throw newIllegalArgumentException(
6638                             "inferred first loop argument must inherit from Iterable: " + iterableType);
6639                 }
6640             }
6641         }
6642         if (init != null) {
6643             MethodType initType = init.type();
6644             if (initType.returnType() != returnType ||
6645                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
6646                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
6647             }
6648         }
6649         return iterableType;  // help the caller a bit
6650     }
6651 
6652     /*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
6653         // there should be a better way to uncross my wires
6654         int arity = mh.type().parameterCount();
6655         int[] order = new int[arity];
6656         for (int k = 0; k < arity; k++)  order[k] = k;
6657         order[i] = j; order[j] = i;
6658         Class<?>[] types = mh.type().parameterArray();
6659         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
6660         MethodType swapType = methodType(mh.type().returnType(), types);
6661         return permuteArguments(mh, swapType, order);
6662     }
6663 
6664     /**
6665      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
6666      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
6667      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
6668      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
6669      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
6670      * {@code try-finally} handle.
6671      * <p>
6672      * The {@code cleanup} handle will be passed one or two additional leading arguments.
6673      * The first is the exception thrown during the
6674      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
6675      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
6676      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
6677      * The second argument is not present if the {@code target} handle has a {@code void} return type.
6678      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
6679      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
6680      * <p>
6681      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
6682      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
6683      * two extra leading parameters:<ul>
6684      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
6685      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
6686      * the result from the execution of the {@code target} handle.
6687      * This parameter is not present if the {@code target} returns {@code void}.
6688      * </ul>
6689      * <p>
6690      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
6691      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
6692      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
6693      * the cleanup.
6694      * <blockquote><pre>{@code
6695      * V target(A..., B...);
6696      * V cleanup(Throwable, V, A...);
6697      * V adapter(A... a, B... b) {
6698      *   V result = (zero value for V);
6699      *   Throwable throwable = null;
6700      *   try {
6701      *     result = target(a..., b...);
6702      *   } catch (Throwable t) {
6703      *     throwable = t;
6704      *     throw t;
6705      *   } finally {
6706      *     result = cleanup(throwable, result, a...);
6707      *   }
6708      *   return result;
6709      * }
6710      * }</pre></blockquote>
6711      * <p>
6712      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
6713      * be modified by execution of the target, and so are passed unchanged
6714      * from the caller to the cleanup, if it is invoked.
6715      * <p>
6716      * The target and cleanup must return the same type, even if the cleanup
6717      * always throws.
6718      * To create such a throwing cleanup, compose the cleanup logic
6719      * with {@link #throwException throwException},
6720      * in order to create a method handle of the correct return type.
6721      * <p>
6722      * Note that {@code tryFinally} never converts exceptions into normal returns.
6723      * In rare cases where exceptions must be converted in that way, first wrap
6724      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
6725      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
6726      * <p>
6727      * It is recommended that the first parameter type of {@code cleanup} be
6728      * declared {@code Throwable} rather than a narrower subtype.  This ensures
6729      * {@code cleanup} will always be invoked with whatever exception that
6730      * {@code target} throws.  Declaring a narrower type may result in a
6731      * {@code ClassCastException} being thrown by the {@code try-finally}
6732      * handle if the type of the exception thrown by {@code target} is not
6733      * assignable to the first parameter type of {@code cleanup}.  Note that
6734      * various exception types of {@code VirtualMachineError},
6735      * {@code LinkageError}, and {@code RuntimeException} can in principle be
6736      * thrown by almost any kind of Java code, and a finally clause that
6737      * catches (say) only {@code IOException} would mask any of the others
6738      * behind a {@code ClassCastException}.
6739      *
6740      * @param target the handle whose execution is to be wrapped in a {@code try} block.
6741      * @param cleanup the handle that is invoked in the finally block.
6742      *
6743      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
6744      * @throws NullPointerException if any argument is null
6745      * @throws IllegalArgumentException if {@code cleanup} does not accept
6746      *          the required leading arguments, or if the method handle types do
6747      *          not match in their return types and their
6748      *          corresponding trailing parameters
6749      *
6750      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
6751      * @since 9
6752      */
6753     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
6754         List<Class<?>> targetParamTypes = target.type().parameterList();
6755         Class<?> rtype = target.type().returnType();
6756 
6757         tryFinallyChecks(target, cleanup);
6758 
6759         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
6760         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
6761         // target parameter list.
6762         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
6763 
6764         // Ensure that the intrinsic type checks the instance thrown by the
6765         // target against the first parameter of cleanup
6766         cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class));
6767 
6768         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
6769         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
6770     }
6771 
6772     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
6773         Class<?> rtype = target.type().returnType();
6774         if (rtype != cleanup.type().returnType()) {
6775             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
6776         }
6777         MethodType cleanupType = cleanup.type();
6778         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
6779             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
6780         }
6781         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
6782             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
6783         }
6784         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
6785         // target parameter list.
6786         int cleanupArgIndex = rtype == void.class ? 1 : 2;
6787         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
6788             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
6789                     cleanup.type(), target.type());
6790         }
6791     }
6792 
6793 }